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Abstract. We describe a general procedure for constructing a Thompson-like group
out of a system of groups that is equipped with what we call a cloning system. Existing
examples include the trivial group, symmetric groups, braid groups and pure braid
groups, which yield the Thompson groups F , V , Vbr and Fbr, respectively.

We give new examples of systems of groups that admit a cloning system and study
how the finiteness properties of the resulting Thompson group depend on those of the
original groups. The main new examples here include upper triangular matrix groups
over rings of S-integers, and also mock reflection groups.

Introduction

In 1965 Richard Thompson introduced three groups that today are usually denoted F ,
T , and V . These have received a lot of recent attention for their interesting and often
surprising properties. Most prominently, T and V are finitely presented, infinite, simple
groups, and F is not elementary amenable and contains no non-abelian free subgroups. It
is an ongoing problem to determine whether F is amenable or not. As far as finiteness
properties are concerned, which is what we will be most interested in, F is an example of
a torsion-free group that is of type F∞ without being of type F.
For these and other reasons, numerous generalizations of Thompson’s groups have been
introduced in the literature; see for example [Hig74, Ste92, GS97, Röv99, Bri04, Hug09,
MPN, BF]. Most of these constructions either generalize the way in which branching
can occur, or mimic the self-similarity in some way. Here we introduce a more algebraic
construction of Thompson-like groups that is based on the usual branching of the group F
acting on tree diagrams but allows one to incorporate other groups besides trivial groups
(as for F ) or symmetric groups (as for V ) to act on the strands. The construction is
based on Brin’s description on the braided Thompson group Vbr [Bri07]. Another example
is the braided Thompson group Fbr introduced by Brady, Burillo, Cleary and Stein in
[BBCS08]. The input is a directed system of groups (Gn)n∈N together with a cloning
system. A cloning system consists of morphisms Gn → Sn, where Sn are the symmetric
groups, and cloning maps κnk : Gn → Gn+1, 1 ≤ k ≤ n subject to certain conditions (see
Definition 2.15). The output is a group T (G∗) which is Thompson-like in many ways.
Perhaps this is best illustrated by the fact that there are morphisms F ↪→ T (G∗)→ V
whose composition is the inclusion F ↪→ V .
The finiteness properties of being of type Fn generalize the properties of being finitely
generated (type F1) and of being finitely presented (type F2). Recall that a group G
is of type Fn if there is a K(G, 1) with finite n-skeleton. Most of the generalizations of
Thompson’s groups mentioned above are known to be of type F∞, that is, of type Fn for
all n. Even though there are many examples of groups with separating finiteness properties
[AB87, BB97, Bux04, BKW13], finiteness properties are not generally well understood. It
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is therefore interesting to investigate how the finiteness properties of a group change when
it is subject to a certain “operation.” One such operation is braiding; the question of
which finiteness properties the braided versions of F and V have was answered in [BFS+].
In this article we reinterpret these examples as “Thompsonifications” of the pure braid
groups and braid groups respectively. We investigate how the finiteness properties of the
Thompson group of a cloning system depends on the finiteness properties of the input
groups. For certain systems of groups G∗ we show the limiting behavior

φ(T (G∗)) = lim inf
n

φ(Gn) (1)

where φ(G) is the finiteness length of G, i.e., the supremum over all n such that G is of
type Fn. In other words (1) states that T (G∗) is of type Fn if and only if all but finitely
many Gn are of type Fn. In some sense T (G∗) may be thought of as a limit of the groups
G∗, for example it contains all of them. It is rather remarkable though, that it should
be so well behaved with respect to finiteness properties. Indeed, (1) fails for most other
limiting processes, for example an infinite direct limit of finite groups will not even be
finitely generated.
A relatively well-developed machinery is available to prove finiteness properties of existing
Thompson-like groups (namely that, so far, they are all of type F∞); see [Bro92, Ste92,
Bro06, Far03, FMWZ13, BFS+]. As far as proving positive finiteness properties, this will
also work nicely for our groups. The Thompson group acts on a contractible cube complex
called the Stein space with stabilizers coming from the cloning system. The space has a
natural cocompact filtration. To show that the Thompson group is of type Fn (assuming
all the stabilizers are) amounts to showing that the descending links in this filtration are
eventually (n− 1)-connected. This has to be done for every cloning system individually,
and depends on the nature of the examples being considered. It is less clear how to analyze
the negative finiteness properties; the Stein space does not seem to be the right space to
study in this regard, and we have not yet developed a general framework.
The first main examples we consider in the present work are groups of upper triangular
matrices. These are particularly interesting because they include on the one hand the
Abels groups Abn(Z[1

p ]), whose finiteness length tends to infinity with n, and on the other

hand groups Bn(OS) of upper triangular matrices of S-integers in positive characteristic,
whose finiteness length is constant as a function of n. We prove here that for any R,
T (B∗(R)) inherits any positive finiteness properties of Bn(R), so it satisfies the inequality
“≥” of (1):

Theorem 7.4. φ(T (B∗(R))) ≥ lim inf
n

(φ(Bn(R))).

We are currently not able to show the converse inequality in general, but we have some
evidence:

Proposition 7.14. Let k be a field and R = k[t] its polynomial ring. Then T (B∗(k[t]))
is not finitely generated.

The argument for upper triangular matrices also applies to the Abels groups. Here it
shows the full equation (1) because the right hand side is infinite:

Theorem 7.13. T (Ab∗(Z[1
p ])) is of type F∞.

This last fact is especially interesting since individually none of the Abn(Z[1
p ]) themselves

are of type F∞. The second main example we consider is a Thompson group Vmock for
the family of mock symmetric groups Smock

n , which was proposed to us by Januszkiewicz.
Since mock symmetric groups are F∞ it is expected that the same is true for the associated
Thompson group.

Conjecture 8.4. Vmock is of type F∞.
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The paper is organized as follows. In Section 1 we recall some basics about monoids and
the Zappa–Szép product. In Section 2 we introduce cloning systems (Definition 2.15) and
explain how they give rise to Thompson groups. Section 3 collects some group theoretic
consequences that follow directly from the construction. To study finiteness properties,
the Stein space is introduced in Section 4. The filtration and its descending links are
described in Section 5, and we discuss some background on Morse theory and other related
techniques for proving high connectivity. Up to this point everything is mostly generic.
The following sections discuss examples. Section 6 gives an elementary example where
Gn = Hn for some group H. Section 7 discusses cloning systems for groups of upper
triangular matrices. We also prove that the corresponding Thompson group has finiteness
length at least the limit infimum of those of the matrix groups. Section 8 introduces the
group Vmock which is built out of mock symmetric groups.

Acknowledgments. We are grateful to Matt Brin and Kai-Uwe Bux for helpful discus-
sions, and to Tadeusz Januszkiewicz for proposing to us the group Vmock. Both authors
also gratefully acknowledge support of the SFB 878 in Münster, and in the case of the
second author also the SFB 701 in Bielefeld.

1. Preliminaries

Much of the material in this section is taken from [Bri07].

1.1. Monoids. A monoid is an associative binary structure with a two-sided identity. A
monoid M is called left cancellative if for all x, y, z ∈ M , we have that xy = xz implies
y = z. Elements x, y ∈ M have a common left multiple m if there exist z, w ∈ M such
that zx = wy = m. This is the least common left multiple if for all p, q ∈ M such that
px = qy, we have that px is a left multiple of m. There are the obvious definitions of
right cancellative, common right multiples and least common right multiples. We say
that M has common right/left multiples if any two elements have a common right/left
multiple. It is said to have least common right/left multiples if any two elements that
have a common right/left multiple have a least common right/left multiple. When we
write that M has (least) common right multiples with least in brackets, we mean that it
has common right multiples as well as least common right multiples (and analogously for
left multiples and factors). Finally, we say M is cancellative if it is both left and right
cancellative. The importance of these notions lies in the following classical theorem (see
[CP61, Theorems 1.23, 1.25]):

Theorem 1.1 (Ore). A cancellative monoid with common right multiples has a unique
group of right fractions.

Recall that for every monoid M there exists a group GM and a monoid morphism
ω : M → GM such that every monoid morphism from M to a group factors through ω (the
group generated by all the elements of M subject to all the relations that hold in M). This
is the group of fractions of M . The morphism ω will be injective if and only if M embeds
into a group. A group G is called a group of right fractions of M if it contains M and
every element of G can be written as m · n−1 with m,n ∈M . A group of right fractions
exists precisely in the situation of Ore’s theorem and is unique up to isomorphism; see
[CP61, Section 1.10] for details. We call a monoid satisfying the hypotheses of Theorem 1.1
an Ore monoid. The group of right fractions of an Ore monoid is its group of fractions
(see for example [KS06, Theorem 7.1.16]):

Lemma 1.2. Let M be an Ore monoid, let G be its group of right fractions and let H be
any group. Let ϕ : M → H be a monoid morphism. Then the map ϕ̃ : G→ H defined by
ϕ̃(mn−1) = ϕ(m) · ϕ(n)−1 is a group homomorphism and ϕ = ϕ̃|M .
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Proof. That inverses map to inverses is clear. Let m1,m2, n1, n2 ∈M and let n1 ·x = m2 ·y
be a common right multiple so that m1n

−1
1 m2n

−1
2 = m1xy

−1n−1
2 . We have to check that

ϕ(m1)ϕ(n1)−1ϕ(m2)ϕ(n2)−1 = ϕ(m1x)ϕ(n2y)−1. (1.1)

The fact that ϕ is a monoid morphism means that ϕ(n1)ϕ(x) = ϕ(m2)ϕ(y) which entails
ϕ(n1)−1ϕ(m2) = ϕ(x)ϕ(y)−1. Extending by ϕ(m1) from the left and by ϕ(n2)−1 from the
right gives (1.1). �

1.2. Posets from monoids. Throughout this section let M be an Ore monoid and let G
be its group of right fractions. The notions of left/right multiple/factor are uninteresting
for G as a monoid because it is a group. Instead we introduce these notions relative to
the monoid M . Concretely, assume that elements a, b, c ∈ G satisfy

ab = c.

If a ∈M then we call b a right factor of c and c a left multiple of b. If b ∈M then we call a
a left factor of c and c a right multiple of a. If g is a left factor (respectively right multiple)
of both h and h′ then we say that it is a common left factor (respectively common right
multiple). If g is a common left factor of h and h′ and any other left factor of h and h′ is
also a left factor of g then g is called a greatest common left factor. If g is a common right
multiple of h and h′ and every other right multiple is also a right multiple of g then g is
called a least common right multiple of h and h′. Thus we obtain notions of when G has
(least) common right/left multiples and (greatest) common right/left factors. We say that
two elements have no common right factor if they have least common right factor 1.
Under a moderate additional assumption, having least common right multiples is inherited
by G from M :

Lemma 1.3. Let M have least common right multiples. Let n, n′,m,m′ ∈M be such that
n and m have no common right factor and neither do n′ and m′. Let nv = n′u be a least
common right multiple of n and n′. Then nv = n′u is a least common right multiple of
nm−1 and n′m′−1.

We call a monoid homomorphism len: M → N0 a length function if every element of the
kernel is a unit. It induces a length function len: G→ Z. Note that if M admits a length
function then every element of G can be written as mn−1 where m and n are elements of
M with no common right factor.
The following is an extension of [Bri07, Lemma 2.3] to G.

Lemma 1.4. Assume that M admits a length function. Then G has least common right
multiples if and only if it has greatest common left factors.

One reason for our interest in least common right multiples and greatest common left
factors is order theoretic. Define a relation on G by declaring g ≤ h if g is a left factor
of h. This relation is reflexive and transitive but fails to satisfy antisymmetry if M has
non-trivial units. We denote the relation induced on G/M× also by ≤. It is an order
relation so G/M× becomes a partially ordered set (poset). Spelled out, the relation is
given by gM× ≤ hM× if g−1h ∈M .
The algebraic properties discussed before immediately translate into order theoretic
properties:

Observation 1.5. If M has (least) common right multiples and (greatest) common left
factors then M/M× is a lattice. Similarly, if G has (least) common right multiples and
(greatest) common left factors then G/M× is a lattice.

Putting everything together, we find:

Corollary 1.6. Let M be a cancellative monoid with (least) common right multiples and
length function. Let G be its group of right fractions. Then G/M× is a lattice.
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Figure 1. Multiplication of forests.

1.3. The monoid of forests. Since we are interested in Thompson’s groups, an important
monoid in all that follows will be the monoid of forests, which we define in this subsection.
For us, a tree is always a finite rooted full binary tree. In other words, every vertex has
either no outgoing edges or a left and right outgoing edge, and every vertex other than
the root has an incoming edge. The vertices without outgoing edges are called leaves. The
distinction between left and right induces a natural order on the leaves. If a tree has only
one leaf, then the leaf is also its root and the tree is the trivial tree.
By a forest we mean a sequence of trees E = (Ti)i∈N such that all but finitely many Ti
are trivial. The roots are numbered in the obvious way, i.e., the ith root of E is the root
of Ti. If all the Ti are trivial we call E trivial. If the Ti are trivial for i > 1 then the forest
is called semisimple (here we deviate from Brin’s notation; what we call “semisimple” is
called “simple” in [Bri07], and what we will later call “simple”, Brin calls “simple and
balanced”). The rank of E is the least index i such that Tj is trivial for j > i. So E is
semisimple if it has rank at most 1. The leaves of all the Ti are called the leaves of E. The
order on the leaves of the trees induces an order on the leaves of the forest by declaring
that any leaf of Ti comes before any leaf of Tj , whenever i < j. We may equivalently think
of the leaves as numbered by natural numbers. The number of feet of a semisimple forest
(Ti)i∈N is the number of leaves of T1 .
Let F be the set of forests. Define a multiplication on F as follows. Let E = (Tk) and
E′ = (T ′k) be forests, and set EE′ to be the forest obtained by identifying the ith leaf of E

with the ith root of E′, for each i. This product is associative, and the trivial forest is
a left and right identity, so F is a monoid. Some more details on F can be found in
Section 3 of [Bri07]. Figure 1 illustrates the multiplication of two elements.
There is an obvious set of generators of F , namely the set of single-caret forests. Such a
forest can be characterized by the property that there exists k ∈ N such that for i < k,
the ith root is also the ith leaf, and for i > k, the ith root is also the (i+ 1)st leaf. Denote
this forest by λk. Every tree in λk is trivial except for the kth tree, which is a single caret.

Proposition 1.7 (Presentation of the forest monoid). [Bri07, Proposition 3.3] F is
generated by the λk, and defining relations are given by

λjλi = λiλj+1 for i < j. (1.2)

Every element of F can be uniquely expressed as a word of the form λk1λk2 · · ·λkr for
some k1 ≤ · · · ≤ kr.

A consequence is that the number of carets is an invariant of a forest, and is exactly
the length of the word in the λk representing the forest. The following is part of [Bri07,
Lemma 3.4].

Lemma 1.8. The monoid F has the following properties.

(1) It is cancellative.
(2) It has common right multiples.
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(3) It has no non-trivial units.
(4) There is a monoid homomorphism len : F → N0 sending each generator to 1
(5) It has greatest common right factors and least common left multiples
(6) It has greatest common left factors and least common right multiples.

In view of Theorem 1.1 properties (1) and (2) imply F has a unique group of right

fractions which we denote F̂ .

1.4. Zappa–Szép products. In this section we recall the background on Zappa–Szép
products of monoids. Our main reference is [Bri07, Section 2.4], and also see [Bri05].
When the monoids are groups, Zappa–Szép products generalize semidirect products, with
the extra flexibility that normality is no longer required.
The internal Zappa–Szép product is straightforward to define. Let M be a monoid with
submonoids U and A such that every m ∈M can be written in a unique way as m = uα
for u ∈ U and α ∈ A. In particular, for α ∈ A and u ∈ U there exist u′ ∈ U and α′ ∈ A
such that αu = u′α′, and the u′ and α′ are uniquely determined by α and u, so we denote
them u′ = α · u and α′ = αu, following [Bri07]. The maps (α, u) 7→ α · u and (α, u) 7→ αu

should be thought of as mutual actions of U and A on each other. Then we can define a
multiplication on U ×A via

(u, α)(v, β) := (u(α · v), αvβ), (1.3)

for u, v ∈ U and α, β ∈ A, and the map (u, α) 7→ uα is a monoid isomorphism from U ×A
(with this multiplication) to M ; see [Bri07, Lemma 2.7]. We say that M is the (internal)
Zappa–Szép product of U and A, and write M = U ./ A.

Example 1.9 (Semidirect product). Suppose G is a group that is a semidirect product
G = U n A for U,A ≤ G. Then for u ∈ U and α ∈ A we have αu = u(u−1αu), and
u−1αu ∈ A, so the actions defined above are just α · u = u and αu = u−1αu.

We actually need to use the external Zappa–Szép product. This is discussed in detail in
[Bri07, Section 2.4] (and in even more detail in [Bri05]).

Definition 1.10 (External Zappa–Szép product). Let U and A be monoids with maps
(α, u) 7→ α · u and (α, u) 7→ αu satisfying the following eight properties for all u, v ∈ U and
α, β ∈ A:

1) 1A · u = u (Identity acting on U)
2) (αβ) · u = α · (β · u) (Product acting on U)
3) α1U = α (Identity acting on A)

4) α(uv) = (αu)v (Product acting on A)
5) (1A)u = 1A (U acting on identity)

6) (αβ)u = α(β·u)βu (U acting on product)
7) α · 1U = 1U (A acting on identity)
8) α · (uv) = (α · u)(αu · v). (A acting on product)

Then the maps are called a Zappa–Szép action. The set U ×A together with the multipli-
cation defined by (1.3) is called the (external) Zappa–Szép product of U and A, denoted
U ./ A.

It is shown in Lemma 2.9 in [Bri07] that the external Zappa–Szép product turns U ./ A
into a monoid and coincides with the internal Zappa–Szép product of U and A with respect
to the embeddings u 7→ (u, 1A) and α 7→ (1U , α).
Some pedantry about the use of the word “action” might now be advisable. The action of
U on A is a right action described by a homomorphism of monoids U → Symm(A), where
Symm(A) is the symmetric group on A (and is not the group of monoid automorphisms).
The action of A on U is a left action described by a homomorphism of monoids A →
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Symm(U), again not to Aut(U). In a phrase, both actions are actions of monoids as
monoids, but not on monoids as monoids.
Brin [Bri07] regards the action (α, u) 7→ αu of U on A as a family of maps from A to itself
parametrized by U and defines properties of this family. For brevity we apply the same
adjectives to the action itself but one should think of the family of maps. The action is
called injective if αu = βu implies α = β. It is surjective if for every α ∈ A and u ∈ U
there exists a β ∈ A with βu = α. The action is strongly confluent if the following holds:
if u, v ∈ U have a least common left multiple ru = sv and α = βu = γv for some β, γ ∈ A
then there should be a θ ∈ A such that θr = β and θs = γ. Note that if the action is
injective then for this to happen it is sufficient that θru = α. The notions for the action of
A on U are defined by analogy.
The following lemmas can be found as Lemma 2.12 in [Bri07], or as Lemmas 3.15 in
[Bri05].

Lemma 1.11. Let U be a cancellative monoid with least common left multiples and let
A be a group. Let U and A act on each other via Zappa-Szép actions. Assume that the
action (α, u) 7→ αu of U on A is strongly confluent. Then M = U ./ A has least common
left multiples.
A least common left multiple (r, α)(u, θ) = (s, β)(v, φ) of (u, θ) and (v, φ) in M can be
constructed so that r(α · u) = s(β · v) is the least common left multiple of (α · u) and (β · v)
in U . If M is cancellative, every least common left multiple will have that property.

Being actions of monoids, Zappa–Szép actions are already determined by the actions of
generating sets. It is not obvious, but also true, that they are often also determined by
the actions of generating sets on generating sets. This means that, in order to define
the actions, we need only define α · u and uα where both α and u come from generating
sets. Brin [Bri07, pp. 768–769] gives a sufficient condition for such partial actions to
extend to well defined Zappa–Szép actions, which we restate here. Given sets X and Y ,
let X∗ and Y ∗ denote the free monoids generated respectively by them. Suppose maps
Y ×X → Y ∗, (α, u) 7→ αu and Y ×X → X, (α, u) 7→ α · u are given. Let W be the set of
relations (αu, (α · u)(αu)) with α ∈ Y, u ∈ X. Then

〈X ∪ Y |W 〉

is a Zappa–Szép product of X∗ and Y ∗. In particular, the above maps extend to Zappa–
Szép actions Y ∗ ×X∗ → Y ∗ and Y ∗ ×X∗ → X∗.

Lemma 1.12 ([Bri07, Lemma 2.14]). Let U = 〈X | R〉 and A = 〈Y | T 〉 be presentations
of monoids (with X ∩ Y = ∅). Assume that functions Y × X → Y ∗, (α, u) 7→ αu and
Y ×X → X, (α, u) 7→ α · u are given. Let ∼R and ∼T denote the equivalence relations on
X∗ and Y ∗ imposed by the relation sets R and T .
Extend the above maps to Y ∗ ×X∗ as above. Assume that the following are satisfied. If
(u, v) ∈ R then for every α ∈ Y we have (α · u, α · v) ∈ R or (α · v, α · u) ∈ R, and also
αu ∼T αv. If (α, β) ∈ T then for all u ∈ X we have α · u = β · u and αu ∼T βu.
Then the lifted maps induce well-defined Zappa–Szép actions and the restriction of the map
A× U → U to A×X has its image in X. A presentation for U ./ A is

〈X ∪ Y | R ∪ T ∪W 〉

where W consists of all pairs (αu, (α · u)(αu)) for (α, u) ∈ Y ×X.

2. Data defining generalized Thompson’s groups

2.1. Brin–Zappa–Szép products and cloning systems. To construct Thompson-like
groups we now consider Zappa–Szép products F ./ G of the forest monoid F with a
group G.
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Definition 2.1 (BZS products). Suppose we have Zappa–Szép actions (E, g) 7→ g ·E and
(E, g) 7→ gE on F × G, for G a group. For each standard generator λk of F the map
κk = κλk : G→ G given by g 7→ gλk is called the kth cloning map. If every such cloning
map is injective, we call the actions Brin–Zappa–Szép actions (BZS actions) and call the
monoid F ./ G the Brin–Zappa–Szép product (BZS product).

Since the action of F on G is a right action we will also write the cloning maps κk on the
right.
The monoid F is cancellative and has common right multiples, and the same is true of G,
being a group. Since G is a group these properties are inherited by F ./ G:

Observation 2.2. A BZS product F ./ G is cancellative and has (least) common right
multiples. In particular it has a group of right fractions.

Proof. This follows easily from the statements about F using the unique factorization in
Zappa–Szép products and that E is a right multiple and left factor of (E, g). �

In Definition 2.1 we have already simplified the data needed to describe BZS products by
using the fact that F is generated by the λk. In a similar fashion the following lemma
reduces the data needed to describe the action of G on F . We denote by Sω the group
Symm(N) of permutations of N and by S∞ ≤ Sω the subgroup of permutations with finite
support.

Lemma 2.3 (Carets to carets). Let F ./ G be a BZS product. The action of G on F
preserves the set Λ = {λk}k∈N and so induces a homomorphism ρ : G→ Sω. Conversely,
the action of G on F is completely determined by ρ and (κk)k∈N.

Proof. For g ∈ G and E,F ∈ F , we know that g · (EF ) = (g ·E)(gE ·F ) by Definition 1.10.
We show that the action of G preserves Λ. If g · λk = E1E2 then g−1 · (EF ) = λk, so one
of g−1 ·E or (g−1)E ·F equals 1F . Again by Definition 1.10, we see that either E = 1F or
F = 1F . We conclude that g · λk equals λ` for some ` depending on k and g. The map ρ
then is defined via ρ(g)k = `.
To see that the action of G on F is determined by ρ and (κk), we use repeated applications
of the equation g · (λkE) = λρ(g)k((g)κk · E). �

As a consequence we see that the action of G on F preserves the length of an element:

Corollary 2.4. There is a monoid homomorphism len : F ./ G → N0 taking (E, g) to
the length of E in the standard generators. The kernel of len is G = (F ./ G)×.

In particular, len is a length function in the sense of Section 1.2. The induced morphism
from the group of right fractions to Z (Lemma 1.2) is also denoted len.
The next result is a technical lemma that tells us that ρ and the cloning maps always
behave well together, in any BZS product.

Lemma 2.5 (Compatibility). Let F ./ G be a BZS product. The homomorphism ρ : G→
Sω and the maps (κk)k∈N satisfy the following compatibility condition for k < `:
If ρ(g)k < ρ(g)` then ρ((g)κ`)k = ρ(g)k and ρ((g)κk)(`+ 1) = ρ(g)`+ 1.
If ρ(g)k > ρ(g)` then ρ((g)κ`)k = ρ(g)k + 1 and ρ((g)κk)(`+ 1) = ρ(g)`.

Proof. For k < ` we know that

g · (λ`λk) = g · (λkλ`+1).

Writing this out using the axioms for Zappa–Szép products we obtain that

(g · λ`)(gλ` · λk) = (g · λk)(gλk · λ`+1)

which can be rewritten using the action morphism ρ as

λρ(g)`λρ(gλ` )k = λρ(g)kλρ(gλk )(`+1).
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Using the normal form for F (see Proposition 1.7) we can distinguish cases for how this
could occur. The first case is that both pairs of indices

(ρ(g)`, ρ(gλ`)k) and (ρ(g)k, ρ(gλk)(`+ 1))

are ordered increasingly and coincide. But this is impossible because ρ(g)` 6= ρ(g)k. The
second case is that both pairs are ordered strictly decreasingly and coincide, which is
impossible for the same reason. The remaining two cases have that one pair is ordered
increasingly and the other strictly decreasingly. In either case the monoid relation now
yields a relationship among the indices, namely either

ρ(gλk)(`+ 1)− 1 = ρ(g)` > ρ(gλ`)k = ρ(g)k

or
ρ(g)` = ρ(gλk)(`+ 1) < ρ(g)k = ρ(gλ`)k − 1.

Finally, replacing the action of λk by the map κk yields the result. �

The compatibility condition can also be rewritten as

ρ((g)κ`)(k) =


ρ(g)(k) k < `, ρ(g)k < ρ(g)`,
ρ(g)(k) + 1 k < `, ρ(g)k > ρ(g)`,
ρ(g)(k − 1) k > `, ρ(g)(k − 1) < ρ(g)`,
ρ(g)(k − 1) + 1 k > `, ρ(g)(k − 1) > ρ(g)`.

(2.1)

Lemma 2.3 said that the action of G on F is uniquely determined by ρ and the cloning
maps. The action of F on G is also uniquely determined by the cloning maps, simply
because F is generated by the λk. Our findings can be summarized as:

Proposition 2.6 (Uniqueness). A BZS product F ./ G induces a homomorphism ρ : G→
Sω and injective maps κk : G→ G, k ∈ N satisfying the following conditions for k, ` ∈ N
with k < ` and g, h ∈ G:

(CS1) (gh)κk = (g)κρ(h)k(h)κk. (Cloning a product)
(CS2) κ` ◦ κk = κk ◦ κ`+1. (Product of clonings)
(CS3) If ρ(g)k < ρ(g)` then ρ((g)κ`)k = ρ(g)k and

ρ((g)κk)(`+ 1) = ρ(g)`+ 1.
If ρ(g)k > ρ(g)` then ρ((g)κ`)k = ρ(g)k + 1 and
ρ((g)κk)(`+ 1) = ρ(g)`. (Compatibility)

The BZS product is uniquely determined by these data. �

The converse is also true:

Proposition 2.7 (Existence). Let G be a group, ρ : G → Sω a homomorphism and
(κk)k∈N a family of injective maps from G to itself. Assume that for k < ` and g, h ∈ G
the conditions (CS1), (CS2) and (CS3) in Proposition 2.6 are satisfied. Then there is a
well-defined BZS product F ./ G corresponding to these data.

Proof. We will verify the assumptions of Lemma 1.12. This will produce a Zappa–Szép
action, which will be a Brin–Zappa–Szép action by construction. We take U to be F with
the presentation

〈λk for k ∈ N | (λ`λk, λkλ`+1) for k < l〉.
Let R denote the set of relations used here and let Rsym be the symmetrization. We take
A to be G with the presentation

〈g for g ∈ G | (gh, g′) for gh = g′〉.
The maps on generators are defined as gλk := (g)κk and g · λk := λρ(g)k.
First, for k < ` and g ∈ G we need to verify that

(g · (λ`λk), g · (λkλ`+1)) ∈ Rsym and gλ`λk = gλkλ`+1 .
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The latter of these is just condition (CS2). The former condition means that

(λρ(g)`λρ((g)κ`)k, λρ(g)kλρ((g)κk)(`+1))

should lie in Rsym. If ρ(g)k > ρ(g)` we can use condition (CS3) to rewrite this as

(λρ(g)`λρ(g)k+1, λρ(g)kλρ(g)`)

which is in Rsym. If ρ(g)k < ρ(g)` then the tuple is

(λρ(g)`λρ(g)k, λρ(g)kλρ(g)`+1)

which already lies in R.
Second, for every relation (gh, g′) of G and every k ∈ N we have to verify that

(gh) · λk = g′ · λk and (gh)λk = (g′)
λk

for k ∈ N. The former is not really a condition because the partial action was already
defined using G (rather than the free monoid spanned by G). The latter means that we
need

(g′)
λk = gλρ(h)khλk

which is just condition (CS1). �

Definition 2.8. Let G be a group, ρ : G→ Sω a homomorphism and (κk)k∈N : G→ G a
family of maps, also denoted κ∗ for brevity. The triple (G, ρ, κ∗) is called a cloning system
if the data satisfy conditions (CS1), (CS2) and (CS3) above. We may also refer to ρ and
κ∗ as a forming a cloning system on G.

Example 2.9 (Symmetric groups). Let G = S∞. Let ρ : S∞ → Sω just be inclusion. The
action of G on F is thus given by g · λk = λρ(g)k = λgk.
Since we will use the specific cloning maps in this example even in the future general
setting, we will give them their own name, ς`. They are defined by the formula

((g)ςk)(m) =


gm m ≤ k, gm ≤ gk,
gm+ 1 m < k, gm > gk,
g(m− 1) m > k, g(m− 1) < gk,
g(m− 1) + 1 m > k, g(m− 1) ≥ gk.

(2.2)

It is immediate that the compatibility condition (CS3) in the formulation (2.1) is satisfied.
To aid in checking condition (CS1), we define two families of maps, πk : N → N and
τk : N→ N, for k ∈ N:

πk(m) =

{
m m ≤ k,
m− 1 m > k

and τk(m) =

{
m m ≤ k,
m+ 1 m > k.

(2.3)

Note that πk ◦ τk = id and τk ◦πk(m) = m, unless m = k+ 1 in which case it equals m− 1.
In the m = k + 1 case, we see that

(gh)ςk(k + 1) = gh(k) + 1 = (g)ςhk(hk + 1) = (g)ςhk(h)ςk(k + 1),

by repeated use of the last case in the definition. It remains to check condition (CS1) in
the m 6= k + 1 case. According to the definitions, we have

((g)ςk)(m) = τgk(gπk(m))

whenever m 6= k + 1. Using this we see that

((g)ςhk) ◦ ((h)ςk)(m) = τghkgπhk ◦ τhkhπk(m)

= τghkghπk(m)

= ((gh)ςk)(m)

for m 6= k + 1.
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To check condition (CS2), we consider k < `. We first verify, from the definition, the
special cases

((g)ς` ◦ ςk)(k + 1) = gk + 1 = ((g)ςk ◦ ς`+1)(k + 1) and

((g)ς` ◦ ςk)(`+ 2) = g`+ 2 = ((g)ςk ◦ ς`+1)(`+ 2).

For the remaining case, when m 6= k + 1, `+ 2, we have

((g)ς` ◦ ςk)(m) = τkτ`gπ`πk(m) and

((g)ςk ◦ ς`+1)(m) = τ`+1τkgπkπ`+1(m)

and it is straightforward to check that

π`πk = πkπ`+1 and τkτ` = τ`+1τk. (2.4)

We conclude that (S∞, ρ, (ςk)k) is a cloning system.

Observation 2.10. Condition (CS3) in Proposition 2.6 can equivalently be rewritten as

ρ((g)κk) = (ρ(g))ςk.

We finish by discussing least common left multiples. Let κ∗ be the cloning maps of a
cloning system. For E = λk1 · · ·λkr define κE := κk1 ◦ · · · ◦ κkr . Note that this is well
defined by condition (CS2) and is just the map g 7→ gE .

Observation 2.11. Let G be a group and let (ρ, κ∗) be a cloning system on G. The action
of F on G defines a strongly confluent family if and only if im(κE1) ∩ im(κE2) = im(κF )
whenever E1 and E2 have least common left multiple F .
In particular the BZS product F ./ G has least common left multiples in that case.

Proof. This is just unraveling the definition and using the remark before Lemma 1.11.
Assume that the above condition holds. Write F = F1E1 = F2E2. Assume that g = gE1

1 =

gE2
2 , that is, g ∈ im(κE1)∩ im(κE2). By assumption there is an h ∈ G such that g = (h)κF .

That is g = hF = hF1E1 = gE1
1 . Injectivity of the action of F on G now implies hF1 = g1.

A similar argument shows hF2 = g2.
Conversely assume that the action of F on G is strongly confluent and write F as before.
Let g ∈ im(κE1) ∩ im(κE2). Write g = (g1)κE1 and g = (g2)κE2 , that is g = gE1

1 and

g = gE2
2 . By strong confluence there is an h ∈ G such that hF1 = g1 and hF2 = g2. Then

g = hF = (h)κF as desired. �

To check this global confluence condition one either needs a good understanding of the
action of F on G (as was the case for braided V [Bri07, Section 5.3]) or one has to reduce
it to local confluency statements.

2.2. Interlude: hedges. In the above example of the symmetric group, the action of F
on Sω factors through an action of a proper quotient. This amounts to a further relation
being satisfied in addition to the product of clonings relation (CS2). The quotient turns
out to be what Brin [Bri07] called the monoid of hedges. Without going into much detail
we want to explain the action of the hedge monoid on Sω.

. . .
. . .

Figure 2. A forest and the corresponding hedge.

The hedge monoid H is the monoid of monotone surjective maps N→ N. Multiplication
is given by composition: f ·h = f ◦h. There is an action of Sω on H given by the property
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that, for g ∈ Sω and f ∈H , the cardinality of (g · f)−1(i) is that of f−1(g−1i). There is
an obvious equivariant morphism c : F →H given by c(λk) = ηk where

ηk(m) =

{
m m ≤ k,
m− 1 m > k.

This morphism is surjective but not injective, in fact (see [Bri07, Proposition 4.4]):

Lemma 2.12. The monoid H has the presentation

〈ηk, k ∈ N | η`ηk = ηkη`+1, ` ≥ k〉.

Observe that the only difference between this and the presentation of F is that the relation
also holds for ` = k, rather than only for ` > k. It turns out that the action of F on Sω
defined in Example 2.9 factors through c:

Observation 2.13. The maps ςk defined in (2.2) satisfy ςkςk = ςkςk+1. Thus they define
an action of H on Sω.

Proof. The verification of (CS2) above extends to the case k = `. �

2.3. Filtered cloning systems. Typically one will want to think of Thompson’s group
V not as built from S∞ but rather from the family (Sn)n∈N. We will now describe this
approach. We regard S∞ as the direct limit lim−→Sn where the maps σm,n : Sm → Sn are

induced by the inclusions {1, . . . ,m} ↪→ {1, . . . , n}.
Let (Gn)n∈N be a family of groups with monomorphisms ιm,n : Gm → Gn for each m ≤ n.
For convenience will sometimes write G∗ for (Gn)n∈N; note that in this case the index set
is always N. The maps ιm,n will be written on the right, e.g., (g)ιm,n for g ∈ Gm. Suppose
that ιm,m = id and ιm,n ◦ ιn,` = ιm,` for all m ≤ n ≤ `. Then ((Gn)n∈N, (ιm,n)m≤n) is a
directed system of groups with a direct limit G := lim−→Gn. Since all the ιm,n are injective,
we may equivalently think of a group G filtered by subgroups Gn.
Consider injective maps κnk : Gn → Gn+1 for k, n ∈ N, k ≤ n. We call such maps a family
of cloning maps for the directed system (Gn)n∈N if for m, k ≤ n they satisfy

ιm,n ◦ κnk =

{
κmk ◦ ιm+1,n+1 if k ≤ m
ιm,n+1 if m < k.

(2.5)

This amounts to setting κnk = ιn,n+1 for k > n and requiring that

ιm,n ◦ κnk = κmk ◦ ιm+1,n+1,

i.e., that the family (κnk)n∈N defines a morphism of directed systems of sets. From that it
is clear that a family of cloning maps induces a family of injective maps κk : G→ G by
setting

(g)ιn ◦ κk = (g)κnk ◦ ιn+1

for g ∈ Gn. Here ιn : Gn → G denotes the map given by the universal property of G.
We say that the cloning maps are properly graded if the following strong confluence
condition holds: if g ∈ Gn+1 can be written as (h)κnk = g = (ḡ)ιn,n+1 then there is an

h̄ ∈ Gn−1 with (h̄)κn−1
k = h and (h̄)ιn−1,n = h. In view of the injectivity of all maps

involved this is equivalent to saying that

imκnk ∩ im ιn,n+1 ⊆ im(ιn−1,n ◦ κnk) (2.6)

(where the converse inclusion is automatic). Note that a filtered cloning system satisfying
the confluence condition of Observation 2.11 is automatically properly graded. Note also
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that being properly graded is equivalent to the diagram

Gn−1
ιn−1,n- Gn

Gn

κn−1
k

? ιn,n+1- Gn+1

κnk

?

being a pullback diagram of sets.
Suppose further that we have a family of homomorphisms ρn : Gn → Sn for each n ∈ N
that are compatible with the directed systems, i.e., ρn((g)ιm,n) = (ρm(g))σm,n for m < n
and g ∈ Gm. Let ρ : G→ S∞ be the induced homomorphism.

Example 2.14. Take Gn = Sn and ιm,n = σm,n as in Example 2.9. A family of cloning
maps ςnk is obtained by restriction of the maps from Example 2.9:

ςnk := ςk|
Sn+1

Sn
. (2.7)

This family of cloning maps is properly graded: if g ∈ imn,n+1 then g fixes n + 1; if
moreover g = (h)κk then it follows from (2.2) that h fixes n so h ∈ imn−1,n.

We are of course interested in the case when ρ and the family (κk)k∈N define a cloning
system on G. The corresponding defining formulas are obtained by adding decorations to
the formulas from Section 2.1.

Definition 2.15 (Cloning system). Let ((Gn)n∈N, (ιm,n)m≤n) be an injective directed
system of groups. Let (ρn)n∈N : Gn → Sn be a homomorphism of directed systems of
groups and let (κnk)k≤n : Gn → Gn+1 be a family of cloning maps. The quadruple

((Gn)n∈N, (ιm,n)m≤n, (ρn)n∈N, (κ
n
k)k≤n)

is called a cloning system if the following hold for all k ≤ n and all g, h ∈ Gn:

(FCS1) (gh)κnk = (g)κnρ(h)k(h)κnk . (Cloning a product)

(FCS2) κn` ◦ κ
n+1
k = κnk ◦ κ

n+1
`+1 . (Product of clonings)

(FCS3) ρn+1((g)κnk) = (ρn(g))ςnk (Compatibility)

We may also refer to ρ∗ and (κnk)k≤n as forming a cloning system on the directed system
G∗. The cloning system is properly graded if the cloning maps are properly graded.

Note that condition (FCS3) is phrased more concisely than (CS3), but this is just in light
of Observation 2.10.

Observation 2.16. Let (Gn)n∈N be an injective directed system of groups. A cloning
system on (Gn)n∈N gives rise to a cloning system on G := lim−→Gn. Conversely a cloning

system on G gives rise to a cloning system on (Gn)n∈N provided (Gn)κnk ⊆ Gn+1 and
ρn(Gn) ⊆ Sn.

We will usually not distinguish explicitly between a cloning system on G∗ and a cloning
system on lim−→G∗ that preserves the filtration. In particular, given a cloning system on a
directed system of groups we will implicitly define ρ := lim−→ ρn and κk := lim−→κnk .

2.4. Thompson groups from cloning systems. Let (G, ρ, (κk)k∈N) be a cloning system
and let F ./ G be the associated BZS product.

Definition 2.17 (Thompson group of a cloning system). The group of right fractions

of F ./ G is denoted by T̂ (G) and is called the Thompson group of G. If more context

is required we denote it T̂ (G, ρ, (κk)k) and call it the Thompson group of the cloning
system (G, ρ, (κk)k).
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By Observation 2.2 and Theorem 1.1 every element t of of T̂ (G) can be written as
t = (E−, g)(E+, h)−1 for some E−, E+ ∈ F and g, h ∈ G. If it can also be written

t = (E−, g
′)(E+, h

′)−1 then gh−1 = g′h′−1. It therefore makes sense to represent it by just
the triple (E−, gh

−1, E+). Of course, this representation is still not unique, for example
(E, 1G, E) represents the identity element for every E ∈ F .
Now assume that G = lim−→Gn is an injective direct limit of groups (Gn)n∈N and that the

cloning system is a cloning system on (Gn)n∈N. Recall from Subsection 1.3 that a forest
E is called semisimple if all but its first tree are trivial and in that case its number of feet
is the number of leaves of the first tree.
We collect some facts about semisimple elements of F ./ G. We start with semisimple
elements of F .

Observation 2.18. Let E,E1, E2, F ∈ F .

(1) The number of feet of a non-trivial semisimple element of F is its length plus one.
(2) Any two semisimple elements of F have a semisimple common right multiple.

More generally, any two elements of rank at most m have a common right multiple
of rank at most m.

(3) If E is semisimple with n feet then EF is semisimple if and only if F has rank at
most n.
More generally, if E is non-trivial of rank m and length n−m then EF has rank
m if and only if F has rank at most n.

(4) If E1, E2 are semisimple with n feet then E1F is semisimple if and only if E2F is.

Now we upgrade these facts to F ./ G. We say that an element (E, g) ∈ F ./ G has n
feet if E is semisimple with n feet and g ∈ Gn.

Lemma 2.19. Let E,E1, E2, F ∈ F and g, h ∈ G.

(1) The number of feet of a semisimple element of F ./ G is its length plus one.
(2) Any two semisimple elements of F ./ G have a semisimple common right multiple.
(3) (E, g)F = (E(g · F ), gF ) is semisimple if and only if E(g · F ) is semisimple.
(4) If (E, g) is semisimple with n feet then (E, g)F is semisimple if and only if F has

rank at most n.
(5) If (E1, g) and (E2, h) are semisimple with same number of feet then (E1, g)E is

semisimple if and only if (E2, g)E is semisimple.

Proof. The first statement is clear by definition. The second statement can be reduced to
the corresponding statement in F because E is a right multiple of (E, g).
In the third statement only the implication from right to left needs justification, namely
that gF ∈ Gn where n is the number of feet of E(g · F ). This is because if g ∈ Gm and
lenE = k then gE ∈ Gm+k as can be seen by induction on lenE using κk(Gn) ⊆ Gn+1.
For (4) note that g ∈ Gn. But ρ(Gn) ⊆ Sn so having rank at most n is preserved under
the action of Gn, i.e., rk(g · F ) ≤ n⇔ rkF ≤ n. Thus the statement follows from the one
for F . The last statement is immediate from (4). �

Definition 2.20 (Simple). A triple (E−, g, E+) (and the element represented by it) is
said to be simple if E− and E+ are semisimple, both of them with n feet and g ∈ Gn.
This is the case if it can be written as (E−, g)(E+, h)−1 with both factors semisimple with
same number of feet.

Proposition 2.21. The set of simple elements in T̂ (G) is a subgroup.

Proof. We sketch the argument, which closely follows [Bri07, Section 7]. Let us write the
element represented by (E−, g, E+) as [E−, g, E+]. Clearly [E−, g, E+]−1 = [E+, g

−1, E−].
Now consider two elements s = [E−, g, E+], t = [F−, h, F+] represented by simple triples.
Let

E+E = F−F (2.8)
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be a semisimple common right multiple of E+ and F− (Observation 2.18 (2)). Then

st = E−gEF
−1hF−1

+

= (E−(g · E), gE)(F+(h−1 · F ), (h−1)F )−1 (2.9)

= [E−(g · E), gEhh
−1·F , F+(h−1 · F )].

In the last line we used that (hF )−1 = (h−1)h·F so that ((h−1)F )−1 = hh
−1·F .

We claim that the last expression of (2.9) is simple. Indeed, (E−, g) and E+ are semisimple
with same number of feet and E+E is semisimple so (E−, g)E = (E−(g · E), gE) is

semisimple by Lemma 2.19 (5). Similar reasoning applies to (F+(h−1 ·F ), h−1F ). Moreover,
we can use Corollary 2.4 to compute

len(E−, g)+lenE
s simple

= lenE+ +lenE
(2.8)
= lenF−+lenF

t simple
= len(F+, (h

−1)F )+lenF .

By Lemma 2.19 (1) this shows that the last expression of (2.9) is simple. �

Definition 2.22 (Thompson group of a filtered cloning system). The group of simple

elements in T̂ (G) is denoted T (G∗) and called the Thompson group of G∗. If we need to

be more precise, as with T̂ (G) we can include other data from the cloning system in the
notation as in T (G∗, ρ∗, (κ

∗
k)k).

Recall from the discussion after Corollary 2.4 that there is a length morphism len: T̂ (G)→
Z which takes an element [E, g, F ] to len(E)− len(F ). The group T (G∗) lies in the kernel
of that morphism, that is, simple elements have length 0.

Remark 2.23. Constructing T (G∗) as the subgroup of simple elements of T̂ (G) is
somewhat artificial as can be seen in some of the proofs above. The more natural approach
would be to have each element of F “know” on which level it can be applied. This
amounts to considering the category of forests P that has objects the natural numbers
and morphisms λnk : n→ n+ 1, 1 ≤ k ≤ n subject to the forest relations (1.2), cf. [Bel04,
Section 7]. Let G be another category which also has objects the natural numbers and
such that the morphisms in n form a group Gn. So while P has only “vertical” arrows,
G has only “horizontal” arrows. One would then want to form the Zappa–Sźep product
P ./ G which would be specified by commutative squares of the form γλnk = λnρ(γ)kγ

λk with

γ ∈ Gn and γλk ∈ Gn+1. Localizing everywhere one would obtain a groupoid of fractions
Q and T (G∗) should be just HomQ(1, 1).
The reason that we have not chosen that description is simply that Zappa–Sźep products
for categories are not well-developed to our knowledge, while for monoids all the needed
statements were already available thanks to Brin’s work [Bri05, Bri07].
Artifacts of this approach, which should be overcome by the general approach above,
include the maps ιn,n+1, the property of being properly graded, and the fact that our
construction does not allow one to construct all the Thompson-like groups one might want
to cover (for example T ).

2.5. Morphisms. Let (G, ρG, (κGk )k∈N) and (H, ρH , (κHk )k∈N) be cloning systems. A
homomorphism ϕ : G→ H is a morphism of cloning systems if

(1) (ϕ(g))κHk = ϕ((g)κGk ) for all k ∈ N and g ∈ G, and

(2) ρH ◦ ϕ = ρG.

Observation 2.24. Let ϕ : G → H be a morphism of cloning systems. There is an

induced homomorphism T̂ (ϕ) : T̂ (G)→ T̂ (H). If ϕ is injective or surjective then so is

T̂ (ϕ). In particular, there is always a homomorphism T̂ (G)→ T̂ (Sω).
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Proof. We show that a morphism of cloning systems induces a morphism F ./ G →
F ./ H. The statement then follows from Lemma 1.2. Naturally, T̂ (ϕ) is defined by

T̂ (ϕ)(Eg) = Eϕ(g). Well definedness amounts to T̂ (ϕ)((g · E)gE) = (ϕ(g) · E)(ϕ(g)E)
which follows from (1) and (2) by writing E as a product of λks and inducting on the
length.
The injectivity and surjectivity statements are clear. �

Similarly let (Gn)n∈N and (Hn)n∈N be injective direct systems equipped with cloning
systems. A morphism of directed systems of groups ϕ∗ : G∗ → H∗ is a morphism of cloning
systems if

(1) (ϕn(g))κH,nk = ϕn+1((g)κG,nk ) for all 1 ≤ k ≤ n and g ∈ Gn, and

(2) ρHn ◦ ϕn = ρGn for all n ∈ N.

Observation 2.25. Let ϕ∗ : G∗ → H∗ be a morphism of cloning systems. There is an
induced homomorphism T (ϕ) : T (G∗)→ T (H∗). If ϕ is injective or surjective then so is
T (ϕ). In particular, there is always a homomorphism T (G∗)→ T (S∗), the latter being
Thompson’s group V .

Proof. We have to show that if Eg ∈ F ./ G is semisimple with n feet then so is

T̂ (ϕ)(Eg) = Eϕ(g). But this follows since E is semisimple with n feet and g ∈ Gn, so
ϕ(g) ∈ Hn. �

Functoriality is straightforward:

Observation 2.26. If ϕ : G→ H and ψ : H → K are morphisms of cloning systems then

T̂ (ψϕ) = T̂ (ψ)T̂ (ϕ) : T̂ (G) → T̂ (K). If ϕ and ψ are morphisms of filtered cloning
systems then T (ψϕ) = T (ψ)T (ϕ) : T (G)→ T (K).

3. Basic properties

Throughout this section let T (G∗) be the Thompson group of a cloning system on an
injective directed system of groups (Gn)n∈N and let G = lim−→Gn. We collect some properties

of T (G∗) that follow directly from the construction.

Observation 3.1. Let E ∈ F be semisimple with n feet. The map g 7→ [E, g,E] is an
injective homomorphism Gn → T (G∗).

Proof. The maps Gn → G→ F ./ G→ T̂ (G) are all injective. The element [E, g,E] is
simple, so the image lies in T (G∗). The map is visibly a homomorphism. �

3.1. A short exact sequence. Let T (ρ∗) : T (G∗) → V denote the morphism from
Observation 2.25. The kernel, which we denote K (G∗), consists of elements [E, g,E]
where E is a semisimple forest with n feet and and g ∈ ker(ρn). If W ∼= T (G∗)/K (G∗)
is the image of T (ρ∗) we have the short exact sequence

1→ K (G∗)→ T (G∗)→W → 1.

Note that W contains Thompson’s group F .
In what follows we will concentrate on the case where ρ = id.

Observation 3.2. Suppose ρ = id. Then T (G∗) = K (G∗) o F .

Proof. Since each ρn = id, we have W = F , which is T ({1}). Then the splitting map
F → T (G∗) is T (ι∗) where ι∗ : {1} → G∗ is the trivial homomorphism. �

Continue to assume ρ = id. For E a semisimple forest with n feet, let GE denote the
subgroup {[E, g,E] | g ∈ Gn} of K (G∗). Note that GE ∼= Gn. If E is a right multiple of

F then conjugation by FE−1 (in T̂ (G)) induces an injective homomorphism GE → GF .
This turns the family of GE with semisimple E into a directed system.
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Observation 3.3. Suppose ρ = id. Then K (G∗) = lim−→GE.

The question of whether F is amenable or not is probably the most famous question about
Thompson’s groups. The following observation does not purport to be deep, but it seems
worth recording nonetheless.

Observation 3.4 (Amenability). Suppose ρ = id. Then T (G∗) is amenable if and only
if F and every Gn is amenable.

Proof. By the previous observation K (G∗) is a direct limit of copies of Gn. Since
amenability is preserved under taking subgroups and direct limits, this tells us that K (G∗)
is amenable if and only if every Gn is. Then since T (G∗) = K (G∗) o F , the conclusion
follows since amenability is also closed under group extensions. �

Observation 3.5 (Free group-free). Suppose ρ = id. If none of the Gn contains a
non-abelian free group then neither does T (G∗).

Proof. Suppose H ≤ T (G∗) is free. If H ∩K (G∗) = {1} then H embeds into F , and so
H must be abelian, since F does not contain a non-abelian free group. Now suppose there
is some 1 6= x ∈ H ∩K (G∗). For any y ∈ H, the conjugate xy is in H ∩K (G∗). Since
K (G∗) is a direct limit of copies of the Gn, it does not contain a non-abelian free group
by assumption, and so 〈x, xy〉 is abelian. But y ∈ H was arbitrary, so H must already be
abelian. �

3.2. Truncation. For g ∈ Gn and k ≤ n we have the equation gλk = (g · λk)gλk in

F ./ G where gλk ∈ Gn+1. In T̂ (G) this implies

g = (g · λk)gλkλ−1
k . (3.1)

This elementary observation has an interesting consequence. Let N ∈ N be arbitrary
and define a directed system of groups (G′n)n∈N by G′n := {1} for n ≤ N and G′n := Gn
for n > N . Define a cloning system on G′∗ by letting (κ′)nk : G′n → G′n+1 be the trivial
homomorphism when n ≤ N , and (κ′)nk = κnk and ρ′n = ρn when n > N . We call G′∗ the
truncation of G∗ at N and ((ρ′n)n, ((κ

′)nk)k≤n) the truncation of ((ρn)n, (κ
n
k)k≤n) at N .

Proposition 3.6 (Truncation isomorphism). Let G′∗ be the truncation of G∗ at N . The
morphism T (G′∗) → T (G∗) induced by the obvious homomorphism G′∗ → G∗ is an
isomorphism.

Proof. The morphism G′∗ → G∗ is injective hence so is T (G′∗)→ T (G∗). To show that it
is surjective let [E, g, F ] ∈ T (G∗) be semisimple with n feet. If n > N there is nothing to
show. Otherwise use (3.1) to write

[E, g, F ] = [E(g · λk), gλk , Fλk]
for some k ≤ n. The right hand side expression is semisimple with n+ 1 feet. Proceeding
inductively, we obtain an element that is semisimple with N + 1 feet and therefore in
T (G′∗). �

This Proposition justifies thinking of T (G∗) as a sort of limit of G∗ since it does not
depend on an initial segment of data.

4. Spaces for Thompson’s groups

The goal of this section is to produce for each Thompson group T (G∗) a space on which it
acts. The space will be contractible and have stabilizers isomorphic to the groups Gn. The
ideas used in the construction were used before in [Ste92, Bro92, Far03, Bro06, FMWZ13,
BFS+]. Throughout let G∗ be an injective directed system of groups equipped with a
properly graded cloning system and let G = lim−→G∗.
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As a starting point we note that Corollary 1.6, Observation 2.2 and Corollary 2.4 imply

that T̂ (G)/G is a lattice under the relation xG ≤ yG if x−1y ∈ F ./ G. Later on it will
be convenient to have a symbol for the quotient relation so we let x ∼G y if x−1y ∈ G.

4.1. Semisimple group elements. We generalize some of the notions that were intro-
duced in Sections 1.3 and 2.4. We say that an arbitrary (not necessarily semisimple)
element E of F has n feet if it has rank m and length n−m. Visually this means that
the last leaf that is not a root is numbered n. An element (E, g) of F ./ G has n feet if E

is of type at most n and g ∈ Gn. Finally, we call an element [E, g, F ] of T̂ (G) semisimple
if (E, g) is semisimple with n feet and F has at most n feet. This is actually not an abuse

of terminology: If an element of the group T̂ (G) is semisimple in this sense, and is an

element of the monoid F ./ G, then it must be semisimple in the monoid. We let P̃1

denote the set of all semisimple elements of T̂ (G).

Lemma 4.1. If [E1, g1, F1] is simple and [E2, g2, F2] is semisimple then [E1, g, F1][E2, g, F2]

is semisimple. As a consequence, T̂ (G∗) acts on P̃1.

Proof. This is shown analogously to Proposition 2.21. �

If [E, g, F ] is semisimple we say that it has len([E, g, F ]) + 1 = len(E)− len(F ) + 1 feet,
which is well defined by Corollary 2.4. This can be visualized as the number of roots of F

that can be “reached” from the first root of E. We let P̃1,n denote the set of all semisimple

elements with at most n feet. We define P1,n to be the quotient P̃1,n/∼G and call the

passage from P̃1,n to P1,n dangling. Note that P1,n is a subposet of T̂ (G)/G. We also

denote P̃1/∼G by P1.

Lemma 4.2. If x, y ∈ P̃1,n are semisimple then x ∼G y if and only if x−1y ∈ Gn.

Proof. What needs to be shown is that if x−1y ∈ G then x−1y ∈ Gn. Write x =
[E1, g

−1, F1] and y = [E2, h
−1, F2]. Let E = E1E

′
1 = E2E

′
2 be a common right multiple so

that x−1y = [F1(g · E′1), gE
′
1(hE

′
2)−1, F2(h · E′2)] =: [A, b, C]. For this to equal some d ∈ G

it is necessary that Ab = dC in F ./ G, that is, A = d · C and b = dC .
Say that E has length m. Then we compute that A and C have length m− n+ 1, and
that b lies in Gm+1. Since the cloning system is properly graded, the fact that b = dC

implies that d has to lie in Gn. �

For context, the term “dangling” comes from the case when G∗ is the system of braid
groups B∗, and the elements of P1,n can be pictured as “dangling braided strand diagrams”
[BFS+].

4.2. Poset structure. Consider the geometric realization |P1|. This is the simplicial
complex with a k-simplex for each chain x0 ≤ · · · ≤ xk of elements of P1, and face relation
given by subchains.

Lemma 4.3. The poset P1 is a lattice, in particular |P1| is contractible.

Proof. We already know that T (G∗)/G is a lattice so it remains to show that P1 is closed
under taking suprema and infima. In other words, it suffices to show that least common
right multiples of semisimple elements are semisimple and that left factors of semisimple
elements are semisimple. The first is similar to the proof of Proposition 2.21 and the
second is easy. �

The space |P1| is not ideal; for one thing, every vertex is contained in a simplex of
arbitrarily large dimension. It has therefore proven historically helpful to consider a
subspace called the Stein space, which we introduce next.



THOMPSON GROUPS FOR SYSTEMS OF GROUPS, AND THEIR FINITENESS PROPERTIES 19

4.3. The Stein space. The preorder on P̃1 was defined by declaring that x ≤ y if
y = x(E, g) for some (E, g) ∈ F ./ G. The basic idea in constructing the Stein space
is to regard this relation as a transitive hull of a finer relation � and to use this finer
relation in constructing the space. It is defined by declaring x � y if y = x(E, g) for some
(E, g) ∈ F ./ G with the additional assumption that E is elementary. An elementary
forest is one in which every tree has at most two leaves. That is, a forest is elementary if
it can be written as λk1 · · ·λkr with ki+1 > ki + 1 for i < r.
Again it is clear that � is invariant under dangling and we also write � for the relation
induced on P1. Note that � is not transitive, but it is true that if x � z and x ≤ y ≤ z
then x � y � z. Given a simplex x0 ≤ · · · ≤ xk in |P1|, call the simplex elementary if
x0 � xk. The property of being elementary is preserved under passing to subchains, so
the elementary simplices form a subcomplex.

Definition 4.4 (Stein space). The subcomplex of elementary simplices of |P1| is denoted
by X (G∗) and called the Stein space of T (G∗).

The Stein space has the structure of a cubical complex, which we now describe. The key
point is:

Observation 4.5. If E is elementary then the set of right factors of E forms a boolean
lattice under �.

For x � y in P1 we consider the closed interval [x, y] := {z ∈ P1 | x ≤ z ≤ y} as well as
the open and half open intervals (x, y), [x, y) and (x, y] that are defined analogously. As a
consequence of Observation 4.5 we obtain that the interval [x, y] := {z ∈ P1 | x ≤ z ≤ y}
is a boolean lattice and so |[x, y]| has the structure of a cube. The intersection of two such
cubes |[x, y]| and |[z, w]| is |[sup(x, z), inf(y, w)]| (which may be empty if the supremum
is larger than the infimum). In particular the intersection of cubes is either empty or is
again a cube. Hence X (G∗) is a cubical complex in the sense of Definition 7.32 of [BH99].
Since there are only finitely many elementary forests of a given rank, we get:

Observation 4.6. For any vertex x in X (G∗), there are only finitely many vertices y in
X (G∗) with x � y.

The next step is to show that X (G∗) is itself contractible. The argument is similar to
that given in Section 4 of [Bro92]. We follow the exposition in [BFS+].

Lemma 4.7. For x < y with x 6≺ y, |(x, y)| is contractible.

Proof. For any z ∈ (x, y] let z0 be the unique largest element of [x, z] such that x � z0.
By hypothesis z0 ∈ [x, y), and by the definition of � it is clear that z0 ∈ (x, y], so in fact
z0 ∈ (x, y). Also, z0 ≤ y0 for any z ∈ (x, y). The inequalities z ≥ z0 ≤ y0 then imply that
|(x, y)| is contractible, by Section 1.5 of [Qui78]. �

Proposition 4.8. X (G∗) is contractible.

Proof. We know that |P1| is contractible by Lemma 4.3. We can build up from X (G∗) to
|P1| by attaching new subcomplexes, and we claim that this never changes the homotopy
type, so X (G∗) is contractible. Given a closed interval [x, y], define r([x, y]) := len(y)−
len(x). As a remark, if x � y then r([x, y]) is the dimension of the cube given by [x, y].
We attach the contractible subcomplexes |[x, y]| for x 6� y to X (G∗) in increasing order
of r-value. When we attach |[x, y]| then, we attach it along |[x, y)| ∪ |(x, y]|. But this is
the suspension of |(x, y)|, and so is contractible by the previous lemma. We conclude that
attaching |[x, y]| does not change the homotopy type, and since |P1| is contractible, so is
X (G∗). �

Finally we show that cell stabilizers are essentially copies of the Gn.
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Lemma 4.9 (Stabilizers). The stabilizer in T (G∗) of a vertex in X (G∗) with n feet is
isomorphic to Gn. The stabilizer in T (G∗) of an arbitrary cell is isomorphic to a finite
index subgroup of some Gn.

Proof. First consider the stabilizer of a vertex x with n feet. We claim that StabT (G∗)(x) ∼=
Gn. Choose x̃ ∈ P̃1 representing x and let g ∈ StabT (G∗)(x). By definition of dangling,
and by Lemma 4.2, there is a (unique) h ∈ Gn such that gx̃ = x̃h. Then the map
g 7→ h = x̃−1gx̃ is a group isomorphism.
Now let σ = |[x, y]|, x � y be a an arbitrary cube. Since the action of T (G∗) preserves
the number of feet, the stabilizer of σ fixes x and y. Hence Gσ is contained in Gx and
contains the kernel of the map Gx → Symm({w | x � w � y}), the image of which is finite
by Observation 4.6. �

5. Finiteness properties

One of our main motivations for defining the functor T (−) is to study how it behaves
with respect to finiteness properties. Recall that a group G if said to be of type Fn if there
is a K(G, 1) whose n-skeleton is compact. Most of the known Thompson’s groups are of
type F∞, that is, of type Fn for all n. To efficiently speak about groups that are not of
type F∞ recall that the finiteness length of G, denoted φ(G), is the supremum over all
n ∈ N such that G is of type Fn.
We will see below that proofs of the finiteness properties of T (G∗) depend on the finiteness
properties of the individual groups Gk as well as on the asymptotic connectivity of certain
descending links, which is infinite in many cases. Since finite initial intervals of G∗ can
always be ignored by Proposition 3.6 we ask:

Question 5.1. For which directed systems of groups G∗ equipped with cloning systems do
we have

φ(T (G∗)) = lim inf φ(G∗)?

Note that for any directed system of groups G∗ one can take all ρk to trivial and all κnk to
be ιn. In this case T (G∗) = limnGn so the answer to Question 5.1 will not encompass all
cloning systems. Our hope is that all sufficiently natural cloning systems qualify.

5.1. Morse theory. One of the main tools to study connectivity properties, and thus
to study finiteness properties, is combinatorial Morse theory. We collect here the main
ingredients that will be needed later on.
Let X be a Euclidean cell complex. A map h : X(0) → N0 is called a Morse function if the
maximum of h over the vertices of a cell of X is attained in a unique vertex. We typically
think of h as assigning a height to each vertex. If h is a Morse function and r ∈ R, the
sublevel set Xr = X≤r consists of all cells of X whose vertices have height at most n. For
a vertex x ∈ X(0) of height n, the descending link lk↓(x) of x is the subcomplex of lk(x)
spanned by all vertices of strictly lower height. The main observation that makes Morse
theory work is that keeping track of the connectivity of descending links allows one to
deduce global (relative) connectivity statements:

Lemma 5.2 (Morse Lemma). Let X be a Euclidean cell complex and let h : X(0) → N0

be a Morse function on X. Let s, t ∈ R ∪ {∞} with s < t. If lk↓(x) is (k − 1)-connected
for every vertex in Xt \Xs then the pair (Xt, Xs) is k-connected.

The connection between connectivity of spaces and finiteness properties of groups is most
directly made using Brown’s criterion. A Morse function on X gives rise to a filtration
(Xn)n∈N0 by subcomplexes. We say that the filtration is essentially k-connected if for
every i ∈ N0 there exists a j ≥ i such that π`(Xi → Xj) is trivial for all ` ≤ k.
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Now assume that a group G acts on X. If h is G-invariant then so is the filtration (Xn)n.
We say that the filtration is cocompact if the quotient G\Xn is compact for all n. This is
the setup for Brown’s criterion, see [Bro87, Theorems 2.2, 3.2].

Theorem 5.3 (Brown’s criterion). Let n ∈ N and assume a group G acts on an (n− 1)-
connected CW-complex X. Assume that the stabilizer of every p-cell of X is of type Fn−p.
Let (Xn)n∈N0 be a G-cocompact filtration of X. Then G is of type Fn if and only if (Xn)n
is essentially (n− 1)-connected.

Putting both statements together we obtain the version that we will mostly use.

Corollary 5.4. Let G act on a contractible Euclidean cell complex X and let h : X(0) → N0

be a G-invariant Morse function with cocompact sublevel sets. Assume that the stabilizer
of every p-cell of X is of type Fn−p and that the sublevel sets Xn are cocompact. If there

is an s ∈ R such that lk↓(x) is (n− 1)-connected for all vertices x ∈ X(0) \Xs then G is
of type Fn.

If G∗ is a system of groups equipped with a cloning system then T (G∗) acts on the Stein
space X (G∗), which is contractible (Proposition 4.8) with stabilizers from G∗ (Lemma 4.9).
Our next goal is to define an invariant, cocompact Morse function and to describe the
descending links.

5.2. The Morse function. Recall that the vertices of X (G∗) are classes [E, g, F ] of
semisimple elements modulo dangling. The height function we will be using assigns to
such a vertex its number of feet (see Section 4.1). That is, X (G∗)n = |P1,n| ∩X (G∗).

This height function is G-invariant because it is induced by the morphism len: T̂ (G)→ Z
and every element of T (G∗) has length 0.

Lemma 5.5 (Cocompactness). The action of T (G∗) is transitive on vertices of X (G∗)
with a fixed number of feet. Consequently the action of T (G∗) on X (G∗)n is cocompact
for every n.

Proof. Let x̃ = [E−, g, E+] and ỹ = [F−, h, F+] be semisimple with n feet. We know x̃ỹ−1

takes ỹ to x̃, so it suffices to show that x̃ỹ−1 is simple. Note that E+ and F+ have rank
at most n. By Observation 2.18 (2) they admit a common right multiple E+E = F+F of
rank at most n. Let the length of this multiple be m, so it has at most m+ n feet. Then

x̃ỹ−1 = [E−(g · E), gE(hF )−1, F−(h · F )]

and both E−(g · E) and F−(h · F ) are semisimple by Observation 2.18 (3). They have
m+ n feet and both gE and hF lie in Gn+m. Thus x̃ỹ−1 is simple.
The second statement now follows from Observation 4.6. �

5.3. Descending links. Let x be a vertex in X (G∗), with n feet. We want to describe
the descending link of x. A vertex y is in the link of x if either x � y or y � x. But in
the first case y is ascending so the descending link is spanned by vertices y with y � x.
These are by definition of the form x(E, g)−1 for E an elementary forest and g ∈ Gn. In
particular, for a fixed n, the descending links of any vertices of height n look the same,
and are all isomorphic to the simplicial complex of products gE−1 where g ∈ Gn and E is
an elementary forest with n feet, modulo the relation ∼G.
It is helpful to describe this complex somewhat more explicitly. In doing so we slightly
shift notation by making use of the fact that elementary forests can be parametrized by
subgraphs of linear graphs.
Let Ln be the graph with n vertices, labeled 1 through n, and a single edge connecting i
to i + 1, for each 1 ≤ i ≤ n − 1. This is the linear graph with n vertices. Denote the
edge from i to i+ 1 by ei. We will exclusively consider spanning subgraphs of Ln, that is,
subgraphs whose vertex set is {1, . . . , n}. We call the spanning subgraph without edges
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trivial. A matching on a graph is a spanning subgraph in which no two edges share a
vertex. For an elementary forest E with n feet, define Γ(E) to be the spanning subgraph
of Ln that has an edge from i to i+ 1 if and only if the ith and (i+ 1)st leaves of E are
leaves of a common caret. Note that this is a matching. Conversely, given a matching Γ of
Ln, there is an elementary forest E(Γ) = λik · · ·λi1 where Γ has edges ei1 , . . . , eik . Both
operations are inverse to each other so we conclude:

Observation 5.6. There is a one-to-one correspondence between matchings of Ln and
elementary forests with at most n feet.

In particular, if Γ is a matching with m edges and n vertices we obtain a cloning map
κΓ : Gm → Gn which is just the cloning map of E(Γ) as defined before Observation 2.11.
We also get an action of Gm on Γ which is given by the action of ρ(Gm) on connected
components. For future reference we also note:

Observation 5.7. There is a one-to-one correspondence between spanning subgraphs of
Ln and hedges with at most n feet.

Now define a simplicial complex L (Gn) as follows. A simplex in L (Gn) is represented by
a pair (g,Γ), where g ∈ Gn and Γ is a non-trivial matching of Ln. Two such pairs (g1,Γ1),
(g2,Γ2) are equivalent (under dangling) if the following conditions hold:

(1) Γ1 and Γ2 both have m edges for some 1 ≤ m ≤ n/2,
(2) g−1

2 g1 lies in the image of κΓ1 , and

(3) Γ2 = (g−1
2 g1)κ−1

Γ1
· Γ1.

We want to make L (Gn) a simplicial complex by saying the face relation is given by
passing to subgraphs of the second term in the pair. Denote the equivalence class of (g,Γ)
under dangling by [g,Γ]. In summary,

L (Gn) has simplex set {[g,Γ] | Γ is a matching of Ln and g ∈ Gn}.

Observation 5.8. If x has n feet, the correspondence (g,Γ) 7→ xgE−1
Γ induces an iso-

morphism L (Gn)→ lk↓(x).

In particular, L (G∗) is indeed a simplicial complex, since X (G∗) is a cubical complex.
We now have all the pieces together to apply Brown’s criterion to our setting.

Proposition 5.9. Let G∗ be equipped with a cloning system. If Gk is eventually of type
Fn and L (Gk) is eventually (n− 1)-connected then T (G∗) is of type Fn.

Proof. Suppose first that all Gk are of type Fn. Let X = X (G∗) which is contractible
by Proposition 4.8. Our Morse function “number of feet” has cocompact sublevel sets by
Lemma 5.5. The stabilizer of any cell is a finite-index subgroup of some Gk by Lemma 4.9.
Since finiteness properties are inherited by finite-index subgroups, our assumption implies
that all stabilizers are of type Fn. By the second assumption there is an s such that
L (Gk) is (n− 1)-connected for k > s which by Observation 5.8 means that descending
links are (n− 1)-connected from s on. Applying Corollary 5.4 we conclude that T (G∗) is
of type Fn.
If the Gk are of type Fn only from t on, we use Proposition 3.6 to replace T (G∗) by the
isomorphic group T (G′∗) where G′k = Gk for k ≥ t and Gk = {1} for k < t. In particular,
all of the Gk are of type Fn.
Of course X (G′∗) is not isomorphic to X (G∗) and neither are the L (G′∗) isomorphic to
L (G∗). However, the k-skeleton of L (G′m) is isomorphic to the k-skeleton of L (Gm)
once m > k + t. Since (n− 1)-connectivity only depends on the n-skeleton, if the L (G∗)
are eventually (n− 1)-connected then so are the L (G′∗). �
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A negative counterpart to this statement, to show that T (G∗) is not of type Fn, would
need stabilizers with good finiteness properties and a filtration that is not essentially (n−1)-
connected – at least as long as it is based on Brown’s criterion. However, Question 5.1
suggests that the failure to be of type Fn rather corresponds to the failure of the stabilizers
to be of type Fn.
Inspecting the homotopy type of L (Gn) does not seem possible uniformly. Instead, most
of the remainder of the article will be concerned with proving instances of L (Gn) to be
highly connected. In the case where Gn are braid groups, these complexes were modeled by
arc complexes in [BFS+]. In Section 7 below we will directly work with the combinatorial
description. General tools that have turned out to be helpful will be collected in Section 5.4.
We can make one positive statement without knowing much at all about G∗. Before
stating this as a lemma, we need to define the matching complex of Ln. This is a simplicial
complex, denoted M(Ln), whose simplices are matchings on Ln and with face relation
given by passing to subgraphs. It is well-known that M(Ln) is (bn−2

3 c − 1)-connected,

see for example [BLVŽ94] (a more precise description of the homotopy type is given in
[Koz08, Proposition 11.16] where M(Ln) arises as the independence complex Ind(Ln1)).

Lemma 5.10 (Finite generation). Let G∗ be a family of groups equipped with a cloning
system, with cloning maps κnk . Suppose that for n sufficiently large, all Gn are finitely
generated and also are generated by the images of the cloning maps with codomain Gn.
Then T (G∗) is finitely generated.

Proof. By the above discussion, we need only show that the L (Gn) are connected, for
large enough n. Suppose n is large enough that: (a) Gn is generated by images of cloning
maps, and (b) n ≥ 5 so M(Ln) is connected. Given a vertex [g,E] in L (Gn), write
g = s1 · · · sr, where the si are generators coming from images of cloning maps si ∈ im(κki)
for some ki. Since M(Ln) is connected, there is a path in L (Gn) from [s1 · · · sr, E] to
[s1 · · · sr, Ekr ] = [s1 · · · sr−1, Ekr ]. Repeating this r times, we connect to [1, Ek] for some
k, and then to [1, E1]. �

5.4. Proving high connectivity. As we have seen, Morse theory is a tool that allows
one to show that a pair (X,X0) is highly connected. We will want to inductively apply
this to the situation where X = L (Gn) and X0 = L (Gn−k) for some k ∈ N. This is
insufficient to conclude that the connectivity tends to infinity though, because we would
be trying to get X to be more highly connected than X0. The following lemma expresses
by how much it is insufficient. The lemma is straightforward to prove but can be seen as
a roadmap for the argument that follows.

Lemma 5.11. Let (X,X0) be a k-connected CW-pair. Assume that X0 is (k−1)-connected.
Then X is k-connected if and only if πk(X0 → X) is trivial.

Proof. Consider the part of the homotopy long exact sequence associated to (X,X0):

πj+1(X,X0)→ πj(X0)
ιj→ πj(X)→ πj(X,X0)

for j < k the map ιj is an isomorphism and πj(X0) trivial. For j = k it is an epimorphism
and πk(X) is trivial if and only if ιk is. �

In our applications we will know X0 to be (k− 1)-connected by induction and (X,X0) will
be seen to be k-connected using Morse theory. To show that πk(X0 → X) is trivial we
will use a relative variant of the Hatcher flow that was shown to us by Andrew Putman
(Proposition 5.13 below). Before we can prove it we need some technical preliminaries.
A combinatorial k-sphere (respectively k-disk) is a simplicial complex that can be subdivided
to be isomorphic to a subdivision of the boundary of a (k + 1)-simplex (respectively to a
subdivision of a k-simplex). An m-dimensional combinatorial manifold is an m-dimensional
simplicial complex in which the link of every simplex σ of dimension k is a combinatorial
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(m− k − 1)-sphere. In an m-dimensional combinatorial manifold with boundary the link
of a k-simplex σ is allowed to be homeomorphic to a combinatorial (m− k − 1)-disk; its
boundary consists of all the simplices whose link is indeed a disk.
A simplicial map is called simplexwise injective if its restriction to any simplex is injective.
The following is Lemma 3.8 of [BFS+] cf. also the proof of Proposition 5.2 in [Put].

Lemma 5.12. Let Y be an k-dimensional combinatorial manifold. Let X be a simplicial
complex and assume that the link of every d-simplex in X is (k − 2d− 2)-connected for
d ≥ 0. Let ψ : Y → X be a simplicial map whose restriction to ∂Y is simplexwise injective.
Upon changing the simplicial structure of Y , ψ is homotopic relative ∂Y to a simplexwise
injective map.

In practice Y will be a sphere, so the lemma allows us to restrict attention to simplexwise
injective combinatorial maps when collapsing spheres.

Proposition 5.13. Let X0 ⊆ X1 ⊆ X be simplicial complexes. Assume that (X,X0) is
k-connected, that X0 is (k−1)-connected and that the link of every d-simplex is (k−2d−2)-
connected for d ≥ 0. Further assume the following “exchange condition”:

(EXC1) There is a vertex w ∈ X such that for every vertex v ∈ X0 that is not in stw there
is a vertex v′ ∈ stX1 w such that lkX1 v ⊆ lkX1 v

′ and lkX1 v is (k − 1)-connected.

Then X is k-connected.

By taking X1 = X0 or X1 = X respectively we obtain the following special cases of (EXC1):

(EXC0) There is a vertex w ∈ X such that for every vertex v ∈ X0 that is not in stw there
is a vertex v′ ∈ stX0 w such that lkX0 v ⊆ lkX0 v

′ and lkX0 v is (k − 1)-connected.

(EXC) There is a vertex w ∈ X such that for every vertex v ∈ X0 that is not in stw there
is a vertex v′ ∈ stw such that lkX v ⊆ lkX v

′ and lkX v is (k − 1)-connected.

Proof. Let ι : X0 → X denote the inclusion. In view of Lemma 5.11 what remains to be
shown is that if ϕ : Sk → X0 is a map from a k-sphere then ϕ̄ := ι ◦ ϕ is homotopically
trivial.
By simplicial approximation [Spa66, Theorem 3.4.8] we may assume ϕ (and thus ϕ̄) to
be a simplicial map Y → X0 and by our assumptions and Lemma 5.12 we may assume it
to be simplexwise injective. Our goal is to homotope ϕ̄ to a map to stw. Once we have
achieved that, we are done since stw is contractible.
The simplicial sphere Y contains finitely many vertices x whose image v = ϕ̄(x) does not
lie in stw. We define ϕ̄′ : Y → X to be the map that coincides with ϕ̄ outside the open
star of x and takes x to the vertex v′ from the statement. We claim that ϕ̄ is homotopic
to ϕ̄′. Inductively replacing vertices then finishes the proof.
Finally, to see that ϕ̄|stx and ϕ̄′|stx are homotopic relative to lkx note that ϕ̄(lkx) ⊆ lk v
by simplexwise injectivity. Further the complex spanned by v, v′ and lk v is the suspension
Σ(lk v) of lk v (unless v and v′ are adjacent in which case there is nothing to show).
So both ϕ̄|stx and ϕ̄′|stx are maps (Dk, Sk−1) ∼= (stx, lkx) → (Σ(lk v), lk v). But lk v
is (k − 1)-connected by assumption so (Σ(lk v), lk v) is k-connected and both maps are
homotopic. �

6. A Thompson group for direct products of a group

The examples in this section have been constructed independently by S. Tanusevski using
entirely different techniques, and in discussions with him we have determined that his
groups are identical to those discussed here.
Fix a group G. Let Gn be the direct product Gn. We declare that ρn is trivial for all n, and
define cloning maps via (g1, . . . , gk, . . . , gn)κnk := (g1, . . . , gk, gk, . . . , gn). This makes rather
literal the word “cloning.” To verify that this defines a cloning system, observe that since
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the ρn are trivial, we need only check that the cloning maps are homomorphisms (which
they are) and that κn` ◦ κ

n+1
k = κnk ◦ κ

n+1
`+1 for 1 ≤ k < ` ≤ n (which is visibly true). These

respectively handle conditions FCS1 and FCS2 of Definition 2.15, and condition FCS3 is
trivial.
If G is finite, T (G∗) is a group with finite similarity structure in the sense of [FH] and
hence of type F∞. More generally, it turns out that this cloning system is an example
answering Question 5.1, that is, the finiteness length of T (G∗) is exactly that of G.
The proof is due to Tanusevski, and we sketch a version of it here, using our setup and
language. For the positive finiteness properties, we just need that the complexes L (Gn)
becomes increasingly highly connected. This follows by noting that every simplex fiber
of the projection L (Gn)→M(Ln) is the join of its vertex fibers, and applying [Qui78,
Theorem 9.1]. For the negative finiteness properties, we claim that there is a sequence
of homomorphisms G→ T (G∗)→ G that composes to the identity. This is sufficient by
the Bieri–Eckmann criterion [BE74, Proposition 1.2]; see [Bux04, Proposition 4.1]. The
first map in the claim is g 7→ (1, g, 1), and the second map sends (T−, (g1, . . . , gn), T+) to
g1. One must check that this second map is well defined on equivalence classes under
reduction and expansion, and is a homomorphism, but this is not hard to see.

7. Thompson groups for matrix groups

Let R be a unital ring and consider the algebra of n-by-n matrices Mn(R). We will define
a family of injective functions Mn(R)→Mn+1(R), which will become cloning maps after
we restrict to the subgroups of upper triangular matrices Bn(R). Consider the map κk
defined by  A<,< A<,k A<,>

Ak,< Ak,k Ak,>
A>,< A>,k A>,>

κk =


A<,< A<,k A<,k A<,>
Ak,< Ak,k 0 0

0 0 Ak,k Ak,>
A>,< A>,k A>,k A>,>


where the matrix has a block structure that makes the middle column and row be the
kth column and row of the full matrix respectively. Given the block structure it is not
hard to see that κk is a morphism of monoids. But it generally fails to map invertible
elements to invertible elements. We therefore restrict to the groups Bn(R) of invertible
upper triangular matrices. Let B∞(R) = lim−→Bn(R).

Lemma 7.1. The trivial morphism ρn and the maps κnk defined above describe a properly
graded cloning system on B∗(R).

It may be noted that the action of F on B∞(R) factors through H , that is κ`κk = κkκ`+1

even for ` = k.

Proof. Since ρ∗ is trivial, condition FCS1 asks that the cloning maps be group homomor-
phisms. That κk is multiplicative and takes 1 to 1 is straightforward to check. Also, A is
invertible only if all the Ai,i are units, in which case (A)κk is also invertible.
To check condition (FCS2) it is helpful to note that ((A)κk)i,j = Aπk(i),πk(j) unless i = k or
i > j. One can now distinguish cases similar to Example 2.9. The compatibility condition
(FCS3) is vacuous for trivial ρ∗.
To see that the cloning system is properly graded note that g ∈ im ιn,n+1 if and only if the
last column of g is the vector en+1. If at the same time g = (h)κk then by the definition
of κk the last column of h has to be en. Hence h ∈ im ιn−1,n. �

Having equipped B∗(R) with a cloning system, we get a Thompson group T (B∗(R)).
Elements are represented by triples (T−, A, T+) for trees T± with n leaves and matrices
A ∈ Bn(R), up to reduction and expansion. Figure 3 gives an example of an element of
T (B∗(R)), represented as a triple and an expansion of that triple.
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(
,

1 2 3
0 4 5
0 0 6


,

)
=

(
,


1 2 2 3
0 4 0 0
0 0 4 5
0 0 0 6

,

)

Figure 3. An example of expansion in T (B∗(Q)).

For appropriate R, the finiteness properties of T (B∗(R)) become very intriguing. For
instance, when R = Fp[t, t−1], every Bn(Fp[t, t−1]) is finitely generated but not finitely
presented, for n ≥ 2. More generally the following holds, see [Bux04, Theorem A,
Remarks 3.6, 3.7]:

Theorem 7.2. Let k be a global function field, let S be a finite nonempty set of places
and OS the ring of S-integers. Then Bn(OS) is of type F|S|−1 but not of type F|S| for any
n ≥ 2.

Since the finiteness properties of these groups do not depend on the size of the matrices,
Question 5.1 suggests that the group T (B∗(OS)) has the same finiteness properties as all
the Bn(OS).
A different class of examples occurs as subgroups of groups of the form Bn(R). Let
Abn ≤ Bn+1 be the group of invertible upper triangular n+ 1-by-n+ 1 matrices whose
upper left and lower right entry are 1. The groups Abn(Z[1

p ]) were studied by Abels and

others and we call them Abels groups. Their finiteness length tends to infinity with n
[AB87, Bro87]:

Theorem 7.3. For any prime p the group Abn(Z[1
p ]) is of type Fn−1 but not of type Fn

for n ≥ 1.

For any ring R, the cloning system described above for Bn(R) preserves the groups
Abn−1(R). By restriction we obtain a Thompson group T (Ab∗−1(R)) which we will just
denote by T (Ab∗(R)).

7.1. Finiteness properties. The first main result in this subsection is that the groups
B∗(R) satisfy half of what is needed to qualify for the answer of Question 5.1 .

Theorem 7.4. φ(T (B∗(R))) ≥ lim inf
n

(φ(Bn(R))).

In particular, together with Theorem 7.2 this implies:

Corollary 7.5. T (B∗(OS)) is of type F|S|−1.

In view of Proposition 5.9 it suffices to show that the connectivity of L (Bn(R)) goes to
infinity with n. Define η(m) := bm−1

4 c. Theorem 7.4 follows from:

Proposition 7.6. L (Bn(R)) is (η(n− 1)− 1)-connected.

In order to prove the proposition we will induct. To do so we need to enlarge the class of
complexes under consideration. For a spanning subgraph ∆ of the linear graph Ln, define
L (Bn(R); ∆) to be the subcomplex of L (Bn(R)) whose elements only use graphs that
are subgraphs of ∆. Define e(∆) to be the number of edges of ∆; we will induct on e(∆)
and prove the following strengthening of Proposition 7.6:

Proposition 7.7. L (Bn(R); ∆) is (η(e(∆))− 1)-connected.

The base case is that L (Bn(R); ∆) is non-empty provided e(∆) ≥ 1, which is clearly true.
To work with simplices of L (Bn(R)) it will be helpful to have simple representatives
for dangling classes. To define them we have to recall some of the origins of L (Bn(R)):
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by Observation 5.6 matchings Γ of Ln correspond to elementary forests. Using this
correspondence, it makes sense to denote the corresponding cloning map by κΓ. In fact,
since our cloning maps factor through the hedge monoid, we even get a cloning map κΓ

for any spanning subgraph Γ of Ln using Observation 5.7. For the sake of readability, we
describe this map explicitly. Let Dk(λ) be the k-by-k matrix with all diagonal entries
λ and all other entries 0. Let Fk,`(λ) be the k-by-` matrix whose bottom row has all
entries λ and all other entries are 0 and let Ck,`(λ) be defined analogously for the top row.
Assume that Γ has m connected components which we think of as numbered from left to
right. Then

κΓ : Bm(R)→ Bn(R)

can be described as follows. The image of κ(A) has a block structure where columns
and rows are grouped together if their indices lie in a common component of Γ. So the
(i, j)-block has k rows and ` columns if the ith (respectively jth) component of Γ has
k (respectively `) vertices. The block is Dk(Ai,i), Fk,`(Ai,j) or Ck,`(Ai,j) depending on
whether i = j, i < j, or i > j (see Figure 4).

 a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

 κΓ7→

 D2(a1,1) F2,4(a1,2) F2,3(a1,3)
C4,2(a2,1) D4(a2,2) F4,3(a2,3)
C3,2(a3,1) C3,4(a3,2) D3(a3,3)



=



a1,1

a1,1 a1,2 a1,2 a1,2 a1,2 a1,3 a1,3 a1,3

a2,1 a2,1 a2,2

a2,2

a2,2

a2,2 a2,3 a2,3 a2,3

a3,1 a3,1 a3,2 a3,2 a3,2 a3,2 a3,3

a3,3

a3,3


Figure 4. Visualization of the cloning map of a graph. The graph Γ is
drawn on top and to the left of the last matrix.

Recall that we denote by ek the kth edge of Ln. We denote by Ek the spanning subgraph
of Γ whose only edge is ek. For a subgraph Γ of Ln we say that an index i is fragile if
ei ∈ Γ and we say that i is stable otherwise. In other words, i is stable if it is the rightmost
vertex of its component in Γ. A matrix A ∈Mn(R) is said to be modeled on Γ if Ai,j = 0
whenever both i and j are stable in Γ (see Figure 5).

Lemma 7.8. Let Γ be a spanning subgraph of Ln with m components and let A ∈ Bn(R).
There is a representative B ∈ A(Bm(R))κΓ such that B − In is modeled on Γ. Moreover,
rows of zeroes in A (off the diagonal) can be preserved in B.

Proof. We inductively multiply A on the right by matrices in (Bm(R))κΓ to eventually
obtain B. Let Ei,j(λ) denote the matrix that coincides with the identity matrix in all
entries but (i, j) and is λ there.
We begin by clearing the diagonal. Let i be the (stable) rightmost vertex of the kth
component of Γ and let λ = A−1

i,i . Then A(Ek,k(λ))κΓ has (i, i)-entry one and no other
entry with stable indices was affected.
Now we clear the region above the diagonal. We proceed inductively by rows and
columns. Let (i, j) be the (lexicographically) minimal pair of stable indices of Γ such
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

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ 0 ∗ ∗ ∗ 0 ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ 0 ∗ ∗ ∗ 0 ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ 0 ∗ ∗ ∗ 0 ∗ ∗ 0





∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
1 ∗ ∗ ∗ 0 ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

1 ∗ ∗ 0
∗ ∗ ∗
∗ ∗

1


Figure 5. A matrix that is modeled on a graph (left) and an upper
triangular matrix that is reduced relative to a graph (right).

that 0 6= Ai,j =: −λ. Let i and j lie in the kth respectively `th component of Γ. Then
A(Ek,`(λ))κm has (i, j)-entry zero and no other entry with stable indices was affected.
For the last statement assume that the ith row of A was zero off the diagonal. Then none
of the matrices by which we multiplied had a nonzero off-diagonal entry in the ith row. If
i is fragile no such matrix even lies in (Bk(R))κΓ. If i is stable then the only matrices we
might have used of this form were meant to clear the ith row, but since the entries there
were zero, nothing happened in these steps. �

Corollary 7.9 (Reduced form). Every simplex in L (Bn(R)) has a representative (A,Γ)
such that the matrix A− In is modeled on Γ.

We will refer to a matrix A ∈ Bn(R) as being reduced relative Γ if it satisfies the conclusion
of Corollary 7.9.
Let ∆0 := ∆ \ {e1 ∪ e2}, and consider L (Bn(R); ∆0) as a subcomplex of L (Bn(R); ∆).
For a vertex [A,Ek] ∈ L (Bn(R); ∆0) we write lk0([A,Ek]) for the link in L (Bn(R); ∆0)
to differentiate from the link in L (Bn(R); ∆) which is just denoted lk([A,Ek]). To prove
Proposition 7.7 we follow the strategy outlined by Proposition 5.13: we want to show
that L (Bn(R); ∆0) is (η(e(∆)) − 2)-connected, that (L (Bn(R); ∆),L (Bn(R); ∆0)) is
(η(e(∆))−1)-connected and that there is a vertex satisfying condition (EXC1). That vertex
is w := [In, E1] in our case. The following statements (up to the proof of Proposition 7.7)
are part of an induction, so we assume that Proposition 7.7 has been proven for graphs ∆′

with e(∆′) < e(∆) and intend to prove it for ∆.

Lemma 7.10 (Links are lower rank complexes). Let σ be a simplex of dimension d ≥ 0
in L (Bn(R); ∆). Then lk(σ) is isomorphic to a complex of the form L (Bn−(d+1)(R); ∆′)
where ∆′ is a spanning subgraph of Ln−(d+1) with at least e(∆)−3d−3 edges. In particular,
it is (η(e(∆)− 3d− 3)− 1)-connected by induction.

Proof. The simplex σ is of the form [g,Γ] with g ∈ Bn(R) and Γ ⊆ ∆. If it has dimension
d then Γ has d + 1 edges, say ei1 , . . . , eid+1

. Using the left action of Bn(R) (which
comes from the left action of T (B∗(R))) we may assume that g = 1. Then lk(σ) is
L ((Bn−(d+1))κΓ; ∆]), where ∆] is ∆ with the edges eij−1, eij , eij+1 removed for each

1 ≤ j ≤ d+ 1. In particular ∆] has at least e(∆)− 3d− 3 edges. Now consider the map
bΓ : Ln → Ln−(d+1) given by blowing down the edges of Γ. The image of ∆] under bΓ
is what we will call ∆′. Note that ∆′ still has at least e(∆) − 3d − 3 edges. Since κΓ

is injective, we may now apply κ−1
Γ paired with bΓ to L ((Bn−(d+1))κΓ; ∆]) and get an

isomorphism to L (Bn−(d+1)(R); ∆′). �

Lemma 7.11. The pair (L (Bn(R); ∆),L (Bn(R); ∆0)) is (η(e(∆))− 1)-connected.
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Proof. Note that for any vertex of L (Bn(R); ∆) \L (Bn(R); ∆0), the entire link of the
vertex lies in L (Bn(R); ∆0). Hence the function sending vertices of the former to 1 and
vertices of the latter to 0 yields a Morse function in the sense of Section 5, and to prove
the statement we need only show that links of vertices in L (Bn(R); ∆) \L (Bn(R); ∆0)
are (η(e(∆)) − 2)-connected. By Lemma 7.10, each descending link is isomorphic to a
complex of the form L (Bn−1(R); ∆′) for ∆′ a graph with at least e(∆) − 3 edges. By
induction, these are (η(e(∆))− 2)-connected as desired. �

In addition to the subcomplex L (Bn(R); ∆0) we will soon need to consider L (Bn(R); ∆1)
where ∆1 := ∆ \ {e1}. We will write links in this complex using the symbol lk1.

Lemma 7.12 (Shared links). Let k > 2 and let A be reduced relative Ek. Let A′ be
obtained from A by setting the (1, k)-entry to 0. Then lk1([A,Ek]) ⊆ lk1([A′, Ek]) and
[A′, Ek] ∈ lkw.

Proof. As a first observation, note that since A is reduced relative Ek and k > 2, the
(1, 1)-entry and (2, 2)-entry of A are both 1, and the entries of the top row of A past the
first entry is all 0’s except possibly in the kth column. Let −λ be the (1, k)-entry of A,
and note that A′ = AE1k(λ). The first row of A′ is now (1, 0, . . . , 0) and the (2, 2)-entry
is 1, which tells us that A′ ∈ (Bn−1)κ1. Hence [A′, Ek] ∈ lk0w.
To see that lk1([A,Ek]) ⊆ lk1([A′, Ek]) we first multiply by A−1 from the left and
are reduced to showing that lk1([In, Ek]) ⊆ lk1([E1k(λ), Ek]). An arbitrary simplex
of lk1([In, Ek]) is of the form [B,Γ], with B ∈ im(κk) and Γ not containing any of e1, ek−1,
ek, or ek+1. Note that the kth row of B is zero off the diagonal. By Lemma 7.8 there is a
B′ ∈ B im(κΓ) that is reduced relative Γ and has kth row zero off the diagonal. We have
[B′,Γ] = [B,Γ]. Since e1 6∈ Γ and B′ is reduced relative Γ, the first column of B′ is e1.
We now claim that B′ commutes with E1k(λ). Indeed, left multiplication by E1k(λ) is the
row operation r1 7→ r1 + λrk, and right multiplication by E1k(λ) is the column operation
ck 7→ ck + λc1. For our B′, both of these operations change the (1, k)-entry by adding λ
to it, and change no other entries. This proves the claim.
Now we have

[B,Γ] = [B′,Γ] = [E1k(λ)B′E1k(−λ),Γ] = [E1k(λ)B′,Γ] = [E1k(λ)B,Γ].

The second to last step works since E1k(−λ) ∈ im(κΓ) by virtue of ek 6∈ Γ. This shows
that our arbitrary simplex of lk1([In, Ek]) is also in lk1([E1k(λ), Ek]). �

Proof of Proposition 7.7. We want to apply Proposition 5.13. The complexes are X =
L (Bn(R); ∆), X1 = L (Bn(R); ∆1) and X0 = L (Bn(R); ∆0) and k = η(e(∆)) − 1.
We check the assumptions. The pair (L (Bn(R); ∆),L (Bn(R); ∆0)) is k-connected by
Lemma 7.11.
The complex L (Bn(R); ∆0) is (η(e(∆0))− 1)-connected by induction. This is sufficient
because η(e(∆0))− 1 ≥ η(e(∆)− 2)− 1 ≥ η(e(∆))− 2 = k − 1.
The link of a d-simplex is (η(e(∆) − 3d − 3) − 1)-connected by Lemma 7.10. This is
sufficient because η(e(∆)− 3d− 3)− 1 ≥ η(e(∆))− d− 2 = k − d− 1.
Finally condition (EXC1) is satisfied by Lemma 7.12 where lk1([A,Ek]) is at least (η(e(∆)−
4)− 1)-connected and η(e(∆)− 4)− 1 = η(e(∆))− 2 = k − 1 as desired. �

Shifting focus to the Abels groups, the above arguments also show high connectivity of
L (Ab∗(Z[1

p ])), and using Proposition 5.9 and Theorem 7.3 we conclude:

Theorem 7.13. T (Ab∗(Z[1
p ])) is of type F∞.

This, despite none of the Abn(Z[1
p ]) individually being F∞. The remaining question is

whether φ(T (B∗(R))) = lim infn(φ(Bn(R))), that is whether negative finiteness properties
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of the Bn(R) can impose negative finiteness properties on T (B∗(R)). A clue in this
direction is the following proposition, which we prove by simple algebraic means.

Proposition 7.14. Let k be a field and R = k[t] its polynomial ring. Then T (B∗(k[t]))
is not finitely generated.

Proof. Define a function d : B∗(R)→ N0 ∪ {−∞} by sending A to

d(A) := max{degree(ai,i+1) | i ≥ 1},

where degree(ai,i+1) means the degree of the polynomial ai,i+1 ∈ k[t] appearing as the
(i, i + 1)-entry of A. (Note that degree(0) = −∞.) An element g of T (B∗(k[t])) is
represented by a triple (T−, A, T+), and every triple representing g can be obtained from
this triple via a finite sequence of reductions and expansions. The function d is invariant
under any cloning map, so setting d(T−, A, T+) := d(A) gives a well defined function
T (B∗(k[t]))→ N0 ∪ {−∞}.
Now for N ∈ N0 ∪ {−∞}, define

T (B∗(k[t]))d≤N := {g ∈ T (B∗(k[t])) | d(g) ≤ N}.

It is an exercise to check that d(gh) ≤ max(d(g), d(h)) and d(g−1) = d(g), which tells
us that T (B∗(k[t]))d≤N is in fact a (proper) subgroup. But any finite set of elements of
T (B∗(k[t])) is contained in some T (B∗(k[t]))d≤N , so T (B∗(k[t])) cannot be generated
by any finite set. �

8. Thompson groups for mock-symmetric groups

The groups discussed in this section are instances of what Davis, Januszkiewicz and Scott
call “mock reflection groups” [DJS03]. These are groups generated by involutions, and act
on associated cell complexes very much like Coxeter groups, with the only difference being
that some of the generators may be “mock reflections” that do not fix their reflection
mirror pointwise. Here we will only be concerned with one family of groups consisting of
the minimal blow up of Coxeter groups of type An. These Coxeter groups are symmetric
groups and so we call their blow ups mock symmetric groups. For n ∈ N the mock
symmetric group Smock

n is given by the presentation

Smock
n = 〈si,j , 1 ≤ i < j ≤ n | s2

i,j = 1 for all i, j

si,jsk,` = sk,`si,j for i < j < k < ` (8.1)

sk,`si,j = sk+`−j,k+`−isk,` for k ≤ i < j ≤ `〉.

We also set Smock
∞ = lim−→Smock

n .

=

Figure 6. The relation si,jsk,` = sk,`sk+`−j,k+`−i of Smock
n in the case

i = 3, j = 4, k = 1, ` = 5, n = 5.

Let s̄i,j ∈ Sn be the involution (i j)((i+ 1) (j − 1)) · · · (b i+j2 c d
i+j
2 e) (this is the longest

element in the Coxeter group generated by (i i + 1), . . . , (j − 1 j)). Taking si,j to
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s̄i,j defines a surjective homomorphism from ρ : Smock
n → Sn. We define cloning maps

κnk : Smock
n → Smock

n+1 by first defining them on the generators:

(si,j)κ
n
k =

 si,j for j < k
si,j+1sk,k+1 for i ≤ k ≤ j
si+1,j+1 for k < i.

(8.2)

Now we extend κnk to a map Smock
n → Smock

n+1 as in the paragraph leading up to Lemma 1.12.

=

Figure 7. The relation s1,4λ3 = λ2s1,5s3,4 of F ./ Smock
∞ .

Proposition 8.1. The above data define a properly graded cloning system on Smock
∗ .

Proof. Note first that (8.1) is a presentation for Smock
n as a monoid because all the

generators are involutions by the first relation. Since we have such a nice presentation, we
will apply Lemma 1.12 with this presentation rather than the trivial presentation used in
Proposition 2.7.
We have to verify conditions coming from relations of F and conditions coming from
relations of Smock

n , after which the proof proceeds as that of Proposition 2.7. For the
relations of F we must verify the conditions “product of clonings” and “compatibility.”

(si,j)κ`κk = (si,j)κkκ`+1 for k < ` and i < j (8.3)

ρ((si,j)κk) = (ρ(si,j))ςk for i < j. (8.4)

For the relations of Smock
n we have to check that ρ is a well defined homomorphism, and

check that the following equations (standing in for “cloning of products”) are satisfied:

(si,j)κρ(sk,`)p(sk,`)κp = (sk,`)κρ(si,j)p(si,j)κp for i < j < k < ` (8.5)

(sk+`−j,k+`−i)κρ(sk,`)p(sk,`)κp = (sk,`)κρ(si,j)p(si,j)κp for k ≤ i < j ≤ `. (8.6)

Note that the conditions coming from the relations s2
i,j = 1 are vacuous.

Condition (8.3) is easy to check if k < i or ` > j so we consider the situation where
i ≤ k < ` ≤ j. In this case we have

(si,j)κ`κk = (si,j+1s`,`+1)κk = (si,j+1)κk(s`,`+1)κk = si,j+2sk,k+1s`+1,`+2

= si,j+2s`+1,`+2sk,k+1 = (si,j+1)κ`+1(sk,k+1)κ`+1 = (si,j+1sk,k+1)κ`+1 = (si,j)κkκ`+1

since ρ(sk,k+1)(`+ 1) = (`+ 1), ρ(s`,`+1)k = k and sk,k+1 and s`+1,`+2 commute.
Condition (8.4) amounts to showing that

(s̄i,j)ςk =

 s̄i+1,j+1 k < i
s̄i,j+1s̄k,k+1 i ≤ k ≤ j
s̄i,j k > j.

the cases k < i and k > j are clear. For the remaining case we first note that

s̄i,j+1s̄k,k+1(m) = τi+j−ks̄i,jπk(m) = ((s̄i,j)ςk)(m)

for m 6= k, k + 1 (which is also the same as s̄i,j+1(m)). Finally one checks that

s̄i,j+1s̄k,k+1(k) = i+ j − k = (s̄i,j)ςk(k)
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and that

s̄i,j+1s̄k,k+1(k + 1) = i+ j − k + 1 = (s̄i,j)ςk(k + 1).

That ρ is a well defined homomorphism amounts to saying that the defining relations of
Smock
n hold in Sn with si,j replaced by s̄i,j , which they do.

Condition (8.5) is also easy to check unless i ≤ p ≤ j or k ≤ p ≤ `. We treat the case
i ≤ p ≤ j, the other remaining case being similar. We have

(si,j)κρ(sk,`)p(sk,`)κp = si,j+1sp,p+1sk+1,`+1 = sk+1,`+1si,j+1sp,p+1 = (sk,`)κρ(si,j)p(si,j)κp.

Finally, the interesting case of condition (8.6) is the case where i ≤ p ≤ j. We have

(sk,`)κρ(si,j)p(si,j)κp = sk,`+1si+j−p,i+j−p+1si,j+1sp,p+1 = sk,`+1si,j+1

= sk+`−j,k+`−i+1sk+`−p,k+`−p+1sk,`+1sp,p+1 = (sk+`−j,k+`−i)κρ(sk,`)p(sk,`)κp

using the defining relations of Smock
n several times.

To see that the cloning system is properly graded note that it suffices (by induction)
to check condition (2.6) on generators in the following sense: if si,j ∈ Smock

n satisfies
(si,j)κk ∈ im ιn,n+1 then si,j ∈ im ιn−1,n. Looking at (8.2) we see that (si,j)κk ∈ im ιn,n+1

only if j < n if and only if si,j ∈ im ιn−1,n. �

Definition 8.2. We denote the group T (Smock
∗ ) by Vmock.

Observation 8.3. The natural morphism Vmock → V is surjective.

Conjecture 8.4. Vmock is of type F∞.

Since each Smock
n is of type F∞ [DJS03, Section 4.7, Corollary 3.5.4], to prove the conjecture

it would suffice to show that the connectivity of the complexes L (Smock
n ) goes to infinity

as n goes to infinity. As a remark, one can calculate by hand that the hypotheses of
Lemma 5.10 hold, and so Vmock is finitely generated.

References

[AB87] H. Abels and K. S. Brown. Finiteness properties of solvable S-arithmetic groups: an example.
J. Pure Appl. Algebra, 44(1-3):77–83, 1987.

[BB97] M. Bestvina and N. Brady. Morse theory and finiteness properties of groups. Invent. Math.,
129(3):445–470, 1997.

[BBCS08] T. Brady, J. Burillo, S. Cleary, and M. Stein. Pure braid subgroups of braided Thompson’s
groups. Publ. Mat., 52(1):57–89, 2008.

[BE74] R. Bieri and B. Eckmann. Finiteness properties of duality groups. Comment. Math. Helv.,
49:74–83, 1974.

[Bel04] J. Belk. Thompson’s Group F . PhD thesis, Cornell University, 2004.
[BF] J. M. Belk and B. Forrest. A Thompson Group for the Basilica. arXiv:1201.4225.
[BFS+] K.-U. Bux, M. Fluch, M. Schwandt, S. Witzel, and M. C. B. Zaremsky. The braided Thompson’s

groups are of type F∞. arXiv:1210.2931.
[BH99] M. R. Bridson and A. Haefliger. Metric spaces of non-positive curvature, volume 319 of

Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, 1999.
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