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The purpose of this set of exercises is to discuss the Spin groups in terms of Clifford
algebras. You might want to consult references: the classic paper on the material is
Atiyah, Bott, Shapiro: ”Clifford modules”; a must-read. A textbook reference is Lawson-

Michelsohn: ”Spin geometry”.

Recall that C1”? is the (unital, associative) R-algebra generated by elements ey, ..., ep, €1, . ..

subject to the relations

eie; +eje; = _251']'; €65+ €€ = 2(52'3'; €i€j + €j€; = 0.
We consider RPT? = span{ey, ..., ep, €1,..., €6} as a subspace of CI”?. The grading involu-
tion on C1”7 is the unique automorphism « of C1”? such that a(v) = —v. Let CI? c CIP4

be the eigenspace of a to the eigenvalue (—1). Moreover, we let * : CI”"? — CI”? be the
unique antiautomorphism with e; — —e; and ¢; — ¢;.
We identify R™ with its dual space using the standard inner product. Let (vq,...,v,) be

the standard basis. Consider the exterior algebra A*R"™ and the operators

a;(w) == v; Aw; bj(w) = Ly,w
on A*R"™ given by the wedge product and the insertion. The exterior algebra has the
standard even/odd grading, given by the involution ¢ which is (—1)? on APR"™.

Exercise 1. Prove that the operators e¢; := a; — b; and ¢; := a; + b; define an algebra
homomorphism 7 : CI"" — End(A*R"™), which is moreover graded. Moreover, prove that
v(x*) = vy(x)* (the latter is the adjoint with respect to the standard scalar product on the
exterior algebra) for all z € CI""™. Thus ~ is a *-homomorphism. We call the resulting

Clifford module by S,, ,, and call it the spinor representation.

Exercise 2. Prove that the map

c: QIO ¢ g I pegn
is an isomorphism of vector spaces (not of algebras). Hint: for dimension reasons, it is

enough to prove surjectivity.

Exercise 3. Prove that S, , ®Sy, m = Sp4n,m+n (here we use the exterior tensor product
of graded Clifford modules). Prove by induction on n that v : CI""" — End(A*R") is an

isomorphism of algebras.



Exercise 4. Let (C1™°)* be the group of units in the Clifford algebra. We define two
subgroups: A, C (CI"™%)* is the group of all units  such that v(z) € End(A*R™) is
orthogonal (equivalently v(z)*y(z) = y(z*z) = 1 or #*z = 1), and I',, C (CI™?)* is the
group of all units = such that a(z)yxr~! € R" for all y € R". We define Pin(n) := A, NT,,.
In a similar way, consider the complexification S, , ® C, with induced homomorphism
7¢: CI"Y @ C — End(S,, ® C). Let A% C (CI"™Y ® C)* be those elements x with y(z)
unitary and let T'¢ be the group of all z € (C1"Y® C)* with a(z)yz~! € R” for all y € R™.
We let Pin®(n) = ¢ N AC.

Prove that Pin(n) and Pin®(n) are compact Lie groups. Hint: use the nontrivial result

from Lie theory that a closed subgroup of GLk(R) is a Lie group.

The groups I'y, and I', come with homomorphism p : I';, = GL,(R) and p¢ : 'S, — GL,(R):
r e (y = alr)yr1).

Exercise 5. Prove that the kernel of p¢ consists of all z1, z € C*. Hint: here you have
to work a bit. Pick z in the kernel and write z as a linear combination of the elements

ej, - - - ej,. Hence

ker(p® : Pin¢(n) — O(n)) = S'; ker(p : Pin(n) — O(n)) = +1.

Exercise 6. Prove the inclusions (hence equalities)

O(n) C Im(p) C Im(p°) C O(n).

Hint: the second inclusion is clear. For the first one, let x € R” < CI"™® be a unit
vector. Prove that z € Pin(n) and that p(z) € GL,(R) is the reflection at the hyperplane
x. Use that the reflections generate the orthogonal group; this classical result is known
as the Cartan—Dieudonné theorem. For the third one, use that Pin®(n) is compact and
that O(n) C GL,(R) is a maximal compact subgroup. This latter statement can be
proven nicely using invariant integration: let K be compact, O(n) C K C GL,(R). By
invariant integration, K leaves an inner product on R™ invariant. Since this inner product

is also invariant under O(n), it must be a multiple of the standard scalar product. Hence
K C O(n).

Altogether, the above exercises prove that there are short exact sequences

1 — 41 — Pin(n) —» O(n) — 1; 1 = S' — Pin°(n) — O(n) — 1.

Exercise 7. Show that Pin(n) N Clg’0 = p~1(SO(n)). This group is called Spin(n), the
Spin group. Similar, Spin®(n) = Pin®(n) N Clg’0 ® C = (p°)~H(SO(n)).



Exercise 8. Show that Spin(n) and Spin®(n) are connected, if n > 2. Hint: why is it
enough to study Spin(n)? Show that z(t) = cos(t) + sin(t)ejez is a path that connects
the two elements in the kernel of p. Conclude that for n > 3, the group Spin(n) is
simply-connected (since m1(SO(n)) =7Z/2).

Exercise 9. Let v : R" — End(S,,,) be the Clifford multiplication. Prove that ~ is
Spin(n)-equivariant in the following sense. On the source of v, Spin(n) acts through the

homomorphism p. As Spin(n) is a subgroup of the units in CI™, it acts on Sp,n through
v and thus on End(S, ) (how?).

Exercise 10. Let V — X be an n-dimensional Riemannian vector bundle. We define a
Spin-structure on V' to be a pair (P, 7n), where P — X is a Spin(n)-principal bundle and
n: P Xgpingn) R" — V an isometry of Riemannian vector bundles. In a similar way, one
defines a Spin“-structure, replacing Spin(n) by Spin®(n).

Assume that a Spin-structure on V' is given. Show (using the last exercise) that P X gpin(n)
Sn.n®C is a graded CI(V @ R%")-module bundle. Now let n be even. Under the algebraic
Bott periodicity, we obtain a graded Cl(V)-module bundle $;, — X, the complex spinor
bundle.

Now let M be a Riemannian manifold and (P,n) be a spin structure on TM. Let $,,
be the spinor bundle constructed in the last exercise. It has a graded Dirac operator ID,
the Atiyah-Singer-Dirac operator. We wish to compute the index of this operator. This is
done in the following steps. Recall that

ind(1) / A1) Td(TM & C).

M

This leaves the computation of A($ ), which was defined in the following way. If V — X is
a rank 2n vector bundle with a spin structure, let A($y,) := th™!(ch(abs(E))) € H*(X;R),
using the Atiyah-Bott-Shapiro map, the Chern character and the Thom isomorphism. This
is a characteristic class for Spin(2n)-principal bundles.

There is a map Spin(2)™ — Spin(2n), which is not injective, but it is a covering of maximal
tori. Since the map I(Spin(2n)) — I(Spin(2)") is injective, it is enough to compute A($y/)
for bundles with structural group Spin(2)™. Use the multiplicative structure of all data at
hand to reduce to the case n = 1.

For the case n = 1, give a direct calculation. Hint: for the result to be proven, you might

consult the literature.



