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1. Index theory in abstract functional analysis

The meaning of the word ”abstract” is that we consider operators on abstract
Hilbert spaces, not differential operators. This chapter is intended as a warm-up to
index theory. Besides reviewing some of the basic principles from linear functional
analysis and learning the definition of a Fredholm operator, we will prove the first
theorem of this course: the Toeplitz index theorem. To each map f ∶ S1 → C×, we
will define a Fredholm operator Tf whose index is −deg(f), the classical winding
number. Thus we see that one of the most basic topological invariants have a nice
interpretation as an index. This will be an important ingredient of the proof of the
Bott periodicity theorem, which in turn is fundamental for the Atiyah-Singer index
theorem.

1.1. Generalities on Fredholm operators and the statement of the Toeplitz
index theorem.

Definition 1.1.1. Let V and W be two vector spaces (usually over C). A linear
map F ∶ V →W is called a Fredholm operator if ker(F ) and coker(F ) ∶=W / Im(F )
are both finite-dimensional. The index of F is by definition ind(F ) ∶= dim ker(F )−
dim coker(F ).

Lemma 1.1.2. If V and W are finite dimensional vector spaces, then any linear
map F ∶ V →W is Fredholm and its index is ind(F ) ∶= dim(V ) − dim(W ).

Proof. Recall the rank-nullity theorem from Linear Algebra I; it says that dim Im(F ) =
dim(V )−dim ker(F ). Thus ind(F ) = (dim(V )−dim Im(F ))−(dim(W )−dim Im(F )) =
dim(V ) − dim(W ). �

Lemma 1.1.3. If U
G→ V

F→ W be two linear maps. If two of the three operators
G, F , F ○G are Fredholm, then so is the third, and

ind(F ○G) = ind(F ) + ind(G).

Proof. There is a commutative diagram

(1.1.4) 0 // U
(id,G) //

G

��

U ⊕ V −G+id //

(F○G,id)
��

V

F

��

// 0

0 // V
(F,id) // W ⊕ V −id+F // W // 0

and both rows are exact sequences. Now we view the columns as chain complexes
and get a six-term exact sequence

0→ ker(G)→ ker(FG)→ ker(F )→ coker(G)→ coker(FG)→ coker(F )→ 0,

using that ker(FG) ≅ ker(FG⊕ id), and the analogous relation for the cokernels.
This is the (not very) long exact homology sequence of the short exact sequence
1.1.4 of chain complexes. Now an exercise in linear algebra shows:

dim ker(G)−dim ker(FG)+dim ker(F )−dim coker(G)+dim coker(FG)−dim coker(F ) = 0,

which is what we wanted to show. �
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Exercise 1.1.5. If you do not understand how the exact sequence arose in the
above proof, take a homological algebra book and read the section on the long exact
homology sequence. Do the linear algebra exercise.

This bourbakian approach cannot be pursued much longer: by means of pure
linear algebra, we cannot say more on indices of operators. In the sequel, we will
only study continuous linear maps of Banach spaces, in fact, only of Hilbert spaces.
We have to recall some notions and results from basic functional analysis. Consider
a vector space V over C, together with a scalar product V ×V → C, (x, y)↦ (x, y).
The scalar product is C-sesquilinear and positive definite.

We define the norm induced by the scalar product by ∥x∥ ∶=
√

(x,x). V is called
a Hilbert space if the norm is complete, i.e. if each Cauchy sequence converges.

Lemma 1.1.6. A linear map f ∶ V → W of normed vector spaces is continuous
if and only if there is a C ≥ 0 with ∥f(x)∥ ≤ C∥x∥ for all x. The smallest such C
is called the operator norm ∥f∥. An alternative word for continuous linear map is
”bounded operator”, and Lin(V ;W ) is the set of bounded linear maps.

This is Lemma 5.6 in [13]. An important class of operators on a Hilbert space are
the projection operators. Let V be a Hilbert space and U ⊂ V be a closed subspace.
By U�, we denote the orthogonal complement of U in V . Any element v ∈ V can
be written uniquely as v = Pv + (v −PV ), Pv ∈ U , (v −Pv) ∈ U�. The map v ↦ Pv
is the projection operator. It has the properties P 2 = P and Im(P ) = U . Moreover,
∥P ∥ = 1 if 0 ≠ U .

Exercise 1.1.7. Show that Lin(V,W ), together with the operator norm, is a normed
vector space. Prove that ∥fg∥ ≤ ∥f∥∥g∥. Prove that Lin(V ;W ) is complete if W is
complete. Is it a Hilbert space?

The archetypical Hilbert space is L2(X;µ) for a measure space (X,µ). Special
cases: X = S a discrete set and µ the counting measure. In that case, we call it
`2(S). The shift operator T− ∶ `2(N) → `2(N) is defined by setting T−ei ∶= ei+1,
where ei is the canonical ith basis vector. It is bounded with norm 1 and is a
Fredholm operator with index −1. There is another shift operator T+ ∶ `2 → `2,
T+ei ∶= ei−1 and T+e1 = 0: It has index 1.

This is not a linear algebra class; we want to geometrize these examples. Let us
look at the space S1 = {z ∈ C∣∣z∣ = 1}. This is a Riemann manifold with volume form

1
2πi

dz
z

. We look at the space L2(S1) of complex valued square integrable functions

S1 → C; the scalar product is given by

(f, g) ∶= 1

2πi
∫
S1
f̄g
dz

z
.

An orthonormal basis is given by the functions fk(z) = zk, k ∈ Z. By means
of this basis, we identify L2(S1) with `2(Z) (Fourier series!). You might it find
more convenient to identify L2(S1) with the space of all 1-periodic functions on

R; the scalar product has the alternative form ∫
1

0 f̄gdx, the above orthonormal

basis corresponds to e2πikx. You are mathematically mature and should not try to
separate real and imaginary part of a function.

Inside L2(S1), we find an important subspace H(S1); it is the closure of the
linear span of all the functions fk with k ≥ 0. The space H(S1) is also called the
Hardy space. There is a linear orthogonal projection operator P ∶ L2(S1)→H(S1).
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Note that by a standard abuse of terminology, a projection P is called ”orthogonal”
if it is selfadjoint (see below). Under the above isometry L2(S1) ≅ `2(Z), the
subspace H(S1) corresponds to `2(N).

Another important operator is given when f ∶ S1 → C is a continuous function;
it sends u ∈ L2(S1) to Mfu ∶= fu. This is a bounded operator with ∥Mf∥ ≤ ∥f∥C0 .

Definition 1.1.8. Let f ∶ S1 → C be a continuous function. The Toeplitz operator
Tf ∶H(S1)→H(S1) is given by Tfu ∶= PMfu.

Example: if f(z) = z±1, then Tf is the shift T∓. More generally, one can consider

powers of these operators; for example, Tzk = (T−)k if k ≥ 0, but not if k < 0.
What can we say about continuous maps f ∶ S1 → C×? There is an important

topological invariant, the winding number or mapping degree. We have the following
(equivalent) definitions, see ”Manifolds and differential forms” and ”Topology I”.

● The fundamental group π1(C×) is isomorphic to Z via the isomorphism ψ ∶
Z→ π1(C×), which sends the number n to the (homotopy class of the) closed
loop t↦ e2πint. If f ∶ S1 → C× is any map, the closed loop t↦ f(e2πit)/f(1)
represents an element [[f]] ∈ π1(C×), and we put deg(f) ∶= ψ−1([[f]]).

● Any map S1 → S1 induces a self-map of the first homology groupH1(S1;Z) ≅
Z; it is given by mutiplication with an integer n.

● Assume that f is smooth, and consider a regular value z of the function
g = f

∣f ∣ ∶ S
1 → S1 and count preimages g−1(z) with sign (the sign is the sign

of the derivative of g). If f is not smooth, take a smooth approximation.
● deg(f) ∶= ∫S1 f

∗( dz
2πiz

) if f is smooth.

Remark 1.1.9. The maps π1(C×)→ [S1;C×] deg→ Z (the first one is the most obvi-
ous one) are both isomorphisms. This is notable since the group structures in the
first two groups have two sources: in the fundamental group, you take composition
of loops, in the second one, the pointwise product of functions. The second set has
a group structure since C× is a topological (even Lie) group.

From these considerations, we see that for fk(z) = zk, ind(Tfk) = −deg(fk) = −k.
The first real theorem of this lecture course is

Theorem 1.1.10. (The Toeplitz index theorem) If f ∶ S1 → C× is continuous, then
Tf is a Fredholm operator and ind(Tf) = −deg(f).

Note that we just proved the Toeplitz index theorem for the special functions fk.
A concrete description of Tf as a infinite matrix is not available and not practical,
we need more clever tools. The first thing we need is a general principle to prove
that an operator is Fredholm. This means, we have to absorb a crash course on
some parts of functional analysis.

1.2. Some functional analysis 1: the open mapping theorem and its con-
sequences. A basic reference that contains (almost) all the abstract functional
analysis we need is Hirzebruch-Scharlau, ”Einführung in die Funktionalanalysis”
[13]. You should have a copy on your desk.

The first thing we recall is the open mapping theorem.

Theorem 1.2.1. (The open mapping theorem) Let V and W be two Banach spaces
and let F ∶ V → W be a continuous linear map. If F is surjective, then F is an
open map (i.e, images of open sets in V are open in W ).
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This is Satz 9.1 in [13].

Exercise 1.2.2. Read the proof of Theorem 1.2.1.

Exercise 1.2.3. Give counterexamples that show that the completeness of both
spaces is essential in the theorem.

The converse of the open mapping theorem (”an open linear map is surjective”)
is easy (why?). The most important consequence of the open mapping theorem is:

Corollary 1.2.4. A bijective continuous linear map F of Banach spaces is a home-
omorphism. In particular, the inverse F −1 is bounded as well.

Lemma 1.2.5. If F ∶ V → W is Fredholm, the image F (V ) ⊂ W is a closed
subspace.

Proof. Let U ⊂W be a complement of f(V ). Since U is finite-dimensional, there is,
up to equivalence, exactly one norm on U (Analysis II). The operator F1 ∶ V ⊕U →
W , (v, u)↦ F (v)+u, is surjective and bounded, hence an open map by 1.2.1. The
subset V ⊕U ∖ V ⊕ 0 is open and so is F1(V ⊕U ∖ V ⊕ 0) =W ∖ F (V ). �

We denote by Lin(V,W )× ⊂ Lin(V,W ) the subset of all invertible operators.

Proposition 1.2.6. The subset Lin(V,W )× ⊂ Lin(V,W ) is open and the inversion
map F ↦ F −1 is continuous. More precisely, if F ∈ Lin×(V,W ) and R ∈ Lin(V,W )
with ∥R∥ < ∥F −1∥−1, then F −R ∈ Lin×(V,W ).

Proof. (compare [13], 23.2.) The geometric series F −1∑∞
k=0(RF −1)k converges to

(F −R)−1. �

Theorem 1.2.7. (Homotopy invariance of the index) Let V , W be Hilbert spaces
and let Fred(V,W ) be the set of all Fredholm operators. Then Fred(V,W ) ⊂
Lin(V,W ) is an open subset and the index function ind ∶ Fred(V,W ) → Z, F ↦
ind(F ) is locally constant.

Proof. Let F ∈ Fred(V,W ). Let G ∶ ker(F )� → V be the inclusion and H ∶ W →
Im(F ) be the orthogonal projection which exists by Lemma 1.2.5 and because W
is a Hilbert space. These two are Fredholm operators with ind(G) = −dim(ker(F ))
and ind(H) = dim coker(F ). The composition HFG is invertible. By Proposition
1.2.6, we get that for all F1 sufficiently close to F , the composition HF1G is in-
vertible. Thus HF1G and H are Fredholm, and so is F1G by Lemma 1.1.3; and
ind(F1G) + dim coker(F ) = ind(F1G) + ind(H) = 0.

Again by Lemma 1.1.3, F1 is Fredholm and ind(F1) = ind(F1G) − ind(G) =
−dim coker(F ) + dim ker(F ) = ind(F ). �

1.3. Some functional analysis 2: the adjoint operator. Let V be a normed
vector space and V ′ the dual space, i.e., the vector space of all continuous linear
functions V → C. This is a normed vector space, and moreover complete, since C
is complete.

Definition 1.3.1. Let F ∶ V → W be a linear continuous map. The transpose
operator is F ′ ∶W ′ → V ′, F ′(φ)(v) ∶= φ(F (v)).

This has some obvious properties (linearity, (FG)′ = G′F ′, etc) which we will
not recall. It is not absolutely clear that ∥F ′∥ = ∥F ∥. That ∥F ′∥ ≤ ∥F ∥ follows from
the definitions, and ∥F ∥ ≤ ∥F ′∥ follows from the Hahn-Banach theorem.

A special property of Hilbert spaces is that they are self-dual:



A LECTURE COURSE ON THE ATIYAH-SINGER INDEX THEOREM 7

Proposition 1.3.2. Let V be a Hilbert space. Then the C-antilinear map V → V ′,
v ↦ ⟨v, ⟩ is an isometry.

This is Satz 20.9 in [13]. The following lemma will be used only much later, in
the discussion of Sobolev spaces, but fits thematically.

Lemma 1.3.3. Let W , V be Hilbert spaces and F ∶W → V ′ a C-linear or antilinear
bounded operator. Suppose there exists C,C ′ such that

∥v∥ ≤ C sup
w∈W,∣w∣≤1

∣F (w)(v)∣

and

∥w∥ ≤ C ′ sup
v∈V,∣v∣≤1

∣F (w)(v)∣

hold for all v ∈ V , w ∈W . Then F is bijective (and hence a homeomorphism)

Proof. By the definition of the various norms and the assumption, we have, by the
second estimate,

∥Fw∥ = sup
w∈W,∣w∣≤1

∣F (w)(v)∣ ≥ 1

C
∥w∥.

Therefore F is injective (clear), and the image of F is closed, because if Fwn → v′,
then ∥wn −wm∥ ≤ C∥Fwn − Fwm∥→ 0 and wn is a Cauchy sequence.

For the surjectivity, assume that v′′ ∈ V ′′ is a linear form such that v′′ ○ F = 0.
We have to prove that v′′ = 0. By duality, v′′ is given by scalar product with an
v ∈ V : v′′(v′) = ⟨v, v′⟩. We knwow that F (w)(v) = 0 for all w ∈ W . Therefore, by
the first estimate in the assumption of the Lemma, ∥v∥ = 0, as claimed. �

Using Proposition 1.3.2, we can define the adjoint operator F ∗ of a linear oper-
ator F ∶ V →W .

Definition 1.3.4. Let F ∶ V → W be a bounded operator of Hilbert spaces. The

adjoint F ∗ of F is the composition W ≅W ′ F
′
→ V ′ ≅ V .

Proposition 1.3.5.

(1) F ↦ F ∗ is antilinear.
(2) F ∗∗ = F .
(3) (FG)∗ = G∗F ∗.
(4) ⟨Fv,w⟩ = ⟨v,F ∗w⟩.
(5) ∥F ∥ = ∥F ∗∥.
(6) ∥F ∗F ∥ = ∥F ∥2.

Proof. Everything is clear except perhaps the last equation. For each v,w ∈ V of
norm ≤ 1, we have

∣⟨v,F ∗Fw⟩∣ = ∣⟨Fv,Fw⟩∣ ≤ ∥F ∥2

and

∥Fv∥2 = ∣⟨Fv,Fv⟩∣ = ∣⟨v,F ∗Fv⟩∣ ≤ ∥F ∗F ∥.
�

Moreover, we often need the following relations.
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Proposition 1.3.6. Let V,W be Hilbert spaces and F ∶ V → W be a bounded
operator. Then

(1) ker(F ∗) = ImF
�

(2) ImF = ker(F ∗)�.

Note that taking the closure is necessary for the second relation.

1.4. Some functional analysis 3: Compact operators.

Definition 1.4.1. Let V,W be Banach spaces. A bounded operator F ∶ V →W is
called compact if one of the following equivalent conditions hold.

(1) The image of each bounded X ⊂ V is relatively compact in W .
(2) The image of the open unit ball B1(V ) is relatively compact in W .
(3) If vn is a bounded sequence, then Fvn does have a convergent subsequence.

We denote by Kom(V ;W ) ⊂ Lin(V,W ) the subset of all compact operators

Let us recall some well-known equivalent formulations of compactness for a met-
ric space X. We say that X is totally bounded if for each ε > 0, there exist finitely
many x1, . . . , xn ∈X such that the ε-balls around the xi’s cover X, i.e.

n

⋃
i=1

Dε(xi) =X.

A metric space X is compact if and only if it is complete and totally bounded.

Examples 1.4.2.
Each operator with a finite-dimensional image is compact.
The identity on V is compact iff V is finite dimensional.

Proof. The first follows from the Heine-Borel theorem, as well as one half of the
second statement. For the converse, see Lemma 24.2 [13]. �

Theorem 1.4.3. Let V,W,U,X be Banach spaces. Then:

(1) Kom(V,W ) ⊂ Lin(V,W ) is a closed subspace.
(2) If F ∈ Kom(V,W ) and G ∈ Lin(W,X); H ∈ Lin(U ;V ), then GFH ∈

Kom(U,X).
(3) If F ∈ Kom(V,W ), then F ′ ∈ Kom(W ′, V ′).

Proof. (Compare [13], Lemma 24.3)
Part (2): Let A ⊂ U be bounded. Then H(A) ⊂ V is bounded and FH(A) ⊂W

relatively compact. Thus FH(A) ⊂ W and hence GFH(A) ⊂ X is compact. But

GFH(A) ⊂ GFH(A) = GFH(A) is compact.
Part (1): If F is compact, then clearly so is aF , a ∈ C. Moreover, if F and

G are compact, then F ⊕ G is compact as an operator V ⊕ V → W ⊕W . The
diagonal ∆ ∶ V → V ⊕ V and the sum µ ∶ W ⊕W → W are bounded, and thus
µ ○ (F ⊕G) ○ ∆ = F +G is compact by part (2). So Kom(V,W ) ⊂ Lin(V,W ) is a

subspace. To prove that it is closed, assume that F ∈ Kom(V,W ) and let ε > 0.
Pick G ∈ Kom(V,W ) with ∥F −G∥ < ε/3.

Then G(B1(V )) can be covered by finitely many ε/3-balls around Gv1, . . . ,Gvn
since it is relatively compact. Then for each v ∈ B1(V ), there exists an i such that
∥Gv −Gvi∥ < ε/3 and therefore

∥Fv − Fvi∥ ≤ ∥Fv −Gv∥ + ∥Gv −Gvi∥ + ∥Gvi − Fvi∥ < ε;
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therefore F (B1(V )) can be covered by finitely many ε-balls. Since ε was arbi-
trary, the set F (B1(V )) is relatively compact.

The third statement uses the Arzela-Ascoli theorem, which we first state. �

Theorem 1.4.4. (Arzela-Ascoli theorem) Let K be a topological space and X be a
complete metric space. A set A ⊂ C(K,X) of continuous functions K →X is called
equicontinuous if for all ε > 0 and each y ∈K, there exists a neighborhood U ⊂K of
y such that for all f ∈ A and z ∈ U , one has d(f(y), f(z)) < ε. Let A ⊂ C(K,X) be
equicontinuous.

(1) If K is compact and if for all y ∈ K, the set Ay = {f(y)∣f ∈ A} ⊂ X is
relatively compact, then A ⊂ C(K,X) is relatively compact, where C(K,X)
carries the metric d(f, g) = supy∈K d(f(y), g(y)).

(2) If K has a countable dense subset S such that for each y ∈ S, the set Ay
is relatively compact, then any sequence fn has a subsequence fnk which
converges uniformly on each compact subset of K.

The first part is proven in [13], Korollar 3.1. The second part (which is very
similar), is Theorem 11.28 in [24].

Example 1.4.5. Let K ⊂ V be any subset of a Banach space and A ⊂ Lin(V,W )
be bounded. Then A ⊂ C(K,W ) is equicontinuous.

Proof. Let x, z ∈ K and F ∈ A. Then ∥Fz − Fx∥ ≤ ∥F ∥∥z − x∥ ≤ C∥z − x∥ with C a
global bound on A. Then U =Dε/2C is the desired neighborhood. �

Proof of Theorem 1.4.3 (3). Let X ⊂ W ′ be bounded. Then X ∣
F (B1(V )) is rela-

tively compact, by Arzela-Ascoli and since F is compact. Thus if (`n)n ⊂ W ′ is
a bounded sequence, then there is a subsequence `nk such that `nk converges uni-

formly on F (B1(V )). Hence `nk ○ F = F ′(`nk) converges uniformly on B1(V ). �

In the Hilbert space setting, we can phrase Theorem 1.4.3 by saying that Kom(V ) ⊂
Lin(V ) is a 2-sided ∗-ideal in the C∗-algebra Lin(V ).

Proposition 1.4.6. Let V,W be separable Hilbert spaces. Then Kom(V,W ) is the
closure of the space of finite rank operators.

Before giving the proof, we introduce terminology. We say that a sequence xn in
a metric space X is subconvergent if xn has a convergent subsequence. In arguments
that involve picking a subsequence, we will also often denote the subsequence by
xn as well, instead of using stacked indices such as xnk or worse.

Proof. Let F be a compact operator. Pick an orthonormal basis (en)n∈N of W and
let Pn ∶W →W be the orthogonal projection operator onto span{ei∣i ≤ n}. Clearly
PnF has finite rank, and we claim that PnF subconverges to F .

Let K = F (B1(V )), which by assumption is compact. Consider the sequence
Pn∣K of functions K → W . The family {Pn∣K} is equicontinuous because it is
bounded (Example 1.4.5). Moreover, for each x ∈K, the sequence Pnx converges to
x, which is why {Pnx} is relatively compact in W . Thus the Arzela-Ascoli theorem
applies and proves that the family {Pn∣K} is relatively compact; thus a subsequence
of Pn∣K is uniformly convergent. Therefore, PnF is uniformly subconvergent on
B1(V ), and the pointwise limit is F , and so PnF → F , which is why F is in the
closure of the finite-rank operators. �
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1.5. Atkinsons Lemma and its consequences. The next result is our main tool
to prove that a given operator is Fredholm. We now restrict to separable Hilbert
spaces. The exposition follows [12] and [2].

Theorem 1.5.1. (Atkinson’s Lemma) Let V,W be separable Hilbert spaces and
F ∈ Lin(V,W ). Then F is Fredholm if and only if there exists G ∈ Lin(W,V ) such
that GF − 1and FG − 1 are compact. Such an operator G is called parametrix.

Proof. Assume first that F is Fredholm. The operator

F0 ∶ ker(F )� → Im(F )
is a bijective operator of Hilbert spaces (by 1.2.5, the target is complete) and

thus its inverse is bounded by the open mapping theorem 1.2.1. Let G be the

composition W → Im(F )
F−1

0→ ker(F )� ⊂ V . It is easy to see that FG−1 and GF −1
have finite rank and are thus compact.

For the converse direction, let GF = 1 +K and FG = 1 + L with compact K,L.
Chose finite rank operators R,S with ∥R −K∥, ∥S − L∥ < 1, by Proposition 1.4.6.
Then 1−R+K and 1−S+L are invertible by Proposition 1.2.6. Now compute that

(1 −R +K)−1GF = (1 −R +K)−1(1 −R +K +R) = 1 + (1 −R +K)−1R =∶ 1 + P
with P an operator of finite rank. Thus if Fv = 0, then v +Pv = 0, i.e. ker(F ) ⊂

Im(P ); in particular, the kernel of F is finite-dimensional. On the other hand,

FG(1 − S +L)−1 = (1 − S +L + S)(1 − S +L)−1 = 1 + S(1 − S +L)−1 =∶ 1 +Q
with Q of finite rank. Thus Im(1 +Q) ⊂ Im(F ). But ker(Q) ⊂ Im(1 +Q), and

since Q has finite rank, ker(Q) has finite codimension, and therefore Im(F ) has
finite codimension as well. �

Corollary 1.5.2. Let F ∈ Fred(V,W ) and K ∈ Kom(V,W ). Then

(1) F +K ∈ Fred(V,W ) and ind(F +K) = ind(F ).
(2) A self-adjoint Fredholm operator has index 0.
(3) F ∗ ∈ Fred(W,V ) and ind(F ∗) = − ind(F ).

Proof. Part (1): Let G be a parametrix for F . Then G(F +K)−1 = GF −1+GK is
compact; similarly, (F +K)G − 1 is compact and one can apply Atkinson’s lemma
to see that F +K is Fredholm. For each t ∈ [0,1], the operator tK is also compact,
and thus ind(F + tK) does not not depend on t, by Theorem 1.2.7.
Part (2): Let F be self-adjoint and Fredholm. Then Im(F ) is closed, and Im(F )� =
ker(F ∗) = ker(F ). Thus the index is zero.
Part (3): If G is a parametrix for F , then G∗ is a parametrix for F ∗, showing that
F ∗ is Fredholm. To compute the index, we consider the operator F ∗F which is
self-adjoint and thus has index 0. Therefore ind(F ) + ind(F ∗) = 0. �

1.6. Proof of the Toeplitz index theorem. We now have amassed enough
knowledge to prove the Toeplitz index theorem quite easily. Recall that P is the
projection onto H(S1) ⊂ L2(S1;C). It turns out that it is formally simpler to con-
sider the operator is PMfP + (1 − P ), as an operator L2(S1) to itself. This is the
direct sum of the Toeplitz operator and the identity and thus has the same index.
In particular, we redefine Tf ∶= PMfP + (1 − P ).



A LECTURE COURSE ON THE ATIYAH-SINGER INDEX THEOREM 11

Lemma 1.6.1. For each f ∈ C0(S1), the operator [P,Mf ] ∶= PMf − MfP is
compact.

Proof. Let A ⊂ C0(S1;C) the subset of all f such that PMf −MfP is compact.
We verify the hypotheses of the Stone-Weierstraß theorem 1.6.2 in order to show
that A = C0(S1;C). Let

Φ ∶ C0(S1;C)→ Lin(L2(S1)); f ↦ [P,Mf ].
This is a continuous linear map because ∥[P,Mf ]∥ = ∥PMf −MfP ∥ ≤ 2∥f∥C0

and hence A ∶= Φ−1(Kom(L2(S1))) is a closed subspace by Theorem 1.4.3 (1).
It is clear that the constant function f = 1 is in A. If f, g ∈ A, then

PMfg −MfgP = PMfMg −MfMgP = PMfMg −MfPMg +MfPMg −MfMgP =
[P ;Mf ]Mg +Mf [P,Mg];

and this is compact, so fg ∈ A. If f ∈ A, then

PMf̄ −Mf̄P = [Mf , P ]∗

because P = P ∗ and Mf̄ = M∗
f . For the function f(z) = z, direct computation

shows that

(PMz −MzP )(zk) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 k < −1

1 k = −1

0 k ≥ 0

and therefore PMz −MzP has finite rank. Apply the Stone-Weierstraß theorem.
�

Theorem 1.6.2. (The Stone-Weierstrass theorem) Let X be a compact Hausdorff
space and A ⊂ C0(X,C). Assume

(1) A is a closed subalgebra,
(2) 1 ∈ A,
(3) f ∈ A⇒ f̄ ∈ A,
(4) for all x ≠ y ∈X, there is f ∈ A with f(x) ≠ f(y).

Then A = C0(X,C).

The proof can be found in [17], Theorem III.1.4.

Lemma 1.6.3. Tfg − TfTg is compact.

Proof.

Tfg − TfTg = P [Mf , P ]MgP.

�

Corollary 1.6.4. If f ∶ S1 → C× is continuous, then Tf is Fredholm.

Proof. TfTf−1 − 1 and Tf−1Tf − 1 are compact by Lemma 1.6.3. Apply Atkinson’s
theorem. �

Corollary 1.6.5. If f, g ∶ S1 → C×, then ind(Tfg) = ind(Tf) + ind(Tg).

Proof. This follows from Lemma 1.6.3, 1.5.2 (1) and 1.1.3. �
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Proof of the Toeplitz index formula. We know, from Topology I, that f is homo-
topic to zk, for k = deg(f). Since ∥Tf∥ ≤ ∥f∥, the map C0(S1;C)→ Lin(L2(S1), L2(S1)),
f ↦ Tf , is continuous. Therefore, by Theorem 1.2.7, the index of Tf is equal to
ind(Tzk).

Since Tfg = TfTg + r for a compact r, we see that ind(Tfg) = ind(Tf) + ind(Tg).
Thus ind(Tzk) = k ind(Tz), but this index was computed directly. �

Exercise 1.6.6. We did not use that P is the projection onto H that often. Prove:
if Q is another orthogonal projection such that P −Q is compact, then the operator
QMfQ + (1 −Q) is Fredholm. What is its index?

1.7. A generalization. We now take a slightly more abstract viewpoint on the
proof of the Toeplitz index theorem. This will be the germ of the Bott period-
icity theorem. We have shown that [S1,C×] → Z, f ↦ ind(Tf) is a well-defined
homomorphism (the source has a group structure by pointwise multiplication of
functions), by Corollary 1.6.5.

Moreover, recall that the natural map π1(C×)→ [S1,C×] is a group isomorphism.
This is easy, but has some content; composition in the fundamental group is defined
by concatenation of paths, and in the group of free homotopy classes, it is defined
by multiplication.

Thus a different version of the Toeplitz index theorem is that

π1(S1)→ Z; [f]↦ ind(Tf)
is an isomorphism that is equal to minus the degree.
Now we define Toeplitz operators to matrix-valued functions S1 →Matn,n(C) =∶

C(n). Let H(S1)n ⊂ L2(S1;Cn) be the space spanned of all functions whose Fourier
coefficients with negative indices are zero and let Pn be the orthogonal projection
onto H(S1)n. Of course, we could write Pn as an n × n-matrix of linear operators

Pn =
⎛
⎜
⎝

P . . . . . .
. . . P . . .
. . . . . . P

⎞
⎟
⎠
.

For any matrix valued function f ∶ S1 → C(n), we can form

Tf ∶= PnMfPn + (1 − Pn).
For two such functions f, g, we compute that TfTg−Tfg is the matrix of operators

whose (i, k)-entry is

n

∑
j=1

(PfijPgjkP − PfijgjkP ) ≡ P
n

∑
j=1

[fij ;P ]gjk (mod Kom),

which is compact by Lemma 1.6.1. This proves:

Lemma 1.7.1. If f ∶ S1 → GLn(C) is continuous, then Tf is Fredholm. If f, g are
two such functions, then ind(Tfg) = ind(Tf) + ind(Tg).

Now if G is any Lie group (here GLn(C)), then π1(G) is abelian and π1(G) →
[S1;G] is an isomorphism.

Lemma 1.7.2. If n ≥ 1, then π1(GLn(C)) ≅ Z. More precisely, the inclusion
GL1(C) → GLn(C), z ↦ diag(z,1, . . . ,1) and the determinant GLn(C) → C× =
GL1(C) induce mutually inverse isomorphisms.
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Proof. Observe that the maps

GLn(C)→ SLn(C) ×GL1(C); A↦ (diag(detA−1,1, . . . ,1)A; det(A))

and

SLn(C) ×GL1(C)→ GLn(C); (B, z)↦ diag(z,1, . . . ,1)B
are mutually inverse homeomorphisms (but not group homomorphisms). Thus

the claim follows from the fact that π1(SLn(C)) = 1. There are various insightful
proofs of this fact. All proofs begin with the observation that SU(n) → SLn(C) is
a homotopy equivalence by polar decomposition.

The standard proof of π1(SU(n)) = 1 uses the long exact homotopy sequence,
see [4] §VII.8. In the lecture ”Topology I”, I gave a proof that uses only π1 and
the Seifert-Van Kampen theorem. Here is a sketch: we argue by induction on n,
the case n = 2 serving as induction beginning (SU(2) ≅ S3, and this is simply
connected). Consider the map p ∶ SU(n) → S2n−1 that takes a matrix A to Ae1.
The map p is a fibre bundle with fibre SU(n− 1), as we will see later. Cover S2n−1

by the complements Ui, i = 0,1 of two different points. Then Ui is homeomorphic
to R2n−1 and one can show that p is trivial over both subsets, in other words, there
are homeomorphisms p−1(Ui) ≅ Ui × SU(n − 1) over Ui. Now let Vi ∶= p−1(Ui).
The sets Vi ≅ R2n−1 ×SU(n−1) are simply connected by induction hypothesis, and
the indersection V0 ∩ V1 ≅ (R2n−1 ∖ 0) × SU(n − 1) is connected. So, by Seifert-van
Kampen, the union SU(n) = V0 ∪ V1 is simply connected.

Another interesting proof that uses a bit of the structure of the Lie group SU(n)
is due to Hermann Weyl and can be found in Rossmann’s book [22]. �

There are stabilization maps st ∶ GLn(C) → GLn+1(C) which induce, by the
previous lemma, isomorphisms st∗ ∶ [S1,GLn(C)] → [S1; GLn+1(C)]. If Jn ∶
[S1; GLn(C)]→ Z denotes the map [f]↦ ind(Tf), we get that

Jn+1 ○ st∗ = Jn.
This is nothing else that the observation that Tst○f = Tf ⊕ id.

Corollary 1.7.3. Jn ∶ π1(GLn(C))→ Z; [f]↦ ind(Tf) is an isomorphism.

Let us switch the perspective a bit further. Suppose that f, g ∶ S1 → GLn(C) are
two maps. We might now consider the direct sum f ⊕ g ∶ S1 → GL2n(C).

Lemma 1.7.4. There are homotopies f ⊕ g ∼ fg ⊕ 1, f ⊕ g ∼ g ⊕ f .

Proof. We only give the first one, as the second is similar in spirit and equally easy
to find. Look at

(f
1
)(cos(t) sin(t)

sin(t) − cos(t))(1
g
)(cos(t) sin(t)

sin(t) − cos(t))

For t = 0, we get f ⊕ g, for t = π/2, we get fg ⊕ 1. �

We now get another, almost trivial, proof of the fact that ind(Tfg) = ind(Tf) +
ind(Tg) (this took some work above!). Namely: ind(Tf⊕g) = ind(Tf) + ind(Tg) is
obvious, and the above homotopy shows that ind(Tf⊕g) = ind(Tfg ⊕ 1) = ind(Tfg).
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Passing to the colimit, we get a new description of the group structure on
π1(GL∞), namely the one given by direct sum, and it agrees with the old one.

We draw a lesson from these observations. By ”stabilizing”, we often have the
possibility to exchange the operation of composition by the operation of direct sum,
which is often much easier to handle.

1.8. An example from ordinary differential equations. Let us discuss the
one single case when the index of a differential operator can be computed by hand,
namely the case of an ordinary differential operator on S1. What we do in effect
is to prove the Atiyah-Singer index theorem for the manifold S1 by bare hands:
each elliptic differential operator on S1 of order 1 has index zero (the final result is
unfortunately quite boring). Via the usual map R/Z→ S1, t↦ e2πit, we can identify
(vector-valued) functions on S1 with 1-periodic functions C∞(R;Cn)1. Now let
A ∶ R → Matn,n(C) be a smooth, 1-periodic, matrix valued function. We consider
the linear differential operator

(1.8.1) D ∶ C∞(R;Cn)→ C∞(R;Cn); f ↦ f ′ +Af.

This is in fact an elliptic differential operator on S1, as we will learn soon.
Because A is 1-periodic, D maps C∞(R,C)1 to itself, and we denote the restriction
by

(1.8.2) Dper =D ∶ C∞(R;Cn)1 → C∞(R;Cn)1.

Recall from Analysis II the solution theory of linear ODEs of order 1, forgetting
for the moment that A is assumed to be periodic. There exists a (unique) function
W ∶ R→ GLn(C) such that W (0) = 1 and W ′ = −AW , the fundamental solution. If
v ∈ Cn, then f(t) =W (t)v is the unique solution to the initial value problem

Df = 0; f(0) = v.
We also need to talk about inhomogeneous solutions, namely solutions f of the

ODE

(1.8.3) Df = u.

Let us try to solve the equation 1.8.3, first with the intial value f(0) = 0. To
find the solution, we make the ansatz f(t) = W (t)c(t) for a yet to be determined
function c ∶ R→ Cn (with c(0) = 0). Applying the equation 1.8.3, we find that

c′ =W −1u or c(t) = ∫
t

0
W (s)−1u(s)ds.

The general solution to the initial value problem Df = u, f(0) = v is then given
by

(1.8.4) f(t) =W (t)v +W (t)∫
t

0
W (s)−1u(s)ds.

We have proven so far that D ∶ C∞(Rn) → C∞(Rn) is surjective and has n-
dimensional kernel. But we want to talk about periodic solutions. Assume that A



A LECTURE COURSE ON THE ATIYAH-SINGER INDEX THEOREM 15

is 1-periodic and let W (t) be the fundamental solution. For all t ∈ R, the identity

(1.8.5) W (t + 1) =W (t)W (1)

holds, as one proves by differentiating both sides of the equation and comparing
the values for t = 0. We consider the linear map ψ ∶ Cn → C∞(R;Cn), given by

v ↦W (t)v
If v is in the eigenspace ker(W (1) − 1), then W (t + 1)v =W (t)W (1)v =W (t)v,

and so W (t)v is a periodic function. But W (t)v is also a solution of the ODE
Df = 0, and so ψ maps ker(W (1) − 1) to ker(Dper), and ψ is injective. But we
know that any periodic solution of Df = 0 can be written in the form W (t)v, and
this is periodic if and only if v is an eigenvector. Thus

ψ ∶ ker(W (1) − 1)→ kerDper is an isomorphism.

Now turn to the determination of the cokernel of the operator Dper. Let u be a
periodic function and suppose that there is a periodic solution of Df = u. Then

f(0) = f(1) =W (1)f(0) +W (1)∫
1

0
W (s)−1u(s)ds

or

W (1)−1(1 −W (1))f(0) = ∫
1

0
W (s)−1u(s)ds.

In other words, ∫
1

0 W (s)−1u(s)ds lies in Im(W (1)−1(1−W (1))) = Im(1−W (1))W (1)−1) =
Im(1 −W (1)). The previous manipulations can be read in the opposite direction,

which proves that a periodic solution Df = u exists iff Ju ∶= ∫
1

0 W (s)−1u(s)ds ∈
∫

1
0 W (s)−1u(s)ds ∈ Im(1 −W (1)). The linear map

J ∶ C∞(R,Cn)1 → Cn; Ju = ∫
1

0
W (s)−1u(s)ds

is surjective. To see this, take a function a ∈ C∞(R) with compact support in

(0,1) with ∫
1

0 a(s)ds = 1. For v ∈ Cn, form u(s) ∶= a(s)W (s)v which has compact
support and extend it to all of R by 1-periodicity. But

Ju = ∫
1

0
W (s)−1W (s)a(s)vds = v.

These arguments show that the image of Dper is the preimage J−1(Im(1 −
W (1))) ⊂ C∞(R,C)1; and this preimage has the same codimension as Im(1 −
W (1)) ⊂ Cn. But this codimension is, by the rank-nullity theorem, the same as
dim(ker(W (1) − 1)), and hence

ind(Dper) = 0.

We go one step further. The vector space C∞(R,Cn)1 has an inner product

⟨f ; g⟩ ∶= ∫
1

0 (f(t); g(t))dt, using the integral and the inner product on Cn. Now we
consider the adjoint operator to D:

D∗f(t) ∶= −f ′(t) +A(t)∗f(t).
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Let V ∶ R → Matn,n(C) be the fundamental solution for D∗, i.e. V (0) = 1 and
V ′ = A∗V .

Exercise 1.8.6. Prove:

(1) D∗ is indeed the adjoint of D in the sense that ⟨D∗f ; g⟩ = ⟨f ;Dg⟩ holds for
all functions f, g (partial integration).

(2) V ∗W = 1 (differentiate!).
(3) Im(W (1) − 1) = (ker(V (1) − 1))�.
(4) Conclude that u ∈ Im(D) if and only for all w ∈ ker(V (1)−1), the equation

∫
1

0 (V (s)w,u(s))ds = 0 holds.
(5) Prove that there is an orthogonal sum decomposition C∞(R;Cn)1 = Im(D)⊕

ker(D∗).

In two cases, there are explicit formulae for the solution operator. If n = 1, then

W (t) = exp(− ∫
t

0 A(s)ds). The other easy case is when A(s) ≡ A is constant, in
which case the fundamental solution is exp(At).

Exercise 1.8.7. Assume that n = 1. Prove that dim ker(D) = 1 if and only if

∫
1

0 a(s)ds ∈ 2πi (in the other case, the kernel is trivial). Assume that n ≥ 1 and A
is constant. Show that dim(ker(D)) = ∑k∈Z Eig(A,2πk).

1.9. Literature and remarks. To aquire the neccessary background in functional
analysis for the index theorem, you do not have to delve into the formidable treatise
[23]; the nice book [13] contains all material. The proof of the basic properties of
compact operators is taken from that source. The treatment of Fredholm operators
is a ”best of” the (relevant sections) of the texts [13], [2], [12].
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2. Differential operators on manifolds and the de Rham complex
revisited

The index theorem will give a formula for the index of a general elliptic differ-
erntial operator, but the main interest lies in special operators that are associated
with any manifold or any manifold with some extra structure. The father of most of
these natural operators is the exterior derivative, which we briefly recall. Then we
move on to the general definition of a differential operator on a manifold, introduce
the symbol and the notion of ellipticity.

2.1. The de Rham operator. We are very brief in this section. The material is
standard and can be found in many textbooks, of which I most recommend [15] for a
first orientation and [31] for a more detailed exposition. Let V be an n-dimensional
real vector space and let ΛpV ∗ be the space of alternating p-multilinear forms on
V . There is the wedge product

ΛpV ∗ ⊗ΛqV ∗ → Λp+qV ∗;ω ⊗ η ↦ ω ∧ η,
which turns Λ∗V ∗ into a graded commutative algebra, i.e.

ω ∧ (η ∧ ζ) = (ω ∧ η) ∧ ζ; ω ∧ η = (−1)∣ω∣∣η∣η ∧ ω
where ∣ω∣ denotes the degree of ω. Moreover, for each v ∈ V , we have the insertion

operator ιv ∶ ΛpV ∗ → Λp−1V ∗, defined by (ιv1ω)(v2, . . . , vp) ∶= ω(v1, . . . , vp). It is
an antiderivation, i.e.

ιv(ω ∧ η) = (ιvω) ∧ η + (−1)∣ω∣ω ∧ (ιvη).
For ξ ∈ V ∗ = Λ1V ∗, let εξ(ω) ∶= ξ ∧ ω. Both structures, the exterior product and

the insertion operator, are intertwined by the easily verified identity

(2.1.1) εξιv + ιvεξ = ξ(v)
(left hand-side is the operator that multiplies by ξ(v)). Let Mn be a smooth

manifold. A vector field on M is a section of TM →M , and V(M) ∶= Γ(M ;TM)
denotes the space of all vector fields on M . Tangent vectors to a manifold have
a schizophrenic nature (as derivatives of curves and directional derivatives). This
means that V(M) has the alternative expression as the set of all linear map X ∶
C∞(M)→ C∞(M) such that X(fg) = (Xf)g + f(Xg) holds for all functions f , g.
The commutator

[X,Y ] ∶=XY − Y X
of two vector fields is again a vector field. The commutator is also called Lie

bracket and it turns V(M) into a Lie algebra. Let Ap(M) be the space of all
smooth p-forms on M . One can interprete Ap(M) as the space of smooth sections
of the bundle ΛpT ∗M →M of exterior forms on the tangent bundle and therefore
the linear algebraic structure on the exterior algebra (wedge product and insertion
operator) carries over to forms on manifolds.

The most important structure is the exterior derivative, a sequence of linear
maps d ∶ Ap(M)→ Ap+1(M), uniquely characterized by the properties

● On A0(M) = C∞(M), d is the total differential.

● d(ω ∧ η) = (dω) ∧ η + (−1)∣ω∣ω ∧ dη (Leibniz rule)
● d2 = 0.
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A smooth map f ∶M → N induces a map f∗ ∶ A(N) → A(M), compatible with
d and ∧. The quotient space

Hp
dR(M) ∶= ker(d ∶ Ap(M)→ Ap+1(M))

Im(d ∶ Ap−1(M)→ Ap(M))
is called de Rham cohomology of M . The de Rham cohomology has a deep

topological meaning, which shall not bother us right now. Instead, we look at the
operator d in more detail. Let x ∶ M ⊃ U → Rn be a local coordinate system on
M . For a subset I = {i1, . . . , ip} ⊂ n, ∣I ∣ = p, let dxI ∶= dxi1 ∧ . . . ∧ dxip . In these
coordinates, we can write each p-form (locally) as

ω = ∑
I⊂n;∣I ∣=p

aIdxI

for smooth functions aI . The exterior derivative is then given by

dω = ∑
I⊂n;∣I ∣=p

n

∑
j=1

∂aI
∂xj

dxj ∧ dxI .

This formula shows that d is a linear partial differential operator of order 1, a
notion with which we will have to familiarize us next. We can combine the exterior
derivative with the insertion operator to get the Lie derivative

LX(ω) ∶= d(ιXω) + ιXdω.
The Lie derivative takes p-forms to p-forms, and has the following properties

Proposition 2.1.2.

(1) LX commutes with ιX and d.
(2) LX(ω ∧ η) = (LXω) ∧ η + ω ∧LXη (no sign).
(3) if f ∈ A0(M), then LXf =Xf .

2.2. Differential operators in general.

Notation 2.2.1. For a multiindex α = (α1, . . . , αn) ∈ Nn, we let ∣α∣ ∶= ∑i αi. For

x ∈ Rn, we let xα ∶= ∏n
i=1 x

αi
i and ∂ ∣α∣

∂xα
∶= ∂α1

∂x1
. . . ∂

αn

∂xn
. Moreover, Dα ∶= (−i)∣α∣ ∂

∣α∣
∂xα

.

Furthermore, α! ∶=∏n
i=1 αi!.

If E →M is a vector bundle over K = R or C, we denote by Γ(M,E) the vector
space of smooth sections of E.

Definition 2.2.2. Let M be a smooth manifold and Ei →M be two smooth vector
bundles. A differerential operator P ∶ Γ(M,E0) → Γ(M ;E1) of order k is a linear
map which satisfies the following properties:

(1) P is local in the sense that if s ∈ Γ(M,E0) vanishes on the open subset
U ⊂M , then so does Ps.

(2) If x ∶ U → Rn is a chart and φi ∶ Ei∣U → U ×Kpi a trivialization, then the
localized operator φ1 ○ P ○ (φ0)−1 can be written as

(φ1 ○ P ○ (φ0)−1)(f)(y) = ∑
∣α∣≤k

Aα(y) ∂
α

∂xα
f(y)

for each f ∈ C∞(U,Kp0), where Aα ∶ U →Matp1,p0(K) is a smooth function.
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Examples 2.2.3. Composition with a vector bundle homomorphism induces an
operator of order 0. The exterior derivative is an operator of order 1.

There is a coordinate-free description of differential operators, which is some-
times useful.

Theorem 2.2.4. Let P ∶ Γ(M,E0)→ Γ(M,E1) be linear. Then

(1) P is a differential operator of order 0 if and only if the commutator with
the multiplication by any function f ∈ C∞(M) is zero; [P, f] = 0.

(2) P is a differential operator of order k if and only if the commutator [P, f]
is an operator of order k − 1, for each f ∈ C∞(M).

Proof. In both parts, the ”only if” direction is easy and we turn to the ”if” direction.
Part (1). First we prove that P is local. If s ≡ 0 near x, there is a function f with
f ≡ 1 near x and fs = 0. Then

Ps(x) = fPs(x) = P (fs)(x) = 0

and hence P is local. Thus we can compute in local coordinates. Let s1, . . . , sp0
be a local basis of E0 and ai ∈ C∞. We find

P (∑
i

aisi)(x) =∑
i

ai(x)Psi(x).

Psi is a section of E1 and we can write it as a linear combination of a given local
basis of E1 with smooth coefficients. This gives the desired presentation of P .

Part (2). Assume that [P, f] is an operator of order k − 1, for each f ∈ C∞(M).
We first prove that P is local. As above, assume that f ≡ 1 and s ≡ 0 near x. Then

Ps(x) = fPs(x) = [f,P ]s(x) + P (fs)(x) = [f,P ]s(x).
By induction hypothesis, [f,P ] is local and so [f,P ]s(x) = 0. Let x0 ∈ M and

x a local chart such that x(x0) = 0. Next, we recall a lemma that was crucial in
proving that the tangent space of a manifold, defined using derivations, was an
n-dimensional vector space. Let 0 ∈ U ⊂ Rn be convex and f ∶ U → R be smooth.
Then

f(x) = f(0) + ∫
1

0

∂

∂t
f(tx)dt = f(0) +

n

∑
i=1
∫

1

0
xi
∂f

∂xi
(tx)dt =∶ f(0) +

n

∑
i=1

xigi(x)

with gi smooth and gi(0) = ∂
∂xi

f(0). Iteratively, we find that there is a unique

polynomial p(x) of degree k and smooth functions gα, ∣α∣ = k + 1 with gα(0) =
∂ ∣α∣
∂xα

f(0) such that

(2.2.5) f(x) = p(x) + ∑
∣α∣=k+1

xαgα(x).

Moreover, if [P, f] has order k − 1 for each f , we find that for all functions
f0, . . . , fk with fi(0) = 0, we have

P (f0 . . . fks)(0) = 0

for each section s, because
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P (f0 . . . fks)(0) = [P, f0](f1 . . . fks)(0) + f0(0)P (f1 . . . fks)(0) = 0

by induction hypothesis. If s1, . . . , sp0 is a local basis and ai smooth and x(x0) =
0, then

P (∑
i

aisi)(x0) =∑
i

P (aisi)(x0) =∑
i

P ((pi + ∑
∣α∣=k+1

xαgi,α)si)(x0)

But as [P, f] has order k − 1, we find P ((pi + ∑∣α∣=k+1 x
αgi,α)si)(x0) = 0 and

hence P (∑i aisi)(x0) = ∑i P (pisi)(x0). But pi(x) = ∑∣α∣≤k
1
α!

∂ ∣α∣
∂xα

ai(0)xα and thus

P (aisi)(x0) = ∑∣α∣≤k
1
α!

∂α

∂xα
ai(0)P (xαs)(x0). Rearranging all terms gives the de-

sired presentation.
�

Example 2.2.6. Let E0 = E1 = R ∶= M × R be the trivial bundle. Let X be a
vector field, i.e. a derivation, in other words a map X ∶ C∞(M) → C∞(M) such
that X(fg) = (Xf)g + f(Xg) for all f, g ∈ C∞(M). The commutator [X,f] is the
operator

[X,f]g = (Xf)g
and so it is an operator of order 0. Thus, X is a differential operator of order 1.

Example 2.2.7. According to the list of axioms for the exterior derivative, we can
compute the commutator [d, f] as

[d, f]ω = d(fω) − fdω = df ∧ ω
and so d is a differential operator of order 1.

Example 2.2.8. If E → M is an arbitrary vector bundle, a connection on E is
a linear map ∇ ∶ Γ(M,E) → Γ(M,T ∗M ⊗ E) such that for all s ∈ Γ(M,E) and
f ∈ C∞(M), we have ∇(fs) = df ⊗ s + f∇s, which means that

[∇, f]s = df ⊗ s
which is why a connection is a differential operator of order 1, characterized by

the condition [∇, f] = df ⊗ .

Definition 2.2.9. Let M be a manifold and E0,E1 be two vector bundles. We
denote by Diffk(E0,E1) the set of all differential operators of order k.

Let us note some obvious properties.

Lemma 2.2.10.

(1) Diffk(E0,E1) is a vector space.

(2) Diffk(E0,E1) ⊂ Diffk+1(E0,E1).

(3) If P ∈ Diffk(E0,E1) and Q ∈ Diffm(E1,E2), then Q ○ P ∈ Diffk+m(E0,E2).

We remark that the order of P is not really a well-defined number. Some of
the most important information about a differential operator can be encoded in
the terms of highest order, the symbol. From now on, we assume that the vector
bundles Ei are over C.
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Definition 2.2.11. Let P ∈ Diffk(E0,E1). Let y ∈ M , ξ ∈ T ∗yM and e ∈ (E0)y.
Pick f ∈ C∞(M ;R) with f(y) = 0 and dyf = ξ, and pick s ∈ Γ(M,E0) with s(y) = e.
We define the symbol of P to be

smbk(P )(y, ξ)(e) ∶= i
k

k!
P (fks)(y) ∈ (E1)y.

Lemma 2.2.12. The expression smbk(P )(y, ξ)(e) only depends on y, ξ and e (as-
suming that P and k are fixed).

Proof. For the purpose of this proof, we compute in local coordinates. Pick a local
chart with x(y) = 0. We can assume that the bundles E0 and E1 are trivial over
the domain of the chart x. We write ξ = ∑i ξidxi, ξi ∈ R and compute

ik

k!
P (fks)(x) = i

k

k!
∑

∣α∣≤k
Aα(x) ∂

∣α∣

∂xα
(fks)(x) = i

k

k!
∑

∣α∣≤k
∑

β+γ=α

α!

β!γ!
Aα(x) ∂

∣β∣

∂xβ
(fk)(x) ∂

∣γ∣

∂xγ
(s)(x).

Since the derivative ∂ ∣β∣
∂xβ

fk(x) is zero for ∣β∣ < k (the argument from the proof of

Theorem 2.2.4), the sum equals

ik

k!
∑

∣α∣=k
Aα(x) ∂

∣α∣

∂xα
(fk)(x)s(x).

But ∂ ∣α∣
∂xα

(fk)(x) = k!ξα, and we conclude that

(2.2.13) smbk(P )(y, ξ)(e) = ik ∑
∣α∣=k

Aα(x)ξαe.

This equation can be read in two directions: it shows that the left-hand-side
does not depend on the concrete choice of f and s, and that the right-hand-side
has a coordinate-invariant meaning. �

Remark 2.2.14. There are in principle two approaches to calculus on manifolds
(the coordinate-free one and the one using coordinates). As a general rule, the
coordinate-free approach is more modern and preferred by most pure mathemati-
cians (for good reasons). The above proof shows that the combination of both can
be a useful argument, and that one should not stick ideologically to the coordinate-
free approach.

Exercise 2.2.15. If you think that using local coordinates is a stupid thing to do,
try to give a proof of Lemma 2.2.12 and Proposition 2.2.18 avoiding choices of
coordinates (this is possible).

Now we give a more invariant interpretation of the symbol. Let V be a finite-
dimensional real vector space (think about TxM). By the symbol SymkV , we
denote the vector space of degree k homogeneous polynomial functions V ∗ → R.
Given a manifold M , we can form the vector bundle SymkTM → M , whose fibre
over x is precisely SymkTxM . What does the symbol do? It assigns to any given
ξ ∈ T ∗xM a linear map smbk(P )(x, ξ) ∶ (E0)x → (E1)x, and ξ ↦ smbk(P )(x, ξ)
is a polynomial function T ∗xM → Hom((E0)x, (E1)x). Moreover, this polynomial
function is homogeneous of degree k. To see this, simply look at the right-hand side
of 2.2.13. We might now form the vector bundle SymkTM ⊗ Hom(E0,E1) → M ,
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and the symbol smbk(P ) defines a section of this vector bundle: at a point x ∈M ,
the value of this section is the polynomial function ξ ↦ smbk(P )(x, ξ). Another
look at 2.2.13 proves that this is a smooth section.

Definition 2.2.16. Let Smblk(E0,E1) be the space of smooth sections of SymkTM⊗
Hom(E0,E1)→M . The symbol of an order k operator is a well-defined element of

Smblk(E0,E1) and we have produced a map smbk ∶ Diffk(E0,E1)→ Smblk(E0,E1).

Example 2.2.17. It is worth to work out the meaning of all this in the case when
M = U ⊂ Rn is an open subset, both vector bundles are trivialized and P is a
differerential operator of order k. We write

Pu(x) = ∑
∣α∣≤k

Aα(x)Dαu(x)

(note that we used Dα here, instead of ∂ ∣α∣
∂xα

as above). The symbol is now given

(using 2.2.13) by the formula

smbk(P )(x, ξ) = ∑
∣α∣=k

Aα(x)ξα.

We can represent a differerential operator P on U ⊂ Rn by a function p(x, ξ)
which is smooth in x and polynomial (of degree k) in ξ. The operator P is given
by p(x,D) (replace ξi by Di). Some caution is necessary because Di does not
commute with multiplication by smooth functions. One sometimes calles the poly-
nomial p(x, ξ) the complete symbol, and the leading part the principal symbol. On
a manifold, the complete symbol does not have an easily identified meaning, only
the principal symbol (which we call ”symbol”) does.

It is obvious that smbk is a linear map (if you are unsure, look at the formula
2.2.13). If Ei, i = 0,1,2, are three vector bundles and k, l two natural numbers,
there is a composition map

Smblk(E0,E1) × Smbll(E1,E2)→ Smblk+l(E0,E2).
This is defined by means of linear algebra: If V is a finite-dimensional real vector

space and Ei, i = 0,1,2, complex vector spaces, then a bilinear map

(SymkV ⊗Hom(E0,E1)) × (SymlV ⊗Hom(E1,E2))→ (Symk+lV ⊗Hom(E0,E2))
is given by

(p⊗ a, q ⊗ b)↦ pq ⊗ (b ○ a).
More concretely, we compose an order l homogeneous polynomial p on T ∗xM

with values in Hom((E1)x, (E2)x) with an order k homogeneous polynomial q with
values in Hom((E0)x, (E1)x). This is done by ξ ↦ (p ○ q)(ξ) ∶= p(ξ) ○ q(ξ).

Proposition 2.2.18. Let P ∈ Diffk(E0,E1) and Q ∈ Diff l(E1,E2). Then smbk+l(Q○
P ) = smbl(Q)smbk(P ).

Proof. In concrete terms, this means that for each cotangent vector ξ ∈ T ∗xM , we
have smbk+l(Q ○ P )(ξ) = smbl(Q)(ξ) ○ smbk(P )(ξ), which is easy to see using
formula 2.2.13. �
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Proposition 2.2.19. The sequence

0→ Diffk−1(E0,E1)→ Diffk(E0,E1)→ Smblk(E0,E1)→ 0

is exact.

Proof. Everything is easy (for example in local coordinates) except exactness at the
right. We have to show: if p ∈ Smblk(E0,E1), then there is a differential operator P
with symbol p. Locally (in local coordinates) the problem is easy to solve, because
if p is given by

∑
∣α∣=k

Aα(x)ξα

with some matrix-valued functions Aα, the operator

∑
∣α∣=k

Aα(x)Dα

has the required symbol. To glue the local solutions together, one uses a partition
of unity.

�

All this becomes more transparent if we consider operators of order 1. Assume
that P has order 1, x ∈M , f ∈ C∞(M) and s ∈ Γ(M,E0). Then compute

[P, f]s(x) = [P, f − f(x)]s(x) + [P, f(x)]s(x) = [P, f − f(x)]s(x).
(note that f(x) denotes the constant function, and note that P therefore commutes
with f(x)). Moreover,

[P, f−f(x)]s(x) = P ((f−f(x)(s))(x)−(f−f(x))(x)Ps(x) = P ((f−f(x))(s))(x) = −ismb1(P )(df)s(x).
Thus:

Lemma 2.2.20. If P is an operator of order 1, the symbol can be computed as
smb1(P )(df)s ∶= i[P, f]s.

Now, by definition, Smbl1(E0,E1) is the space of sections in the vector bundle

Sym1TM ⊗Hom(E0,E1) = TM ⊗Hom(E0,E1) = Hom(T ∗M ⊗E0;E1)
and in this description, the symbol of P becomes smb1(P )(df)s ∶= i[P, f]s. Here

we used a section and the derivative of a function as a variable, but Lemma 2.2.12
proves that this is really a well-defined section of vector bundles.

We now come to one of the central definitions of this lecture course.

Definition 2.2.21. Let M be a smooth manifold, E0,E1 →M two complex vector
bundles and P ∈ Diffk(E0,E1), x ∈ M . Then we say that P is elliptic at x if for
each ξ ∈ T ∗xM , ξ ≠ 0, the homomorphism smbk(P )(ξ) ∶ (E0)x → (E1)x is invertible.
We say that P is elliptic if it is elliptic at each point of M .

Example 2.2.22. Let M = R and A,B ∶ R → Matp,p(C). Consider the operator
P ∶ C∞(R;Cp)→ C∞(R;Cp) given by

Pf ∶= Bf ′ +Af = B ∂

∂x
f +Af.
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Let us compute the symbol. A typical cotangent vector vector is (x, ξdx), x ∈
R(= M), ξ ∈ R. In this local coordinate, we find that the symbol is given by
smb1(P )(ξdx) = iξB(x) ∈ Matp,p(C). Thus we find that P is elliptic at x ∈ R if
and only if B(x) is invertible.

Example 2.2.23. From basic complex analysis, one knows the Wirtinger or Cauchy-
Riemann operators on C∞(U ;C), where U ⊂ C is open. They are defined by

∂

∂z
∶= 1

2
( ∂
∂x

− i ∂
∂y

); ∂

∂z̄
∶= 1

2
( ∂
∂x

+ i ∂
∂y

)

(x and y are the real coordinates z = x+ iy). Let adx+ bdy be a (real) cotangent
vector to U . We find that the symbol of ∂

∂z̄
is given by

smb1(
∂

∂z̄
)(adx + bdy) = i1

2
(a + ib).

(substitute the jth cotangent coordinate for the partial derivative Di). We can
identify T ∗C with C in the canonical way, this corresponds to adx + bdy ↦ a + ib.
Call the resulting coordinate ζ (this is a complex-valued linear form on T ∗U). Thus
the symbol of ∂

∂z̄
is multiplication by i

2
ζ.

Similarly, one finds that

smb1(
∂

∂z
)(adx + bdy) = i1

2
(a − ib) = i

2
ζ̄.

Both operators are elliptic. The holomorphic functions on U are precisely the
solutions of the PDE ∂

∂z̄
f = 0, and this remark shows that complex analysis in

one variable is a special case of elliptic operator theory (in higher dimensions, the
situation is much more subtle).

In the theory of Riemann surfaces, there is an important operator combining
the two Wirtinger operators. Namely, let µ ∈ C∞(U) be a smooth function and
consider P = ∂

∂z̄
+ µ ∂

∂z
. The symbol is

smb1(P )(ζ) = i

2
(ζ + µζ̄).

For which µ is this operator elliptic? To get to the important point, write V =
T ∗xU and note that ζ ∶ V → C is a (real-linear) isomorphism. In this reformulation,
the problem becomes to find under which conditions on a complex number µ = µ(x),
the equation ζ + µζ̄ has no nontrivial solutions for ζ ∈ C. Observe that ∣ζ ∣ = ∣ζ̄ ∣ and
therefore, if ζ +µζ̄ = 0 for ζ ≠ 0, we must have ∣µ∣ = 1. Thus if P is not elliptic at x,
then ∣µ∣ = 1. Vice versa, if ∣µ(x)∣ = 1, then P is not elliptic at x.

Thus: the operator P is elliptic on U if ∣µ∣ ≠ 1 on U . The relevant case is when
∣µ∣ < 1. The operator P is relevant for the problem of integrability of almost-complex
structures.

Example 2.2.24. Let us compute the symbol of the exterior derivative d ∶ Ap(M)→
Ap+1(M). Let f ∈ C∞(M). Then

smb1(d)(df)ω = i(d(fω) − fdω) = i(df ∧ ω).
Thus the symbol of d, viewed as a bundle map T ∗M ⊗ ΛpT ∗M → Λp+1T ∗M , is

given by (ξ, ω)↦ iξ ∧ ω.
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Thus, the exterior derivative is not elliptic unless dimM = 1. However, it is
relatively close to being elliptic.

Lemma 2.2.25. Let V be a finite dimensional real vector space of dimension n.
For ξ ∈ V ∗, denote by εξ ∶ ΛpV ∗ → Λp+1V ∗ the map εξω ∶= ξ ∧ ω. Then if ξ ≠ 0, the
sequence

0→ Λ0V ∗ εξ→ Λ1V ∗ εξ→ . . .
εξ→ ΛnV ∗ → 0

is exact.

Proof. For v ∈ V , we get the map ιv ∶ ΛpV ∗ → Λp−1V ∗ which inserts v as the first
argument. It satisfies ιv(ω ∧ η) = (ιvω) ∧ η + (−1)∣ω∣ω ∧ ιvη. By 2.1.1

(ιvεξ + εξιv)ω = (ξ(v))ω.
Now pick v such that ξ(v) = 1. If ξ ∧ ω = 0, we find that

ω = ξ(v)ω = (ιvεξ + εξιv)ω = εξ(ιvω)
and this proves the exactness. �

This lemma proves that the de Rham complex fits into the following definition.

Definition 2.2.26. Let M be a smooth manifold. An elliptic complex of length n
is a sequence

0→ Γ(M,E0)
P1→ Γ(M,E1)

P2→ . . .
Pn→ Γ(M,En)→ 0

of differential operators of order 1 between complex (or real) vector bundles such
that

(1) Pi ○ Pi−1 = 0 and
(2) for each nonzero cotangent vector ξ ∈ T ∗xM , the sequence

0→ (E0)x
smb1(P1)(ξ)Ð→ (E1)x

smb1(P2)(ξ)Ð→ . . .
smb1(Pn)(ξ)Ð→ (En)x → 0

is exact.

We write the elliptic complex as (E∗, P ).
Remark 2.2.27. An elliptic complex of length one is the same as an elliptic opera-
tor on M . The length and the dimension of M are completely unrelated in general.
One can formulate a more general definition where the operators Pi have order > 1,
but for applications this is irrelevant. It is important that all operators have the
same order.

Out of an elliptic complex, we can extract an elliptic operator, but that requires
Riemann metrics on M and hermitian bundle metrics on the bundles Ei.

2.3. The formal adjoint.

Assumptions 2.3.1. The manifold M comes equipped with a Riemann metric,
and the complex vector bundles are equipped with hermitian bundle metrics.

We first recall how functions can be integrated on a Riemannian manifold. First
assume that M is an oriented Riemann manifold of dimension n. There is a unique
n-form vol ∈ An(M), characterized by the property that if (e1, . . . , en) is an oriented
orthonormal basis of T ∗xM , for some x ∈M , then vol(e1, . . . , en) = 1. The form vol
is called the volume form.
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Definition 2.3.2. Let f ∈ C∞
c (M) be a function with compact support. We define

∫
M
f(x)dx ∶= ∫

M
fvol.

This notion of integral uses the orientation on M , but it does use the orientation
twice: to define the volume form and to define the integral. Both dependences
cancel out: assume that T ∶M → N is an orientation-reversing isometry. Then

∫
M
f(Tx)dx = ∫

M
(T ∗f)volM

1= −∫
M
T ∗(fvolN) 2= ∫

N
fvolN = ∫

N
f(x)dx.

The equation 1 holds since T ∗volN = −volM because T reverses orientation; the
equation 2 holds because the integral of forms depends on the orientation. Another
way to express this is by saying that f ≥ 0, then ∫M f ≥ 0. We might extend
the definition of the integral to nonoriented Riemann manifolds as follows. Let
π ∶ M̃ →M be the orientation cover. The manifold M̃ has a canonical orientation.
The Riemann metric on M gets pulled back to M̃ , and the unique nontrivial Deck
transformation T of the covering M̃ →M becomes an orientation-reversing isometry
of M̃ . Now we define

∫
M
f(x)dx ∶= 1

2
∫
M̃

(f ○ π)(x)dx.

The factor 1/2 guarantees that the new integral coincides with the old one on
oriented manifolds. It is easy to see ∫M f(x)dx ≥ 0 for f ≥ 0, and also that if f ≥ 0
has integral 0, then f = 0.

Note that this procedure does not give a sensible procedure to integrate n-forms
on a nonoriented manifold. If ω ∈ An(M), then ∫M̃ π∗ω = − ∫M̃ T ∗π∗ω = − ∫M̃ π∗ω,
and so the integral is zero.

Definition 2.3.3. Let E → M be a hermitian vector bundle on a Riemannian
manifold. Let s, t ∈ Γc(M ;E). By

⟨s, t⟩ ∶= ∫
M

(s(x), t(x))dx,

we define an inner product on the space of compactly supported sections of E,
which therefore becomes a pre-Hilbert space. We let L2(M ;E) be the Hilbert
space obtained by completing Γc(M ;E) with respect to the norm given by this
scalar product.

Remark 2.3.4. We can make contact to measure theory as follows. The integral
is a functional C0

c (M)→ C and has the property that ∫M f(x)dx ≥ 0 if f ≥ 0. Thus,
by the Riesz representation theorem, [24], Thm 2.14, there is a unique measure
on the σ-algebra of Borel sets that gives this functional by integration. The usual
theorems from Analysis III show that we can view the elements of the Hilbert space
L2(M,E) as measurable sections of the vector bundle E.

Definition 2.3.5. Let M be riemannian and E0,E1 → M be hermitian, and P ∈
Diffk(E0,E1). A formal adjoint P ∗ is a differential operator P ∗ ∶ Γ(M,E1) →
Γ(M ;E0) such that for all compactly supported sections s, t, we have ⟨s,P ∗t⟩ =
⟨Ps, t⟩. A differerential operator P is formally selfadjoint if E0 = E1 and if P ∗ = P .
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Theorem 2.3.6.

(1) The adjoint, if it exists, satisfies (PQ)∗ = Q∗P ∗, (Q + P )∗ = Q∗ + P ∗,
(aP )∗ = āP ∗.

(2) The adjoint is uniquely determined.

(3) Each differential operator P ∈ Diffk(E0,E1) has an adjoint in Diffk(E1,E0).
(4) The symbol of the adjoint can be computed pointwise: smbk(P ∗)(ξ) =

(smbk(P )(ξ))∗, where we used the adjoint of a vector bundle homomor-
phism.

Before we give the proof, let us remark that ⟨s, t⟩ is defined if only one of the
sections s and t has compact support. Moreover, if P ∗ is an adjoint of P , then
⟨Ps, t⟩ = ⟨s,P ∗t⟩ holds if only one section has compact support.

Proof. The first part is trivial. If P ∗, P ′ are two adjoints, one has

⟨P ∗s, t⟩ = ⟨s,P t⟩ = ⟨P ′s, t⟩
or

⟨(P ∗ − P ′)s, t⟩ = 0

for all sections s and t, which proves that P ∗s = P ′s for all s.
For the existence of adjoints, we first prove that forming adjoints is a local proce-

dure, despite its appearance. So let U,V ⊂M be open, and let (P ∣U) and (P ∣V ) be
the restrictions of P to U,V . Assume that there exist adjoints (P ∣U)∗ and (P ∣V )∗.
We now assert that (P ∣U)∗∣U∩V = (P ∣V )∗∣U∩V , in other words, the restrictions of
the adjoints to the intersection agree. Let s, t be sections supported in U ∩V . Then

⟨(P ∣U)∗s, t⟩ = ⟨s,P t⟩ = ⟨(P ∣V )∗s, t⟩
which proves the assertion. Assume that (Ui) is an open covering of M and P ∗

i

an adjoint of P ∣Ui . These operators fit together to a (differential) operator Q. We
claim that Q is an adjoint of P . Let s, t be compactly supported sections and let
(µi) be a partition of unity subordinate to (Ui). Then

⟨Ps, t⟩ =∑
i,j

⟨Pµis, µjt⟩ =∑
i,j

⟨µis,Qµjt⟩ = ⟨s,Qt⟩

(note that the sums are finite).
To find the adjoints of the localized operators, we can assume that M = Rn, but

we cannot assume that the metric on M is the standard metric. Moreover, each
complex vector bundle has local trivializations which are isometric, i.e. preserve
the inner product. To see this, begin with any local trivialization (which yields a
local basis) and apply the Gram-Schmidt process to it. The Gram-Schmidt process
produces a smooth orthonormal local basis. So, we assume that P is a differential
operator on trivial vector bundles, with the standard bundle metric, over Rn, with
some metric.

We can write P = ∑∣α∣≤kA
α(x)Dα, with some smooth matrix-valued functions

Aα. One way to argue from here is that Di has an adjoint. Another way is that
P is a sum of operators, each of which is given by matrix-multiplication (order 0
operator) and a composition of vector fields. Thus it is enough to prove that order 0
operators have adjoints (which is clear: take the pointwise adjoint) and that vector
fields X have adjoints.
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Let f, g be two compactly supported functions. By Stokes theorem, we have

0 = ∫
M
d(ιX(f̄gvol)) = ∫

M
LX(f̄gvol) = ∫

M
(Xf̄)(gvol)+∫

M
f̄(Xg)vol+∫

M
f̄gLXvol.

We define the divergence div(X) of the vector field X as the unique function

such that div(X)volM = LXvolM . This, together with Xf̄ =Xf , shows that

⟨Xf, g⟩ = ∫
M
Xfgvol = −∫

M
f̄(Xg)vol − ∫

M
f̄gLXvol = −⟨f,Xg⟩ − ⟨f,div(X)g⟩;

in other words, that −X − div(X) is an adjoint of X.
The formula for the symbols follows because it is true for order 0 operators and

for vector fields:

smb1(X∗) = −smb1(X).
Since the symbol smb1(X) is skew-adjoint (since it is purely imaginary), the

formula for the symbol of an adjoint follows. �

Let (E∗, P ) be an elliptic complex over the Riemannian manifold M . We assume
that each bundle Ei →M has a hermitian bundle metric. We get a bundle metric on
the direct sum⊕iEi, by requiring that the vector bundles Ei and Ej are orthogonal
if i ≠ j. By taking the direct sum of the operators Pi, we get an operator P ∶
⊕i Γ(M ;E)→⊕i Γ(M ;Ei) and the adjoint P ∗. We write Eev ∶=⊕iE2i and Eodd ∶=
⊕iE2i+1. Note that P maps Γ(M,Eev) into Γ(M,Eodd) and vice versa. The same
applies to the adjoint.

Proposition 2.3.7. Let (E∗, P ) be an elliptic complex and E = ⊕i≥0Ei. Then
the operator P + P ∗ on Γ(M ;E) is elliptic (and formally self-adjoint). Hence the
restricted operators P + P ∗ ∶ Γ(M,Eev) → Γ(M,Eodd) and P + P ∗ ∶ Γ(M,Eodd) →
Γ(M,Eev) are elliptic.

This follows immediately, using Theorem 2.3.6 (4), from the following linear
algebraic lemma.

Lemma 2.3.8. Let 0 → V0
f1→ V1

f2→ . . . Vn → 0 be a cochain complex of finite
dimensional hermitian vector spaces. Then the following are equivalent:

(1) The complex is exact.
(2) The linear map f + f∗ ∶ V∗ → V∗ is an isomorphism.

Proof. 2⇒ 1: The maps f∗ define a chain homotopy, from 0 to f∗f+ff∗ = (f+f∗)2.
If f + f∗ is an isomorphism, then so is (f + f∗)2 and this isomorphism is chain
homotopic to 0. Thus the zero map induces an isomorphism on cohomology and
the complex is exact.

1⇒ 2: Let (f + f∗)x = 0. Then (ff∗ + f∗f)x = 0 and therefore

0 = ⟨ff∗x;x⟩ + ⟨f∗fx;x⟩ = ⟨f∗x; f∗x⟩ + ⟨fx; fx⟩,
which is why fx = f∗x = 0. Since the complex is exact, there is y with fy = x, and
y satisfies f∗fy = 0. Thus

0 = ⟨f∗fy; y⟩ = ⟨fy; fy⟩
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which implies x = fy = 0. Therefore f + f∗ is injective, and surjective by the
finiteness assumption.

�
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3. Analysis of elliptic operators I

We now have to delve into some nontrivial analysis. The goal is to state precisely
and prove the following two theorems.

Theorem 3.0.9. (Local regularity) If P is an elliptic differential operator, f a
smooth section and let Pu = f . Then u is smooth.

At the moment, we only know what P should do to a smooth section, and so
as stated, the Theorem is quite tautological. One way to phrase the theorem in a
nontrivial way is to assume that u is only Ck (in which case Pu still makes sense,
if k is the order of P ). One example for this result is the well-known result from
complex analysis that a holomorphic function (which is assume to be C1) has to
be C∞.

In fact, this is not the intended precise formulation of the local regularity the-
orem. What we will do is to introduce Hilbert spaces of ”weakly differentiable
functions”, the Sobolev spaces, on which we can give a meaning to the equation
Pu = f , when u and f are Sobolev functions. The local regularity theorem will
then say that any solution in the Hilbert space sense is actually a smooth section.

The second main theorem of this section is

Theorem 3.0.10. If P is an elliptic differential operator on a closed manifold,
then P ∶ Γ(M,E0)→ Γ(M,E1) is a Fredholm operator.

Even if the theorem as stated is perfectly true, what we really prove is that P
induces a map of certain Sobolev spaces, and that this map is a Fredholm operator
(in the Hilbert space sense).

3.1. Preliminaries: Convolution and Fourier transformation.

Convention 3.1.1. Let dx be the normalized Lebegue measure on Rn, such that
the unit cube [0,1]n has measure (2π)−n/2. The effect is that the Gaussian integral
is normalized

∫
Rn
e−x

2/2dx = 1

and that a lot of factors of the form (2π)±n/2 disappear.

For a complex valued function f on Rn, we have the Lebesgue norms

∥f∥Lp ∶= (∫
Rn

∣f(x)∣pdx)1/p

whenever this makes sense. If f is a Ck function, we let

∥f∥Ck ∶= ∑
∣α∣≤k

sup
x∈Rn

∣Dαf(x)∣

which is only meaningful if all derivatives up to order k are bounded.

Definition 3.1.2. Let f, g ∈ L1(Rn). The convolution f ∗ g is the function

f ∗ g(x) ∶= ∫
Rn
f(y)g(x − y)dy = ∫

Rn
f(x − z)g(z)dz = g ∗ f(x).

The following important properties will be used many times. For the proof, see
[17], p. 223 ff.
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Proposition 3.1.3.

(1) f ∗ g ∈ L1.
(2) The convolution is associative, commutative and bilinear.
(3) If f ∈ L1, g ∈ Lp, then f ∗ g ∈ Lp and ∥f ∗ g∥Lp ≤ ∥f∥L1∥g∥Lp (1 ≤ p ≤∞).
(4) If f is smooth with compact support and g ∈ L1, then f ∗ g is smooth and

Dα(f ∗ g) = (Dαf) ∗ g.

Proposition 3.1.4. Let φ ∈ C∞
c (Rn) be a function with φ ≥ 0 and ∫ φ(x)dx = 1.

Let, for t > 0, φt(x) = 1
tn
φ(x

t
). Let f ∈ Lp. Then φt ∗ f converges, for t → 0, to f ,

in the Lp-norm. (p <∞).
If f is a bounded continuous function, then φt ∗ f → f uniformly on all compact

subsets.

Corollary 3.1.5. The space C∞
c (Rn) is dense in Lp(Rn), p <∞.

Proof. Let an be sequence of bump functions with increasing support. Then, for
each f ∈ Lp, anf is in Lp, and anf → f in Lp. Thus it is enough to approximate
a function with compact support by smooth functions. Let f be such a function.
The function φt ∗ f has compact support, and for t→ 0, it converges to f . �

Definition 3.1.6. The space S(Rn) of Schwartz functions is the space of all smooth
functions f such that for all multiindices α,β, the function xαDβf is bounded.

Examples: functions with compact support, e−x
2

.

Definition 3.1.7. Let f ∈ S(Rn). The Fourier transform of f is defined as

f̂(ξ) ∶= ∫
Rn
e−ixξf(x)dx.

We remark that one should really view ξ as a point in the dual space of Rn.
Also, the functions e−ixξ are the characters of the group Rn, i.e. the continuous
homomorphisms Rn → U(1). From that viewpoint, the Fourier transformation is a
special case of harmonic analysis on locally compact abelian groups.

For j ∈ n, we compute

D̂jf(ξ) = ∫
Rn
e−ixξDjf(x)dx = −∫

Rn
−i
i
ξje

−ixξf(x)dx

by partial integration, from which one sees that

D̂jf(ξ) = ξj f̂(ξ)
and inductively

(3.1.8) D̂αf(ξ) = ξαf̂(ξ)

For each Schwartz function f , one clearly has ∣f̂(ξ)∣ ≤ ∥f∥L1 . Because Djf

is again a Schwartz function, we find that ξj f̂(ξ) is a bounded function, and it-

eratively, we find that ξαf̂ is a bounded function, for all α. Thus the Fourier
transform of a Schwartz function is rapidly decreasing. By the Lebesgue domi-

nated convergence theorem, the function f̂ is differentiable (since the ξ-derivative
of the integrand is a Schwartz function and hence L1), and by differentiating under
the integral:
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Dj f̂(ξ) = −x̂if(ξ).
By induction, one finds that f̂ is smooth and

(3.1.9) Dαf̂ = (−1)∣α∣x̂αf(ξ).
Therefore, the Fourier transform of a Schwartz function is a Schwartz function.

Example 3.1.10. The function h(x) = e−x
2/2 is its own Fourier transform. One

checks this by differentiating the function eξ
2/2ĥ(ξ) using the rules just found and

the fact that ĥ(0) = 1 (normalization of the integral!).

We introduce two scaling operators. Let f be a function on Rn. We set, for t > 0,

ft(x) ∶=
1

tn
f(x/t); f t(x) ∶= f(tx).

It is easy to check that

(3.1.11) f̂t = (f̂)t and f̂ t = (f̂)t.

Proposition 3.1.12.

(1) If f, g ∈ S(Rn), then f ∗ g ∈ S(Rn).

(2) f̂ ∗ g = f̂ ĝ.

Proof. The first part can be found in [17], p. 239. For the other part, compute

f̂ ∗ g(ξ) = ∫ ∫ f(y)g(x − y)e−ixξdydx.

Since f and g are Schwartz functions, the integrand is in L1(R2n), and we can
apply Fubini’s theorem and the change of variables y → y, x→ z + y to obtain

∫ ∫ f(y)g(z)e−i(z+y)ξdzdy = f̂(ξ)ĝ(ξ).

�

For a Schwartz function f , we define f−(x) ∶= f(−x). It is straightforward to
show

f̂− = f̂−; (f ∗ g)− = f− ∗ g−; (fg)− = f−g−.

Theorem 3.1.13. (The Fourier inversion formula) For all Schwartz functions f ,

we have
ˆ̂
f = f−. More explicitly, f(x) = ∫Rn e

ixξ f̂(ξ)dξ.

Proof. Let g ∈ S(Rn). We compute

∫ f̂(ξ)e−ixξg(ξ)dξ = ∫ ∫ f(y)e−i(y+x)ξg(ξ)dydξ = ∫ f(y)ĝ(x + y)dy

since the integrand is in L1(R2n) (this was the purpose of introducing the inte-
grating factor g). Inserting gt for g, we obtain, using 3.1.11

(3.1.14) ∫ f̂(ξ)e−ixξgt(ξ)dξ = ∫ f(y) 1

tn
ĝ(x + y

t
)dy y=tu−x= ∫ f(tu − x)ĝ(u)du.
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Now specialize to the case g(ξ) = e−∣ξ∣
2/2 and consider the limit t → 0. The

integrand on the right-hand side of 3.1.14 converges pointwise to f(−x)ĝ, and is
bounded by ∥f∥L∞g, and so by the dominated convergence theorem, the limit be-
comes

lim
t→0

∫ f(tu − x)ĝ(u)du = f(−x)∫ ĝ(u)du = f(−x)

by the normalization of the Lebesgue measure. The integrand of the left-hand

side of 3.1.14 is bounded by the L1-function f̂ , and gt(ξ) → 1 as t → 0. So by the
dominated convergence theorem we obtain

lim
t→0

∫ f̂(ξ)e−ixξgt(ξ)dξ = ∫ f̂(ξ)e−ixξdξ = ˆ̂
f(x),

which was to be shown. �

Corollary 3.1.15.

(1) f̂g = f̂ ∗ ĝ.

(2) The map f ↦ f̂ is a bijective map S → S.

Proof. The second part is clear; since twice the Fourier transform is the reflection
map f ↦ f− and so bijective. By the bijectivity, we find using 3.1.12

f̂g = f̂ ∗ ĝ⇔ ̂̂
fg = (f̂ ∗ ĝ)ˆ= ˆ̂

f ˆ̂g = f−g−

which is true. �

Recall that the L2-inner product is given by

⟨f, g⟩ ∶= ∫ ¯f(x)g(x)dx.

Theorem 3.1.16. (The Plancherel theorem) For all Schwartz functions f, g, we
have

⟨f, g⟩ = ⟨f̂ , ĝ⟩.

Proof. Let us momentarily denote (f, g) ∶= ⟨f̄ , g⟩. The first step is

(3.1.17)

(f̂ , g) = ∫ f̂(x)g(x)dx = ∫ ∫ f(ξ)e−ixξg(x)dξdx = ∫ f(ξ)ĝ(ξ)dξ = (f, ĝ)

where we used Fubini. Note that there are no conjugation signs. It is easy to
see that

f̂(ξ) = ˆ̄f−(ξ).
Compute, using 3.1.17,

(f̄ , g) = (f̄ , ˆ̂g−) = ( ˆ̄f, ĝ−) = ((f̂)−, ĝ−) = (f̂ , ĝ)
and this proves the theorem. �

Corollary 3.1.18. The Fourier transform extends to an isometry L2 → L2

This is clear because the Schwartz space lies dense in L2 (since it contains
C∞
c (Rn)). Warning: the defining formula for the Fourier transform only holds

for functions in L1 ∩L2.
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3.2. Sobolev spaces in Rn.

Definition 3.2.1. On the Schwartz space, we introduce the Sobolev norm, for each
s ∈ R, by

∥f∥2
W s ∶= ∫ (1 + ∣ξ∣2)s∣f̂(ξ)∣2dξ.

If it is clear that we mean the Sobolev norm (and not an Lp or Ck-norm), we write
∥f∥s. The Sobolev space W s(Rn) is the completion of S(Rn) with respect to the
s-norm. If U ⊂ Rn is open, we let W s(U) be the closure of C∞

c (U) ⊂ S(Rn). We
can define Sobolev spaces of vector valued functions, using a scalar product on the
value space.

We often also omit the domain of definition of the functions and write simply
W s.

Lemma 3.2.2.

(1) W 0 = L2.
(2) For s ≥ t, we have ∥f∥t ≤ ∥f∥s and hence get a continuous map W s →W t.
(3) This inclusion map is injective.

Proof. The first and second part are obvious (by the Plancherel theorem and be-
cause the smooth functions with compact support lie dense in L2, so does the
Schwartz space). For the third part, let fn be a ∥∥s-Cauchy sequence of Schwartz

functions and assume that ∥fn∥t → 0. Let gn ∶= ∣f̂n∣2(1+∣ξ∣2)t and let µ = (1+∣ξ∣2)s−t,
which is a nonzero function.Taking the Fourier transforms and the definition of the
Sobolev norm, we obtain from our assumptions that

∥gn∥L1 → 0; ∥µgn − µgm∥L1 → 0.

Since µgn is an L1-Cauchy sequence, it converges almost everywhere (by [17],
Theorem VI.5.2), and also gn converges almost everywhere, namely to 0. Since µgn
is a Cauchy sequence, and its pointwise limit is 0, it follows that ∥µgn∥L1 → 0, by
[17], Corollary VI.5.4. �

Remark 3.2.3. We will use the third part only once, but in a crucial way: it
is this statement that allows to go from arguments in the completion to actual
functions. The use of the nontrivial relationship of L1-convergence with pointwise
convergence is important. Viewing L1 in a purely abstract fashion as a completion
is possible, but insufficient for the applications. If s > 0, we have the inclusion
W s → L2, which allows us to consider elements of W s as actual functions. If s < 0,
no such interpretation is possible. In fact, we will see soon that the famous Dirac δ-
”function” is an element of W s for s << 0. The only way to reinterprete elements in
W s for negative s is as distributions. However, the theory of distributions requires
more background and we rather avoid it. This does not mean that the Sobolev
spaces W s, s < 0, are irrelevant for us, but need to be treated with care.

Lemma 3.2.4. If s > 0 is an integer, the Sobolev norm is equivalent to the norm
∥f∥s = ∑α≤s ∥Dαf∥L2 . Hence any differential operator P with constant coefficients
of order k induces a continuous map W s →W s−k.

Proof. There are constants c1, c2 > 0 such that for all x ∈ Rn

c1(1 + ∣x∣)s ≤ ∑
∣α∣≤s

xα ≤ c2(1 + ∣x∣)s
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holds (this is the standard growth estimate for polynomials). Together with
the definition of the Sobolev norm, the rules for the Fourier transform and the
Plancherel theorem, we get that the Soboloev norm is equivalent to the norm ∥f∥2 =
∑α≤s ∥Dαf∥2

L2 . Then one uses the inequalities (true for all a1, . . . , ak ∈ R) ∑ki=1 a
2
i ≤

(∑ki=1 ∣ai∣)2 ≤ k∑ki=1 a
2
i which follow from the Cauchy-Schwarz inequality. �

Example 3.2.5. Let L be the differential operator

Lf ∶= f −∆f = f +
n

∑
i=1

(Di)2f.

By the basic rules for the Fourier transform, we have

L̂f(ξ) = (1 + ∣ξ∣2)f̂(ξ).
Therefore, L ∶ S(Rn)→ S(Rn) is invertible with inverse M given by

M̂f(ξ) ∶= (1 + ∣ξ∣2)−1f̂ ;

moreover, the identity

(3.2.6) ∥Lf∥s = ∥f∥s+2

holds. This will be used later.

Theorem 3.2.7. (The Sobolev embedding theorem) Let s > k + n
2

. Then there is a

constant C such that ∥u∥Ck ≤ C∥u∥s for all u ∈ S. Hence (since Ck is complete),
we get a continuous inclusion W s → Ck.

Proof. Let ∣α∣ = l ≤ k and x ∈ Rn and u ∈ S. Then

∣Dαu∣(x) = ∣∫ ξαûdξ∣ ≤ ∫ ∣ξ∣l∣û(ξ)∣(1 + ∣ξ∣2)s/2(1 + ∣ξ∣2)s/2dξ ≤

(∫ ∣û(ξ)∣2(1 + ∣ξ∣2)s)1/2(∫ ∣ξ∣2l(1 + ∣ξ∣2)−s)1/2 ≤ (∫ ∣ξ∣2l(1 + ∣ξ∣2)−s)1/2∥u∥s

by the Cauchy-Schwarz inequality, provided that ∣ξ∣l(1 + ∣ξ∣2)s/2 is an L2-function.
But

∫ ∣ξ∣2l(1 + ∣ξ∣2)−s ≤ ∫
∞

0
∫
Sn−1

r2l(1 + r2)−srn−1,

and this is finite if (and only if) 2l − 2s + n − 1 < −1, i.e. s > l + n
2

. �

Theorem 3.2.8. (The Rellich compactness theorem) Let U ⊂ Rn be relatively com-
pact and s > t. Then W s(U)→W t is a compact operator.

Proof. We have to prove: if un is a sequence of smooth functions supported in
U and if ∥un∥s ≤ 1, then a subsequence of un converges in the t-norm (think a
moment on the definition of a compact operator to see why this is enough). Pick
a compactly supported function a such that a∣U ≡ 1, so that auk = uk for all k. It
follows that ûk = â ∗ ûk and

Dj ûk = (Dj â) ∗ ûk.
Thus we can estimate Dj ûk(ξ) by
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∣Dj â ∗ ûk(ξ)∣ ≤ ∫ ∣Dj â(ξ − η)ûk(η)dη∣ ≤

(∫ ∣Dj â(ξ − η)∣2(1 + ∣η∣2)−s))1/2(∫ ∣ûk(η)∣2(1 + ∣η∣2)s)1/2 ≤ C∥uk∥s
by Cauchy-Schwarz. The first integral exists since a is a Schwartz function. So
Dj ûk(ξ) is uniformly (in k!) bounded, and by a similar argument shows ûk(ξ) is
bounded. It follows that the family ûk is equicontinuous, and Arzela-Ascoli provides
a subsequence, also called ûk, that converges uniformly on compact subsets of Rn.
We claim that uk is a W t-Cauchy sequence. Let ε > 0. Let us compute

∥uk − ul∥2
t = ∫∣ξ∣≤R

∣ûk − ûl∣2(1 + ∣ξ∣2)tdξ + ∫
∣ξ∣≥R

∣ûk − ûl∣2(1 + ∣ξ∣2)tdξ.

On the part ∣ξ∣ ≥ R, we estimate (1 + ∣ξ∣2)t ≤ (1 + ∣ξ∣2)s(1 +R2)t−s. Thus

∫
∣ξ∣≥R

∣ûk − ûl∣2(1 + ∣ξ∣2)tdξ ≤ (1 +R2)t−s(∥uk∥2
s + ∥ul∥2

s) ≤ 2(1 +R2)t−s

and since t−s < 0, we can make this term smaller than ε/2, by choosing R sufficiently
large. Because ûk is uniformly convergent on {∣ξ∣ ≤ R} and (1 + ∣ξ∣2)t is bounded
on this set, the integral

∫
∣ξ∣≤R

∣ûk − ûl∣2(1 + ∣ξ∣2)tdξ

converges to zero as k, l →∞. �

We already said several times that Hilbert spaces are self-dual via the scalar
product, and the Sobolev spaces are Hilbert spaces. However (at the moment this
is not yet clear), the actual norm on the Sobolev space is negotiable (it is only
a ”Hilbertian space” in Bourbakian rigor). Only when we consider operators on
Riemannian manifolds, the scalar product on L2 will have an intrinsic meaning.
Nevertheless, the self-duality is important for Sobolev spaces, and it takes the form
of a perfect pairing W s ×W −s → C. Often, a statement is easier to prove on one
side of the Sobolev chain, and duality allows us to pass to the other side.

Proposition 3.2.9. (Duality) The sesquilinear form2 S×S → C, (f, g)↦ ∫ f(x)g(x)dx
extends to a pairing W s ×W −s → C and satisfies

(1) ∣(f, g)∣ ≤ ∥f∥s∥g∥−s.
(2) ∥f∥s = supg≠0

∣(f,g)∣
∥g∥−s = sup∥g∥−s≤1 ∣(f, g)∣.

(3) The induced map W −s → (W s)′, g ↦ (f ↦ (f, g)) is an isometric isomor-
phism.

Proof. By Plancherel and Cauchy-Schwarz:

(f, g) = (f̂ , ĝ) = ∫
Rn
f̂(ξ)(1 + ∣ξ∣2)s/2ĝ(ξ)(1 + ∣ξ∣2)−s/2dξ ≤ ∥f∥s∥g∥−s.

The inequality sup∥g∥−s≤1 ∣(f, g)∣ ≤ ∥f∥s follows immediately. If f is a Schwartz

function, define g by ĝ = f̂(1 + ∣ξ∣2)s. Then (f, g) = (f̂ , ĝ) = ∥f∥2
s by the definition

of the Sobolev norm and the Plancherel theorem. Moreover ∥g∥2
−s = ∥f∥2

s, in other
words

2Before, we have denoted this by ⟨f, g⟩. The reason for the notation switch is that here the
pairing plays a different role.



A LECTURE COURSE ON THE ATIYAH-SINGER INDEX THEOREM 37

∣(f, g)∣
∥g∥−s

= ∥f∥s

and this proves the other inequality.
For the third part, it follows easily from what we already proved that φ ∶W −s →

(W s)∗ is norm-preserving. Thus it has closed image. What we have to show is the
following claim

● If V is a Hilbert space, and H ⊂ V ∗ a closed subspace, such that for all

v ∈ V , we have ∥v∥ = supx∈H
∣x(v)∣
∥x∥ . Then H = V ∗.

To prove the claim, translate it using the self-duality of Hilbert spaces to the
following statement:

● H Hilbert space, W ⊂ H closed, such that ∥x∥H = supw∈W,∥w∥=1 ∣(x,w)∣.
Then W =H.

This is easy. Assume that W � ≠ 0 and pick an element in W � of norm 1 to get
a contradiction. �

3.3. The fundamental elliptic estimate. In this subsection, we will prove the
following two results.

Proposition 3.3.1. Let P a differential operator of order k, with compact support.
Then for each s ∈ Z, P induces a bounded operator P ∶ W s → W s−k. Moreover,
if the coefficients of P depend smoothly on a parameter t ∈ R, then t ↦ Pt is a
continuous map R→ Lin(W s,W s−k).

The other result is of fundamental importance for the proof of the regularity
theorem.

Theorem 3.3.2. (Garding inequality) Let P be a differential operator of order k
on Rn. Let U ⊂ Rn be relatively compact and assume that P is elliptic over Ū .
Then there exists a constant C, depending on P , U and s ∈ Z, such that for each
u ∈ C∞

c (U) with support in U , the elliptic estimate

∥u∥s ≤ C(∥u∥s−k + ∥Pu∥s−k)
holds.

The proofs of both results rely on an estimate for the multiplication operator
f ↦ af on S, when a has compact support. We will show below that for each
a ∈ C∞

c (Rn), multiplication by a induces a continuous map W s → W s, for each
s ∈ Z. Together with Lemma 3.2.4, this proves the result. However, we need two
more precise estimates on the operator norm of D. The first estimate is used to
show that if the coefficients of D depend smoothly on a parameter, then the induced
operators depend continuously on the parameter. This will eventually prove that
the indices of two operators whose symbols are homotopic will agree. The second
estimate will be used in the proof of Gardings inequality.

Proposition 3.3.3. Let a ∈ C∞
c . Then f ↦ af extends to a bounded operator

Ma ∶W s →W s, for each s ∈ Z. More precisely, we have the following estimates:

(1) ∥au∥s ≤ C∥a∥C ∣s∣∥u∥s, for all s ∈ Z and a constant C independent of a.
(2) ∥au∥s ≤ ∥a∥C0∥u∥s +C(a)∥u∥s−1. In other words, the ”leading term” can be

estimated by the C0-norm of a, with a ”lower perturbation”, whose norm
depends on higher derivatives of a.
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Proof. For nonnegative k, we compute

∥au∥2
k = ∑

∣α∣≤k
∥Dα(au)∥2

0 ≤ ∑
∣α∣≤k

∑
β+γ=α

α!

γ!β!
∥(Dβa)(Dγu)∥2

0.

We can estimate

∥(Dβa)(Dγu)∥0 ≤ ∥Dβa∥C0∥Dγu∥0 ≤ ∥a∥C ∣β∣∥u∥W ∣γ∣ .

Thus we find

∥au∥k ≤ ∥a∥C0∥u∥k +C∥a∥Ck∥u∥k−1.

This is the second estimate for k ≥ 0, the constants C depends on k and n alone.
To get the first estimate, we estimate further

∥a∥C0∥u∥k +C∥a∥Ck∥u∥k−1 ≤ C ′∥a∥Ck∥u∥k,
obtaining the first estimate for positive k. For −k, the estimate follows by duality:

∥af∥−k = sup
∥g∥k≤1

∣⟨af, g⟩∣ = sup
∥g∥k≤1

∣⟨f, āg⟩∣ ≤ sup
∥g∥k≤1

∥f∥−k∥āg∥k ≤ sup
∥g∥k≤1

∥f∥−k∥a∥Ck∥g∥k.

Before we prove the second estimate for negative values of k, we note a corollary
of the first estimate. �

Corollary 3.3.4. Let P be a differential operator with compact support, of order
k. Then, for each s ∈ Z, there is a constant C = C(P, s) such that ∥Pu∥s−k ≤ C∥u∥s
holds. The constant C can be bounded by the sum of the Cl-norms of the coefficients
of P , with l = ∣s − k∣.

If I = (t0, t1) ⊂ R, and if Pt is a family of order k differential operators that
depend smoothly on t, then I → Lin(W s,W s−k), t↦ Pt is continuous.

Proof. By Proposition 3.3.3, one estimates

∥Pu∥s−k ≤ ∑
∣α∣≤k

∥AαDαu∥s−k ≤ ∑
∣α∣≤k

∥Aα∥C ∣s−k∣∥u∥s−∣α∣.

This proves the first assertion. The second is an easy consequence, as the dif-
ferentiability assumption on Pt shows that the derivatives of the coefficients of Pt
depend continuously on t. �

End of the proof of Proposition 3.3.3. We have to prove the estimate ∥au∥s ≤ ∥a∥C0∥u∥s+
C(a)∥u∥s−1 for negative integers s and do so by downwards induction on s; the case
s ≥ 0 has been settled before. We make use of the operator L discussed in 3.2.5 and
the fact that L is an isometry W s+2 → W s, for all s. Namely, we estimate (under
the assumption that the proof has been given for all t > s)

∥aLu∥s ≤ ∥[a,L]u∥s + ∥L(au)∥s ≤ C(a)∥u∥s+1 + ∥L(au)∥s =
(by Corollary 3.3.4)

= C(a)∥Lu∥s−1 + ∥au∥s+2 ≤
(by 3.2.6)
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≤ C(a)∥Lu∥s−1 + ∥a∥C0∥u∥s+2 +C ′(a)∥u∥s+1 ≤ C ′′(a)∥Lu∥s−1 + ∥a∥C0∥Lu∥s.
Since L is an isomorphism, this finishes the proof. �

Corollary 3.3.5. Let P be a differential operator with compact support of order k
and s ∈ Z. Then, for all u ∈W s,

∥Pu∥s−k ≤ C1∥u∥s +C2∥u∥s−1,

where the constant C1 can be bounded by the sum of the C0-norms of the coeffi-
cients of P , and C2 does depend on the higher derivatives of the coefficients of P
(but not on u).

Proof. We can write P = ∑∣α∣=kD
αaα + Q with an operator of order k − 1. By

Corollary 3.3.4, ∥Qu∥s−k ≤ C∥u∥s−1 for some constant C = C(Q) depending on the
coefficients of Q. On the other hand, by the second estimate of Proposition 3.3.3,

∥Dαaαu∥s−k ≤ ∥aαu∥s ≤ ∥u∥s∥aα∥C0 +C∥u∥s−1

with C = C(a) depending on a and its derivatives. Putting both estimates
together, we obtain the claimed estimate. �

For the proof of the Garding inequality, we need another preliminary fact.

Lemma 3.3.6. (Peter and Paul estimate) Let r < s < t ∈ R. Then for each ε > 0,
there exists a C(ε) > 0 such that for all u ∈ S, the estimate

∥u∥s ≤ ε∥u∥t +C(ε)∥u∥r
holds.

Proof. For y ≥ 1, the inequality

1 ≤ yt−s + (1/y)s−r

holds because either y or 1/y is ≥ 1 and both exponents are positive. For y =
(1 + ∣ξ∣2)ε 1

t−s , we obtain

1 ≤ (1 + ∣ξ∣2)t−sε + (1 + ∣ξ∣2)r−sε
r−s
t−s

or

(1 + ∣ξ∣2)s ≤ (1 + ∣ξ∣2)tε + (1 + ∣ξ∣2)rε
r−s
t−s

which implies the claim by integration. �

Proof of Theorem 3.3.2. The proof is a prototypical example of a ”local-to-global”
argument in analysis. We proceed in three steps:

(1) P has constant coeffients. This is much easier (that this is so is one of the
two reasons why the whole proof of the local regularity theorem is much
simpler for the classical operators on Rn, as the Cauchy-Riemann operator
and the Laplace operator).

(2) P has variable coefficients, but the functions are required to have small
support.

(3) The general case.
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First step: the coefficients are constant
Recall that P can be represented by a function p(x, ξ) which is smooth in the

x-variable and a degree k polynomial in the ξ-variable (and has values in matrices).
In the first step, we assume that p(x, ξ) = p(ξ) does not depend on x, in other

words, P has constant coefficients. Ellipticity states that there exist c, R > 0 such
that ∣p(ξ)∣ ≥ c(1 + ∣ξ∣2)k/2 for all ∣ξ∣ ≥ R. Recall that in the Fourier picture, the
operator is written as

P̂ u(ξ) = p(ξ)û(ξ).
Now

∥u∥2
s = ∫Rn−BR(0)

∣û(ξ)∣2(1 + ∣ξ∣2)s + ∫
BR(0)

∣û(ξ)∣2(1 + ∣ξ∣2)sdξ.

The second summand estimates as

∫
BR(0)

∣û(ξ)∣2(1 + ∣ξ∣2)sdξ ≤ sup
∣ξ∣≤R

(1 + ∣ξ∣2)k ∫
BR(0)

∣û(ξ)∣2(1 + ∣ξ∣2)s−kdξ ≤ C0∥u∥2
s−k

with C0 = (1 +R2)k. The first summand is

≤ ∫
Rn−BR(0)

∣p(ξ)û(ξ)∣2 1

c
(1 + ∣ξ∣2)s−kdξ ≤ 1

c
∥Pu∥2

s−k

and this settles the case of constant coefficients (the restriction on the supports
of u was not necessary, and it works for each s ∈ R).

The general case, local version
Let x0 ∈ U . We claim that there exists a neighborhood V ⊂ U of x0 and a constant

C = C(x0, s) such that for all u ∈ C∞
c (V ), the estimate ∥u∥s ≤ C(∥u∥s−k + ∥Pu∥s−k)

holds.
Let δ > 0. Let P0 be the differential operator with constant coefficients associated

with p0(ξ) ∶= p(x0, ξ). As we assumed that P is elliptic over U , the operator P0 is
elliptic. Now pick a neighborhood W of x0 such that all coefficients of P − P0 are
bounded by δ on W . Moreover, we pick x0 ∈ V ⊂ V̄ ⊂ W and a bump function λ
that is 1 on V and has support in W . If supp(u) ⊂ V , then by the first part of the
proof (and the triangle inequality), we obtain

∥u∥s ≤ C1(∥u∥s−k + ∥P0u∥s−k) ≤ C1(∥u∥s−k + ∥(P0 − P )u∥s−k + ∥Pu∥s−k)

with C1 depending on x0 alone. We now care about the summand ∥(P0−P )u∥s−k.
Observe that

∥(P0 − P )u∥s−k = ∥(P0 − P )λu∥s−k
since λu = u; the operator (P0 − P )λ has compact support and the C0 norm of

all coefficients is bounded by δ. By Corollary 3.3.5, we find

∥(P0 − P )λu∥s−k ≤ δC2∥u∥s +C3∥u∥s−1,

with a universal constant C2 and C3 depending on P and δ, because the higher
derivatives of the bump function λ become large when δ is small. Let ε > 0 and
assume k > 1 for the moment. By the Peter-Paul estimate, we find C4 such that
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C1C3∥u∥s−1 ≤ ε∥u∥s +C4∥u∥s−k.
Putting everything together, we obtain

∥u∥s ≤ (C1 +C4)∥u∥s−k + (δC1C2 + ε)∥u∥s +C1∥Pu∥s−k),
and note that all constants except C4 are independent of δ and ε (C4 depends

on both; C2 is universal and C1 only depends on x0). If k = 1, the above estimate
is still true even with ε = 0, without appealing to the Peter-Paul inequality. Pick δ
and ε small enough so that δC1C2 + ε < 1. Thus

(1 − δC1C2 + ε)∥u∥s ≤ (C1 +C4)∥u∥s−k +C1∥Pu∥s−k).
Dividing by (1 − δC1C2 + ε) finishes the second step.
General case, global version
The third step deals with the general case. There exists a larger open W ⊃ Ū so

that P is elliptic over W . Cover Ū by finitely many V1, . . . Vm ⊂W as found in the
second part, such that there is a constant Ci with

∥u∥s ≤ Ci(∥u∥s−k + ∥Pu∥s−k)
whenever supp(u) ⊂ Vi. Let C ∶= maxiCi. Pick a finite partition of unity µ1, . . . , µm
subordinate to the cover by the Vi’s. For general u with support in U , we conclude

∥u∥s ≤
m

∑
i=1

∥µiu∥s ≤
m

∑
i=1

C(∥µiu∥s−k + ∥Pµiu∥s−k) ≤ C ′∥u∥s−k +C
m

∑
i=1

∥Pµiu∥s−k),

the constant C ′ depending on C and the C ∣s−k∣-norm of the functions µi. We can
estimate

∥Pµiu∥s−k ≤ ∥[P,µi]u∥s−k + ∥µiPu∥s−k ≤ C ′′
i ∥u∥s−1 +C ′′′

i ∥Pu∥s−k
because [P,µi] has order k − 1 and thus

∥u∥s ≤ C ′∥u∥s−k +C ′′∥u∥s−1 +C ′′′∥Pu∥s−k.
By Peter and Paul, C ′′∥u∥s−1 ≤ ε∥u∥s +C(ε)∥u∥s−k and picking ε < 1 finishes the

proof. �

3.4. A smoothing procedure. We will use Gardings inquality for the proof of
the regularity theorem. It states that if f ∈ W s and u ∈ W s and if Pu = f , then
in fact u ∈ W s+k. By passage to the completion, Gardings inequality continues to
hold; thus we have ∥u∥s+k ≤ C(∥u∥s + ∥Pu∥s) for all u ∈ W s. Gardings inequality
gives an a priori estimate for a solution u of Pu = f : ∥u∥s+k ≤ C(∥u∥s + ∥f∥s),
suggesting that u is always in W s+k if f ∈W s. If f is smooth, this should give that
u is smooth. However, the assumption requires that u is already in W s+k, and we
are going around in a circle. To get around this problem, we introduce now the
Friedrichs mollifiers.

Let φ ∈ C∞
c (Rn) be a function with φ ≥ 0, ∫ φ(x)dx = 1 and φ(−x) = φ(x). For

ε > 0, we let φε(x) = 1
εn
φ(x

ε
).

Definition 3.4.1. The Friedrichs mollifier is the operator Fε ∶ S → S; u↦ φε ∗ u.
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Proposition 3.4.2.

(1) Fε extends to a bounded operator W s →W s, with operator norm ≤ 1.
(2) Fε commutes with all differential operators with constant coefficients.
(3) For each u ∈W s, Fεu is in C∞ ∩W s.
(4) For each u ∈W s, Fεu→ u in the W s-norm.

Proof. For each a ∈ C∞
c (Rn) and u ∈ S(Rn), one estimates

∥a ∗ u∥2
s = ∫ ∣â ∗ u(ξ)∣2(1 − ∣ξ∣2)sdξ = ∫ ∣â(ξ)û(ξ)∣2(1 − ∣ξ∣2)sdξ ≤ ∥â∥2

L∞∥u∥2s.

But ∥â∥L∞ ≤ ∥a∥L1 and since ∥φε∥L1 = ∥φ∥L1 , the proof of (1) is complete. Part
(2) is an easy consequence of Proposition 3.1.3.

For part (3), consider first the case s ≥ 0. Since W s ⊂ L2, Fεu is smooth by
Proposition 3.1.3; one has to use that smoothness is a local property, and if u ∈ L2

and x ∈ Rn, then Fεu(x) = Fε(µu)(x) for some cut off function µ with large support;
but µu is L1. For negative s, suppose that part (3) has been proven for the value
s. Any u ∈W s−2 can be written uniquely as Lv, v ∈W s. Then

Fε(Lv) = LFεv
and this is smooth.
For part (4), let u ∈W s and pick v ∈ C∞

c with ∥u − v∥s < δ/3, so that

∥u − Fεu∥s ≤ ∥u − v∥s + ∥v − Fεv∥s + ∥Fε(v − u)∥s ≤ ∥v − Fεv∥s +
2

3
δ.

But

∥v − Fεv∥2
s = ∫ ∣(φ̂ε − 1)v̂∣2(1 + ∣ξ∣2)sdξ = ∫ ∣(φ̂(εξ) − 1)∣2∣v̂(ξ)∣2(1 + ∣ξ∣2)sdξ

and the integrand is pointwise convergent to 0, and bounded by the L1-function
2∣v̂∣(1 + ∣ξ∣2)s, and so the integral tends to zero by the dominated convergence
theorem. �

Proposition 3.4.3. Let U ⊂ Rn be relatively compact, let u ∈ W r(U), s > r and
assume that ∥Ftu∥s ≤ C uniformly in t. Then u ∈W s.

Proof. Let Fn ∶= Ftn where tn → 0. Let Λn ∶ W −s → C be the functional v ↦
⟨Fnu, v⟩. We have ∣Λn(v)∣ ≤ C∥v∥−s, by Proposition 3.2.9. So the family Λn is
equicontinuous and bounded, by 1.4.5. Thus, by Arzela-Ascoli, there is a subse-
quence, also denoted Λn, such that Λn converges uniformly on all compact subsets
of W −s, to some linear functional Λ ∶ W −s → C which is also bounded by C. By
Proposition 3.2.9, there is w ∈ W s such that Λ(v) = (w, v), for all v ∈ W −s. We
claim that the image of w in W r is equal to u.

By Rellich, the image of B1(W −r(U ′)) in W −s is relatively compact for all rel-
atively compact U ′, and so Λn → Λ in (W −r(U ′))∗. We assumed that u ∈ W r(U)
and hence Fnu → u in W r. So the restriction of Λ to W −r(U ′) must be given by
pairing with u, for each relatively compact U ⊂ U ′ ⊂ Rn. The union of the Sobolev
spaces W −r(U ′) over all U ′ is dense in W −r, and so the restriction of Λ to W −r is
given by pairing with u. Hence u = w and the proof is complete. �
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Remark 3.4.4. This proposition can be formulated more abstractly, using the
notion of weak convergence.

Proposition 3.4.5. (Friedrich’s lemma) Let P a differential operator of order
k ≥ 1 with compact support and let Ft be a family of Friedrich mollifiers. Then the
commutator [Ft, P ] is a bounded operator W s → W s−k+1 for each s ∈ R, and the
operator norm is uniformly bounded (i.e. independent of t).

For the proof, we need a useful estimate:

Lemma 3.4.6. (Peetre inequality) Let x, y ∈ Rn and s ∈ R. Then

(1 + ∣x∣2)s

(1 + ∣y∣2)s
≤ 2∣s∣(1 + ∣x − y∣2)∣s∣.

Proof. By switching the roles of x and y, it is enough to consider s ≥ 0, and moreover
s = 1. But

(1 + ∣x∣2) = 1 + ∣x − y∣2 + ∣y∣2 + 2(x − y)x ≤ 1 + ∣x − y∣2 + ∣y∣2 + (∣x − y∣2 + ∣y∣2) ≤

2(1 + ∣y∣2 + ∣x − y∣2 + ∣y∣2∣x − y∣2) = 2(1 + ∣y∣2)(1 + ∣x − y∣2).
�

Proof of Friedrichs lemma. (This proof is the solution of an exercise in [28], p.
235). The result is proven by induction on the order k of P . The case k = 1
contains the core argument. For higher order, one argues by induction on k, in
an algebraic way. Namely, let P be a differential operator of order k and ∂ be a
constant coefficient operator of order 1. Then, using that ∂ commutes with Ft, one
gets [P∂,Ft] = [P,Ft]∂, which easily implies the inductive step, for operators of
the form P∂. But by the very definition of a differential operator, each operator of
order k + 1 is the sum of such special operators.

Now consider the case k = 1. If the principal symbol of P is zero, the proof is
trivial, since Ft itself is uniformly bounded and P has order zero. So we are let to
study the operator cDj , for some smooth, compactly supported function c (each
order one operator can be written as a sum of such operators, plus an order 0 term).
First, we need the estimate for ξ, η ∈ Rn:

(3.4.7) ∣(ξj + ηj)φ̂(t(ξ + η)) − ξj φ̂(tξ)∣ ≤ C ∣η∣
for a constant C that does not depend on t. To see this, we write the term to

be estimated as the absolute value of

(ξj + ηj)φ̂(t(ξ + η)) − ξj φ̂(tξ) = ∫
1

0

∂

∂s
((ξj + sηj)φ̂(t(ξ + sη)))ds =

= ∫
Rn
φ(x)∫

1

0

∂

∂s
((ξj + sηj)e−ixt(ξ+sη))dsdx =

∫
Rn
φ(x)∫

1

0
ηje

−ixt(ξ+sη)dsdx + ∫
Rn
φ(x)∫

1

0
(ξj + sηj)(−itxη)e−ixt(ξ+sη)dsdx.

The first integral is bounded by ∫ φ(x)dx∣η∣ = ∣η∣. The second one equals
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∫
1

0
∫
Rn
φ(x)(xη) ∂

∂xj
e−ixt(ξ+sη)dsdx = −∫

1

0
∫
Rn

∂

∂xj
(φ(x)(xη))e−ixt(ξ+sη)dsdx

by partial integration. The absolute value can be estimated by

∫
1

0
∫
Rn

∣η∣∣ ∂
∂xj

(φ(x)x)∣dsdx ≤ ∣η∣∫
Rn

∣ ∂
∂xj

(φ(x)x)∣dx.

So the proof of 3.4.7 is complete.
Now consider the differential operator Pu = cDju. The commutator is

[Ft, P ] = FtcDj − cDjFt = FtcDj − FtDjc + FtDjc − cDjFt = Ft[c,Dj] + [FtDj , c]

using that Ft commutes with constant coefficient operators. As [c,Dj] is of order
0, Ft[c,Dj] is uniformly bounded, and we only have to take care of [FtDj , c]. For
u ∈W s and v ∈W −s, we have by Plancherel’s theorem

⟨[FtDj , c]u, v⟩ = ⟨([FtDj , c]u)ˆ, v̂⟩.
This is equal to

∫
Rn

(φ̂t(ξ)ξj(ĉ ∗ û)(ξ) − (ĉ ∗ φ̂tMj û)(ξ)v̂(ξ)dξ,

by the rules for the Fourier transform, where Mj stands for multiplication by
the function ξj . Writing the convolution out and using 3.1.11, we obtain

∫ ∫ (φ̂(tξ)ξj ĉ(η)û(ξ − η) − ĉ(η)φ̂(t(ξ − η))(ξj − ηi)û(ξ − η)) ¯̂v(ξ)dξdη =

= ∫ ∫ ĉ(η)¯̂v(ξ)û(ξ − η) (φ̂(tξ)ξj − φ̂(t(ξ − η))(ξj − ηi))dξdη.

By 3.4.7, the absolute value of this integral can be estimated by

C ∫ ∫ ∣ĉ(η)¯̂v(ξ)û(ξ − η)∣∣η∣dξdη η→ξ−ζ= C ∫ ∫ ∣ĉ(ξ − ζ)¯̂v(ξ)û(ζ)∣∣ξ − ζ ∣dξdζ =

= C ∫ ∫ ((1 + ∣ξ − ζ ∣2)s/2∣ĉ(ξ − ζ)∣∣ξ − ζ ∣) (1 + ∣ξ − ζ ∣2)−s/2∣¯̂v(ξ)û(ζ)∣dξdζ =∶

C ∫ ∫ q(ξ − ζ)(1 + ∣ξ − ζ ∣2)−s/2∣¯̂v(ξ)û(ζ)∣dξdζ

By the Peetre inequality, this is estimated by (since s ≥ 0):

≤ C ∫ ∫ q(ξ − ζ)(1 + ∣ζ ∣2)s/2∣û(ζ)∣(1 + ∣ξ∣2)−s/2∣¯̂v(ξ)∣dξdζ.

(We use the symbol C for a constant that changes from line to line; the actual
value of C is irrelevant for us) Using Cauchy-Schwarz, this is

≤ C (∫ ∫ q(ξ − ζ)(1 + ∣ζ ∣2)s∣û(ζ)∣2dζdξ)
1/2

(∫ ∫ q(ξ − ζ)(1 + ∣ξ∣2)−s∣v̂(ξ)∣dζdξ)
1/2

.

The first factor is
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≤ (∥u∥2
s ∫ q(ξ)dξ)

1/2
≤ C∥u∥s

and likewise the second factor is bounded by C∥v∥−s. Altogether, we get that

∣⟨[FtDj , c]u, v⟩∣ ≤ C∥u∥s∥v∥−s
and by duality, we conclude that ∥[FtDj , c]u∥s ≤ C∥u∥s, the constant C not

depending on t and u. This concludes the proof.
�

3.5. Local elliptic regularity.

Theorem 3.5.1. (The local regularity theorem) Let P be a differential operator
of order k that is elliptic over Ū , U ⊂ Rn relatively compact. Let k, l be integers,
f ∈ W l, and u ∈ W r. Assume that Pu = f (this equation takes place in W r−k).
Then for each function µ ∈ C∞

c (U), µu ∈W l+k.

Corollary 3.5.2. Let u ∈ W r and P elliptic over supp(u). Assume that Pu is
smooth. Then u is smooth over U .

This follows from the theorem by the Sobolev embedding theorem.

Proof of Theorem 3.5.1. By induction, we can assume that µu ∈ W k+l−1 and we
have to prove that µu ∈W k+l. By Garding’s inequality

∥Fεµu∥k+l ≤ C(∥Fεµu∥l+∥PFεµu∥l) ≤ C(∥Fεµu∥l+∥[P,Fε]µu∥l+∥Fε[P,µ]u∥l+∥FεµPu∥l).

Now all four summands are uniformly bounded (independent of ε):

● ∥Fεµu∥l ≤ ∥µu∥l ≤ C(µ)∥u∥l (by 3.4.2 and 3.3.3).
● ∥[P,Fε]µu∥l ≤ C∥µu∥l+k−1 ≤ C ′∥u∥l+k−1 by Friedrich’s lemma and 3.3.3.
● ∥Fε[P,µ]u∥l ≤ ∥[P,µ]u∥l by 3.4.2. Moreover, [P,µ] is an operator of order
k − 1 with compact support and so, by 3.3.4, ∥[P,µ]u∥l ≤ C∥u∥l+k−1.

● ∥FεµPu∥l ≤ ∥µf∥l by 3.4.2.

Appealing to Proposition 3.4.3 concludes the proof. �

3.6. Sobolev spaces on manifolds. We now move on to globalize the theory so
far developed. We have to define Sobolev spaces on manifolds, and we will do this
only for integral indices, as this is everything we need. From now on, M will always
be a closed n-dimensional manifold and E →M a complex vector bundle. We pick
a finite cover of M by sets Ui with charts hi ∶ Ui ≅ Rn. Moreover, we pick bundle
trivializations φi of E∣Ui and a partition of unity µi subordinate to the cover {Ui}.
We define the Sobolev norm of u ∈ Γ(M,E) by

∥u∥2
k ∶=∑

i

∥µiφi ○ u ○ (hi)−1∥2
k.

As expected, the Sobolev space W s(M ;E) is defined to be the completion of
Γ(M ;E) with respect to that norm. We will then transfer the most important
results from the previous sections to the manifold case. To get things started, one
needs some pieces of information. The key is the following lemma.
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Lemma 3.6.1. Let φ ∶ U ′ → V ′ be a diffeomorphism of open subsets of Rn and
let U ⊂ U ′ and V = φ(U) ⊂ V ′ be relatively compact. Then u ↦ u ○ φ extends to a
bounded map W s(V )→W s(U), for all s ∈ Z.

Proof. Assume first s = k ∈ N and u ∈ C∞
c (V ). Compute

∥u ○ φ∥2
k = ∑

∣α∣≤k
∫ ∣Dα(u ○ φ)(x)∣2dx.

Now a qualitative version of the chain rule in several variables for higher order
derivatives states that

Dα(u ○ φ) = ∑
∣β∣≤∣α∣

((Dβu) ○ φ)Pα,β(φ)

where P is a universal polynomial in the derivatives of φ up to order ∣α∣ (an
explicit formula is the so-called Faá di Bruno formula). Therefore, because U and
V are relatively compact,

∫ ∣Dα(u○φ)(x)∣2dx ≤ C ∑
∣β∣≤∣α∣

∫ ∣(Dβu)○φ∣2dx = ∫ C ∑
∣β∣≤∣α∣

∫ ∣(Dβu)∣2∣detDφ∣−2dy ≤ C ′∥u∥2
k.

This settles the case of nonnegative k. For −k, we use duality. Let U ⊂ U ′′ ⊂ U ′

be an intermediate relatively compact subset and V ′′ = φ(U ′′). Observe that

∫
U ′′
u(φ(x)) ¯g(x)dx = ∫

V ′′
u(y)g(φ−1(y))∣detDφ(y)∣−1dy

and therefore, by duality,

∥u ○ φ∥−k = sup
g∈C∞

c (U ′′),∥g∥k≤1
∫
U ′′
u(φ(x))g(x)dx =

sup
g∈C∞

c (U ′′),∥g∥k≤1
∫
V ′′
u(y)g(φ−1(y))∣detDφ(y)∣−1dy ≤ ∥u∥−k∥(g ○ φ−1)∣detDφ∣−1∥k ≤

≤ C∥u∥−k∥g ○ φ−1∥k ≤ C ′∥u∥−k∥g∥k.
This finishes the proof. �

Lemma 3.6.2.

(1) The equivalence class of the norm ∥∥k does not depend on the choices made.
(2) If M has a distinguished Riemann metric and the bundle E a distinguished

hermitian bundle metric, then ∥∥0 is equivalent to the L2-norm defined in
2.3.3.

(3) If u has support in a coordinate neighborhood Ui, then ∥φi ○ u ○ h−1
i ∥k,Rn ≤

C∥u∥k,M , where C depends on the choice of the trivializations and charts.

Proof. The first claim follows from Lemma 3.6.1 and Proposition 3.3.3. The second
part is similar, one uses local trivializations that respect the inner product. The
third part is an easy exercise. �

Using this lemma, we can transfer the known results to manifolds. Here is the
summary:

Theorem 3.6.3. Let M be a closed manifold and E → M be a hermitian vector
bundle. Then:
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(1) The inclusion map W l →W k is injective for k > l.
(2) (Sobolev embedding) The elements of W l are Ck-sections, provided that

l > n
2
+ k.

(3) (Rellich compactness) The inclusion W l →W k is compact if l > k.
(4) Each differential operator P of order k induces a continuous operator W l+k →

W l for all l. If P depends smoothly on a parameter t ∈ R, then t ↦ Pt is a
continuous map R→ Lin(W k+l,W l).

(5) (Gardings inequality) If P is elliptic, then there is a constant C such that
∥u∥k+l ≤ C(∥u∥l + ∥Pu∥l) holds for all u ∈W k+l.

(6) (Duality) The map W k(M,E) → (W −k(M ;E))∗ given by u ↦ (v ↦ ⟨u, v⟩)
is an antilinear isomorphism of Hilbert spaces.

No new ideas are required for the proof. As a sample, we show how to prove the
Garding inequality. We use the notation from the beginning of this section. Denote
ui ∶= φi ○ u ○ (hi)−1, so that

∥u∥k+l ≤ C∑
i

∥µiui∥k+l ≤∑
i

CCi(∥µiui∥l + ∥Pµiui∥l)

from Garding’s inequality in Rn. Using the third part of 3.6.2, we get

CCi(∥µiui∥l ≤ C ′∥u∥l.
Let ai be a compactly supported function in Ui with aiµi = µi. Note that

µiPai = aiµiP = µiP . We obtain

∥Pµiui∥l ≤ ∥[P,µi]aiui∥l + ∥µiPaiui∥l ≤ Ci∥aiui∥l+k−1 +Ci∥µiPui∥l
The second is at most ∥Pu∥l by the definition of the Sobolev norm, and the first

summand can be estimated by the Peter-Paul inequality (in Rn) against ε∥aiu∥l+k+
C∥aiu∥l. By Lemma 3.6.2, both summands are bounded by the respective Sobolev
norm.

Since the covering was finite (!!), the proof is completed by putting everything
together.

3.7. Global regularity and the Hodge theorem. Now we finally come to the
proof of the Hodge decomposition theorem and the Fredholm property of elliptic
operators on closed manifolds. Let M be a closed manifold and let P ∶ Γ(M,E0)→
Γ(M,E1) be an elliptic differential operator. We first globalize the regularity the-
orem.

Theorem 3.7.1. Let Pu = f , f ∈W l, u ∈W r, for some integer r. Then u ∈W l+k.

Proof. Let U ⊂ M a coordinate chart. Let V ⊂ U be relatively compact. Pick
functions µ,λ ∈ C∞

c (U) with µ ≡ 1 on V and µλ = µ. Since

µf = µPu = µP (λu)
and µP is elliptic over V , the local regularity theorem 3.5.1 tells us that for each

ϕ ∈ C∞
c (V ), the function ϕλu = ϕu belongs to W l+k. Cover M by finitely many

such sets Vi and let (ϕi)i be a partition of unity subordinate to this covering. Thus
u = ∑i ϕiu belongs to W k+l. �

For the proof of the Fredholm property, we need an abstract functional-analytic
result.
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Proposition 3.7.2. Let U,V,W be Hilbert spaces, P ∶ U → V bounded and K ∶
U →W compact. Assume that there exists a constant C with

∥u∥U ≤ C(∥Pu∥V + ∥Ku∥W )
Then the kernel of P is finite dimensional and P has closed image.

Proof. Let un be a sequence with Pun = 0 and ∥un∥U ≤ 1. Then

∥un − um∥U ≤ C∥K(un − um)∥W
and by the compactness of K, Kun is subconvergent3. Therefore, a subsequence

un is a Cauchy sequence. This shows that each bounded sequence in the kernel of
P is subconvergent; and therefore ker(P ) is finite-dimensional.

To prove that the image of P is closed, it is enough to consider P ∣ker(P )� , in
other words, we can assume that P is injective.

We claim that there exists a c > 0 with c∥u∥ ≤ ∥Pu∥ for all u ∈ U . Suppose this
is not the case; i.e. for each b > 0, there is u with ∥u∥ = 1 and ∥Pu∥ ≤ b. We can
then find a sequence un such that ∥un∥ = 1 and ∥Pun∥→ 0.

Since K is compact, we can assume without loss of generality that Kun is con-
vergent. Therefore

∥un − um∥U ≤ C(∥P (un − um)∥V + ∥K(un − um)∥W )
which converges to 0. Thus un is a Cauchy sequence and the limit u must have

∥u∥U = 1 (since all un have norm 1) and Pu = 0 (since Pun → 0 and P is continuous).
This contradicts the assumption that P is injective, and this contradiction proves
the existence of the constant c.

Now let v ∈ Im(P ) and let un be sequence with Pun → v. Then ∥un − um∥ ≤
1
c
∥Pun −Pum∥→ 0, so un is a Cauchy sequence with limit u, and Pu = v, which is

why P has closed image. �

Corollary 3.7.3. Let M be a closed manifold and P an elliptic differential operator
of order k. Then P ∶W k+l →W l has a finite dimensional kernel and closed image.
Moreover, the dimension of the kernel of P ∶W l+k →W l does not depend on l.

Proof. The first sentence is immediate from Gardings inequality, Rellichs Lemma
and Proposition 3.7.2. The second follows from regularity. �

The proof of the Fredholm property is finished by a duality consideration. We
consider P ∶ W k+l → W l, which has closed image. To prove that the image has
finite codimension, it is therefore enough to prove that the space of all ` ∈∈ (W l)′
with ` ○ P = 0 is finite dimensional. By duality, it has to be proven that

K = {v ∈W −l∣⟨Pu, v⟩ = 0∀u ∈W k+l}
is finite dimensional. But

⟨Pu, v⟩ = ⟨u,P ∗v⟩
and so K = ker(P ∗ ∶ W −l → W −k−l) which is finite dimensional by Corollary

3.7.3. Note that we used at this point that P ∗ is elliptic if P is elliptic. This proves

3We say that a sequence is subconvergent if it has a convergent subsequence.
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not only that P ∶W k+l →W l is a Fredholm operator, but also that the codimension
of the image does not depend on l. We summarize.

Theorem 3.7.4. Let P ∶ Γ(M ;E0) → Γ(M,E1) be an elliptic operator of order
k on the closed manifold M . Then P ∶ W k+l → W l is a Fredholm operator, with
index not depending on l. The orthogonal complement of the image of P ∶W k → L2

(taken with respect to the L2-inner product induced by a Riemannian metric on M
and hermitian bundle metrics on the vector bundles Ei) is the kernel of P ∗. Thus
we get an orthogonal decomposition C∞ = ker(P ∗)⊕ Im(P ).

Proposition 3.7.5. Let Pt, t ∈ R be a smooth family of elliptic differential operators
on a compact manifold. Then the index of Pt does not depend on t. Moreover, if
pt is a smooth family of elliptic symbols on M , then for all operators Pi, i = 0,1,
with smbk(Pi) = pi, the indices are the same.

Proof. For the first part, use Theorem 3.6.3 to show that the Fredholm operator Pt
depends continuously on t, and then use Theorem 1.2.7. For the second part, one
has to show that there exists a smooth family of differential operators Pt with the
symbol pt (and then use the first part). This follows from the arguments given for
Proposition 2.2.19. �

This last proposition is a smoking gun: it proves that the index of an elliptic dif-
ferential operator only depends on the homotopy class of the principal symbol, where
homotopy is to be understood through elliptic symbols. A suitable generalization
of this will be one of the keys for the proof of the index theorem.

The last thing we want to get out of the analysis is the Hodge decomposition
theorem. Let E = (E∗, P ) be an elliptic complex on a smooth closed manifold M .
Because Pi ○ Pi−1 = 0, we can form the cohomology of the elliptic complex:

Hp(E) ∶=
ker(Pp ∶ Γ(M,Ep)→ Γ(M,Ep+1))

Im(Pp−1 ∶ Γ(M,Ep−1)→ Γ(M,Ep))
.

For example, if E is the de Rham complex, then Hp(E) agrees with the usual de
Rham cohomology.

Equip M and the bundles with metrics, so that we can talk about the operator
D = P + P ∗, which is elliptic. Let ∆ ∶= D2 and observe that ∆ maps Γ(M,Ep)
into itself. We let Hp(E) be the kernel of ∆ ∶ Γ(M,Ep) → Γ(M ;Ep). For elliptic
complexes, the elliptic regularity theorem has the following formulation.

Theorem 3.7.6. (The Hodge decomposition theorem) Let M be a closed Riemann
manifold and E an elliptic complex on M . Then there are othogonal decompositions:

(1) Γ(M,E) = ker(D)⊕ Im(D). The kernel ker(D) is finite-dimensional.
(2) ker(D) = ker(∆) = ker(P ) ∩ ker(P ∗).
(3) Im(∆) = Im(D) = Im(PP ∗)⊕ Im(P ∗P ) = Im(P )⊕ Im(P ∗).
(4) ker(P ) = Im(P )⊕ ker(∆).
(5) The natural map ker(∆)→H(E) is an isomorphism.

Proof. (1) This is clear from Theorem 3.7.4.
(2) The first equation is clear, and so is the ⊃-inclusion of the second. Con-

versely, if Pu + P ∗u = 0, then calculate 0 = ⟨Pu + P ∗u,Pu + P ∗u⟩ =
⟨Pu,Pu⟩ + ⟨P ∗u,P ∗u⟩.
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(3) Im(∆) = Im(D) is clear by now. Because ∆ = PP ∗ + P ∗P , it follows
that Im(D) ⊂ Im(PP ∗) ⊕ Im(P ∗P ) ⊂ Im(P ) ⊕ Im(P ∗), the orthogonality
of all spaces is clear. To prove that Pu + P ∗v ∈ Im(∆), we prove that
(Pu + P ∗v)�ker(∆) and use part (1). But if w ∈ ker(∆), then ⟨Pu +
P ∗v,w⟩ = ⟨u + v,Dw⟩ = 0.

(4) The ⊃-inclusion is clear. If Pu = 0, then write u = x+Py +P ∗z, x ∈ ker(∆),
according to parts (1) and (3). Since Pu = 0, we find that PP ∗z = 0. Thus
0 = ⟨z,PP ∗z⟩ = ⟨P ∗z,P ∗z⟩, therefore P ∗z = 0 and u = x + Py.

(5) This is clear from part (4)
�

Remark 3.7.7. The elements of ker ∆ are called harmonic; this terminology comes
from the de Rham complex. What is usually called Hodge theorem is the last part.
It says that each cohomology class of an elliptic complex over a closed manifold has
a unique harmonic representative.

3.8. The spectral decomposition of an elliptic operator. An important prop-
erty of self-adjoint elliptic operators on closed manifolds is that they admit a spec-
tral decomposition. Here is our goal.

Theorem 3.8.1. Let M be a closed Riemann manifold, E → M be a hermitian
vector bundle and D ∶ Γ(M,E)→ Γ(M,E) be a formally self-adjoint elliptic differ-
ential operator of order k ≥ 1. For λ ∈ C, let Vλ ∶= ker(D − λ) ⊂ L2(M,E) be the
eigenspace of D to the eigenvalue λ. Then the following statements hold

(1) If λ ∈ C ∖R, then Vλ = 0.
(2) If λ ≠ µ, then Vµ�Vλ.
(3) For each Λ ∈ R, the sum UΛ =⊕∣λ∣≤Λ Vλ is finite-dimensional and consist of

smooth sections.
(4) The direct sum ⊕λ Vλ is dense in L2(M,E).

In particular, it follows from part (3) that the eigenvalues for a discrete subset
of R and that each eigenvalue has finite multiplicity. The theorem is false if D has
order zero (find a counterexample).

Proof of the easy parts of Theorem 3.8.1. The first two parts are proven exactly as
the corresponding statements for selfadjoint endomorphisms of finite-dimensional
Hilbert spaces. Namely if ∥x∥ = 1 and Fx = λx, then

λ = ⟨x,λx⟩ = ⟨x,Fx⟩ = ⟨Fx,x⟩ = λ̄⟨x,x⟩ = λ̄.
If Fx = λx, Fy = µy, then

(λ − µ)⟨x, y⟩ = ⟨λx, y⟩ − ⟨x,µy⟩ = ⟨Fx, y⟩ − ⟨x,Fy⟩ = 0

so if λ ≠ µ, then ⟨x, y⟩ = 0.
The third part depends on elliptic regularity. Let x ∈ UΛ. Since the operator D−λ

is elliptic, all eigenfunctions and hence x are smooth. We can write x = ∑∣λ∣≤Λ xλ,
with xλ ∈ Vλ. Note that this is an orthogonal sum. Therefore

∥x∥2
k = ∑

∣λ∣≤Λ

∥xλ∥2
k ≤ ∑

∣λ∣≤Λ

C(∥xλ∥2
0 + ∥Dxλ∥2

0) ≤

≤ C(1 +Λ2) ∑
∣λ∣≤Λ

∥xλ∥2
0 = C(1 +Λ2)∥x∥2

0.
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By Rellich’s theorem, we conclude that the ∥∥0-unit ball in UΛ is relatively com-
pact, and hence UΛ is finite-dimensional. �

For the last part of the proof, we recall the spectral theorem for self-adjoint
compact operators in an abtract setting. Recall that the spectrum of a bounded
operator F is the set of all λ ∈ C such that F −λ is not invertible. The spectrum is a
compact, nonempty subset of C, [13], Satz 23.5. Any eigenvalue is in the spectrum,
but the converse does not need to hold.

Theorem 3.8.2. Let H be a Hilbert space and F ∶H →H be a compact selfadjoint
operator. Then the spectrum of F is a subset of R and has 0 as its only accumulation
point. Any spectral value of F different from 0 is an eigenvalue. The eigenspaces
Hλ are finite-dimensional unless λ = 0. The direct sum

ker(F )⊕⊕
λ≠0

Hλ

is dense in H.

The proof is not very difficult, but would lead us too far away. See [13], Satz
26.5 and Satz 26.3.

Proof of the fourth part of Theorem 3.8.1. We look at the operator L = 1 + D2,
which is self-adjoint, elliptic and has order 2k. If Lu = 0, then 0 = ⟨u,u⟩+ ⟨Du,Du⟩;
thus L is injective, and by Theorem 3.7.4, L ∶W 2k → L2 is invertible. Let S ∶ L2 →
W 2k be the inverse; note that since L ∶ Γ(M,E) → Γ(M,E) is bijective, S maps

smooth sections to smooth sections. Let T ∶ L2 S→ W 2k → L2 be the composition,
which is a compact operator by Rellich’s theorem (and the open mapping theorem).
We claim that T is self-adjoint. It is continuous, and Γ(M,E) ⊂ L2 is dense, so it
is enough to show that ⟨u,Tv⟩ = ⟨Tu, v⟩ holds for smooth sections. However,

⟨Lx,TLy⟩ = ⟨Lx, y⟩ = ⟨x,Ly⟩ = ⟨TLx,Ly⟩
and L is surjective onto Γ(M,E), so T is self-adjoint. Moreover

⟨Lx,TLx⟩ = ⟨Lx,x⟩ = ⟨x,Lx⟩ ≥ 0

shows that ⟨Tu,u⟩ ≥ 0, i.e. that T is positive. Hence all eigenvalues of T are
nonnegative. As T ∶ L2 →W 2k is bijective, 0 is not an eigenvalue of T . Therefore,
by the spectral theorem for compact operators, the sum

⊕
µ>0

ker(T − µ)

lies dense in L2.
Consider an eigenvector Tx = µx. Since ⟨Tx,Lu⟩ = ⟨x,u⟩, we find that

⟨x, (1 − µL)u⟩ = ⟨x,u⟩ − µ⟨x,Lu⟩ = ⟨x,u⟩ − ⟨Tx,Lu⟩ = 0;

in other words, x is orthogonal to the image of (1 − µL). As µ ≠ 0, (1 − µL) is
elliptic and so x is smooth, this means that all eigenfunctions of T are smooth. As
T is the inverse to L, it follows that ker(T − µ) is the 1

µ
-eigenspace of L. Since D

commutes with L, the space Wµ ∶= ker(L − 1
µ
) is D-invariant. The operator D∣Wµ

satisfies the equation (D∣Wµ)2 + 1 = 1
µ

. Thus, Wµ decomposes into the eigenspaces
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of D to the two eigenvalues ±
√

1
µ
− 1 (note that ∥T ∥ ≤ 1, whence all µ are in (0,1]).

This finishes the proof. �

3.9. Guide to the literature. The local regularity theorem is a very classical
result and is - in version or another - covered in each introductory textbook on
partial differential equations. I tried to combine arguments from different sources
to achieve a ”best-of”. Later, we need some more analysis for the proof of the index
theorem, and I designed this chapter so that the later arguments are supported by
this approach.

Some sources try to avoid the Fourier transform in the definition of the Sobolev
spaces, and use the norm given in Lemma 3.2.4 (which is perfectly possible, if one
only uses W k for natural numbers). Instead of using Rn as the model space, one
could also take the torus Tn and patch pieces of the torus into the manifold. This
approach replaces the Fourier transform by the (simpler) Fourier series. Fourier
series are easier because the Pontrjagin dual of Tn is the discrete group Zn. This
approach is pursued in several sources, and after initial changes, the overall argu-
ment is more or less isomorphic to the one using the Fourier transform. Warner
[31] and Griffiths-Harris [11] only want to prove the Hodge theorem, not the index
theorem. Higson and Roe [12], [21] give a different proof of the index theorem,
but the proof of the index theorem we head to is not supported by this approach:
the role of the symbol is more cleanly reflected by the self-duality of Rn. Once
the formalism of pseudodifferential operators is set up, the proof of the regularity
theorem can be streamlined considerably [32].

The treatment of the Fourier transform is taken from Lang [17]. The basic the-
orems on Sobolev spaces (Sobolev embedding, Rellich, duality) are proven in [18],
[10], [32], [2], with essentially the same argument that we gave. The proof of Gard-
ings inequality is that from [31], with the changes needed to suit into our framework.
In [32], [18], [10], Theorem 3.3.2 is derived using the calculus of pseudodifferential
operators. In [11], [12], [21], the special structure of the operators studied is used
heavily.

Friedrichs lemma is an ”exercise” in [21] and a structured exercise in [28]. The
proof we gave follows the outline in [28]. Sources as [31] and most PDE textbooks I
looked into ([8], [28], [26]) replace the use of the mollfiers by a different smoothing
procedure, which might be technically simpler. One can also use distribution theory.

The globalization of the Sobolev theory is a standard exercise (and done in most
of the above sources). I have no specific source for the proof of the Fredholm
property and the spectral secomposition.
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4. Some interesting examples of differential operators

4.1. The Euler number. Let Mn be a closed smooth manifold of dimension n.
Recall the de Rham complex A∗(M), which is an elliptic complex. To get an
elliptic operator out of the de Rham complex, we need a Riemann metric on M
and a hermitian bundle metric on the vector bundle ΛpT ∗M . There is a canonical
choice of such a hermitian metric, depending on the Riemann metric on M .

Lemma 4.1.1. Let V be an n-dimensional euclidean vector space, with an or-
thonormal basis (e1, . . . , en). For I ⊂ n, ∣I ∣ = p, consider the basis element eI ∈
ΛpV ∗. Define a hermitian metric on ΛpV ∗ by declaring (eI)I⊂n;∣I ∣=p to be an or-
thonormal basis. This hermitian inner product does not depend on the choice of the
orthonormal basis.

Proof. We prove the following equivalent statement. Let V = Rn and use the
standard basis to define the inner product on ΛpRn. We claim that the action
of the group O(n) on ΛpRn is via isometries. The next lemma gives a system of
generators of O(n) and it is easy to check that the generators act by isometries. �

Lemma 4.1.2. Let Gn ⊂ O(n) be the subgroup that is generated by the permutation
matrices and the matrices of the form

⎛
⎜
⎝

cos(t) − sin(t)
sin(t) cos(t)

1

⎞
⎟
⎠

(t ∈ R). Then Gn = O(n).

Proof. This can be seen by induction on n. The case n = 2 is easy. For the induction
step one uses the elementary fact that if a group G acts transitively on a set X and
H ⊂ G is a subgroup that acts transitively such that for a fixed x ∈ X the isotropy
groups Hx and Gx are equal, then H = G. By induction on n, one proves that
Gn acts transitively on Sn−1. The isotropy group of O(n) at en is O(n − 1), and
(Gn)en ⊃ Gn−1. By induction hypothesis, Gn−1 = O(n − 1). �

If Mn is a closed Riemann manifold, we thus get a canonical bundle metric on
Λ∗T ∗M . The elliptic operator associated with the de Rham complex is the operator

D = d + d∗ ∶ Aev(M)→ Aodd(M).

The Hodge decomposition theorem can be used to compute the index of D.

Theorem 4.1.3. Let M be a closed manifold. The index of D ∶ Aev(M) →
Aodd(M) is the Euler characteristic χ(M) ∶= ∑np=0(−1)p dimHp(M) of M .

Proof. Let Hp(M) ⊂ Ap(M) be the space of harmonic forms on M . By the Hodge
theorem, the natural map Hp(M)→Hp(M) is an isomorphism. Moreover,

ind(D) =
n

∑
p=0

(−1)p dimHp(M) = χ(M).

�



54 JOHANNES EBERT

4.2. The signature. So far, we have completely computed the index of one dif-
ferential operator that exists on any manifold M , namely the operator d + d∗. If
this were the only interesting operator, there would be no ”index theory”. It turns
out that we need more structure on a manifold to get new operators linked to
that extra structure. The first such extra structure is an orientation. But let
us go back to the operator D = d + d∗ ∶ A∗(M) → A∗(M) for a second. Ob-
serve that D = d + d∗ ∶ A∗(M) → A∗(M) is formally self-adjoint; therefore its
index is zero and the operator itself is not very interesting from the perspective
of index theory. In connection with the Euler characteristic, we studied the de-
composition A∗(M) = Aev(M)⊕Aodd(M) and we obtained an interesting operator
D0 ∶ Aev(M) → Aodd (by restricting D). Let us formulate this a bit differently.
Let I ∶ A∗(M) → A∗(M) be the operator that is (−1)p on Ap(M). This is an
involution, which is self-adjoint and comes from an involution of the vector bundle
Λ∗T ∗M (important!). The spaces Aev/Aodd are the +1/ − 1-eigenspaces of I. The
important fact that we used secretly is that

DI = −ID,
(both anticommute). If we decompose A∗(M) according to the eigenspaces of

I, we get

I = (1
−1

) ; D = (D2 D1

D0 D3
) ; D∗ =D.

The equation DI + ID = 0 means (quick computation) that D2 = D3 = 0 and
D1 =D∗

0 , i.e.

D = ( D∗
0

D0
)

and

ker(D) = ker(D0)⊕ ker(D∗
0) = ker(D0)⊕ Im(D0)�.

The involution I maps ker(D) to itself (if Dx = 0, then DIx = −IDx = 0) and
we get the equalities

ind(D0) = dim(ker(D0)) − dim(ker(D1)) = Tr(I ∣ker(D)).
If we take I as above, we get the Euler number of M . We refer to I as a grading

of the de Rham complex. We solidify these observations in a definition.

Definition 4.2.1. Let M be a closed Riemannian manifold, E →M be a hermit-
ian vector bundle and D ∶ Γ(M,E) → Γ(M,E) be a formally self-adjoint elliptic
differential operator. A grading of D is an orthogonal involutive vector bundle iso-
morphism ι ∶ E → E such that Dι = −ιD, with eigenbundles E±. With respect to
the decomposition E = E+ ⊕E−, write

D = ( D−
D+

) .

The index of (D, ι) is

ind(D, ι) = ind(D+) = − ind(D−) = Tr(ι∣ker(D)) ∈ Z.
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Such a pair (D, ι) is called a graded selfadjoint elliptic operator.

If P ∶ Γ(E0) → Γ(E1) is an arbitrary elliptic operator, we get a graded self-
adjoint one, by setting E = E0 ⊕ E1 (orthogonal sum), ι = (−1)i on Ei and the
operator is

( P ∗

P
)

Thus ordinary elliptic operators and graded self-adjoint ones are essentially the
same thing. The point is that the grading is often easier to describe than the
eigenspaces! One can change the grading by a sign, the index changes by sign as
well: ind(D,−ι) = − ind(D, ι).

But for the de Rham complex on an oriented manifold, there is a more substantial
change of the grading.

Lemma-Definition 4.2.2. Let V be an n-dimensional oriented euclidean vector
space. The star operator is the uniquely determined operator ⋆ ∶ ΛpV ∗ → Λn−pV ∗

such that the identity

⟨ω, η⟩vol = ω ∧ ⋆η
holds for all forms ω, η. For ω ∈ ΛpV ∗, one has

⋆ ⋆ ω = (−1)n(n−p)ω.

Theorem 4.2.3. Let Mn be an oriented Riemann manifold. Then the adjoint
d∗ ∶ Ap(M)→ Ap−1(M) is given by

d∗ω = (−1)pn+n+1 ⋆ d ⋆ ω.
Moreover, ⋆∆ = ∆⋆.

The first part is an easy (but tedious) consequence of the Stokes theorem and
the second is a direct (tedious) consequence of the first part. Easy as it is, Theorem
4.2.3 has a profound consequence, namely:

Proposition 4.2.4. If M is an oriented Riemann manifold and ω a harmonic
form on M , then ⋆ω is harmonic.

We restrict to real-valued forms. Let us denote by

Hp(M) = ker(∆ ∶ Ap(M)→ Ap(M))
the space of harmonic forms. Thus ⋆ induces an isomorphism ⋆ ∶ Hp(M) →

Hn−p(M). By the Hodge decomposition theorem, we know that

Hp(M) ≅Hp(M ;R)
and hence the star operator induces an isomorphism

Hp(M) ≅Hn−p(M)
which depends on the Riemann metric. Thus we get a proof of a weak form of

Poincaré duality. Let us remark that we killed a fly with a sledgehammer: there is
a simple proof of Poincaré duality in the framework of de Rham cohomology which
we present in a later chapter. Let us have a slightly closer look.
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Theorem 4.2.5. Let M be a closed oriented manifold. Then the pairing Hp(M)⊗
Hn−p(M)→ C, α⊗ β ↦ ∫M α ∧ β is a perfect pairing.

Proof. By the Hodge theorem, it suffices to consider the pairing on H∗. Compute,
for ω ∈Hp and η ∈Hn−p:

∫
M
ω ∧ η = (−1)p(n−p) ∫

M
ω ∧ ⋆ ⋆ η = (−1)p(n−p) ∫

M
⟨ω;⋆η⟩vol = ⟨ω;⋆η⟩.

and since ⋆ is an isomorphism, this is clearly a nondegenerate pairing (and perfect
because all spaces involved are finite-dimensional). �

On even-dimensional manifolds, we get a finer structure. Recall that the spaces
Ap(M) of complex-valued forms come with a natural real structure (i.e. a conjuga-
tion map) and that the operators ⋆, d and d∗ are all real operators (commute with
the conjugation). There are two cases of even dimensions: n = 4k + 2 (moderately
interesting) and n = 4k (very interesting). Let us, in both cases, restrict to the
middle dimension. Let n = 2m. Note that on Am(M2m), one has

⋆2 = (−1)m.
On Hm(M ;R), we have two bilinear forms. One is given by

Ω ∶ (ω, η)↦ ∫
M
ω ∧ η,

and this has a purely homological meaning (no metric is used to define it). And
there is the scalar product

⟨ω;η⟩ ∶ ∫
M
ω ∧ ∗η

which is defined on Hm(M) (and thus uses the metric). The two forms are
related by

⟨ω;η⟩ = Ω(ω,⋆η).
In the case of odd m, the form Ω is symplectic (i.e. skew-symmetric and nonde-

generate). On the other hand, ⋆2 = −1 and thus it defines a complex structure on
Hm(M). If you are familiar with the terminology of symplectic linear algebra, then
Ω is a symplectic form on Hm(M), ⋆ is a compatible complex structure (depending
on the metric on M).

The case n = 4k is extremely interesting. Consider the symmetric, nondegenerate
bilinear form Ω on H = H2k(M). There exists an orthogonal basis of H (i.e.
Ω(ei, ej) = εiδij , εi = ±1). The Sylvester inertia theorem from linear algebra says
that the number sign(Ω) ∶= ♯{i∣εi = 1} − ♯{i∣εi = 1−} does not depend on the choice
of the basis.

Definition 4.2.6. Let M4k be an oriented closed manifold. The signature of M is
the signature of the bilinear form Ω on H2k(M).

This is a fundamental invariant in differential topology. One of its meanings is
that the signature is a bordism invariant; if W 4k+1 is an oriented compact manifold
with boundary M , then sign(M) = 0. The signature plays an important role in the
classification theory of high-dimensional manifolds.

Problem 4.2.7. Express the signature in terms of characteristic classes.
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This problem was solved by Hirzebruch in 1954, using topological methods de-
veloped by Thom. The Hirzebruch signature formula was one of the motivating
examples for the search of the general index formula, and in this course, we will
prove the signature formula as a special case of the index theorem. We have not yet
stated the signature formula (the right-hand-side would not yet be understandable).
But we can go the first step along its proof, and this is by identifying the signature
as the index of a new elliptic operator (which exists only on oriented manifolds of
dimension 4k).

Lemma 4.2.8. Let M4k be oriented and closed. Then sign(M) is equal to the trace
Tr(⋆∣H2n(M)).

Proof. Since on 2k-forms, ⋆2 = 1, we see that Ω(ω, η) = ⟨ω;⋆η⟩. The rest of the
proof is pure linear algebra. Let V be a finite-dimensional vector space, I an
involution, B a symmetric bilinear form and ⟨; ⟩ and assume these are related by
⟨x; y⟩ = B(x, Iy). Since

B(x, Iy) = ⟨x; y⟩ = ⟨y;x⟩ = B(y, Ix) = B(Ix, y),
the involution I is selfadjoint, and the decomposition V = V+ ⊕ V− into the

eigenspaces of I is orthogonal. If x ∈ V±, we get B(x,x) = ⟨x; Ix⟩ = ±⟨x;x⟩, and ±B
is positive definite on V±. If x ∈ V+ and y ∈ V−, then B(x, y) = ⟨x; Iy⟩ = −⟨x; y⟩ =
0 because both spaces are orthogonal. Thus the signature is dimV+ − dimV− =
Tr(I). �

4.3. Complex manifolds and vector bundles. We now investigate the refine-
ment of the harmonic theory for complex manifolds. We first begin in arbitrary
dimensions; but at a crucial point it turns out that one dimensional complex man-
ifolds are much easier to treat. The index theorem on Riemann surfaces is a very
classical result: the Riemann-Roch formula.

Definition 4.3.1. Let M be a smooth manifold of dimension 2n. A smooth at-
las (Ui, hi) is holomorphic if all transition functions are holomorphic. A complex
structure is a maximal holomorphic atlas, and a complex manifold is a manifold
M , together with a complex structure. A 1-dimensional complex manifold is called
Riemann surface.

Examples: C, CP1, tori. Moreover, one can prove that each differentiable surface
of genus g has a complex structure (by no means unique, and this is by no means
an easy result).

Definition 4.3.2. Let M be a complex manifold and V →M be a complex vector
bundle. A bundle atlas (Ui, hi) of V is holomorphic if the transition functions
hij ∶ Uij → GLr(C) are holomorphic.

Examples 4.3.3. The tautological line bundle on CPn is a holomorphic vector bun-
dle. The tangent bundle of a complex manifold has a natural holomorphic structure.
On the dual vector bundle E∗, there is a holomorphic structure. Likewise, tensor
products and hom-bundles have holomorphic structures.

We discuss the tangent bundle to a complex manifold in a little more detail. Let

x ∈M and let x ∈ U h→ h(U) ⊂ Cn be a holomorphic chart. The composition
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Jx ∶ TxM
Th→ Th(x)Cn

can
≅ Cn i⋅→ Cn

can
≅ Th(x)

Th−1→ TxM

satisfies J2
x = −1, does not depend on the choice of h (since the atlas is holomor-

phic). J is a smooth bundle endomorphism and satisfies J2 = −1. This turns TM
(which is a priori only a real vector bundle) into a complex vector bundle.

Definition 4.3.4. Let M be a real manifold. An almost-complex structure on
M is a complex structure on the vector bundle TM , in other words, a smooth
endomorphism J of TM with J2 = −1.

One can prove that on surfaces, each almost complex structure is induced from
a complex structure. This requires an amount of analysis (not directly related to
index theory). The corresponding fact in higher dimensions is false (but there is an
additional condition on J that guarantees this).

4.4. Multilinear algebra of complex vector spaces. We now have to delve
into (multi)linear algebra of complex vector spaces. Let V be a real vector space
of dimension 2n, equipped with a complex structure J . This defines the structure
of a complex vector space on V , namely (a + ib)v ∶= av + bJv. We consider Λ∗V ∗,
the algebra of complex-valued, R-multilinear alternating forms. This is a complex
vector space, the piece ΛpV ∗ has complex dimension (2n

p
). There is a conjugation

map ω ↦ ω̄ on Λ∗V ∗, defined by

ω̄(v1, . . . , vp) ∶= ω(v1, . . . , vp).
If e1, . . . , en is a C-basis of V and e1, . . . , en the dual basis of V ∗ ⊂ Λ1V ∗, then

(e1, ē1, . . . , en, ēn) is an C-basis of Λ1V ∗. Then the set

{ei1 ∧ eip ∧ ēj1 ∧ ējq ∣p + q = r, i1 < . . . < ip; j1 < . . . < jq}
is a C-basis of ΛrV ∗. We define subspaces

Λp,qV ∗ ∶= span{ei1 ∧ eip ∧ ēj1 ∧ ωējq ∣i1 < . . . < ip; j1 < . . . < jq}.
It is clear that ⊕p+q=r Λp,qV ∗ = ΛrV ∗ and that dim(Λp,qV ∗) = (n

p
)(n
q
) and

Λp,qV ∗ = Λq,pV ∗. In basis-free terms, Λp,qV ∗ is the subspace of all ω ∈ Λp+qV ∗

such that for all v1, . . . , vr ∈ V and all z ∈ C×, one has

ω(zv1, . . . , zvr) = zpz̄qω(v1, . . . , vr).
Complex vector spaces are naturally oriented; if (e1, . . . , en) is a C-basis, then

the R-basis (e1, ie1, . . . , en, ien) is said to be positively oriented.
If V is a complex vector space, a compatible scalar product is a R-valued scalar

product ⟨; ⟩ such that J is an orthogonal map. A compatible scalar product extends
to a complex scalar product by

h(v,w) = ⟨v;w⟩ − i⟨v;Jw⟩.
However, when V is the tangent space to a complex manifold, we use only R-

valued scalar products. If ⟨; ⟩ is a compatible scalar product, one can find an
orthonormal basis of the form (e1, ie1, . . . , en, ien). This is seen by taking a complex
orthonormal basis with respect to h.
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The Hodge star operator is most usefully not extended as a C-linear operator,
but as a C-antilinear operator ⋆̄ (the usual Hodge star, followed by complex con-
jugation). The extension of the inner product on the real valued forms to complex
valued forms is given by the formula

⟨ω;η⟩vol = ω ∧ ⋆̄η.
The volume form is an element of Λn,nV ∗.

Lemma 4.4.1.

(1) The spaces Λp,q for different values of (p, q) are orthogonal.
(2) The Hodge operator ⋆̄ takes Λp,qV ∗ to Λn−p,n−qV ∗.

Proof. The group S1 ⊂ C× acts by isometries on V , since the metric is compatible.
Thus the induced action on Λ∗V ∗ is by isometries. The subspace Λp,qV ∗ is the
subspace on which S1 acts by the character z ↦ zp−q. Thus the spaces Λp,qV ∗ are
orthogonal (by the same argument that proves that the eigenspaces of a unitary
matrix are orthogonal). The second statement follows by the formula for the scalar
product. �

The next lemma, easy as it is, is nothing short of a miracle, it allows us to
describe the interplay between compatible metrics and the complex structure for
Riemann surfaces. In higher dimensions, the situation is much more complicated.

Lemma 4.4.2. Let V be a 1-dimensional complex vector space with a compatible
metric. For all ω ∈ Λ1V ∗, the identity

ω ○ J = − ⋆ ω
holds.

Proof. A straightforward check on a basis: Let (e1, e2 = Je1) be an oriented R-basis
of V . Then

e1 ○ J(e1) = 0; e1 ○ J(e2) − 1; e2 ○ J(e1) = 1; e2 ○ J(e2) = 0

and

⋆e1(e1) = e2(e1) = 0; ⋆e1(e2) = e2(e2) = 1; ⋆e2(e1) = −e1(e1) = −1; ⋆e2(e2) = −e1(e2) = 0.

�

These notions generalize to forms with values in a fixed (finite-dimensional)
hermitian vector space (E,h). The natural map τ ∶ E → E∗, e ↦ h(e, ) is a
C-antilinear isomorphism. We define

⋆̄E ∶ Λp,qV ∗ ⊗E → Λn−p,n−qV ∗ ⊗E∗

by

ω ⊗ e↦ ⋆̄ω ⊗ τ(e),
an antilinear isometry.
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4.5. The Dolbeault (Cauchy-Riemann) operator. Let M be a complex man-
ifold. From the linear algebra in the previous section, we get a decomposition
Ar(M) = ⊕p+q=rAp,q(M), Ap,q(M) ∶= Γ(M,Λp,qT ∗M). In local holomorphic
charts, we can write forms in Ap,q(M) as sums of forms of the form

adzi1 ∧ . . . dzip ∧ dz̄j1 ∧ dz̄jq ; a ∈ C∞.

If we define, in local coordinates, the operators

∂

∂zj
∶= 1

2
( ∂

∂xj
− i ∂
∂yj

); ∂

∂z̄j
∶= 1

2
( ∂

∂xj
+ i ∂
∂yj

),

we get that for functions a:

da =
n

∑
j=1

∂

∂zj
adzj +

∂

∂z̄j
adz̄j .

This implies that

dAp,q(M) ⊂ Ap,q+1(M)⊕Ap+1,q(M)
and we set, for ω ∈ Ap,q(M); dω = ∂ω + ∂̄ω, with ∂ω ∈ Ap+1,q and ∂̄ω ∈ Ap,q+1.

Remark 4.5.1. The holomorphic functions are the solutions of ∂̄f = 0. Moreover
∂2 = ∂̄2 = 0 and ∂∂̄ + ∂̄∂ = 0.

Lemma 4.5.2. Let E →M be a holomorphic vector bundle and let Ap,q(M,E) be
the space of (p, q)-forms with values in E. Let s be a local holomorphic section of
E. If ω ∈ Ap,q(M), we define ∂̄E(ω ⊗ s) ∶= (∂̄ω)⊗ s. Then

(1) ∂̄E is a well-defined differential operator Ap,q(M,E) → Ap,q+1(M,E) of
order 1.

(2) The symbol is symb∂̄E(ξ)e = iξ
0,1 ∧ e, where ξ ∈ Λ0,1T ∗M denotes the pro-

jection of ξ.

(3) 0→ A0,0(M,E) ∂̄→ A0,1(M,E) ∂̄→ . . .A0,n(M,E)→ 0 is an elliptic complex.
(4) Λp,0(T ∗M)→M is a holomorphic vector bundle, and the diagram

Ap,q(M) ∂̄ //

≅
��

Ap,q+1(M)

≅
��

A0,q(M ; Λp,0T ∗M) ∂̄ // A0,q+1(M ; Λp,0T ∗M)
commutes.

Proof. (1) follows because we used a holomorphic local section. (4) is easily seen
in local coordinates. The symbol is computed as follows. Let f be a function with
dxf = ξ and s a local holomorphic section with s(x) = e and ω a (p, q)-form. Then

symb∂̄(ξ)(ω ⊗ e) = i[∂̄E , f](ω ⊗ s)(x) = i∂̄E(fω ⊗ s) − if ∂̄E(ω ⊗ s) = i∂̄f ∧ ω ⊗ s
by the Leibniz rule for the ∂̄-operator. But ∂̄f(x) = ξ0,1. For (3), it is clear that

∂̄2
E = 0. The exactness of the symbol sequence is proven exactly as in the real case;

the additional argument needed is that ξ ↦ ξ0,1 is an isomorphism T ∗RM → Λ0,1T ∗M
(dxi ↦ 1/2dz̄i, dyi ↦ i/2dz̄i). �
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Note that there is no canonical possibility to extend the operators ∂ to vector
valued forms (a suitable connection on E will give such a possibility).

Problem 4.5.3. (The Riemann-Roch problem) Compute the index of the Dol-
beault complex for a holomorphic vector bundle E →M on a complex closed man-
ifold.

We undertake the first steps in this lecture. Then we specialize to the case of
dimension 1. This is the classical Riemann-Roch problem, as we will see. Then we
take the first steps towards the solution of the index problem on a Riemann surface.
This will motivate the introduction of two major players: characteristic classes and
K-theory. In higher dimensions, the index formula for the Dolbeault complex goes
under the name Hirzebruch-Riemann-Roch theorem, and we will prove this as a
special case of the general index formula.

We now assume that our complex manifold M comes with a compatible Riemann
metric.

Proposition 4.5.4. The adjoint of ∂̄ ∶ Ap,q(M) → Ap,q+1(M) is given by ∂̄∗ =
−⋆̄∂̄⋆̄. More generally, the adjoint of ∂̄E is ∂̄∗E = −⋆̄∂̄E∗ ⋆̄. (See [32] p. 168).

If E → M is a holomorphic vector bundle, we let Hp(M,E) be the p th coho-
mology of the elliptic complex ∂E .

Theorem 4.5.5. (Serre duality) There is a conjugate linear isomorphism Hp(M,E) ≅
Hn−p(M,Λn,0T ∗M ⊗E∗).

Proof. There is a diagram that commutes

A0,p−1(M,E)

⋆̄
��

A0,p(M,E)
∂̄∗E

oo ∂̄E //

−⋆̄
��

A0,p+1(M,E)

⋆̄
��

An,n−p+1(M,E∗) An,n−p(M,E∗)
∂̄E∗
oo

∂̄∗
E∗ // An,n−p−1(M,E∗).

The respective cohomology groups are, by the Hodge theorem Hp(M,E) =
ker(∆E), equal to the intersection of the kernels of the horizontal maps. The
result follows (note that the vertical arrows are antilinear). �

4.6. The Hodge decomposition on a Riemann surface. Let M be a closed
connected Riemann surface.

Definition 4.6.1. The genus of M is the number g ∶= 1
2

dimH1(M,R).
The genus is an integer by Poincare duality. We study the de Rham complex of

M :

A0,1

∂

""
A0,0

∂̄

<<

∂

""

A1,1

A1,0

∂̄

<<

and define Hp,q =Hp+q∩Ap,q, the space of d-harmonic p, q-forms. Since d is real,
we have ⋆d⋆ = ⋆̄d⋆̄.
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Theorem 4.6.2. For a closed Riemann surface, the following hold:

(1) Hp,q =Hq,p.
(2) Hr =⊕p+q=rHp,q.
(3) H0,0 = ker(∂̄).
(4) H1,0 = ker(∂̄)
(5) H0,1 = ker(∂̄∗) = Im(∂̄)�.
(6) H1,1 = ker(∂̄∗) = Im(∂̄)�.

Proof. (1) is clear. (2) is easy if r ≠ 1 (in these cases, there is only one summand).
Let ω ∈ H1 be harmonic. Then ⋆ω is harmonic and thus ω ○ J as well, by Lemma
4.4.2. But A1,0 and A0,1 are the ±i-eigenspaces of ○J , and the projection onto these
is therefore still harmonic. (2) follows.

For the other four part, we first consider the easy inclusions.
(3i) ω ∈H0,0 ⇒ 0 = dω = ∂ω + ∂̄ω, and both summands have to be zero.
(4i) If ω ∈H1,0, then dω = 0 = ∂ω + ∂̄ω = ∂̄ω (∂ω ∈ A2,0 = 0).
(5i) ω ∈ H0,1 ⇒ 0 = d∗ω = ∂∗ω + ∂̄∗ω = ∂̄∗ω for degree reasons. The second

equality follows from the main regularity theorem.
(6i) ω ∈ H1,1 ⇒ 0 = d∗ω = ∂∗ω + ∂̄∗ω = ∂̄∗ω for degree reasons. The second

equality follows from the main regularity theorem.
(4ii) ∂̄ω = 0. Then, for degree reasons, ∂ω = 0 and ω is closed. On the other

hand, d∗ω = −⋆̄d⋆̄ω = −⋆̄d ∗ ω̄. As ω̄ ∈ A0,1, ⋆ω = −ω ○ J = iω. Therefore −⋆̄d ⋆ ω̄ =
−⋆̄diω = i⋆̄dω = 0, and so ω is harmonic.

(3ii) ∂̄f = 0, then 0 = ddf = ∂∂̄f + ∂̄∂f = ∂̄∂f . Thus ∂f is exact and in ker(∂̄).
By (4), ∂f is also harmonic, and thus harmonic and exact, therefore zero.

(5ii) 0 = ∂̄∗ω = −⋆̄∂̄⋆̄ω. Therefore, ⋆̄ω = ⋆ω̄ ∈ A1,0 is ∂̄-closed and therefore
harmonic by (4).

(6ii) ω ∈ A1,1, ∂̄∗ω = 0. Then 0 = d∗d∗ω = ∂∗∂̄∗ω + ∂̄∗∂∗ω = ∂̄∗∂∗ω. By (5), ∂∗ω
is harmonic and coexact, therefore 0. �

Remark 4.6.3. Part (1) of Theorem 4.6.2 holds for all compact complex manifolds,
with the same proof. Parts (3)-(6) are specific to the complex dimension 1: in higher
dimensions, the individual operators ∂̄ are not elliptic, and you should not expect
the kernels/cokernels to be finite-dimensional. For complex manifolds of higher
dimensions, one would part (2) of the above theorem to be true, i.e.

Hk(M) = ⊕
p+q=k

Hp,q(M).

This is not true in general. For example, if it is true, then dimH1(M) = dimH1(M) =
2 dimH1,0(M) has to be even. But S1 × S3 does not have this property, and still
has a complex structure: let Z act on C2 ∖ 0 by n ⋅ z ∶= λnz, λ ∈ C, ∣λ∣ ≠ 0,1.
This action is properly discontinuous and by biholomorphic maps, so the quotient
(C2 ∖ 0)/Z ≅ S1 × S3 inherits a complex structure. These complex manifolds are
called Hopf surfaces.

The additional condition for the decomposition to hold is that the metric on
M is Kähler, meaning that the 2-fom ω(X,Y ) = g(X,JY ) is closed. The complex
projective space CPn has an essentially unique (up to multiplication by a constant)
Riemann metric, the Fubini-Study metric, so that the canonical action of U(n + 1)
is by isometries. This metric is obtained by ”averaging” an arbitrary compatible
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metric using the invariant integral on U(n + 1). Hence the form ω is U(n + 1)-
invariant as well.

Complex submanifolds of Kähler manifolds are Kähler. This means that each
complex submanifold of CPn, i.e. a complex projective variety, is Kähler. Therefore,
Kähler metrics play an important role in complex algebraic geometry.

The key to the Hodge decomposition for Kähler manifolds are the Kähler iden-
tities relating the Laplace operator ∆ to the operators ∂̄ and ∂. The proof of the
Kähler identities is only differential calculus, but far from trivial and lies beyond
the scope of this lecture.

Suggested further reading: The classic text on complex algebraic geometry is
[11]. A more terse exposition of the Hodge decomposition in the complex case is
in [32]. More recent sources are [1] (more to the differential-geometric side of the
story) and [29], [30], more to algebro-geometric side.

Theorem 4.6.4. Let M be a compact connected Riemann surface. Then

(1) ∂̄ ∶ A0,0(M)→ A0,1(M) has index 1 − g.
(2) ∂̄ ∶ A1,0(M)→ A1,1(M) has index g − 1.

Proof. By the previous theorem, one sees that

ind(∂̄Λ0,0) = dimH0,0 − dimH0,1; ind(∂̄Λ1,0) = dimH1,0 − dimH1,1.

But dimH1,0 + H0,1 = dimH1 = dimH1(M) = 2g by Theorem 4.6.2 (2) and
dimH1,0 = dimH0,1, so both numbers equal g. A harmonic 0-form is closed, hence
constant, whence dimH0,0 = 1. Finally dimH1,1 = dimH1 = 1. �

The above index computation turns out to be enough for the computation of
ind(∂̄E) for a general holomorphic vector bundle V → M over a Riemann sur-
face. We have accumulated enough knowledge to take one further step towards the
general case.

Proposition 4.6.5. Let M be a Riemann surface and V → M be a holomorphic
vector bundle. Then the index ind(∂̄V ) ∈ Z depends only on the vector bundle V ,
not on the holomorphic structure.

Proof. We have seen that the symbol of ∂̄E is symb∂̄E(ξ) = iξ0,1 ∧ , and this
means that the symbol only depends on the complex structure of M , not on the
holomorphic structure on E. If two holomorphic structures are given on E, denote
the Cauchy-Riemann operators by ∂̄0

E and ∂̄1
E . For each t ∈ [0,1], the operator

Dt ∶ (1 − t)∂̄0
E + t∂̄1

E is elliptic and has the same symbol.
Thus we get a path [0,1]→ Fred(W 1(M,E);L2(M,E)), t↦Dt, and this path is

continuous. Since the index is homotopy invariant, we see that ind∂̄0
E
= ind∂̄1

E
. �

Proposition 4.6.6. Let E →M be a complex vector bundle on the Riemann sur-
face. Then σ(ξ) = iξ0,1 ∧ is an elliptic symbol, and there is an elliptic operator
DE with that symbol.

This is clear (existence of differential operators with given symbol).

Definition 4.6.7. Denote by Vect(M) the set of isomorphism classes of complex
vector bundles. It becomes a commutative semigroup by taking direct sums of
vector bundles.
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The previous two propositions show that

[V ]↦ ind(DV )
is a well-defined homomorphism map Vect(M)→ Z. It is trivial that ind(DV ⊕W ) =

ind(DV ) + ind(DW ), and we have a semigroup homomorphism.

Proposition 4.6.8. Let (A,⊕) be a commutative semigroup. Let F (A) be the
quotient of the free abelian group ZA, by the subgroup generated by the elements

a⊕ b − a − b
and let ι ∶ A → F (A), a ↦ a, be the natural homomorphism. Then if B is any

abelian group and f ∶ A→ B a homomorphism of semigroups, then there is a unique
group homomorphism g ∶ F (A)→ B such that g ○ ι = f . If A is already a group, the
ι is an isomorphism.

Proof. This is clear (universal property formal nonsense). �

Definition 4.6.9. Let X be a compact Hausdorff space. The K-theory group of
X is K0(X) ∶= F (Vect(X)).

Let us summarize what we have achieved so far.

Proposition 4.6.10. Let M be a Riemann surface. There is a unique homomor-
phism I ∶ K0(M) → Z such that for each holomorphic vector bundle V → M , the
identity I(V ) = ind(∂̄V ) holds.

The rest of the proof of the index theorem for Riemann surfaces will now be:

● Find numbers that one can attach to complex vector bundles on a surface
(one will be of course the rank, the other will be the Chern number).

● Prove that the bundles C and Λ1,0 generate K0(X) in a suitable way and
find the right linear combination of the numerical invariants.

4.7. Relation to the classical theory. In the literature on Riemann surfaces,
the Riemann-Roch theorem is typically not stated as an index theorem for an
elliptic operator. Let us briefly describe the classical outlook of the theorem. Let
X be a compact Riemann surface. A formal linear combination D = ∑ri=1 nipi,
pi ∈ X points, ni ∈ Z, is called a divisor. We identify the relation 0pi = 0 and
np +mp = (m + n)p; with these conventions the set of divisors becomes an abelian
group div(X). A divisor is nonnegative if ni ≥ 0 and we say D1 ≥ D0 if D1 −D0 is
nonnegative.

For example, consider a meromorphic function f on X. Let p1, . . . , ps be the
zeroes and let ni be the order of f at pi. Moreover, let ps+1, . . . , pr be the poles,
with order −ni. We denote by (f) = ∑ri=1 nipi the divisor of f . More generally, if f
were a meromorphic section of a line bundle, we can apply the same idea and get
a divisor (f) on X.

The degree of the divisor D is the sum ∑i ni ∈ Z. A divisor is principal if there
exists a meromorphic function f with D = (f).

To any divisor, one can construct a line bundle LD, in the following canonical way
(this uses the cocycle description of vector bundles). Let D = ∑i nipi be a divisor,
written in minimal form. Let U0 = X − {pi}, and let Ui be a disc neighborhood
of pi. Pick holomorphic charts hi ∶ Ui → E, hi(pi) = 0 and assume that the Ui
are disjoint for i ≥ 1. Let LD = ∐iUi × C/ ∼; the equivalence relation is that
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U0 × C ∋ (x, z) ∼ (x, zhi(x)ni) whenever x ∈ U0 ∩ Ui. With the obvious projection
to X, this becomes a holomorphic line bundle LD.

This line bundle comes equipped with a meromorphic section; namely, take
sD(x) = 1 over U0. Inspection shows that (sD) = D holds. The construction
satisfies LD0+D1 ≅ LD0 ⊗ LD1 . If D = (f) for a meromorphic function, the bun-
dle LD is trivial, because f−1sD is a meromorphic section without zeroes or poles.
More generally, if s is a meromorphic section of a line bundle, then L(s) ≅ L. It fol-
lows, by the Poincaré-Hopf theorem, that the degree of D equals the Chern number

∫X c1(LD).
Let M×(X) be the multiplicative group of nonzero meromorphic functions and

H1(X,O×) the group of isomorphism classes of holomorphic line bundles, we get
an exact sequence

0→ C× →M×(X)→ div(X)→H1(X,O×)
(it is indeed a cohomology sequence of a sequence of sheaves). The image of the

last map is the group of all line bundles that have a meromorphic section. These
are all line bundles (and so the sequence is exact at the end).

Lemma 4.7.1. Each holomorphic line bundle over a Riemann surface has a nonzero
meromorphic section.

Proof. Let the Chern number c of L be at least 2g − 1. Then, by Serre duality
dim coker∂̄L = dim ker ∂̄Λ1,0⊗L∗ . By Poincaré-Hopf, this is zero, since the Chern
number of Λ1,0 ⊗ L∗ equals 2g − 2 − c < 0. By Riemann-Roch, we conclude that
dim ker ∂̄L = ind ∂̄L = 1 − g + d > 0. Thus each line bundle of large degree has a
homlomorphic section.

For a given line bundle L, pick a line bundle L′ such that c(L′)− c(L) and c(L′)
are both at least 2g − 1. We get a holomorphic section s of L′ and t of L′ ⊗ L∗.
Then st−1 is the desired meromorphic section. �

Now suppose that s is a holomorpic section of LD. In the chart over U0, we get
simply a holomorphic function g. At a point pi with ni < 0, g must have a zero, of
order at least −ni, while if ni > 0, g has at worst a pole of order ni.

So we see:

Lemma 4.7.2. The space ker(∂̄LD) of holomorphic sections of LD is isomorphic
to the space of meromorphic functions g such that (g) ≥D.

The bundle Λ1,0 is called the canonical bundle in the classical theory. Any divisor
associated with a meromorphic section of K is called canonical divisor and denoted
K. Using Serre duality, we might now restate the Riemann-Roch theorem:

Theorem 4.7.3. (Riemann-Roch, classical version) For each divisor D on a com-
pact Riemann surface of genus g, of degree d, we have

dim ker(∂̄LD) − dim ker(∂̄LK−D) = 1 − g + d.

It is worth to work out everything for CP1. For the proof of the Riemann-Roch
theorem, we also need to look at the case g = 1.

Proposition 4.7.4. Let X be a Riemann surface of genus g = 1 and let x ∈ X.
Then the index of ∂̄L(x) is equal to 1.
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Proof. First we show that Λ1,0 is the trivial holomorphic line bundle. This is
obvious if we use the fact that X must be a complex torus C/Γ, but we do not
wish to rely on that. Instead, by Theorem 4.6.2, the space of holomorphic sections
of Λ1,0 is one-dimensional. Pick a nonzero holomorphic section ω. As the Chern
number of Λ1,0 is zero, by the topological Gauss-Bonnet theorem, and because all
local indices of holomorphic sections are positive, we find that ω has no zeroes; in
other words, the bundle Λ1,0 is holomorphically trivial.

The space ker(∂̄L(x)) is the space of meromorphic functions on X which have at
worst a simple pole at x. It contains the constant functions, and a meromorphic
function on X with a single simple pole at x can be viewed as a map f ∶X → CP1.
As ∞ is a regular value, f must have degree 1. It follows that for all regular values
z, f−1(z) must be a single point (this uses the holomorphicity of f). Near a critical
point of f of order k, f assumes each value k times, so we conclude that f has no
critical values and therefore is a diffeomorphism, contradicting the assumption that
g = 1. We conclude that ker(∂̄L(x)) is one-dimensional.

The space ker(∂̄L(−x)) is the space of holomorphic functions on X which have a

zero at x. As each holomorphic function on X is constant, ker(∂̄L(−x)) = 0. �

Exercise 4.7.5. Find a canonical divisor of CP1. Prove that each divisor is linearly
equivalent to n ⋅ 0, for a unique n ∈ Z. Compute dimH0(X,D) by hands and verify
the Riemann-Roch theorem by hands.

The proof of Riemann-Roch that we gave used the main theorem on elliptic
regularity and the theory of characteristic classes as the main ingredients. While
the characteristic class theory was overkill (in fact, we only needed the first Chern
class only, and that can be done in an easier way), the use of the regularity theorem
is, most emphatically, neccessary. In Riemann surface texts, the analysis going
into the Riemann-Roch theorem is a version of the general theory (which can be
somehow simplified, but is still difficult).

If one knows in advance thatX is a projective variety (i.e. a complex submanifold
of CPn for some n), then it is known (Chow’s theorem) that X is algebraic and in
this case, there is a purely algebraic proof of Riemann-Roch (GAGA). In fact, each
Riemann surface can be embedded into projective space, and this is a consequence
of Riemann-Roch!
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5. Some bundle techniques

5.1. Vector bundles. The definition of a vector bundle won’t be repeated here.
We work with vector bundles over the field K = R,C. There are two categories: dif-
ferentiable vector bundles over smooth manifolds, and topological vector bundles
over Hausdorff spaces. All theorems will hold in both categories. We formulate ev-
erything for topological bundles, replacing the words ”topological space” by ”man-
ifold”, ”vector bundle” by ”smooth vector bundle” and ”continuous” by ”smooth”
gives a valid argument. When π ∶ V → X is a vector bundle, we denote the fibres
by Vx ∶= π−1(x).

Definition 5.1.1. Let V → X be a vector bundle. A subbundle W ⊂ V is a union
of sub vector spaces of the fibres W = ∐x∈XWx, such that W is locally trivial in
the subspace topology.

There are several types of bundle maps. Unfortunately, there is no suggestive
terminology. The most general notion is when W → Y , V → X are vector bundles
and f ∶X → Y is a continuous map. One considers maps ϕ ∶ V →W such that

V

��

ϕ // W

��
X

f // Y

commutes and such that ϕ is fibrewise linear (and continuous). We call such an
ϕ a bundle morphism over f . Two special cases are important enough to deserve a
name on its own:

(1) If f is the identity map on X, we call ϕ a vector bundle homomorphism.
(2) If f is arbitrary, but ϕ ∶ Vx →Wf(x) is an isomorphism for each x ∈X, then

ϕ is called a bundle map over f .

If you know a better name for these things, please let me know. The pullback of
vector bundles has the following universal property. Let f ∶X → Y and π ∶W → Y

be a vector bundle. Then there is a bundle map f̂ ∶ f∗W ∶= {(x,w) ∈X ×W ∣f(x) =
π(w)}→W over f , defined by f̂(x,w) = w. Assume that V →X is another bundle
and φ ∶ V → W be a bundle morphism oder f . Then there is a unique bundle

homomorphism ϕ ∶ V → f∗W such that f̂ ○ ϕ = φ.

Lemma 5.1.2. Any vector bundle over a paracompact base space admits a bundle
metric.

Lemma 5.1.3. Let F ∶ V →W be a vector bundle homomorphism which is bijective.
Then F is an isomorphism of vector bundles, i.e. F −1 is continuous.

Proof. This follows from the fact that the inversion map on GLn(K) is differen-
tiable. �

Lemma 5.1.4. A subbundle W ⊂ V has adapted charts, i.e for each x ∈ X, there
is a neighborhood U and a bundle chart V ∣U ≅ U ×Kn that sends W ∣U to U ×Km.

Proof. The problem is a local one, which is why we can assume that V = X ×Kn.
Let o ∈ X, and let Uo ⊂ Kn be a complement of Wo. Consider F ∶ W ⊕ Uo → V ,
(w,u) ↦ w + u; a bundle homomorphism. F is an isomorphism at o, and so it



68 JOHANNES EBERT

is for all x in a neighborhood U of o. By Lemma 5.1.3, F gives an isomorphism
W ∣U ⊕Uo ≅ V ∣U . The inverse is the desired adapted chart. �

Corollary 5.1.5. Let V ⊂ X × Kn be a subbundle and let Px be the orthogonal
projection onto Vx. Then X ↦Matn,n(K), x↦ Px is continuous.

Proof. The problem is local, so assume V ≅ X × Km. This isomorphism defines
sections s1, . . . , sm of V which are everywhere linear independent. Applying the
Gram-Schmidt process to s1, . . . , sm defines an orthonormal basis t1, . . . , tm of V .
The inclusion V → X ×Km is given by a continuous function A ∶ X → Matn,m(K)
that takes values in the matrices A such that A∗A = 1m. The orthogonal projection
is P = AA∗. �

With the same technique, one can prove.

Lemma 5.1.6. Let F ∶ V → W be a vector bundle homomorphism, and assume
that x↦ rank(Fx) is constant. Then ker(F ) is a vector bundle.

Proof. Again, the problem is local, so we can assume that V and W are trivial
and F is given by a continuous function F ∶ X → Matm,n(K). Let o ∈ X and P
the orthogonal projection onto ker(Fo). Consider G = F ∗F + P . At o, G is an
isomorphism, so it is for nearby x ∈ U ⊂ X. By definition, Gx maps ker(Fx) to
ker(Fo). Since Gx is an isomorphism and the dimensions of ker(Fo) and ker(Fx)
agree, Gx ∶ ker(Fx) → ker(Fo) is an isomorphism. It follows that G is a bundle
isomorphism over U that maps ker(F ) to X × ker(Fo) and hence it reveals ker(F )
as a subbundle. �

Corollary 5.1.7. (1) The orthogonal complement of a subbundle is again a
vector bundle.

(2) The image of a vector bundle homomorphism with constant rank is a vector
bundle.

Proof. Let W ⊂ V be a subbundle. Equip V with a bundle metric. Let P ∶ V → V
be the orthogonal projection onto W . By looking at adapted charts, one sees that P
is a continuous bundle homomorphism. The orthogonal complement W � is ker(P ),
which by Lemma 5.1.6 is a subbundle. For the second part, pick bundle metrics
and observe that Im(F ) = ker(F ∗)�, which by the first part and Lemma 5.1.6 is a
vector bundle. �

The most important vector bundle is the tautological bundle.

Definition 5.1.8. The Grassmann manifold of k-dimensional subspaces of Kn
Grk(Kn) is the set of all k-dimensional subspaces of Kn. We identify Grk(Kn)
with the set {P ∈ Matn,n(K)∣P 2 = P ;P ∗ = P, rank(P ) = k}, by sending a subspace
V ⊂ Kn to the orthogonal projection onto it (and by sending a projection onto its
image). Let Vk,n ⊂ Grk(Kn)×Kn be the set of all pairs (V, v), V ∈ Grk(Kn), v ∈ V .

The Grassmann manifold is compact (it is a closed bounded subset of the space
of matrices), and we will see soon that it is indeed a manifold.

Lemma 5.1.9. Vk,n is a subbundle of the trivial vector bundle.

Proof. Vk,n is the image of the canonical homomorphism (P, v) ↦ (P,Pv) of the
bundle Grk(Kn) ×Kn. �
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Proposition 5.1.10. Let X be a space. Then there is a bijection between the set
of k-dimensional subbundles of X ×Kn and continuous maps X → Grk(Kn). The
bijection sends a bundle V ⊂ X × Kn to the map x ↦ Vx; the other direction is
f ↦ f∗Vn,k.

If V → X is a vector bundle, then bundle monomorphisms V → X ×Kn are in
bijection with pairs (f, a), f ∶X → Grk(Km) and a ∶ V ≅ f∗Vk,n.

Proof. Let V be a subbundle. The map fV ∶ X → Grk(Kn), x ↦ Vx is continuous,
by Lemma 5.1.5. Clearly both bijections are mutually inverse. �

One should think of a vector bundle as a family of vector spaces that depends
continuously on a space X. This proposition gives some first credibility that this
way of thinking is indeed accurate. There are two steps missing: first we need to
show that any vector bundle is indeed isomorphic to a subbundle of a trivial vector
bundle, and this isomorphism needs to be canonical in a reasonable way. Second,
we want to prove that homotopic maps give rise to isomorphic vector bundles.

Theorem 5.1.11. Let F ∶ [0,1]×X → Y be a homotopy from F0 to F1 and V → Y
be a vector bundle. If X is paracompact, then F ∗

0 V ≅ F ∗
1 V .

Before we give the proof, let us collect a technical lemma.

Lemma 5.1.12. Let Vi → X, i = 0,1, be vector bundles over a paracompact Haus-
dorff space and let A ⊂ X be closed. Assume that V0∣A ≅ V1∣A. Then there exists a
neighborhood U of A and a bundle isomorphism V0∣U ≅ V1∣U .

Proof. Let φ ∶ V0∣A → V1∣A be an isomorphism. We can find open sets Ui ⊂X, i ∈ I,
0 /∈ I that cover A, such that Vj ∣Ui is trivial and take U0 = X −A as another open
set. Let λi be a partition of unity subordinate to the covering. Since paracompact
spaces are normal, the space Ui is normal. The restriction of φ to Ui is given by a
function Ui ∩A→ GLn(K), with respect to some unnamed bundle charts.

By Tietze’s extension theorem, we can find extension φi of φ∣A∩Ui over Ui. φi is
only a bundle homomorphism, not an isomorphism. Put ψ = ∑i∈I λiφi. This is a
bundle homomorphism, and an isomorphism over A. Since being an isomorphism
is a local condition, ψ is an isomorphism over some neighborhood U of A. �

Remark 5.1.13. In the differentiable case, there are two types of extension prob-
lems one could consider. If A ⊂X is an arbitrary closed subset, one calls a function
A → R smooth if it is the extension of a smooth function on some neighborhood
of A. In this case, the statement of Lemma 5.1.12 is vacuous. The other relevant
case is when A ⊂ X is also a submanifold. In that case, one has to use a tubular
neighborhood of A in X.

Proof, under the additional assumption that X is compact. Let jt ∶ X → [0,1] ×X
be the inclusion x ↦ (t, x). Since Ft = F ○ jt, it is enough to prove the theorem
when F is the identity, viewed as a homotopy from j0 to j1. In other words, we
assume that V → [0,1] × X is a vector bundle, and let Vt ∶= j∗t V . We want to
show that V0 ≅ V1. To this end, we introduce an equivalence relation ∼ on [0,1]:
t ∼ s iff Vt ≅ Vs. Of course, this is an equivalence relation. Once we prove that the
equivalence classes are open, we are done, since [0,1] is connected. Fix t ∈ [0,1]
and consider the bundles Vt × [0,1] and V over X × [0,1]. By definition, their
restrictions to X × {t} are isomorphic. By Lemma 5.1.12, we find a neighborhood
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X×t ⊂ U ⊂X×[0,1] over which these two bundles are isomorphic. By compactness,
U contains a strip X × (t − a, t + b). Hence if s ∈ (t − a, t + b), then Vt ≅ Vs. �

The general case needs similar ideas, but with more care. I recommend to read
the proof in [27] in greater generality.

Theorem 5.1.14. Let X be a compact space and π ∶ V → X be a vector bundle of
rank k. Then there exists n >> 0 and an injective bundle homomorphism φ ∶ V →
X × Kn. If moreover A ⊂ X is closed and ψ ∶ V ∣A → A × Km is an already given
bundle monomorphism, then we can pick φ to coincide on A with in,m ○ ψ, where
in,m ∶ X × Km → X × Kn (the price one has to pay is that m is potentially very
large).

Proof. Let Ui, i = 1, . . . , r, be an open cover, (π;hi) ∶ V ∣Ui ≅ Ui ×Kk bundle trivi-
alizations and λi be a partition of unity subordinate to this cover. Let n = rk and
define φ ∶∶ V →X × (Kk)r by

φ(v) ∶= (π(x), λ1(π(v))φ1(v), . . . , λr(π(v))φr(v)).
This is a bundle injection, as one checks easily. For the relative case, let U0

be a neighborhood of A and (π,φ0) ∶ V ∣U0 → X × Kn be an extension of ψ to
a bundle homomorphism, as guaranteed by Lemma 5.1.12. Since being injective
is an open condition, we can assume that (π,φ0) is injective (after making U0

smaller). Let (π,φ1) ∶ V → X × Km be an embedding as just constructed. Let
µ be a function which is equal to 1 on A and has support in U0. Let φ(v) ∶=
(π(v), µ(π(v))φ0(v), (1 − µ(π(v)))φ1(v)), which is the desired extension. �

Corollary 5.1.15. For each vector bundle V → X over a compact space, there is
a bundle V � →X such that V ⊕ V � ≅X ×Cn.

Remark 5.1.16. For compact manifolds, we can use the same argument. It is a
little surprising that in the smooth case, the compactness of X is not necessary.
More precisely, if V →M is a smooth vector bundle, we can embed V into M ×Rm,
for some large m. The reason is the Whitney embedding theorem. Since V is among
other things a manifold, we can find an embedding of manifolds j ∶ V → Rm. The
differential dj ∶ TV → V × Rm is an everywhere injective homomorphism of vector
bundles over V . But the restriction of TV to the zero section is nothing else than
TM ⊕ V , so we can produce the desired embedding.

If V is complex, we first take a real embedding f ∶ V →X ×Rm ⊂ Cm and define

a C-linear embedding by f̂(v) = f(v) − if(iv).

We can now formulate and prove the classification theorem for vector bundles.
Let X be a compact space and [X,Grk(Kn)] be the set of homotopy classes. More-

over, VectkK(X) is the set of isomorphism classes of rank k vector bundles over X.
If f ∶X → Grk(Kn), we can form f∗Vk,n →X. The isomorphism class of this vector
bundles does not depend on f , by Theorem 5.1.11. So we get a well-defined map

[X,Grk(Kn)]→ VectkK(X).
There is no n on the right hand side. In fact, there is an inclusion i ∶ Grk(Kn)→

Grk(Kn+1), and i∗Vk,n+1 ≅ Vk,n. Thus, by making n larger and larger, we obtain a
map
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colimn[X,Grk(Kn)]→ VectkK(X).

Theorem 5.1.17. For each compact Hausdorff space X, the above map is a bijec-
tion.

Proof. Since any vector bundle can be embedded into X×Kn, the map is surjective.
Let fi ∶ X → Grk(Kni) be two maps, which represent two elements in the colimit
that go to the same vector bundle V . We can take both fi to go to Grk(Kn),
n ≥ n0, n1. What this means is that there are isomorphisms ai ∶ V ≅ f∗i Vk,n. In
other words, we have two bundle maps ji ∶ V → X × Kn, which is the same as a
bundle map of V × {0,1}→X × [0,1]×Kn. By Theorem 5.1.14, we can extend this
to a bundle map of j, after increasing n. This means that f0 and f1 are homotopic,
after increasing n. �

If X is compact, then colimn[X,Grk(Kn)] ≅ [X, colimnGrk(Kn)] (a property of
the colimit topology). Thus we have shown that there is a bijection

[X,Grk(K∞)]→ Vectk(X).

5.2. Principal bundles. A more flexible jargon to talk about bundles is provided
by the theory of principal bundles. Let us briefly recall the notion of fibre bundle.

Definition 5.2.1. A fibre bundle over a space X is a map π ∶ E → X so that for
each x ∈ X, there exists a neighborhood U of x and a homeomorphism π−1(U) ≅
U × π−1(x) over U . The space π−1(x) =∶ Ex is called the fibre over x.

At least if X is connected, then all fibres are homeomorphic. Sometimes, we say
that π ∶ E → X is a fibre bundle with fibre F , if all fibres are homeomorphic to
F . But there is a danger in this notion, because it invites the reader to identify
all fibres with each other, which will inevitably get you into hot water. This is
because there are several ways of identifying the fibres Ex with F . The theory of
principal bundles provides a precise calculus to keep track of all identifications and
if you understand it, you have taken a big psychological hurdle when dealing with
bundles.

Definition 5.2.2. Let G be a topological group and X a space. A G-principal
bundle consists of a right G-space E and a continuous map π ∶ E → X, such that
the following condition holds: For each x ∈ X, there is a neighborhood U and a
homeomorphism φ ∶ π−1(U) → U × G, such that prG ○ φ = π. Moreover, φ is G
equivariant when U ×G is equipped with the action (x,h)g ∶= (x,hg).

A bundle map E → E′ of G-principal bundles (possibly over different spaces) is
a G-equivariant map. Any bundle map covers a map f ∶ X → X ′. If the bundle
map covers the identity, it is bijective and we say that the bundle map is a bundle
isomorphism.

It can be shown that a bijective bundle map is a homeomorphism, and this
justifies our usage of the word ”isomorphism”.j In our applications, G will be a Lie
group. Requiring that E and X are smooth manifolds, the action of G and π and
φ being smooth, one arrives at the notion of a smooth principal bundle. There is
a notion of pullback: if f ∶ Y → X is a map and π ∶ E → X a G-principal bundle,
then f∗E ∶= {(y, e) ∈ Y ×E∣f(y) = π(e)} has the natural structure of a G-principal
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bundle. If you are a novice in bundle theory, you are invited to provide the details
as an exercise.

Exercise 5.2.3. Let X be a connected space that has a universal covering X̃ →X.
Equip X̃ with the structure of a π1(X,x)-principal bundle (this is irrelevant for
index theory).

The most substantial example of a principal bundle is the frame bundle of a
vector bundle.

Example 5.2.4. Let V → X be an n-dimensional K-vector bundle. Let Fr(V ) ∶=
∐x Iso(Kn, Vx), Iso(Kn;Vx) is the set of all vector space isomorphisms. There is
an obvious map π ∶ Fr(V ) → X. The GLn(K)-action is by precomposition: if
f ∶ Kn → Vx is an isomorphism and g ∈ GLn(K), then f ⋅ g ∶= f ○ g. If U ⊂ X is
open and φ ∶ U ×Kn → V ∣U be a trivialization, we get a bijection U × GLn(K) →
π−1(U) = Fr(V ∣U), namely

(x, g)↦ φx ○ g.
The topology on Fr(V ) is the finest one so that all these maps are continuous,

and they are all homeomorphisms.

Exercise 5.2.5. Provide the details of the proof that the above construction gives
indeed a GLn(K)-principal bundle. If V is a smooth vector bundle, equip Fr(V )
with the structure of a smooth principal bundle.

Remark 5.2.6. A point in Fr(V ) is by definition an isomorphism f ∶ Kn → Vx
for some x. If ei ∈ Kn denotes the ith basis vector, we get a basis (v1, . . . , vn) of
Vx, vi ∶= f(ei). Now let g = (gij) ∈ GLn(K). Note that gei = ∑nk=1 gkiek (sic!).
Therefore f ○ g(ei) = ∑nk=1 gkivi. So if we view frames as bases of the fibres, the
GLn(K)-action becomes (v1, . . . , vn) ⋅ g ∶= (∑nk=1 ak1vk, . . .∑nk=1 aknvk). This might
be confusing, but it is not bundle theory that is to be blamed, but linear algebra.

Exercise 5.2.7. Prove that local trivializations of a vector bundle V → X are in
bijective correspondance with local cross-sections of Fr(V ). More generally, local
trivializations of a principal bundle are in bijection with cross-sections. A principal
bundle has a global cross-section iff it is trivial.

Exercise 5.2.8. Let V → M be a rank n vector bundle with Riemannian bundle
metric. Define the O(n)-principal bundle FrO(V ) of orthonormal frames. Sim-
ilarly, let V → M be oriented. Define the GLn(R)+-principal bundle of oriented
frames.

A principal bundle is, among other things, a G-space E, and the base space X
is the quotient E/G. The G-action is free. The next result is a basic fact in the
theory of Lie groups. The proof can be found in [25]. If G is linear, then you can
find an easier proof in [4], but the details are still quite subtle.

Theorem 5.2.9. Let G be a Lie group and H ⊂ G be a closed subgroup. Then H is
a Lie group, the quotient space G/H has the unique structure of a smooth manifold
such that G → G/H is smooth, and the quotient map G → G/H is a H-principal
bundle.

The power of this result can be explained by some examples. First a lemma.
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Lemma 5.2.10. Let M be a smooth manifold and let G be a Lie group that acts
transitively from the left on M . Let x ∈ M and H ⊂ G be the isotropy group of x.
Then G/H →M , gH → gx is a diffeomorphism; G →M , g ↦ gx is a H-principal
bundle.

Proof. The map p ∶ G → M , g ↦ gx is smooth and H-invariant, p(gh) = p(g).
Therefore it descends to a smooth map f ∶ G/H →M which is moreover bijective.
We claim that this is a diffeomorphism. Since f is G-equivariant (G acting from the
left!) and the action on both G/H and M is transitive, the rank of df is constant.
By Sard’s theorem, f has a regular value, and so f must be a submersion. Since
f is injective, the dimensions have to agree, and so f is a bijective map which has
everywhere full rank, i.e. a diffeomorphism. �

Examples 5.2.11.

(1) O(n+ 1) acts on Sn, by rotations. The isotropy group of the vector en+1 is
O(n). This shows that O(n + 1)/O(n) ≅ Sn is a diffeomorphism. In fact,
we can identify O(n+1) with the total space of the orthogonal frame bundle
of TSn (with the usual metric of the sphere).

(2) In a similar way, U(n)→ S2n−1 is a U(n − 1)-principal bundle.
(3) CPn is U(n+1)/U(n)×U(1). More generally, the Grassmannian is Grk(Cn) ≅

U(n)/U(k) ×U(n − k).
(4) The quotient map S2n+1 → CPn is the unitary frame bundle of the tauto-

logical line bundle.

Corollary 5.2.12. Let G be a Lie group and let G (as a group) act transitively on
a set S. Then S has a unique topology and smooth structure so that the G-action
is smooth.

Besides pullbacks, there are a couple of useful constructions with principal bun-
dles.

Definition 5.2.13. Let E → X be a G-principal bundle and F → Y be an H-
principal bundle. Then E × F → X × Y is a G × H-principal bundle with the
product action.

The next one is what we call ”change of fibre”, which is very important. If you
want to be comfortable with bundles, you have to absorb this construction.

Definition 5.2.14. Let π ∶ P → X be a G-principal bundle and F a left G-space.
The group G acts on the space P × F diagonally, (p, f) ⋅ g ∶= (pg, g−1f). We define
P ×G F ∶= (P × F )/G. The projection map [(p, f)] ↦ π(p) is a well-defined map
P ×G F . Then P ×G F is a fibre bundle with typical fibre F .

The definition comes with a companion.

Definition 5.2.15. A fibre bundle with structural group G and fibre F on X
consists of a fibre bundle E →X, a G-principal bundle P →X and an isomorphism
of fibre bundles P ×G F ≅ E.

It is time to convince ourselves with the use of this construction; there are many
useful examples.

Example 5.2.16. If V is a vector bundle, then V ≅ Fr(V ) ×GLn(K) Kn. Hence we
could define the notion of a vector bundle by saying that it is a fibre bundle with
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structural group GLn(R) and fibre Rn. More generally, if a representation of a Lie
group is given (this is a smooth homomorphism G→ GL(V ) for some vector space)
and if P is a G-principal bundle, then P ×GV is a vector bundle. One can formulate
the notion of oriented vector bundle, vector bundle with metric etc. etc. using this
calculus.

Example 5.2.17. If V → X and W → Y are two vector bundles of rank n, m,
then we can form the GLn(K) ×GLm(K)-principal bundle Fr(V ) × Fr(W ) → X ×
Y . The Lie group GLn ×GLm acts on Kn ⊕ Km. The resulting bundle Fr(V ) ×
Fr(W ) ×GLn(K)×GLm(K) Km+n → X × Y is called the external direct sum. If X = Y ,
we can pull back the external direct sum to X with the diagonal X → X ×X and
obtain the direct sum.

Exercise 5.2.18. Along the lines of this example, define V ⊗W for two vector
bundles, Hom(V,W ), the dual bundle V ∗, the bundle of alternating and symmetric
multilinear forms and so on.

Example 5.2.19. Consider the principal bundle S2n+1 → CPn. Let S1 ⊂ C act on
C by multiplication. The vector bundle S2n+1 ×S1 C→ CPn is the tautological line
bundle on CPn.

These examples suggest that when the group action of G on the fibre F preserves
some kind of structure on F , we find that the bundle P ×G F has this structure,
but now in families. Caution: even though the fibres of a principal bundle look
like groups, they are not. They are right-G-spaces, and do, most emphatically, not
have a multiplication.

Exercise 5.2.20. Formulate the notion of a bundle of: topological groups, finite-
dimensional R-algebras, finite-dimensional Lie algebras.

Example 5.2.21. Let V be a complex vector bundle of rank n. The group GLn(C)
acts on the complex projective space, in exactly one meaningful way. The bundle
PV ∶= Fr(V )×GLn(C)CPn is called the projective bundle to V . Moreover, the group
action of GLn(C) lifts to an action on the universal line bundle H → CPn and hence
gives rise to a line bundle on PV . Prove that the pullback of V to PV splits off a
one-dimensional line bundle.

Example 5.2.22. If G → H is a group homomorphism and P → X a G-principal
bundle, then P ×GH is in a natural way an H-principal bundle.

Definition 5.2.23. Let G → H be a group homomorphism and Q → X be an
H-principal bundle. A reduction of the structural group from H to G consists of a
G-principal bundle P →X and an isomorphism of H-principal bundles P ×GH ≅ Q.

Most additional structures that exist on bundles can be expressed using this
notion. We discuss one example in great detail.

Example 5.2.24. Let V → X be a real n-dimensional vector bundle and let P =
Fr(V )→X be the frame bundle. We want to explain that a bundle metric on V is
”the same” as a reduction of the structural group of P from GLn(R) to O(n).

Let Q → X be an O(n)-principal bundle and η ∶ Q ×O(n) Rn ≅ V be an isomor-
phism. Then η induces an isomorphism

(5.2.25) Q ×O(n) GLn(R) ≅ P.
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Namely, by considering the n columns of a matrix, we get an embedding GLn(R) ⊂
(Rn)n. This embedding is O(n)-equivariant, with O(n) acting on GLn(R) by left-
multiplication and on (Rn)n by acting on each factor separately. Thus, a point in
(Q×O(n)GLn(R))x (x ∈X) gives rise to n vectors in the vector space (Q×O(n)Rn)x,
and these vectors are of course linearly independent. Vice versa, from an isomor-
phism as in 5.2.25, we obtain an isomorphism

Q ×O(n) Rn ≅ Q ×O(n) GLn(R) ×GLn(R) Rn ≅ P ×GLn(R) Rn ≅ V.
Thus a reduction of the structure group of P to O(n) is ”the same” as an O(n)-

principal bundle Q and a vector bundle isomorphism Q ×O(n) Rn ≅ V .
If V has a bundle metric, then we let Q be the bundle of orthogonal frames of

V . We can describe Qx either as the set of all orthonormal frames of Vx or as the
set of all isometries Rn → Vx. This is an O(n)-principal bundle. There is a bundle
isomorphism

Q ×O(n) Rn → V

sending an equivalence class [f, v] ((f, v) ∈ Px × Rn) to f(v) ∈ V . Therefore, a
bundle metric gives rise to a reduction of the structural group. On the other hand,
the bundle Q×O(n)Rn carries a bundle metric. Let [f, v], [f,w] ∈ Q×O(n)Rn. Then,
as O(n) preserves the standard scalar product on Rn, ⟨[f, v], [f,w]⟩ ∶= (v,w) does
not depend on the choice of representative.

We can describe the whole correspondance even more abstractly. Let Q→X be
an O(n)-principal bundle and P = Q×O(n)GLn(R). LetM be the set of all positive
symmetric bilinear forms on Rn; this is an open subset of a finite-dimensional vector
space and hence a manifold which has a GLn(R)-action. In fact, the GLn(R)-action
is transitive. The group O(n) is (by definition) the isotropy group of the element
A0 ∈M (the standard inner product). Therefore M = GLn(R)/O(n) as GLn(R)-
space. Moreover, since A0 is O(n)-invariant, it defines a fibre-preserving map

X = Q ×O(n) ∗→ Q ×O(n)M.

The bundle Q ×O(n)M → X is the bundle whose fibre over x is the space of all
inner products on the fibre of Q ×R Rn over X. Therefore, a section of M → X is
a bundle metric.

Example 5.2.26. Let V be a vector bundle and W ⊂ V be a subbundle, of ranks
n < m. Let Gm,n be the group of all linear transformations of Km that map Kn
to itself. Show that the frame bundle Fr(V ) admits the reduction of the structure
group to Gm,n and show how to construct the subbundle W , the bundle V and the
quotient bundle V /W out of this reduction.

Example 5.2.27. A reduction of the structural group from GLn(R) to GLn(R)+
is the same as an orientation, to O(n + 1) is the same as a bundle metric, and so
on.

Finally, we briefly indicate how the classification theory of principal bundles
works.

Theorem 5.2.28. Let F ∶X×[0,1]→ Y be a homotopy and P → Y be a G-principal
bundle. If X is paracompact, then F ∗

0 P ≅ F ∗
1 P .
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Theorem 5.2.29. Let G be a topological group. Then there exists a ”universal
G-principal bundle” EG → BG, such that for each paracompact space X, there is
a bijection [X,BG] ≅ PrinG(X). The bundle EG → BG is unique up to homotopy
equivalence, and it is characterized by the property that EG is contractible.

Examples 5.2.30. Let G = GLn(K). The frame bundle of the tautological vector
bundle over Grn(Kk) is the Stiefel manifold Stn,k(K). The colimit colimk Stn,k(K)
is contractible and this shows that EGLn(K) = colimk Stn,k(K), in accordance to
our previous classification theory.

If G ⊂ GLn(R) is a closed subgroup, we could take EG ∶= EGLn(R) and BG ∶=
EGLn(R)(G) = EGLn(R) ×GLn(R) GLn(R)/G.
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6. More on de Rham cohomology

The remaining goal for this term is the proof of the Gauß-Bonnet-Chern theorem
and the Riemann-Roch theorem, which are the role models for the general index
theorem.

In both cases, the index theorem will take the following form. The Gauß-Bonnet-
Chern theorem states that there is, for an oriented manifold, a specific cohomology
class e(TM) ∈ Hn(M) such that ind(D) = χ(M) = ∫M e(TM). The class e(TM)
is the Euler class. Riemann-Roch will be a similar formula.

For a while, we will abandon the differential operators, Sobolev spaces and esti-
mates and focus on the right-hand side of the index theorem. We develop the theory
of characteristic classes. We do this in the framwork of de Rham cohomology, and
we will actually do it twice. There is the global theory of characteristic classes,
which is an offspring of Poincaré duality. And there is the local theory (curvature).

We reveal a close connection between differential forms and the global geometry
of a manifold. The tools we develop will be crucial to the proof of the Gauß-
Bonnet-Chern theorem and also for the later translation of the index formula from
K-theory to cohomological terms. There is also an inherent beauty! But as often
in mathematics, beauty and elegance needs support by strong workhorses.

In singular (co)homology theory, there are two main technical workhorses: rel-
ative cohomology and the pairing between cohomology and homology. We have to
replace these pillars by something.

6.1. Technical prelimiaries. The fundamental property of the de Rham coho-
mology is its homotopy invariance. We recall how the proof works because we will
need to see that it can be modified to prove homotopy invariance of some versions
of de Rham cohomology. Let M be a manifold. One defines an operator

P ∶ Ap(M × [0,1])→ Ap−1(M)
by setting

Pω ∶= ∫
1

0
j∗t (ι∂tω)dt.

Explanations: ∂t is the vector field pointing in the [0,1]-direction; jt ∶ M →
M ×[0,1] is jt(x) = (x, t). The form j∗t (ι∂tω) is a p−1-form on M , and t↦ j∗t (ι∂tω)
is a smooth curve in the vector space Ap−1(M), and the integral is the usual
Lebesgue integral for functions with values in topological vector spaces. In local
coordinates, one shows that Pd+dP = j∗1 −j∗0 , and therefore P is a chain homotopy.

We need to fix an orientation convention, once and for all.

Convention 6.1.1. If M and N are oriented manifolds, we orient the product
by the following requirement. If (v1, . . . , vm) is an oriented basis for TxM , and
(w1, . . . ,wm) an oriented basis for TyN , the (v1, . . . , vn,w1, . . . ,wm) is an oriented
basis of T(x,y)M ×N .

If V →M is an oriented vector bundle over an oriented manifold, then we orient
the total space by saying that an oriented chart V ∣U ≅ U × Rn is an orientation
preserving diffeomorphism of manifolds.

If W,V → X are two oriented vector bundles, we orient V ⊕W by saying that
an oriented basis of Vx, followed by an oriented basis of Wx, is an oriented basis of
Vx ⊕Wx.
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If N ⊂M is a submanifold, then there is an almost natural isomorphism TM ∣N ≅
TN ⊕ νMN , where νMN = TM ∣N /TN denotes the normal bundle of N in M . So if
M is oriented, then, according to the convention for sums of vector bundles, an
orientation of N determines an orientation of the normal bundle and vice versa.

Definition 6.1.2. Let M be a manifold. By the symbol A∗c(M), we denote the
space of compactly supported differential forms. It is clear that this is a chain
complex and an ideal in A∗(M). H∗

c (M) is the cohomology of this chain complex,
the compactly supported cohomology of M .

Using this new cohomology, we obtain a new level of flexibility when dealing
with cohomology, but there are some pitfalls. If f ∶M → N is a smooth map, then
we do not have in general a map f∗ ∶ A∗c(N) → A∗c(M) (let f ∶ R → ∗ to see what
goes wrong). But if f is a proper map, we have a pullback f∗.

There is another functoriality: if U ⊂ M is an open subset, we get a map
A∗c(U) → A∗c(M), and of course there is a map A∗c(M) → A∗(M), which some-
times carries important information as well. Recall that in singular (co)homology,
relative cohomology is a central technical tool. Here is our replacement for it:

Definition 6.1.3. Let M be a manifold and let A ⊂ M be a closed subset. We
define A∗(M)A ∶= colimA⊂U A∗(U), the space of germs of forms near A.

The technical environment that makes cohomology theory breathe is homolog-
ical algebra, and in particular exact sequences. There are three important exact
sequences in de Rham theory. First, there are two Mayer-Vietoris-sequences. Let
U,V be open. Then there are sequences

0→ A∗(U ∪ V )→ A∗(U)⊕A∗(V )→ A∗(U ∩ V )→ 0

ω ↦ (ω∣U , ω∣V ); (ω, η)↦ ω∣U∩V − η∣U∩V
and

0→ A∗cpt(U ∩ V )→ A∗cpt(U)⊕A∗cpt(V )→ A∗c(U ∪ V )→ 0

ω ↦ (ω,−ω); (ω, η)↦ ω + η.
That the second is exact is obvious (!). The first one is slightly more complicated

and involves partitions of unity, see [4], p. 287 f. In cohomology, we obtain two
Mayer-Vietoris sequences.

Lemma 6.1.4. Assume that M ∖A is relatively compact in M . Then there is an
exact sequence

0→ A∗c(M ∖A)→ A∗(M)→ A∗(M)A → 0.

If A is either a submanifold or a codimension 0 submanifold (with boundary),
then the restriction A∗(M)A → A∗(A) is a quasiisomorphism.

Proof. It is clear that the first map is injective and that the composition is zero.
If ω ∈ A∗(M) maps to zero, it means that there is a neighborhood A ⊂ U such

that ω∣U = 0, whence ω has support in M −U and this is compact. An element in
A∗(M)A is represented by a form ω on U ⊃ A. Pick a function µ that is 1 near A
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and has support in U , then we can extend µω to a form on M , which represents
the same form in the colimit.

For the second part, first note that for an open neighborhood U of A, A∗(U)A =
A∗(M)A. We use the tubular neighborhood theorem [5]. Let U be a tubular neigh-
borhood and r ∶ U → A be the projection. The map A∗(M)A → A∗(A) is surjective
since for any η, the form r∗η represents a preimage. Also, since r is a homotopy
equivalence, the composition A∗(U) → A(U)A → A∗(A) is a quasiisomorphism,
and therefore A(U)A → A∗(A) is surjective in cohomology. Thus it remains to
prove that the first map A∗(U) → A∗(U)A is surjective in cohomology, and it is
enough to show that for each cohomology class of A∗(U)A, there is a smaller tubu-
lar neighborhood W such that the class comes from A∗(W ), because all tubular
neighborhoods are homotopy equivalent. So let ω ∈ H∗A∗(M)A. It is represented
by a closed form on a certain V ⊃ A. Take a tubular neighborhood U ⊂ V and a
cut-off function η which is 1 on U and has support in V . The form ηω is not closed
on V , but its restriction to U is closed. �

Lemma 6.1.5. For k ≠ n, Hk
c (Rn) = 0. The integration homomorphism Hn

c (Rn)→
R, ω ↦ ∫Rn ω is an isomorphism.

Proof. The case n = 0 is trivial, and we assume n > 0. We consider the 1-point
compactification Sn of Rn. From Lemma 6.1.4, we get the exact sequence 0 →
A∗c(Rn)→ A∗(Sn)→ A∗(Sn)∞ → 0 and the fact that A∗(Sn)∞ is quasiisomorphic
to A∗(∗). The long exact cohomology sequence has the following outlook

H∗
c (R) // H∗(Sn)

epiyy
H∗(∗)

[+1]

dd

The symbol [+1] reminds you of the degree shift, and the map H∗(Sn)→H∗(∗)
is surjective, since it is induced from the inclusion ∗ = ∞ → Sn, and splits via the
constant map Sn → ∗. Thus the cohomology sequence falls apart as

0→Hk
c (Rn)→Hk(Sn)→Hk(∗)→ 0.

Together with the known computation of H∗(∗) and H∗(Sn), this proves that
Hn(Rn) is one-dimensional (and Hk

c (Rn) = 0 for k ≠ n). For the statement about
the integration homomorphism, it is enough to find a single compactly supported
closed n-form on Rn with integral 1, which is easy: take a suitable bump function
a and let ω = a(x)dx1 ∧ . . . ∧ dxn. �

We need another preliminary, namely a flexible local-to-global principle.

Proposition 6.1.6. (The bootstrap lemma) Let M be a manifold, and let P (U) be
a statement about open subsets of M . Suppose:

● P (∅) is true,
● There is a cover (Ui)i∈I of M , so that if V that is contained in one of the Ui

and is diffeomorphic to an open convex subset of Rn, then P (V ) is true4.
● If P (U), P (V ) and P (V ∩U) are true, then so is P (U ∪ V ).

4This precise formulation is quite useful in later applications
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● If Un are disjoint open subsets and if P (Ui) is true for all i, then P (∪iUi)
is true.

The proof can be found in [4], Lemma V.9.5, with a slightly weaker assumption.
It is easy to generalize the proof.

6.2. Poincaré duality - again! -, Künneth theorem and the Thom isomor-
phism. The Poincaré duality theorem was the main result of the class ”Topology
II” and if you attended the class, you remember that among all the results in this
class, this was by far the most difficult one. We gave a proof for closed manifolds
using elliptic regularity theory. In de Rham theory, there is a slick and short proof.
What should the theorem - for a noncompact manifold - look like? Let Mn be an
oriented manifold. If ω ∈ Ap(M) and η ∈ An−pc (M), we form

I(ω, η) ∶= ∫
M
ω ∧ η ∈ R.

The integral is well-defined because ω has compact support. It is easy to see
that I(ω, η) depends, when the forms are closed, only on the cohomology classes in
Hp
c (M) and Hn−p(M). Thus we get a bilinear map

I ∶Hp(M) ×Hn−p
c (M)→ R

and therefore two maps

D ∶Hp(M)→Hn−p
c (M)∨; E ∶Hn−p

c (M)→Hp(M)∨.

We used the symbol ∨ for the dual space, in order to avoid having to many
symbols ∗ floating around.

Theorem 6.2.1. (Poincaré duality - de Rham version) For any oriented n-manifold
M , the map D ∶Hn−p(M)→Hp

c (M)∨ is an isomorphism.

We explicitly do not assert that the other map E ∶Hp
c (M)→Hn−p(M)∨ is an iso-

morphism. There is an asymmetry between cohomology and compactly supported
cohomology, and this has a real reason, rooted in - set theory.

Here is a counterexample. Let M be a countably infinite discrete set (a manifold
of dimension 0). It is easy to see that H0

c (M) ≅ R∞ (the dimension is ℵ0), while
H0(M) has dimension 2ℵ0 . Under a suitable finiteness condition, the other map is
an isomorphism as well, see below.

Proof. The first step consists of sign conventions. Let A∗c(M)∨ be the dual chain
complex. The differential is

δ ∶ An−pc (M)∨ → An−p−1
c (M)∨; δ(`)(η) ∶= (−1)p+1`(dη)

and the sign is chosen so that D ∶ A∗(M)→ An−∗(M)∨ is a chain map.
We use the bootstrap lemma. If M = ∅, there is not much to show. For M = Rn,

we know H∗(Rn) and H∗
c (Rn) by Lemma 6.1.5. Clearly, the constant form 1

goes under D to the integration homomorphism, which is a nonzero element in a
1-dimensional vector space.

If U ⊂ V is an open subset, then the diagram
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Ap(V )

D

��

// Ap(U)

D

��
An−pc (V )∨ // An−pc (U)∨

(the horizontal maps are induced by restriction) is commutative, which is trivial
to verify. Therefore, for two open sets U0, U1 ⊂M , the following diagram of chain
complexes and chain maps (with exact rows) commutes:

0 // A∗(U0 ∪U1)

DU0∪U1

��

// A∗(U0)⊕A∗(U1)

DU0
⊕DU1

��

// A∗(U0 ∩U1)

DU0∩U1

��

// 0

0 // An−∗(U0 ∪U1)∨ // An−∗(U0)∨ ⊕An−∗(U1)∨ // An−∗(U0 ∩U1)∨ // 0.

If DU0 , DU1 and DU0∩U1 are quasiisomorphisms, then, using the long exact co-
homology sequence of the above sequences and the 5-lemma, it follows that DU0∪U1

is a quasiisomorphism.
The last hypothesis of the bootstrap lemma is to verify that if Ui, i ∈ I, are

disjoint open subsets of M and DUi is a quasiisomorphism for all i ∈ I, then DU is a
quasiisomorphism where we put U =∐i∈I Ui. This is because H∗(U) =∏i∈I H

∗(Ui)
and H∗

c (U) =⊕i∈I H
∗
c (Ui) and because taking dual spaces converts direct sums into

direct products (this is also the reason for the asymmetry). �

Proposition 6.2.2. The following conditions on a manifold M are equivalent:

(1) H∗(M) is finite dimensional.
(2) H∗

c (M) is finite dimensional.
(3) The other duality homomorphism E is an isomorphism as well.

Here we take H∗ = ⊕p≥0H
p, which is a finite sum. A manifold with these

properties is called of finite type. Each closed manifold is of finite type.

We need a fact from linear algebra:

Lemma 6.2.3. Let V be a real vector space. Then V is finite dimensional if and
only if the natural map ι ∶ V → V ∨∨ to the dual space is an isomorphism.

This is proven in [3], chapter II, §7.5 Theorem 6.

Proof of Proposition 6.2.2. The easy parts of the Proposition are:

● If M is compact, then H∗(M) = H∗
c (M), and therefore E agrees with D.

So for compact M , E is an isomorphism.
● If H∗(M) is finite-dimensional, then so is the dual space of H∗

c (M), and
hence H∗

c (M) itself.
● If H∗

c (M) is finite-dimensional, then so is H∗(M) ≅H∗
c (M)∨.

It remains to be shown that E is an isomorphism iff H∗(M) is finite dimensional.
To see this, consider the diagram
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H∗(M) ι //

D

&&

H∗(M)∨∨

E∨

��
Hn−∗
c (M)∨,

which is commutative, as one checks easily. If H∗(M) is finite-dimensional, then
ι is an isomorphism and hence so is E∨. But then E has to be an isomorphism
(taking duals is an exact functor). Vice versa, if E is an isomorphism, then so is ι,
which means, by the lemma, that H∗(M) is finite-dimensional. �

Corollary 6.2.4. If M is compact, then Hk(M) is finite dimensional.

Now we pass to the Künneth theorem, which expresses the cohomology of a
product in terms of the cohomologies of the product. The Künneth theorem only
holds under a finiteness assumption or for compactly supported cohomology. Let
M , N be two manifolds and let prM ∶ M ×N → M and prN ∶ M ×N → N be the
projections. We define the exterior product of two forms ω on M and η on N by

ω × η ∶= pr∗Mω ∧ pr∗Nη

(one can recover ω ∧ η ∶= ∆∗(ω × η), using the diagonal ∆M ∶ M → M ×M).
One the tensor product A∗(M)⊗A∗(N), we introduce the differential ∂(ω ⊗ η) ∶=
(dω)⊗ η + (−1)∣ω∣ω ⊗ dη, so that

A∗(M)⊗A∗(N)→ A∗(M ×N) and A∗c(M)⊗A∗c(N)→ A∗c(M ×N)

are chain maps. The second one induces a map

(6.2.5) ⊕
p+q=k

Hp
c (M)⊗Hq

c (N)→Hk
c (M ×N).

Theorem 6.2.6. (Künneth theorem) The map 6.2.5 is an isomorphism, for all
manifolds M and N .

If M and N are of finite type, one can derive that

⊕
p+q=k

Hp(M)⊗Hq(N)→Hk(M ×N)

is an isomorphism (we do not try to state the most general assumption here).

Proof of the Künneth theorem. We use the bootstrap lemma, but proceed in two
steps. First assume that N = Rn and let M vary. For the case M = Rm, use
Lemma 6.1.5 and Fubini’s theorem. The other hypotheses of the bootstrap lemma
are verified by the same ideas as in the proof of the Poincaré duality theorem. For
the Mayer-Vietoris property, use that taking tensor products is an exact functor
(because we work over a field). For the countable disjoint union property, use that
tensor products commute with direct sums.

The second step is the general case and uses the same argument. �
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The next fundamental result we need is the Thom isomorphism theorem. Let
π ∶ V → M be a vector bundle. Let Apcv(V ) be the space of forms with vertically
compact support (i.e the map π ∶ supp(ω) →M is proper). This is clearly a chain
complex and we have a Mayer-Vietoris sequence, in the sense that if U0, U1 ⊂ M
are open and Vi = V ∣Ui , then there is an exact sequence of chain complexes

0→ A∗cv(V0 ∪ V1)→ A∗cv(V0)⊕A∗cv(V1)→ A∗cv(V0 ∩ V1)→ 0.

Moreover, the complex of vertically compactly supported forms is contravariant
for bundle maps V → W , and homotopic bundle maps induce chain homotopic
maps.

Exercise 6.2.7. Prove these assertions. Hint: go to the proof of homotopy invari-
ance of de Rham cohomology and modify the details.

Definition 6.2.8. Let V → M be an oriented vector bundle of rank n. A Thom
form is a closed form τ ∈ Ancv(V ) such that

(6.2.9) ∫
Vx
τ = 1.

holds for each x ∈M . A Thom class is the cohomology class of a Thom form.

Theorem 6.2.10. Each oriented vector bundle π ∶ V →M has a Thom form.

Proof. First, we assume that the base space M is compact, k-dimensional and
oriented. Then V is oriented as a manifold. Moreover, V is homotopy equivalent to
M , and thus it has finite type. Moreover, A∗cv(V ) = A∗c(V ). By Poincaré duality,
there are isomorphisms

Hn
cv(V ) =Hn

c (V )
E
≅ Hk(V )∨ ≅Hk(M)∨.

A closed form α ∈ A∗cv(V ) is mapped, under these isomorphisms, to the linear
form

η ↦ ∫
V
π∗η ∧ α.

On the other hand, we have a distinguished element in Hk(M)∨, the integration
homomorphism J ∶ Hk(M) → R. We pick τ so that it maps to J . In other words,
for each closed k-form η on M , we have

(6.2.11) ∫
V
π∗η ∧ τ = ∫

M
η.

We claim that τ is a Thom form, in other words, the integral ∫Vx τ has value 1 for

each x ∈M . We pick an oriented coordinate chart x ∶ U → Rk on M and an arbitrary
k form η on U with integral 1 and compact support in U . Moreover, we pick oriented
bundle coordinates ξ on V . The form η can be written as a(x)dx1 ∧ . . . ∧ dxk, and
τ can be written as

b(x, ξ)dξ1 ∧ . . . dξn + ζ,
with ζ a form that is a linear combination each term of which involves at most

n− 1 of the dξi’s and hence at least one dxj . Thus π∗η ∧ τ is, in these coordinates,

a(x)b(x, ξ)dxk ∧ dξn.
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We compute

∫
V
π∗η ∧ τ = ∫ a(x)b(x, ξ)dxk ∧ dξn = ∫ ∫ a(x)b(x, ξ)dξdx,

in the last step we replaced the integral of forms by the Lebesgue integral (the
usual normalization) and used Fubini. Furthermore, this equals

∫ (a(x)∫ b(x, ξ)dξ)dx = ∫ a(x)c(x)dx != ∫ a(x)dx,

where c(x) ∶= ∫Vx τ and the last equality is 6.2.11. Since the last equation holds

for each compactly supported function a, it follows that c(x) = 1, and this finishes
the proof that τ is indeed a Thom form.

The case of a general base (nonoriented, noncompact) is reduced to this case
by the following trick. We know, by classification of vector bundles, that there is
an orientation preserving bundle map f ∶ V → Ṽn,r, where Ṽn,r is the tautologi-

cal oriented bundle over the Grassmannian G̃rn,r of oriented n-planes in Rr, for
some large r. The Grassmannian is a 2-fold cover of the ordinary Grassmannian
Grn,r, and because Grn,r is compact, so is the oriented Grassmannian. We have
to argue why the oriented Grassmannian is an orientable manifold (this is not a
tautology: the tautological vector bundle is not at all the tangent bundle of the
Grassmann manifold). But G̃rn,r is simply connected and hence orientable: the
oriented Grassmannian is SO(r)/SO(n) × SO(r − n). The long exact homotopy
sequence

π1(SO(n) × SO(r − n))→ π1(SO(r))→ π1(G̃rn,r)→ π0(SO(n) × SO(r − n)) = 0

becomes

(Z/2)2 → Z/2→ π1(G̃rn,r)→ 0

and the first map is surjective (at least if r ≥ 2, which can be assumed without
loss of generality). What this argument proves is that each oriented bundle has a
bundle map f to an oriented vector bundle over a compact oriented base. If σ is
a Thom form for the tautological bundle (provided by the first part of the proof),
then f∗σ is a Thom form for V .

�

Theorem 6.2.12. (The Thom isomorphism theorem) Let M be a manifold and
π ∶ V → M be a smooth oriented vector bundle, of rank n. Let τ be a Thom form
on V . Then the chain maps

th ∶ A∗(M)→ A∗+ncv (V ); th ∶ A∗c(M)→ A∗+nc (V ),
defined by α ↦ π∗α ∧ τ , are quasiisomorphisms.

Proof. This is by the bootstrap lemma. There is not much to say if M = ∅. Each
point x ∈ M has a chart neighborhood U ≅ Rm such that V ∣U is trivial. So we
have to show that for the trivial vector bundle on Rn, the theorem holds. Let
us do the compactly supported case first. By the computation of H∗

c (Rk), all
that remains to be done is that th ∶ Hc(Rm) → H∗+n

c (Rn) is nonzero. But if
φ = a(x)dx1 ∧ . . . ∧ dxm ∈ Amc (Rm), then
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∫
Rm+n

π∗φ ∧ τ = ∫
Rm

a(x)∫
{x}×Rn

τdx = ∫
Rm

φ

by the computation in the proof of Theorem 6.2.10. In the noncompactly supported
case, we have to show:

● Hk
cv(Rm ×Rn) = 0 unless k = n.

● dimHn
cv(Rm ×Rn) = 1 and

● th ∶H0(Rm)→Hn
cv(Rm ×Rn) is injective.

We have already seen that integration over {x} × Rn defines a map Hn
cv(Rm ×

Rn) → R, and it takes the Thom class to 1, so the third property holds. By the
homotopy invariance of H∗

cv in the base space, we find that

H∗
cv(Rm ×Rn) ≅H∗

cv(Rn)
which implies the first two properties.
The proof of the Mayer-Vietoris and disjoint union property is completely anal-

ogous to the proof of Theorem 6.2.1. The bootstrap lemma applies to conclude the
proof. �

Corollary 6.2.13. The cohomology class of a Thom form (the Thom class) is
uniquely determined by the orientation of V .

Proof. If M is a disjoint union ∐iUi and Vi ∶= V ∣Ui , then H∗
cv(V ) ≅ ∏i∈I H

∗
cv(Vi).

Therefore, it is enough to check the case when M is connected. By Theorem 6.2.12,
Hn
cv(V ) ≅H0(M) ≅ R. By Stokes theorem, for each x ∈M , we get a homomorphism

Jx ∶Hn
cv(V )→ R, η ↦ ∫Vx η. A Thom form maps to 1, and therefore Jx is a nonzero

map between 1-dimensional vector spaces, hence an isomorphism. Thus an element
in Hn

cv(V ) is uniquely determined by its integral over Vx. �

Lemma 6.2.14. Let p ∶ V → M , q ∶ W → N be two oriented vector bundles, with
Thom forms τV , τW . Then a Thom form of the product bundle V ×W →M ×N is
given by τV × τW = p∗τV ∧ q∗τW .

Let f ∶M → N be a smooth map, which is covered by an orientation preserving

bundle map f̂ ∶ V →W . Then f̂∗τW = τW .

The proof is trivial: you just have to check that the product satisfies the axioms
for a Thom class, which requires little more than Fubinis theorem. If F is a bundle
automorphism of V , we can talk about the determinant det(Fx). The sign of
det(Fx) is a locally constant function of x, and we can pull sign(det(F )) back to
V ; this is a locally constant function, in other words, an element σ(F ) of H0(V ).
It is easy to verify that

(6.2.15) F ∗τV = σ(F )τV .
Let V → M be equipped with a bundle metric and let ε ∶ M → (0,∞). Then

we can find a Thom form which has support in DεV ∶= {v ∈ V ∣∣v∣ < ε(π(v))}, by
the following procedure. For each positive function a ∶M → R, we take the bundle
automorphism ha(v) ∶= 1

a(π(v))v, and by picking a small enough, the form h∗aτ is a

Thom form and has the desired property.

Definition 6.2.16. Let V →M be an oriented vector bundle. The Euler class of
V is ι∗τ ∈Hn(M), where ι ∶M → V is the zero section.
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Since two sections are homotopic, one could use any other section instead of the
zero section.

The Euler class satisfies some easily verified properties:

Proposition 6.2.17.

(1) The Euler class is natural, i.e. if f ∶ N → M is smooth and V → M an
oriented vector bundle, the f∗e(V ) = e(f∗V ).

(2) Reversing the orientation of V reverses the sign of the Euler class.
(3) e(V ⊕W ) = e(V ) ∧ e(W ).
(4) If V has a section that is nowhere zero, then e(V ) = 0.
(5) If the rank of V is odd, then e(V ) = 0.

The first four statements are straightforward to prove, but the last requires an
idea. Any vector bundle has the automorphism F = −1. If the rank is odd, then F
is orientation reversing, and thus

e(V ) = ι∗τ = ι∗F ∗F ∗τ
1= −ι∗F ∗τ

2= −ι∗τ = −e(V ).
The equation 1 is from 6.2.15 and 2 is because F ○ ι = ι.

6.3. Geometric interpretation of the Thom class and the Poincaré-Hopf
theorem. Let Nn ⊂Mm be a submanifold. We assume that M and N are oriented,
which induces an orientation on the normal bundle. We assume that N is compact.
Under these circumstances, we get a linear map

`N ∶Hn(M)→ R; ω ↦ ∫
N
ω.

IfM has finite type, then there exists, by Poincaré duality, a unique δ ∈Hm−n
c (M)

such that E(δ) = `N , or

∫
M
ω ∧ δ = ∫

N
ω

holds for all closed forms ω on M . If M is the total space of the oriented vector
bundle V → N , then the Thom form has this property. We now present a little
geometric argument to get rid of the finite type assumption and which gives a nice
geometric interpretation of Poincaré duality. The main idea is that each closed
submanifold of a manifold sits inside the large manifold just as the zero section lies
inside a vector bundle. The precise technical ingredient from differential topology
that we need is the tubular neighborhood theorem.

Theorem 6.3.1. (The tubular neighborhood theorem) Let N ⊂ M be a compact
submanifold. Choose a Riemann metric on M , so that the normal bundle E of
N in M is just the orthogonal complement of TN inside TM ∣N . Then each open
neighborhood O of N contains a smaller open neighborhood N ⊂ U ⊂ O such that
there is a diffeomorphism e ∶ E → U , having the following properties:

(1) The restriction of e to N ⊂ E is the identity.
(2) Under the natural splitting (TE)∣N ≅ TN ⊕E, induced by the metric, and

TM ∣N ≅ E ⊕ TN , the differential of e at points of N is the identity.

For further reference, let us note that e is orientation preserving if M and N are
oriented and E is equipped with an orientation by the orientation convention.

The idea of the tubular neighborhood theorem is simple, but the details are
highly nontrivial. An unabridged proof can be found in [5], §12. Now let τ ∈
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Am−n
c (E) be a Thom form (since N was assumed to be compact, this has compact

support). We let δ ∈ Am−n(M) be the form (e−1)∗τ , extended by zero to all of M .
If ω ∈ An, then

∫
M
ω ∧ δ = ∫

U
ω ∧ (e−1)∗τ = ∫

E
e∗ω ∧ τ = ∫

N
ω

(use that e is orientation-preserving), by the way the Thom class over a com-
pact manifold was constructed. So the form δ represents the functional `N . Note
that this shows that `N therefore lies in the image of E, regardless of finiteness
assumptions and therefore does not lie in the outlandish part of the dual space. A
geometric picture shows that the class of δ is supported in a small neighborhood of
N .

Theorem 6.3.2. Let Nn ⊂Mm be a compact oriented submanifold of an oriented
manifold. Then there exists a unique δ ∈ Hm−n

c (M) such that for all ω ∈ Hn(M),
we have

(6.3.3) ∫
M
ω ∧ δ = ∫

N
ω.

Rest of the proof. The uniqueness of δ remains to be proven. Let ε ∈ Hm−n
c (M)

have the property that

∫
M
ω ∧ ε = 0

holds for all ω ∈ Hm−n(M). This can be reformulated by saying that for all
ω ∈ Hm−n(M): D(ω)(ε) = 0, or, by Poincaré duality that `(ε) = 0 for all ` ∈
Hm−n
c (M)∨, in other words, ε = 0. �

We call the class δ = δN the Poincaré dual to N . It is represented by forms
that are supported in a tubular neighborhood of N , and the support can be made
arbitrarily small. The defining equation 6.3.3 is the nonlinear analog of the relation
6.2.11. Now we look at the behaviour of the Poincaré duals under smooth maps,
which can be viewed as a vast generalization of the defining property of the Thom
class 6.2.9. For this, we recall the notion of transversality.

Assume that f ∶ Ll → Mm is a smooth map of oriented manifolds. Assume
that f is transverse to N , f ⋔ N , which means by definition that Tf(TxL) +
Tf(x)N = Tf(x)M holds for all x ∈ L, f(x) ∈ N . It follows that K ∶= f−1(N) is a
submanifold of L of the same codimension as N , and that there is a natural bundle

map f̂ ∶ νLK → νMN over f ∣K . An orientation on K is induced by this bundle map and
the orientation convention. The important transversality theorem from differential
topology states that for each map g ∶ Ll →M , there is a map f ∶ L→M , arbitrarily
close to g which is transverse to N . For the proof, see [5]. Our goal is:

Theorem 6.3.4. Let f ∶ L → M be a proper map of oriented manifolds which is
transverse to the oriented closed submanifold N ⊂ M and let K ∶= f−1(N). Let
δN ∈Hm−n

c (M) be the Poincaré dual to N . Then f∗δN is the Poincaré dual to K.

We begin with a characterization of a form representing δN . Using the tubular
map e ∶ E → U ⊂M , we can and will identify the normal bundle of N in M with a
neighborhood of N (also relatively compact).
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Definition 6.3.5. Let Nn ⊂Mm be a closed oriented submanifold of the oriented
manifold M . Let N ⊂ U ⊂ E ⊂M be the unit disc bundle in the normal bundle. A
map f ∶ Rm−n →M is a simple cut for N if the following conditions hold:

(1) f−1(N) = {0}, f(0) = x0 ∈ N ,
(2) f−1(U) ⊂ Rm−n is relatively compact,
(3) f ⋔ N (thus f is an immersion near 0),
(4) The vector space isomorphism id + T0f ∶ Tx0N ⊕ T0Rm−n → Tx0M is orien-

tation preserving.

For example, the composition Rm−n ≅ Ex → E of an orientation-preserving iso-
morphism with the fibre inclusion is a simple cut through x.

Proposition 6.3.6. A closed form δ ∈ A∗c(U) is a Poincaré dual to N if and only
if for each simple cut f to N , the integral ∫Rm−n f

∗δ = 1.

Proof. If the integral is 1 for each simple cut, then the integral ∫Ex δ = 1 for each
x ∈ N . This proves that δ is a Thom form of E, transplanted to M . Vice versa,
we have to prove that for each simple cut, the integral is 1. Let f ∶ Rm−n →M be
a simple cut through x0 ∈ N . Pick an oriented coordinate chart x for N around
x0, with x(x0) = 0 and oriented bundle coordinates y for E. Altogether, we get an
orientation preserving diffeomorphism (x, y) ∶ W → Rm, sending x0 to 0. By the
remarks preceeding Definition 6.2.16, we can rechoose δ to have arbitrarily small
support. In particular, we can choose the support so small that if y ∈ Rm−n satisfies
f(y) ∈ supp(δ), then f(y) ∈ W . With these manipulation, we have completely
localized the situation.

The map f is represented by a map

(f1, f2) ∶ Rm−n → Rn ×Rm−n.

The function f2 has only one zero, namely at zero, and the transversality condi-
tion says that 0 is a regular value of f2. Moreover, the orientation assumption means
that D0f2 has positive determinant. Furthermore, we can assume that f−1

2 (Dl) is
compact and that δ ∈ Am−n(Rn×Rm−n) is a closed form with support in Rn×Dm−n,
such that ∫x×Rm−n δ = 1 for all x ∈ Rn.

We have to evaluate the integral ∫Rm−n(f1, f2)∗δ, which is difficult without a
trick. The trick is to consider the family ft = (tf1, f2), t ∈ [0,1]. By our assumption
on the support of δ and f2, the smooth family τt ∶= f∗t τ has compact support for
all t. Therefore the integral ∫Rm−n τt does not depend on t. We want to know
the value for t = 1. But the computation is easier for t = 0. Namely, we have to
compute ∫Rm−n f

∗
2 δ. By further shrinking the support of δ, we can arrange that f2

is an orientation-preserving diffeomorphism f−1(supp(δ)) → supp(δ). Therefore,
the integral is 1. �

Proof of Theorem 6.3.4. Let K ⊂ V ⊂ L be a tubular neighborhood. Fix y ∈ K, let
g ∶ Rm−n ≅ Vy ⊂ V be the composition of an orientation-preserving diffeomorphism
with the fibre inclusion. View Rm−n as the interior of Dm−n and if V is chosen
sufficiently small, then g extends to a smooth map g ∶ Dm−n → V ⊂ L. The map
f ○ g ∶ Rm−n ⊂ V → M is a cut through N , except that the second condition of
Definition 6.3.5 might fail, which is corrected as follows.

Pick a Riemann metric on M ; there is an ε > 0 such that dist(f(z),N) ≥ 2ε for
all z ∈ Sm−n−1. Pick a tubular neighborhood N ⊂ U ⊂ M that is contained in the
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ε-neighborhood on N in M and choose the form δ ∈ Am−n
c (M) to be supported in

this tubular neighborhood. Then f ○g is a cut, and to finish the proof, we compute

∫
Rm−n

g∗f∗δ = ∫
Rm−n

(f ○ g)∗δ.

Since fg is a cut, the right-hand side is 1. �

Theorem 6.3.4 has some interesting applications.

Theorem 6.3.7. Let Mm be a closed oriented manifold and π ∶ V → M be an
oriented vector bundle of rank n. Let s be a section of V which is transverse to
the zero section and let Zm−n ∶= s−1(0) ⊂M be the zero set. This submanifold has
an induced orientation, because νMZ ≅ V ∣Z . Then the Euler class e(V ) ∈ Hn(M) is
Poincaré dual to Z.

Proof. Let s0 be the zero section and let τ be a Thom class for V . Then e(V ) =
s∗0τ = s∗τ . Since τ is the Poincar’e dual of M in V , it follows that s∗τ is the
Poincaré dual of Z in M . �

The case m = n is of particular interest. In this case, Z is a finite set Z =
{x1, . . . , xr}; each point xi comes equipped with a sign εi ∈ ±1 that determines its
orientation. By Theorem 6.3.7, we compute

∫
M
e(V ) = ∫

M
δZ

6.3.2= ∫
Z

1 =
r

∑
i=1

εi.

The signs εi are called the local indices of the section s and denoted Ixis. We
have proven

Theorem 6.3.8. (Poincaré-Hopf theorem) If V → M is an oriented rank n vec-
tor bundle over an oriented closed n-manifold and s a cross-section of V that is
transverse to 0, then ∫M e(V ) = ∑s(x) Ixs.

Another interesting application is:

Theorem 6.3.9. Let Mm be an oriented manifold of dimension and let Ll,Nn ⊂M
be two closed oriented submanifolds. Assume that L and N intersect transversally,
in other words ι ⋔ N , where ι ∶ L→M is the inclusion. Then δMN ∧δML is a Poincaré
dual to K = L ∩N .

Proof. Let ω be a closed form on M . Then

∫
K
ω∣K = ∫

L
ω∣L ∧ δLK = ∫

L
(ω ∧ δMN )∣L = ∫

M
ω ∧ δMN ∧ δML .

�

We are sloppy about signs here; ultimately, we are interested in even-dimensional
manifolds only, where all sign questions disappear.

Exercise 6.3.10. Determine the signs in the previous theorem.

We now turn to a fundamental computation. Let H → CPn be the dual to
the tautological line bundle. Here, it is useful to do the computation in the most
invariant way. Let V be a complex vector space of dimension n + 1. Why do we
use the dual? Let f ∈ V ∗ be a linear form on V . By restriction, f induces a linear
form on each line ` ∈ PV , in other words, a section sf of the bundle L∗, which is
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a holomorphic section. One could try the dual thing, but the only way to product
a section of L out of a vector v ∈ V is by projecting v to `. This is fine, but the
projection involves conjugates which is why the induced section is not holomorphic.
In fact, L does not have any nonzero holomorphic section.

The zero set of sf is the set of all lines such that f ∣` = 0, or the projective space
of ker(f). Let us assume that f ≠ 0; then it can be shown without difficulty that
sf is transverse to the zero section.

Theorem 6.3.11. Let H → CPn be the dual of the tautological bundle. Then

∫
CPn

e(H)n = 1.

Proof. If n = 1, then the section sf (f ≠ 0) has a unique zero, since ker(f) is 1-
dimensional. Because the section is holomorphic, the local index must be +1, not
−1, and the claim follows from the Poincaré-Hopf theorem 6.3.8. For higher n,
we use that e(H)n = e(H⊕n). Take linearly independent f1, . . . , fn ∈ V ∗. They
induce a holomorphic section s = (sf1 , . . . , sfn) which has a unique zero, namely
the line ∩ni=1 ker(fi). Again, the local index must be +1 by holomorphicity, and
Poincaré-Hopf finishes the proof. �

Now we can easily compute the cohomology ring of CPn.

Theorem 6.3.12. Put x ∶= e(H). Then

H∗(CPn) = R[x]/(xn+1)
and ∫CPn x

n = 1.

Proof. We have just computed the integral, which shows that xk ≠ 0 for all k ≤
n. It remains to compute the dimensions of Hi(CPn). For that, we use that
CPn ∖CPn−1 ≅ Cn and the sequence 6.1.4:

H∗(CPn) // H∗(CPn−1)

[+1]xx
H∗
c (Cn)

ff

which gives an exact sequence

0 =H2n−1(CPn−1)→ R ≅H2n
c (Cn)→H2n(CPn)→H2n(CPn−1) = 0

and that the restriction maps are isomorphisms

Hk(CPn) ≅Hk(CPn−1)
for k ≤ 2n − 1. Together, this makes an inductive proof, starting from the case
n = 0. �

6.4. The topological Gauß-Bonnet theorem.

Theorem 6.4.1. Let Mn be a closed oriented manifold. Then

∫
M
e(TM) = χ(M).

As a corollary, we obtain the first nontrivial instance of the Atiyah-Singer index
theorem:
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Corollary 6.4.2. Let M be a closed oriented Riemann manifold and d + d∗ ∶
Aev(M)→ Aodd(M) be the Euler characteristic operator. Then

ind(d + d∗) = ∫
M
e(TM).

Lemma 6.4.3. Let M be a manifold and ∆ ∶M →M ×M be the diagonal embed-
ding, with image ∆(M). Then the normal bundle of ∆(M) in M ×M is naturally
isomorphic to the tangent bundle TM ; and the isomorphism can be chosen to pre-
serve orientations.

Let U be a tubular neighborhood of ∆(M) and let V be the normal bundle of
∆(M). Let τ be a Thom form of TM and let ρ ∈ An(M ×M) be the result of
grafting the Thom form τ into M ×M (in other words, ρ is the Poincaré dual to
∆(M)). Note that

e(TM) = ∆∗e(V ) = ∆∗ι∗ρ

where ι is the inclusion. Thus e(TM) = ∆∗ρ. Now let {α} be a homogeneous
basis of H∗(M) and let {β#} be the dual basis, i.e.

∫
M
α# ∧ β = δα,β .

By the Künneth theorem, {α# ×β} is a basis for H∗(M ×M). There are unique
cα,β ∈ R with

ρ = ∑
α,β

cα,βα × β#.

For two basis elements, γ, ε, we compute ∫M×M(γ# × ε)∧ ρ in two ways. First of
all

∫
M×M

(γ# × ε) ∧ ρ 1= ∫
M

∆∗(γ# × ε) = ∫
M
γ# ∧ ε = δγ,ε.

In the first equation, we used the fact that the Thom class is Poincare dual to
the diagonal. The other way to compute is

(6.4.4) ∫
M×M

(γ# × ε) ∧ ρ = ∑
α,β

cα,β ∫
M×M

(γ# × ε) ∧ (α × β#).

But

∫
M×M

(γ# × ε) ∧ (α × β#) = (−1)∣ε∣∣α∣ ∫
M×M

(γ# ∧ α) × (ε ∧ β#) =

= (−1)∣ε∣∣α∣ ∫
M

(γ# ∧ α)∫
M

(ε ∧ β#) = (−1)∣ε∣∣α∣δγ,α(−1)(n−∣β)∣ε∣δβ,ε
and therefore

δγ,ε = (6.4.4) = cγ,ε(−1)∣ε∣∣γ∣(−1)(n−∣ε)∣ε∣ = (−1)n∣γ∣.
In other words

ρ =∑
α

(−1)n∣α∣α × α#

and therefore
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∫
M
e(TM) = ∫

M
∆∗ρ =∑

α

(−1)n∣α∣ ∫
M
α∧α# =∑

α

(−1)n∣α∣∣α∣(n−∣α∣)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=(−1)∣α∣

∫
M
α# ∧ α

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1

= χ(M).

6.5. The Gysin map and the splitting principle for complex vector bun-
dles.

Definition 6.5.1. Let f ∶Mn+d → Nn be a map between closed oriented manifolds
(we allow d to be negative). The Gysin map f! ∶ Hk(M) → Hk−d(N) is defined to
be the composition

Hk(M) DM→ Hn+d−k(M)∗
(f∗)∗
→ Hn+d−k(N)∗

D−1
N→ Hk−d(N).

The two stars in the symbol (f∗)∗ mean two different things: the inner ∗ is
the induced map on cohomology, and the outer ∗ is the dual in the sense of linear
algebra. Some remarks on terminology: often the Gysin map is called umkehr map
(also in the English literature). I want to warn against two misnamings that occur
quite often. The first misnaming is ”pushforward”. This is casual terminology, and
I do not want to advertise this. The second misnaming is ”transfer”, and using this
word for the Gysin map is an outright mistake - the true use of the word ”transfer”
is for something closely related, but different.

Let us unwind the definition of the Gysin map. Let ω ∈ Hk(M) and η ∈
Hn+d−k(N). Then we compute (DNf!(ω))(η) = ∫N f!(ω) ∧ η by the definition
of DN . On the other hand

(DNf!(ω))(η) = ((f∗)∗DM(ω))(η) =DM(ω)(f∗η) = ∫
M
ω ∧ f∗η.

Thus we arrive at the equation

(6.5.2) ∫
N
f!(ω) ∧ η = ∫

M
ω ∧ f∗η

which characterizes f! and can be expressed by saying that f! is adjoint to f∗ with
respect to the duality pairing. We will use equation 6.5.2 to derive all properties of
the Gysin map. First

∫
N
f!(ω ∧ f∗ζ) ∧ η = ∫

M
ω ∧ f∗ζ ∧ f∗η = ∫

M
ω ∧ f∗(ζ ∧ η) = ∫

N
f! ∧ ζ ∧ η.

Since this holds for all η, we find - using duality - that

(6.5.3) f!(ω ∧ f∗ζ) = f!(ω) ∧ ζ.
For another consequence, consider the constant map f ∶ M → ∗. Then f!(ω) =

∫M ω. Also

(f ○ g)! = f! ○ g!

is an immediate consequence of the functoriality of cohomology.

Proposition 6.5.4. Let f ∶Mn+d → Nn be a smooth map of closed oriented man-
ifolds, let z ∈ N be a regular value of f . Assume that N is connected and let
ω ∈Hd(M). Then f!(ω) = ∫f−1(z) ω ∈ R =H0(N).
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Proof. Let τ ∈ Hn(N) be the Poincaré dual to z ⊂ N (this is just a class with

∫N τ = 1). By Theorem 6.3.4, f∗τ is the Poincaré dual to f−1(z) in M . Then

∫
N
f!(ω) ∧ τ

6.5.2= ∫
M
ω ∧ f∗τ 6.3.2= ∫

f−1(z)
ω.

�

A nice situation appears if all z ∈ N are regular values, in other words, if f is
a submersion. A not so hard theorem from differential topology, the Ehresmann
fibration lemma, says that a proper submersion is a fibre bundle. In this situation,
one can give an explicit differential form representative of f!(ω), obtained by inte-
gration over the fibres. We do not need to consider this refinement of the definition
of the Gysin homomorphism here.

If f ∶ M → N is a submersion, we denote by TvM ∶= ker(df) the kernel of the
differential of f . This is a vector bundle by Lemma 5.1.6 and called the vertical
tangent bundle; because it consists of all tangent vectors that are tangent to the
fibres of f . There is a vector bundle splitting

(6.5.5) TM ≅ f∗TN ⊕ TvE.
If M and N are both oriented, then TvE acquires an orientation. The topological

Gauss-Bonnet theorem has two interesting consequences.

Definition 6.5.6. Let f ∶M → N be a proper submersion of closed oriented man-
ifolds. The transfer trff ∶H∗(M)→H∗(N) is the map trff(ω) ∶= f!(e(TvM)ω).

Theorem 6.5.7. Let f ∶ M → N be a proper submersion of closed oriented man-
ifolds. Assume that M is connected and that the Euler characteristic χ(F ) of the
fibres F ∶= f−1(x) is nonzero. Then f∗ ∶H∗(N)→H∗(M) is injective.

Proof. We calculate

trff(f∗ω) = f!(e(TvE)f∗ω) 6.5.3= f!(e(TvE))ω 6.5.4= χ(F )ω.
Since χ(F ) ≠ 0, this implies that f∗ is injective.

�

Theorem 6.5.8. Let f ∶ Mn+d → Nn be a proper submersion of closed oriented
manifolds, with F ∶= f−1(z). Then χ(M) = χ(N)χ(F ).

Proof. This is a straightforward consequence of the topological Gauss-Bonnet the-
orem:

χ(M) = ∫
M
e(TM) = ∫

M
f∗e(TN) ∧ e(TvE) = (−1)dn ∫

M
e(TvE) ∧ f∗e(TN) =

= (−1)nd ∫
N
f!(e(TvE)) ∧ e(TN) = (−1)ndχ(F )∫

N
e(TN) = (−1)ndχ(F )χ(N).

If nd is odd, then both F and N are odd-dimensional and thus have zero Euler
numbers, and so does M by the above equation, and the sign does not matter. In
all other cases, χ(M) = χ(F )χ(N), as claimed. �
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7. Connections, curvature and the Chern-Weil construction

Now we develop the local theory of characteristic classes.

7.1. Covariant derivatives.

Definition 7.1.1. Let V be a vector bundle on a manifold M . A covariant de-
rivative alias connection is a map ∇ ∶ A0(M ;V ) → A1(M ;V ) such that ∇(fs) =
df ⊗ s + f∇s.

We will use the two terms interchangingly; later, we will describe the same
object in a different language, and then we distinguish the names properly. We see
that [∇, f] = df ⋅. In other words, a covariant derivative is a first order differential
operator whose principal symbol is given by smb∇(ξ) = iξ for all cotangent vectors
ξ. Therefore, covariant derivatives exist on any vector bundle (Proposition 2.2.19).
We want some more concrete examples.

Proposition 7.1.2. The exterior derivative A0 → A1 is a connection. Let V ⊂
M × Rn and p the orthogonal projection onto V . Then ∇ ∶= pd is a covariant
derivative.

The proof is trivial. On a Riemann manifold, there is a special covariant deriv-
ative on the tangent bundle.

Definition 7.1.3. Let V →M be a Riemannian vector bundle. A covariant deriv-
ative ∇ is called metric if X⟨s, t⟩ = ⟨∇Xs, t⟩ + ⟨s,∇Xt⟩ holds for all vector fields X
and all sections s, t.

Theorem 7.1.4. (The fundamental lemma of Riemannian geometry) On any Rie-
mann manifold, there is a unique connection on TM , which is metric and torsion-
free, ∇XY −∇YX = [X,Y ]. This connection is also called Levi-Civita connection.

The proof can be found in any textbook on Riemann geometry.

Lemma 7.1.5. Let V → M be a vector bundle and ∇ a connection on V . Then
there is a unique sequence of linear maps (differential operators)

A0(M ;V ) ∇→ A1(M ;V ) ∇→ A2(M ;V ) ∇→ . . .

such that ∇ coincides with the connection for p = 0 and such that ∇(ω ∧ s) =
dω ∧ s + (−1)∣ω∣ω ∧∇s holds.

Proof. Locally, each s ∈ Ap(M ;V ) can be written as a linear combination of terms
of the form ω⊗ t, where ω is a scalar-valued form and t a section of V . The product
rule prescribes the value of ∇ on these elements. This shows uniqueness.

Choosing a local frame e1, . . . , er of V , each section can uniquely written as
s = ∑i ωi ⊗ ei, for forms ωi. We set

∇s =∑
i

dωi ⊗ ei + ωi ∧∇ei.

This has the desired property locally, and uniqueness proves that it is coordinate
independent. �

Note the similarity to the definition of the exterior derivative. But we have to
sacrifice the condition ∇2 = 0, for a very substantial reason, as we shall see.
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Proposition 7.1.6. There exists a unique 2-form Ω with values in End(V ) such
that ∇2 = Ω. This form is called the curvature.

Proof. First we prove that ∇2 is of order 0. This is because

∇∇(fs) = ∇(df ∧ s) +∇(f∇s) = −df ∧∇s + df ∧∇s + f∇2s.

More generally, if ω is a form, then

∇∇(ω ∧ s) = ∇(dω ∧ s) + (−1)p∇(ω∇s) = ω∇2s.

Therefore, ∇2 commutes with multiplication by forms and thus it is determined
by Ω.

�

7.2. The first Chern class - the baby case of Chern-Weil theory. Let us
figure out what the curvature look like for a complex line bundle L → M . Let s
be a local section of L without zeroes, in other words a local basis. As ∇s is an
L-valued 1-form, we can write it as ∇s = ω ∧ s, for a unique complex valued 1-form
ω. But then

∇2s = ∇(ω ∧ s) = dω ∧ s − ω ∧∇s = (dω) ∧ s − ω ∧ ωs = (dω) ∧ s.
Here we used in an essential way that we talked about a line bundle. The

relevant property is that L has abelian structure group, as we will see. We have
shown that the curvature form is just Ω = dω. That it is a scalar valued 2-form
should not come as a surprise: the endomorphism bundle of a line bundle is trivial,
in a canonical way (the identity endomorphism is a global section without zeroes).
Let us make some remarks. We know that the form Ω is a globally defined 2-form,
by Proposition 7.1.6! The formula Ω = dω seems to suggest that Ω is an exact
form, but this is fallacious: the form ω depends on the choice of s and therefore, it
does exist only locally. But the formula Ω = dω does give important information -
namely that Ω is closed, which is by definition a local property of a form. So we get
a cohomology class [Ω] ∈ H2(M). If L is trivial, then there exists a global section
s without zeroes, and thus the form ω has a global meaning, which tells us at once
that Ω is exact and [Ω] = 0.

On the other hand, the trivial bundle M × C admits a connection whose cur-
vature is zero, namely the exterior derivative! These observations might lead us
to the suspicion that the cohomology class of the curvature form contains relevant
information about the global structure of the bundle. We now prove that is indeed
correct.

Definition 7.2.1. Let L→M be a complex line bundle and ∇ a connection on L
with curvature form Ω. The first Chern class of L is the class

c1(L) ∶= −
1

2πi
[Ω].

Lemma 7.2.2. The cohomology class of Ω is independent of the choice of the
connection.

Proof. Indeed, the difference ∇1 − ∇0 of two connections on L is an operator of
order 0 and hence given by a (complex-linear) vector bundle homomorphism L →
T ∗M ⊗R L or equivalently by a 1-form with values in the endomorphism bundle
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End(L). As End(L) is trivial, this is just a 1-form α ∈ A1(M,C). Hence ∇1 = ∇0+α
for a globally defined 1-form α. With respect to a local section s, this shows that
ω1 = ω0 + α (locally) and hence Ω1 = Ω0 + dα globally. �

One can (and we will) show that if f ∶M → N is a smooth map, then f∗c1(L) =
c1(f∗L), but this won’t be simpler than the general argument given below.

Example 7.2.3. Consider the tautological line bundle L → CP1. Recall that
L = {(`, v) ∈ CP1∣v ∈ `}. Let U ⊂ CP1 be the set of all [1 ∶ z] ∈ CP1; this is the
complement of a point. We will now compute the projection connection ∇ and its
curvature. There is a complex chart C → U , z ↦ [1 ∶ z]. Over U , we have the
section s ∶ U → L∣U , which expressed in these coordinates is given by

s(z) ∶= ([1 ∶ z], (1, z)).

In other words, the section s is given by the vector valued function, also denoted

s(z) = (1
z
). The projection operator is

p(z) = 1

∥s(z)∥
(1
z
)(1 z̄) = 1

1 + ∣z∣2
(1 z̄
z ∣z∣2) .

With these formulae, we compute

∇s = p(ds) = 1

1 + ∣z∣2
(1 z̄
z ∣z∣2)( 0

dz
) = 1

1 + ∣z∣2
( z̄dz
z̄zdz

) = z̄dz

1 + ∣z∣2
(1
z
) = ωs

with

ω = z̄dz

1 + ∣z∣2
.

The curvature is the exterior derivative of this form, but we do not need to
compute the derivative. Let us show that [Ω] and hence c1(L) is nontrivial, by
computing ∫CP1 c1(L). Since the complement of the coordinate patch U is a point,
it has measure zero, and we compute

−∫
CP1

c1(L) =
1

2πi
∫
C
dω = 1

2πi
lim
r→∞∫∣z∣≤r

dω = 1

2πi
lim
r→∞∫∣z∣=r

ω

by Stokes theorem. But for ∣z∣ = r, we have z̄ = r2z−1 and hence

1

2πi
lim
r→∞∫∣z∣=r

ω = 1

2πi
lim
r→∞

r2

1 + r2 ∫∣z∣=r
z−1dz = 1.

The minus sign has ”historical” reasons, the 2πi factor emphasizes the integral
structure of cohomology! The ”historical” reason is to line up with the Euler class.

Theorem 7.2.4. Let L→M be a complex line bundle. Then c1(L) = e(L).

The proof is a prelude to the proof of the Gauß-Bonnet-Chern theorem, and is a
good introduction to the techniques involved in the theory of characteristic classes.
First, we use that any complex line bundle has a bundle map to L → CPn, the
tautological line bundle. The naturality of the Euler class, together with the not
yet proven naturality of the first Chern class, shows that it is enough to consider
the tautological line bundle.
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Now the dual of a complex vector bundle is isomorphic to the complex-conjugate
bundle. The effect on the Euler class is that orientation is changed by (−1)k, k the
rank. Therefore, the Euler class of L is −1, the same as c1(L).

The computation for the integral of the first Chern class on CP1 proves that it
is equal to the Euler class. The case of higher dimensional projective spaces follows
because H2(CPn)→H2(CP1) is an isomorphism!

However, not all vector bundles are line bundles, and we now study connections
and curvature in more detail for higher rank bundles. It is the failure of commuta-
tivity of the Lie groups GLn that makes this more difficult.

7.3. The coordinate description of a connection. In the same way as principal
bundles gave us more flexibility when dealing with bundles, we will gain flexibility
with connections by introducing a new concept a connection on aG-principal bundle
when G is a Lie group. Just as principal bundles is a notion to keep track in
a systematic way of all trivializations, the notion of a connection on a principal
bundle arises from a systematic study of the way the connection is written when
coordinates are chosen.

Let V →M be a vector bundle and ∇ be a connection on V . Let U ⊂M be open
and s a local section of the frame bundle, defined over U . We consider s as a map
U ×Rn → V ∣U (a bundle isomorphism). We obtain isomorphisms

φs ∶ Ap(U ;Rn)→ Ap(U ;V ).
These isomorphisms have the following explicit description. Let ei be the ith

unit vector in Rn. Recall that for x ∈ U , s(x) gives a vector space isomorphism
Rn → Vx, and we let si(x) ∈ Vx be the image of ei. Of course, we obtain continuous
sections si of V ∣U , and this is another way of describing the local frame. For p = 0,
the map φs sends a function a = (a1, . . . , an) to the section ∑i aisi. The same is
true for p-forms, i.e. if ai is a p-form. We obtain a commutative diagram

(7.3.1) Ap(U,Rn)
φs //

?

��

Ap(U ;V )

∇
��

Ap+1(U ;Rn)
φs // Ap+1(U ;V );

the left vertical map is defined so that the diagram commutes (this is possible
since the horizontal maps are isomorphisms). Let us describe the map ”?”. There
exists uniquely determined forms

θij ∈ A1(U) such that ∇sj =∑
i

θijsi(sic!).

We summarize them in the matrix θ = θs = (θij)i,j=1,...n. Now we follow a tuple
of p-forms a = (a1, . . . , an) in the diagram 7.3.1. By φs, it is sent to ∑i aisi and

∇∑
i

aisi =
n

∑
i=1

dai ⊗ si + (−1)p∑
j,i

ajθijsi

With these notations, we can write

∇φs(a) =∑
i

dai ⊗ si + (−1)p∑
j

∑
i

ajθijsi = φs(da) + φs(θa),
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the (−1)p factor is absorbed because ai is a scalar-valued p-form and the entries
of θ are 1-forms and we interchanged the order of multiplication.

Thus the connection can be written in local coordinates s as d + θ, for a 1-form
θ ∈ A1(U ;gln(R)). Here gln(R) is the Lie algebra of GLn(R); which as a vector
space is the same as Matn,n(R). Not yet, but soon it will become clear why we use
the Lie algebra notation here. The curvature is easily computes in this formalism
as

Ωsa = (d+θ)(d+θ)a = (d+θ)(da+θa) = dda+dθa−θ∧da+θ∧dθ+θ∧θa = (dθ+θ∧θ)a,
the notation Ωs indicates that the matrix-valued 2-form Ωs ∈ A2(U,gln(R))

depends on s. As a side remark, this gives another proof that the curvature is a
tensor field. Finally, we remark that θ ∧ θ is in general not zero, because the ring
Matn,n(R) is not commutative.

The next step is to figure out how the forms θs and Ωs change if the local frame
s changes. Let g ∶ U → GLn(R) be a smooth function and s a local frame. We
obtain a new local frame sg, with components given by

(sg)i = (∑
j

gj1sj , . . . ,∑
j

gj1sj).

The functions / forms ai are changed to g−1a (matrix multiplication).

The map φsg is the composition φs○(g . . . ), where (g)̇ is the map given by matrix
multiplication. To find out the change-of-frame formula, we look at the diagram

C∞(U,Rn)

d+θsg
��

g⋅ // C∞(U,Rn)
φs //

d+θs
��

A0(U,V )

∇
��

A1(U,Rn)
g⋅ // A1(U,Rn)

φs // A1(U,V );
the horizontal compositions are the maps φsg. From that, one derives the formula

(7.3.2) θsg = g−1dg + g−1θsg.

The curvature form transforms as

Ωsg = dθsg + θsg ∧ θsg = d(g−1dg) + d(g−1θsg) + (g−1dg + g−1θsg) ∧ (g−1dg + g−1θsg) =
= d(g−1dg) + d(g−1θsg) + g−1dgg−1dg + g−1dgg−1θg + g−1θdg + g−1θ ∧ θg =

= d(g−1θsg) + g−1dgg−1θg + g−1θdg + g−1θ ∧ θg =
= g−1dgg−1θsg + g−1dθg − g−1θdg + g−1dgg−1θg + g−1θdg + g−1θ ∧ θg =

= g−1(dθ + θ ∧ θ)g.
Let us summarize the calculations so far:

Proposition 7.3.3. There is a bijection between connections on V and rules that
assign a form θs ∈ A1(U,Matn,n(Rn)) to a local frame s, such that θsg = g−1dg +
g−1θsg, for each change-of-frame function g ∶ U → GLn(R). The curvature is given
by Ωs = dθs + θs ∧ θs, and the change-of-frame formula is Ωsg = g−1Ωsg. Any such
a rule defines a connection; in a frame s it is ∇ = d + θs.
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This description is not very practical yet; we want to package the information
of the ”rule” in a single 1-form θ ∈ A1(Fr(V );gln(R)), such that θs ∶= s∗θ. And we
want to talk about other Lie groups than GLn(R).

7.4. The very basics of Lie theory. We need to pause a little and introduce
some basic constructions of Lie theory, beyond the mere definitions.

Definition 7.4.1. Let G be a Lie group. The Lie algebra of G is the vector space
T1G = g = Lie(G).

If V is a real vector space, then gl(V ) = End(V ).

Definition 7.4.2. A Lie algebra over a field F of characteristic ≠ 2 is a F-vector
space g, together with a bilinear map g × g→ g, (X,Y )↦ [X,Y ] such that

(1) [X,Y ] = −[Y,X] and
(2) [[X,Y ], Z] + [[Y,Z],X] + [[Z,X], Y ] (the Jacobi identity)

hold.

How is the structure of a Lie algebra on T1G defined? Each g ∈ G defines a
smooth map Cg ∶ G→ G, h↦ ghg−1, and Cg(1) = 1.

Definition 7.4.3. Let G be a Lie group. The adjoint representation of G on g is
defined by Ad(g)X ∶=D1Cg(X).

It is easy to see that

Ad(gh) = Ad(g)Ad(h)
and that Ad ∶ G→ GL(g) is a smooth group homomorphism.

Definition 7.4.4. Let ad ∶ g → gl(g) be the derivative of Ad at the identity. We
define, for X,Y ∈ g: [X,Y ] ∶= ad(X)(Y ).

It is not a complete triviality to prove:

Theorem 7.4.5. (Lie’s first theorem) g, equipped with [, ] is a Lie algebra. If
φ ∶ G→H is a homomorphism of Lie groups, then D1φ is a homomorphism of Lie
algebras.

This can be found in basic texts on Lie theory, e.g. [6], [9].

Example 7.4.6. Let G = GLn(R). Then gln(R) is the space of n × n-matrices.
The conjugation map Cg(h) ∶= ghg−1. To compute the adjoint representation, let
X ∈ gln(R) and g ∈ GLn(R). Then t ↦ exp(tX) is a curve through 1 with tangent
vector X, and

Ad(g)X = d

dt
∣t=0g exp(tX)g−1 = gXg−1.

Moreover

ad(Y )(X) = d

dt
∣t=0 exp(tY )X exp(−tY ) = Y X −XY.

Definition 7.4.7. A representation of a Lie group G on the vector space V is a
smooth group homomorphism φ ∶ G→ GL(V ). A representation of a Lie algebra is
a Lie algebra homomorphism ϕ ∶ g→ gl(V ).
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If a Lie group representation φ ∶ G → GL(V ) is given, we obtain a Lie algebra
representation as the derivative of φ, at the identity. There are some ways to
produce new representations of Lie groups/algebras out of old ones. We denote the
action by g ∈ G or X ∈ g.

Examples 7.4.8. (1) The trivial representations: g ⋅ v ∶= v, X ⋅ v = 0.
(2) Direct sums of representations are representations (in both cases).
(3) If V is a representation, then the dual space has the following representa-

tion: g ⋅ ` ∶= ` ○ g−1, X ⋅ ` ∶= −` ○X.
(4) If V and W are representations, the tensor product V ⊗W is a representa-

tion: g(v ⊗w) ∶= gv ⊗ gw, X(v ⊗w) ∶=Xv ⊗w + v ⊗Xw.
(5) Hom(V,W ) is a representation: g ⋅ f ∶= g ○ f ○ g−1, X ⋅ f ∶=X ○ f − f ○X.

Lemma 7.4.9. Let φ ∶ G → GL(V ) be a representation and ϕ ∶ g → gl(V ) be the
induced Lie algebra representation. Then ϕ is G-equivariant, in other words for all
g ∈ G and x ∈ g:

φ(g)ϕ(X)φ(g−1) = ϕ(Ad(g)X) ∈ gl(V ).

Proof. Let ct ∶ (−ε, ε)→ G be a curve with c0 = 1 and ċ0 =X. Then

φ(g)ϕ(X)φ(g−1) = φ(g) d
dt

∣t=0φ(ct)φ(g−1) = d

dt
∣t=0φ(gctg−1) =

= d

dt
∣t=0φ(Cg(ct)) = ϕ(

d

dt
∣t=0Cgct) = ϕ(Ad(g)X).

�

If M is a manifold and g a Lie algebra, we can talk about the space Ap(M ;g) of
p-forms with values in g. One can combine the wedge product and the Lie bracket:

[; ] ∶ Ap(M ;g)⊗Aq(M ;g) ∧→ Ap+q(M ;g⊗ g)
[,]
→ Ap+q(M,g);

more concretely, if ω, η are real valued forms and X,Y ∈ g, then [ω⊗X,η⊗Y ] ∶=
ω ∧ η ⊗ [X,Y ].

Example 7.4.10. Let g = gl(V ) and X,Y ∈ gl(V ), ω ∈ Ap(M), η ∈ Aq(M). Then

[ω ⊗X,η ⊗ Y ] = ω ∧ η ⊗XY − ω ∧ η ⊗ Y X = (ω ⊗X) ∧ (η ⊗ Y ) − (−1)pqη ∧ ω ⊗ Y X =
(ω ⊗X) ∧ (η ⊗ Y ) + (−1)pq+1(η ⊗ Y ) ∧ (ω ⊗X).

In other words, if ω ∈ Ap(M,gl(V )) and η ∈ Aq(M,gl(V )), we find that

(7.4.11) [ω, η] = ω ∧ η − (−1)pqη ∧ ω,
in particular, for ω ∈ A1(M ;g):

ω ∧ ω = 1

2
[ω,ω].

In general, one can prove easily that Ap(M,g) has the structure of a differential
graded Lie algebra:

Proposition 7.4.12. Assume that ω ∈ Ap(M ;g), η ∈ Aq(M ;g), and ζ ∈ Ar(M ;g).
Then
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(1) d[ω, η] = [dω, η] + (−1)p[ω, dη],
(2) [ω, η] = (−1)pq+1[η,ω],
(3) (−1)pr[[ω, η], ζ] + (−1)qp[[η, ζ], ω] + (−1)rq[[ζ, ω], η] = 0.

A Lie algebra homomorphism ϕ ∶ g → h induces, in an obvious manner, a map
ϕ∗ ∶ A∗(M,g) → A∗(M,h). Smooth maps g ∶ M → G act on g-valued differential
forms by the adjoint representation. I.e., if ω ∈ Ap(M,g), then Ad(g)ω is the form
that takes tangent vectors X1, . . . ,Xp ∈ TxM to

Ad(g(x))(ω(X1, . . . ,Xp)).
The mother of all Lie algebra valued forms is a canonical 1-form that exists on

every Lie group.

Definition 7.4.13. Let G be a Lie group and π ∶ TG → G be the tangent bundle.
By Rg, Lg, we denote the left and right translations by g ∈ G. The maps TG→ G×g,
v ↦ (π(v), Lπ(v)−1∗v) and G × g → TG, (g, x) ↦ Lg∗x are two mutually inverse

bundle isomorphisms. The 1-form ωG ∈ A1(G;g), v ↦ Lπ(v)−1∗v is called Maurer-
Cartan-form.

Example 7.4.14. LetG = GLn(R). Then there is the trivialization TG = GLn(R)×
Matn,n(R), since GLn(R) ⊂ Matn,n(R) is an open subset. The map v ↦ Lπ(v)−1∗v
becomes in this trivialization

(g,X)↦ g−1X,

because the left-translation map is ”linear”. So we can write the Maurer-Cartan
form ωGLn(R) = g−1dg.

The Maurer-Cartan form has some useful properties.

Proposition 7.4.15. Let G and H be Lie groups and φ ∶ G → H be a homomor-
phism with derivative ϕ ∶ g → h. Let µ ∶ G ×G → G be the multiplication. Then the
following statements are true:

(1) For all g ∈ G: L∗gωG = ωG; R∗
gωG = Ad(g−1) ○ ωG.

(2) φ∗ωH = ϕ∗ωG.
(3) µ∗ωG = p∗2ωG +Ad(p−1

2 )p∗1ωG, where pi ∶ G×G→ G are the two projections.
(4) (structural equation) dωG + 1

2
[ωG, ωG] = 0.

(5) Let η ∈ Ap(M) and g ∶M → G. Then

d(Ad(g−1)η) = −g∗ωG ∧Ad(g−1)(η) +Ad(g−1)dη + (−1)pAd(g−1)ηg∗ωG.

We will only give the proof in the special case when G is a linear group, i.e. if
G ⊂ GLn(R). This is not a serious restriction for our purposes; we will only consider
linear groups, but simplifies the proof, because the objects are easier to grasp.

Proof. Ad 1) and 2): these follow immediately from the definitions, and for arbi-
trary Lie groups.

Ad 3) This is the computation

(gh)−1d(gh) = (gh)−1gdh+(gh)−1(dg)h = h−1g−1gdh+h−1g−1(dg)h = h−1dh+h−1(g−1dg)h,
together with the formulae for the adjoint representation and the Maurer-Cartan
form.
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Ad 4) This is the computation

d(g−1dg) + 1

2
[g−1dg, g−1dg] 7.4.11= −g−1dgg−1 ∧ dg + g−1dg ∧ g−1dg = 0.

Ad 5)

d(Ad(g−1)η) = d(g−1ηg) = −g−1dgg−1ηg +Ad(g−1)dη + (−1)pg−1ηdg =

= −g∗ωG ∧Ad(g−1)(η) +Ad(g−1)dη + (−1)pAd(g−1)ηg∗ωG.
�

7.5. Back to connections. Recall Proposition 7.3.3, and let us reformulate it in
terms of the Lie algebraic data we found. Let E →M be a real vector bundle and
Fr(E) = P be its frame bundle. Let G = GLn(R) and g ∶= gln(R).

Proposition 7.5.1. There is a bijection between connections on E and rules that
assign a form θs ∈ A1(U,g) to a local section s of P , such that for each change-of
frame function g ∶ U → G, we have

θsg = g∗ωG +Ad(g−1)θs.
The curvature is given by

Ωs = dθs +
1

2
[θs, θs].

and the change-of-frame formula for the curvature is

Ωsg = Ad(g−1)Ωs.

Note that the above structure can be expressed entirely using the frame bundle
and the Lie group/Lie algebra structure. No reference, implicit or explicit, is made
to the fact that GLn(R) is a linear Lie group. We also want to see how the
connection on E (the differential operator) can be reconstructed from these data,
but we do this below and form an abstract version. We will have two versions of
the same thing. One is an abstraction of the properties of Proposition 7.5.1. We
will formulate it, for later use, in a slightly more general setting. The other is a
single 1-form on the total space P .

Assume that P →M is a G-principal bundle. Let (Ui, si)i∈I be a bundle atlas,
Ui open and si a local section over Ui. For i, j ∈ I, we denote Uij = Ui∩Uj . There is
a unique smooth function gij ∶ Uij → G such that sigij = sj . These functions satisfy
gijgjk = gik, the cocycle identity.

If p ∈ P is a point, the orbit map is denoted jp ∶ G → P , jp(g) ∶= xg - this
identifies the fibres of P with G. Note that jp is G-equivariant when G carries the
action by right-multiplication.

Definition 7.5.2. A connection rule is a family θi ∈ A1(Ui,g), such that for each
i, j ∈ I, we have θj = g∗ijωG +Ad(g−1

ij )θi on Uij . A connection 1-form is an element

θ ∈ A1(P,g) such that R∗
gθ = Ad(g−1)θ for all g and for all p ∈ P : j∗p = ωG.

Theorem 7.5.3. Sending the connection 1-form θ to the family (θi)i∈I , θi ∶= s∗i θ
defines a bijection from the set of connection 1-forms to the set of connection rules.
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Proof. We begin by figuring out what a connection 1-form on the trivial bundle
looks like. Let p ∶M ×G →M and q ∶M ×G → G be the projections and s0 ∶M →
M ×G be the section x ↦ (x,1). We claim that a general connection 1-form can
be written - uniquely - as

(7.5.4) θ = q∗ωG +Ad(q−1)p∗η

for a form η ∈ A1(M,g). It is easily verified that the above formula indeed defines
a connection 1-form, and the uniqueness of η is clear, since s∗0θ = η. To prove the
existence of the above formula, write η ∶= s∗0θ, put θ′ ∶= q∗ωG +Ad(q−1)p∗η and we
have to show that θ = θ′. This is a purely local problem, and we write

θ =∑
i

ai(x, g)q∗ωi +∑
j

bj(x, g)p∗dxj

for some scalar valued 1-forms ωi on G and dxi on M and g-valued functions.
The orbit map ι ∶ G →M ×G, g ↦ (x, g) satisfies ι∗p∗dxj = 0 and q ○ ι = idG, and
so ι∗θ = ωG implies already that ∑i ai(x, g)ωi = ωG for all x ∈ G, or that

θ = q∗θG +∑
j

bj(x, g)p∗ηj

The condition R∗
hθ = Ad(h−1)θ for h ∈ G enforces bj(x, g) = Ad(g−1)bj(x,1). But

η = s∗0θ = ∑j bj(x,1)ηj and therefore θ has to be of the form 7.5.4.
To see that θi = s∗i θ is a connection rule when θ is a connection 1-form, we have

to prove the transformation property. Since it refers to a subset of M over which
the bundle has a cross-section, we may assume that the bundle is trivial and the
connection 1-form is given by 7.5.4. A function g ∶ M → G determines a section
sg(x) ∶= (x, g(x)), and

s∗gθ = g∗ωG +Ad(g−1)η.
Thus we can compare, using Proposition 7.4.15,

s∗ghθ = (gh)∗ωG+Ad((gh)−1)η = h∗ωG+Ad(h−1)g∗ωG+Ad(h−1)Ad(g−1)η = h∗ωG+Ad(h−1)s∗gθ

as claimed.
The above computations already show that a connection 1-form is uniquely de-

termined - over U ⊂ M - by s∗θ for a section s. This proves injectivity. To show
surjectivity, we need to see that any connection rule comes from a unique connection
1-form. Recall that any local section si defines a bundle isomorphism Ui×G ≅ P ∣Ui .
We define a 1-form ρi ∈ A1(P ∣Ui ,g) by ρi = q∗ωG + Ad(q−1)p∗θi on Ui and trans-
plant it to PUi . This is a connection form (as shown above) and s∗i ρi = θi (since the
section si corresponds to the unit section in these coordinates). We have to prove
that ρi = ρj on the intersection P ∣Uij ; and this proves that the ρi glue together
to a global form. But we have seen that a connection 1-form is determined by its
pullback along one section, and thus it is enough to prove that s∗jρi = θj . In these

coordinates, the section sj is given by x↦ (x, gij(x)) and thus (g = gij)

s∗jρi = g∗ωG +Ad(g−1)θi = θj
by the definition of a connection rule. �
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The theorem has some useful consequences.

Corollary 7.5.5. Let f ∶ M → N be smooth, P → N and Q → M be G-principal

bundles and f̂ ∶ Q → P be a bundle map. If θ ∈ A1(P,g) is a connection 1-form,

then f̂∗θ is a connection 1-form on Q.

Corollary 7.5.6. Let P → M be a G-principal bundle and φ ∶ G → H be a Lie
group homomorphism with derivative ϕ. Form the H-principal bundle Q = P ×GH
and let (si) be a bundle atlas for P . Then (ti) is a bundle atlas for Q, with
ti(x) = [si(x),1]. Let θi ∶= s∗i θ be the connection rule. Then σi ∶= ϕ∗θi is a
connection rule for the H-principal bundle Q. Thus connections can be prolonged
along Lie group homomorphisms.

Corollary 7.5.7. Each principal bundle admits a connection 1-form.

Proof. Let λi be a partition of unity, subordinate to the open cover of a bundle
atlas. Glue together local connections... �

7.6. Linear connections induced by a principal connection. Now let φ ∶ G→
GL(V ) be a representation, ϕ ∶ g → gl(V ) be its derivative. A local frame s for P
defines an isomorphism

ψs ∶ Ap(U,V )→ Ap(U,P ×G V ).
We define a covariant derivative on P ×G V by setting

(7.6.1) ψ−1
s ∇ψsf ∶= df + ϕ(θs)f.

It is clear that the Leibniz rule holds, but that this definition is independent of
the frame needs to be verified. We have to prove that for each function g ∶ U → G,
the diagram

Ap(U,V )
φ(g)⋅ //

d+ϕ(θsg)
��

Ap(U,V )

d+ϕ(θs)
��

Ap+1(U,V )
φ(g)⋅ // Ap+1(U,V )

commutes and follow a form f in the left upper corner. If we map it to the lower
left corner along the three other maps, then it becomes

φ(g)−1d(φ(g)f) + φ(g)−1ϕ(θs)φ(g)f = φ(g)−1d(φ(g))f + df + ϕ(Ad(g−1)θs)f
by Lemma 7.4.9. But φ(g)−1d(φ(g)) = g∗φ∗ωGL(V ) by the computation of the

Maurer-Cartan form on GL(V ). Moreover, g∗φ∗ωGL(V ) = g∗ϕ(ωG) = ϕ(g∗ωG) by
Proposition 7.4.15. Therefore

φ(g)−1d(φ(g))f + df + ϕ(Ad(g−1)θs)f = df + ϕ(g∗ωG +Ad(g−1)θs)f
as claimed and 7.6.1 gives indeed a well-defined covariant derivative.

Example 7.6.2. Let V → M be a Riemannian vector bundle and ∇ a metric
connection. Prove that if an orthogonal frame is chosen, then the 1-form θs takes
values in o(n).
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If P → M is a G-principal bundle, θ a connection on P and φ ∶ G → GL(V ) a
representation, we denote the connection induced on P ×GV by ∇θ,V . The following
Lemma is easy, but fundamental.

Lemma 7.6.3. Let V,W be two G-representations. Then

(1) For ω ∈ Ap(M ;P×V ) and η ∈ Aq(M ;P ×GW ), we have ∇θ,V ⊗W (ω ∧ η) =
∇θ,V ω ∧ η + (−1)pω ∧∇θ,W η.

(2) If f ∶ V →W is an equivariant map, which induces a bundle homomorphism
f ∶ P ×G V → P ×GW , then f is parallel, i.e. f∇θ,V ω = ∇θ,W fω.

The curvature of the induced connection ∇θ,V is called Ωθ,V . It is a 2-form with
values in End(P ×G V ) = P ×G End(V ). By the defining formula for ∇θ,V 7.6.1, we
have in a local frame:

Ωθ,Vs = dϕ(θs) +
1

2
[ϕ(θs), ϕ(θs)] = ϕ(dθs +

1

2
[θs, θs]).

This can be interpreted as follows: the curvature forms Ωs = dθs+ 1
2
[θs, θs] define

a 2-form Ωθ with values in the adjoint bundle P ×G g, and since ϕ is G-equivariant,
it defines a bundle homomorphism ϕ ∶ P ×G g→ P ×G End(V ). The curvature Ωθ,V

is obtained by

(7.6.4) Ωθ,V = ϕΩθ.

We can now easily prove the following fundamental result:

Theorem 7.6.5. (The Bianchi identity) The curvature Ωθ,V is parallel.

Proof. By 7.6.4 and Lemma 7.6.3, we have

∇θ,End(V )Ωθ,V = ∇θ,End(V )ϕΩθ = ϕ∇θ,gΩθ.

Therefore it is enough to prove that ∇θ,gΩθ = 0, and we do this in a local frame.
The curvature is given by Ω = dθ + 1

2
[θ, θ], and the connection applied to it is

dΩ + [θ,Ω]
and what we have to show is thus that

d(dθ + 1

2
[θ, θ]) + [θ, dθ] + 1

2
[θ, [θ, θ]] = 0.

This identity holds for arbitrary g-valued 1-forms: by the graded Jacobi identity,
[θ, [θ, θ]] = 0 and

1

2
d[θ, θ] + [θ, dθ] = 1

2
[dθ, θ] − 1

2
[θ, dθ] + [θ, dθ] = 1

2
[dθ, θ] + 1

2
[θ, dθ].

For degree reasons, [θ, dθ] = −[dθ, θ], which concludes the proof. �

7.7. The Chern-Weil construction. Now we can give the general construction
of characteristic classes for general G-principal bundles. Here are the ingredients:

(1) P →M is a G-principal bundle,
(2) θ ∈ A1(P,g) a connection with curvature form Ω ∈ A2(M ;P ×G g).
(3) p ∈ (g∨)⊗k is a G-invariant tensor, viewed as an equivariant map g⊗k → R

(or C). Later, we see that we can restrict to symmetric tensors.
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We know by the Bianchi identity (Theorem 7.6.5) that ∇θ,gΩ = 0. Next one
considers

Ω⊗k ∈ A2k(P ×G g⊗k).
This is parallel, by the Bianchi identity and by the Leibniz rule 7.6.3. As p ∶

g⊗k → C is equivariant, it induces a bundle map P ×G g⊗k → P ×G C =M ×C. By
Lemma 7.6.3, the 2k-form CW(θ, p) ∶= p(Ω⊗k) ∈ A2k(M) is parallel. But the trivial
line bundle is induced by the trivial representation, and the connection induced on
the trivial line bundle is the exterior derivative. Hence we conclude

(7.7.1) dp(Ω⊗k) = 0.

Let us inspect the multilinear algebra involved a bit closer. The tensor algebra
(g∗)⊗∗ has a product, namely two tensors p and q of degrees k and l are multiplied
by the rule

p⊗ q(v1, . . . , vk+l ∶= p(v1, . . . , vk)q(vk+1, . . . , vk+l).
Here we used implicitly the identification of tensors with multilinear forms. In

other words, the diagram

V ⊗k ⊗ V ⊗l

p⊗q
��

// V ⊗k+l

p⊗q
��

K⊗K // K
commutes, where the two vertical arrows have the same name, but different

meanings.
To understand the construction a little better, let us pick a local frame of P

in which the curvature is given by a form Ω ∈ A2(U,g). It follows that (p ⊗
q)(Ω⊗(k+l)) = p(Ω⊗k)∧q(Ω⊗l). Before we analyze the situation closer, we summarize
the basic properties of this construction.

Theorem 7.7.2. Let P → M be a G-principal bundle, θ a connection on P and
p ∈ ((g∗)⊗k)G be an invariant symmetric tensor. Then

(1) The form CW(θ, p) ∶= p(Ω⊗k) is closed.
(2) If f ∶ N → M is a smooth map and f∗θ the pullback-connection, then

f∗CW(θ, p) = CW(f∗θ, p).
(3) The cohomology class of CW(θ, p) is independent of θ.
(4) The map p ↦ CW(θ, p) defines a homomorphism of algebras (V ∗)⊗ →
Aev(M).

(5) Let φ ∶ G → H is a Lie group homomorphism and ϕ ∶ g → h its derivative.
Let ϕ∗θ ∈ A1(P ×G H;h) be the prolonged connection. Let p ∈ ((h∗)⊗k)G
and ϕ∗p be the pulled back tensor. Then CW(θ,ϕ∗p) = CW(ϕ∗θ;p).

Proof. We have already proven parts (1) and (4). Part (2) is trivial (why?). We
won’t prove part (5). Part (3) is an easy consequence of (1) and (2): Let θ0, θ1 be
two connections. Let π ∶M × [0,1]→M be the projection and t ∶M × [0,1]→ R be
the other projection. Then θ = (1−t)π∗θ0+tπ∗θ1 is a connection and j∗i θ = θi, where
ji ∶ M → M × [0,1] are the inclusions. By part (1), CW(θ, p) ∈ A2k(M × [0,1])
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is closed, and by part (2), CW(θi;p) = j∗i CW(θ, p). The result follows from the
homotopy invariance of the de Rham cohomology. �

The tensor algebra is not very practical and we will now replace it by something
simpler. Let Ω ∈ A2(U,g) be the curvature. To understand the algebra, let us
assume for a second that p = `1 ⊗ . . .⊗ `k is a tensor product of linear forms. Then
p(Ω⊗k) is given by

(7.7.3) `1(Ω)∧ . . .∧`k(Ω) != 1

k!
∑
σ∈Σk

`σ(1)(Ω)∧ . . .∧`σ(k)(Ω) = S(`1⊗ . . .⊗`k)(Ω⊗k),

(since Ω is a 2-form and 2 is even!) where S is the symmetrization operator on
(g∗)k defined by

S(p)(v1, . . . , vk) =
1

k!
∑
σ∈Σk

p(vσ(1), . . . , vσ(k)).

Let Syml(g∗) ⊂ (g∗)⊗k be the subspace of symmetric tensors, i.e. the image of
the idempotent S. We have seen that CW(θ, p) only depends on S(p) (and on θ,
but that is not the point right now). Furthermore, 7.7.3 shows that we are only
interested in evaluating a symmetric tensor on equal arguments.

Let Polk(V ) be the space of homogeneous polynomial functions p ∶ V → K of
degree k. There is a map

T ∶ Symk(V ∗)→ Polk(V ); p↦ Tp; Tp(v) ∶= akp(v, . . . , v)
which is an isomorphism; the inverse is given by a polarization procedure. The

composition TS is an algebra homomorphism:

(TS(p⊗q))(v) ∶= S(p⊗q)(v, . . . , v) = 1

(k + l)! ∑
σ∈Σk+l

(p⊗q)(v, . . . , v) = (p⊗q)(v, . . . , v)

and

(TSp)(v)(TSq)(v) = Sp(v, . . . , v)Sq(v, . . . , v) = p(v, . . . , v)q(v, . . . , v) = (p⊗q)(v, . . . , v).
The polished form of the Chern-Weil construction takes invariant polynomials

as an input.

Definition 7.7.4. Let G be a Lie group and k ∈ N. By I(G), we denote the vector
space of degree k homogeneous polynomial functions g → C which are invariant
under the adjoint representation.

It is not recommended to try explicit computations of p(Ω) in terms of forms,
local coordinates etc. We will do all relevant computations on the Lie algebra level,
the only computation on a manifold was the case of the tautological line bundle on
CP1, and this is already done.

Nevertheless, it is conceptually helpful to have a concrete interpretation, even if
it does not give a handy recipe for computations. As usual, Ricci calculus is the
supreme language here. So let P →M be a G-principal bundle and θ a connection.
Pick a local frame, so that θ is given by a form θ ∈ A1(U ;g). The curvature is given
by dθ + [θ, θ]. The Lie bracket can be computed by means of a basis. Fix a basis
X1, . . . ,Xn of g, the structure constants are defined by
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[Xi,Xj] ∶= clijXk

(Einstein convention). Write θ = θiXi; then

[θ, θ] ∶= clijθi ∧ θjXl

or

[θ, θ]l ∶= clijθi ∧ θj

(yes, if you follow the rules for the Ricci calculus, it thinks for you). The curva-
ture tensor is written as Ω = ΩiXi with

Ωi = dθi + cijlθj ∧ θl.
The tensor p is given, in terms of the dual base Xi of g, by

p = pi1,...,ikX
i1 ⊗ . . .⊗Xik ,

the symmetry condition is expressed by the invariance of the numbers pi1,...,ik
under permutations of the indices. The G-invariance takes care of itself (!). The
final formula is that the 2k-form is given by

p(Ω) = 1

k!
pi1,...,ikΩi1 ∧Ωik .

If you wish to know how to insert vector fields into this form, it becomes more
complicated; likewise, picking coordinates on M given a new layer of indices.

7.8. Chern classes and the proof of the Riemann-Roch theorem. For us,
the most important Lie groups are GLn(K), K = R,C, U(n), O(n) and SO(n). We
will eventually determine the algebras of invariant polynomials in all of these cases,
but we first consider complex bundles and prove the Riemann-Roch theorem. In the
next section, we give a formula for the Euler class of even-dimensional real oriented
vector bundles and prove the Gauß-Bonnet-Chern theorem. A more detailed study
of the characteristic classes of real vector bundles will be undertaken in the next
semester.

Recall that I(G) is the graded algebra of G-invariant polynomials on the Lie
algebra g. A homomorphism G → H induces a map I(H) → I(G), which is com-
patible with the Chern-Weil construction. We will only consider complex-valued
polynomials. Let us begin with G = GLn(C).

Definition 7.8.1. Let ck ∈ I(GLn(C)) be defined by the formula

ck(A) ∶= ( −1

2πi
)k Tr(ΛkA).

Here ΛkA is the endomorphism of ΛkCn induced by A.

Clearly, the polynomial ck has degree k. Up to factors of 2πi, ck is the k-th
elementary symmmetric polynomial in the eigenvalues of A. If V →M is a vector
bundle of rank n and θ a connection, we call CW(θ, ck) =∶ ck(V ) the kth Chern
class of V . It is easy to see that c0 = 1 and that for n = 1, c1 agrees with the
previously defined first Chern class.
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Theorem 7.8.2. The homomorphism C[c1, . . . , ck] → I(GLn(C)) is an isomor-
phism.

Proof. An element p ∈ I(GLn(C)) is determined by its values on the diagonal
matrices: the set of diagonalizable matrices is Zariski dense in the vector space
gln(C), and the adjoint action is given by conjugation, and so by invariance the
claim follows.

So let d(n) ⊂ gln(C) be the subspace of diagonal matrices. Any permutation
of the entries can be realized by a conjugation (embed Σn as the permutation
matrices). So the restriction map I(GLn(C)) → C[x1, . . . , xn]Σn is injective. The
theorem follows by applying the main theorem on symmetric functions. �

For a vector bundle V → M , we put ci(V ) = 0 for i > rank(V ) and c(V ) ∶=
∑k≥0 ck(V ) ∈H∗(M).

Theorem 7.8.3. The Chern classes have the following properties:

(1) Naturality.
(2) c(V ⊕W ) = c(V )c(W ). More precisely ck(V ⊕W ) = ∑p+q=k cp(V )cq(W ).

(3) The tautological line bundle L → CP1 has Chern class c(L) = 1 − x, where
x ∈H2(CP1) is the unique element with ∫CP1 x = 1.

(4) Let Li → M , i = 0,1, be two line bundles. Then c1(L0 ⊗ L1) = c1(L0) +
c1(L1).

Proof. Naturality is part of Theorem 7.7.2 and we did the computation for part
(3) in example 7.2.3. For part (2), we consider the homomorphism φ ∶ GLn(C) ×
GLm(C) → GLm+n(C) and let ϕ be its derivative. Let Πn ∶ GLn(C) ×GLm(C) →
GLn(C) be the projection and πn be its derivative. Πm and πm are defined in a
similar fashion.

We use the functorial isomorphism Λk(V ⊕W ) ≅ ⊕p+q=k ΛpV ⊗ ΛqW and the
relation Tr(A⊗B) = Tr(A)Tr(B) and compute

ϕ∗ck(A,B) = ck(A⊕B) = ( −1

2πi
)k ∑

p+q=k
Tr(Λp(A)⊗Λq(B)) =

= ∑
p+q=k

cp(A)cq(B) = ∑
p+q=k

π∗ncp(A,B)π∗mcq(A,B).

In short

ϕ∗ck = ∑
p+q=k

π∗ncpπ
∗
mcq.

Now let V = P ×GLn(C) Cn and W = Q ×GLm(C) Cm and let R ∶= ∆∗(P ×Q) be
the product GLn(C)×GLm(C)-principal bundle. Let θn be a connection on P and
θm a connection on Q. Both connections together define a connection θ on R such
that

(Πn)∗θ = θn; (Πm)∗θ = θm.
The connection φ∗θ is a connection on the frame bundle of V ⊕W . Therefore

ck(V ⊕W ) = CW(φ∗θ, ck)
7.7.2(5)= CW(θ,ϕ∗ck) = ∑

p+q=k
CW(θ, π∗ncpπ∗mcq)

7.7.2(4)=
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= ∑
p+q=k

CW(θ, π∗ncp)CW(θ, π∗mcq) = ∑
p+q=k

CW((πn)∗θ, cp)CW((πm)∗θ, cq) =

= ∑
p+q=k

CW(θn, cp)CW(θm, cq) = ∑
p+q=k

cp(V )cq(W ).

For part (4), we proceed by a similar philosophy. Consider φ ∶ GL1(C)×GL1(C)→
GL1(C), (A,B)↦ AB, and the derivative ϕ(A,B) = A+B, which gives the result.

�

Now we turn to the Riemann-Roch theorem.

Theorem 7.8.4. Let M be a connected Riemann surface of genus g and V → M
be a holomorphic vector bundle. Then

ind(∂̄V ) = rank(V )(1 − g) + ∫
M
c1(V ).

Recall that we have already done quite a bit of work: Proposition 4.6.10 states
that there is a unique homomorphism I ∶ K0(M) → Z such that for each holomor-
phic vector bundle V →M , the identity I(V ) = ind(∂̄V ) holds. Moreover, we have
shown by Hodge theory (Theorem 4.6.4) that

I(C) = 1 − g; I(Λ1,0T ∗M) = g − 1.

So by inspection Theorem 7.8.4 is true for the bundle C. The bundle Λ1,0T ∗M
is the dual of TM , whence

c1(Λ1,0T ∗M) = −c1(TM) = −e(TM)
by Theorem 7.8.3 (4), Theorem 7.2.4. By the topological Gauß-Bonnet theorem

6.4.1, we obtain

∫
M
c1(Λ1,0T ∗M) = −χ(M) = 2g − 2

and therefore

rank(Λ1,0T ∗M)(1 − g) + ∫
M
c1(Λ1,0T ∗M) = g − 1 = I(Λ1,0T ∗M).

Thus the Riemann-Roch theorem holds for the two vector bundles C and Λ1,0T ∗M .
The right-hand side of the Riemann-Roch formula can also be interpreted in

terms of K0: if V and W are two vector bundles on M , we get

c1(V ⊕W ) = c1(V ) + c1(W )
by the product formula for Chern classes; therefore V ↦ (rank(V ), ∫M c1(V ))

defines a homomorphism

J ∶K0(M)→ Z2; V ↦ (rank(V ),∫
M
c1(V )).

We have not yet proven that ∫M c1(V ) is an integer, but that is part of the next
theorem. We will now prove:

Theorem 7.8.5. The homomorphism J takes values in Z2 and is an isomorphism,
for any connected Riemann surface.
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Proof of Riemann-Roch, assuming Theorem 7.8.5. Since K0(M) has rank 2, a ho-
momorphism K0(M) → Z is uniquely determined by its values on these elements.
We need to distinguish the two cases g ≠ 1 and g = 1. If g ≠ 1, the elements C
and Λ1,0T ∗M are linearly independent (over Q) in K0(M). If g = 1, both bun-
dles have the same image in K0, and so this is not enough (in fact both bundles
are isomorphic), and we need a bundle with nonzero Chern number for which the
Riemann-Roch formula is true. The bundle L(x) discussed in Theorem 4.7.4 has
Chern number 1, by the Poincaré-Hopf theorem. The index was computed in The-
orem 4.7.4 and is 1, as desired. �

Now we delve into the proof of Theorem 7.8.5

Proposition 7.8.6. Let V →M be a vector bundle of rank r > 1. Then there exists
a line bundle L→M and an isomorphism L⊕Cr−1 ≅ V .

Proof. Take a section s ∶ M → V which is transverse to the zero section. If
rank(V ) > 1, then s does not have a zero, and so V splits as V ′ ⊕ C ≅ V . The
result follows by induction. �

Corollary 7.8.7. For each vector bundle V → M , the number ∫M c1(V ) is an
integer.

Proof. The above Proposition and the sum formula reduce the statement to line
bundles. But for line bundles, the first Chern class is the Euler class, which is
integral by the Poincaré-Hopf theorem. �

Proof of Theorem 7.8.5. Since J(C) = (1,0), it is, for the surjectivity, enough to
produce a bundle L with J(L) = (1,1). Take a map f ∶M → S2 = CP1 of degree 1.
The bundle f∗H has Chern number +1.

The injectivity is more difficult (and more important for us). A general element
ξ ∈ K0(M) can be written as ∑i ai[Vi], where Vi are vector bundles and ai ∈ Z.
Using the relation [V ]+ [W ] = [V ⊕W ] in K0(M), we can write ξ = [V ]− [W ]. So
the injectivity of J follows from the next claim:

(1) Let V,W → M be vector bundles with rank(V ) = rank(W ) and c1(V ) =
c1(W ). Then V ≅W .

Because of Proposition 7.8.6 and the sum formula, it is enough to assume that
V and W are line bundles. Moreover, as 0 = c1(V ) − c1(W ) = c1(W ∗ ⊗ V ) =
c1(Hom(W,V )), it is enough to prove that a line bundle on M with trivial Chern
class is zero. Let L be such a line bundle. By the classification theorem, there
exists a smooth map f ∶M → CPn = Gr1(Cn+1) with f∗H = L. Next, we show that
we can assume n = 1. If n > 1, pick a regular value of f . For dimension reasons,
this must be a point ` ∈ CPn ∖ f(M). Without loss of generality, we can assume
that ` = `0 = 0 × C ⊂ Cn+1. This is because the connected group U(n + 1) acts
transitively on CPn. But CPn ∖ ` is diffeomorphic to Hn−1, the total space of the
dual tautological line bundle on CPn−1. A diffeomorphism is given by (`, h) ↦ Γh:
a linear form on some ` ⊂ Cn is sent to the graph Γh ⊂ ` × C ⊂ Cn+1. Vice versa,
each line in Cn+1, with the exception of `0, is the graph of some linear form.

But Hn deformation restracts onto its zero section, namely CPn−1. So we have
proven that f ∶M → CPn is homotopic to a map M → CPn−1, if n > 1; so altogether,
we may assume that there is a map
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f ∶M → CP1; f∗H ≅ L.
But

∫
M
c1(L) = ∫

M
f∗c1(H) = ∫

M
f∗x

with ∫CP1 x = 1 and this is the mapping degree deg(f). So we have to show that

a map f ∶M → S2 with degree 0 is nullhomotopic. This is a general fact: if Mn is
a closed oriented connected manifold, then deg ∶ [M ;Sn] → Z is a bijection. This
is a classical theorem by Hopf, the proof can be found in [19], p. 50f. The idea is
very similar to the proof that πn(Sn) ≅ Z. �

7.9. Proof of the Gauß-Bonnet-Chern theorem. We now arrive at the cap-
stone of the first part of this course: the Gauss-Bonnet-Chern theorem. Let
M2n be a closed oriented Riemann manifold. Recall that there is the operator
D = d + d∗ ∶ Aev(M) → Aodd(M). We computed its index, and the result was, by
Hodge theory, the Euler characteristic of M

ind(D) = χ(M).
We found two different descriptions of the Euler number. If X is a tangential

vector field on M which is transverse to the zero section, then the Poincaré-Hopf
theorem states that

χ(M) = ∑
X(x)=0

IxX,

the sum of local indices of the vector field X. On the other hand, there is
the Euler class etop(TM) ∶= e(TM) ∈ H2n(M), and the topological Gauss-Bonnet
theorem is the formula

χ(M) = ∫
M
etop(TM).

The Gauss-Bonnet-Chern theorem states that there is a construction of the Euler
class in terms of the Chern-Weil construction. Above, we wrote etop for the Euler
class that was constructed using the Thom class, which came from Poincaré duality.
We will now construct the class egeo, the geometric Euler class, using the Chern-
Weil theorem. After the construction is done, we will prove that egeo = etop.

We have proved that the cohomology class of the Chern-Weil forms do not depend
on the chosen connection. In the case of the tangent bundle of a Riemann manifold,
there is a special connection, the Levi-Civita connection, and one can express the
Euler form in terms of the curvature of the metric, i.e. by a geometric quantity. In
the case of dim(M) = 2, we obtain the classical Gauß-Bonnet theorem.

Now we embark on the construction. Let V →M be an oriented Riemann vector
bundle of rank 2n, equipped with a metric connection. Let FrO(V ) → M be the
oriented orthonormal frame bundle, an SO(2n)-principal bundle. We wish to find
an invariant polynomial Pn on the Lie algebra so(2n) so that P (Ω) is the Euler
class. The Lie algebra so(2n) is the space of all skew-symmetric n × n-matrices.

We have several constraints on Pn.

(1) Pn needs to have degree n.
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(2) If A ∈ so(2n) and B ∈ so(2m), then Pn+m(A ⊕ B) = Pn(A)Pn(B). This
expresses the multiplicative property of the Euler class.

(3) A 2-dimensional oriented Riemann vector bundle is the same as a hermit-
ian line bundle; this is the bundle theoretic expression of the isomorphism
SO(2) ≅ U(1). There are two such isomorphisms, let us fix one, namely

φ ∶ (a −b
b a

)↦ a + ib

with derivative ϕ ∶ so(2)→ u(1). Since the Euler class of a complex line
bundle is the same as the first Chern class, the polynomial P1 should be
the polynomial defining the first Chern class.

We will now prove that there are unique invariant polynomials Pfn on so(2n) sat-
isfying these properties. We first describe Pf1. Both Lie algebras are 1-dimensional,
and the isomorphism ϕ is given by

φ ∶ ( −a
a

)↦ ia.

The first Chern form is given by the linear form ia↦ −1
2πi
ia = −1

2π
a, and so

Pf1((
−a

a
)) = −1

2π
a

is the right definition. Now write Ra ∶= ( −a
a

), and for a1, . . . , an ∈ R let

A(a1, . . . , an) ∶=
⎛
⎜⎜⎜
⎝

Ra1
Ra2

. . .
Ran

⎞
⎟⎟⎟
⎠
.

Multiplicativity says that we need to have

(7.9.1) Pf(A(a1, . . . , an)) =
(−1)n

2nπn

n

∏
i=1

ai.

Note, by the way, the identity

Pf(A)2 = 1

(2π)2n
det(A).

Now recall from Linear Algebra II that each skew-symmetric matrix is conjugate
to one of the same form as A. Therefore, an invariant polynomial is uniquely
determined by the three properties. It remains to construct the polynomial Pf.

Lemma 7.9.2. Let V be a euclidean m-dimensional vector space. Let

Φ ∶ Λ2V ∗ → so(V ); v1 ∧ v2 ↦ ⟨v1, ⟩v2 − ⟨v2, ⟩v1.

and

Ψ ∶ so(V )→ Λ2V ∗; A↦ ((v1, v2)↦ ⟨Av1, v2⟩.
Then Φ and Ψ are mutually inverse equivariant isomorphisms.
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Proof. Equivariance is clear; and it is easy to calculate that ΨΦ = id. Both spaces
have the same dimension, namely 1

2
m(m − 1), which completes the proof. �

One calculates that

Φ(
n

∑
i=1

aie
2i−1 ∧ e2i) = A(a1, . . . , an).

Now we define

(7.9.3) Pfn(A)vol ∶= (−1)n

n!(2π)n
Φ−1(A)∧n

It is clear that Pfn is an SO(2n)-invariant polynomial on so(2n) of degree n.
Note that Pfn is not invariant under the group O(2n) with the same Lie algebra;
this is because in the definition, we used the orientation, more specifically the
volume form. The identity 7.9.1 follows from

Φ−1(A(a1, . . . , an))∧n = (
n

∑
i=1

aie
2i−1 ∧ e2i)∧n = a1⋯ann!vol,

which implies the normalization and multiplicativity.

Definition 7.9.4. Let V →M be an oriented 2n-dimensional Riemann vector bun-
dle, equipped with a metric connection ∇. The geometric Euler class is represented
by the closed 2n-form CW(∇,Pfn) ∈ A2n(M).

Theorem 7.9.5. Let V → M be an oriented vector bundle of rank 2n. Then
egeo(V ) = etop.

We already proved Theorem 7.9.5 in the case n = 1, see Theorem 7.2.4. The
proof of Theorem 7.9.5 will be by a localization procedure. By the classification of
oriented vector bundles and because the oriented Grassmann manifold is compact,
it is enough to prove Theorem 7.9.5 when the base manifold M is compact.

The localization will be by means of a section. Assume that s is a section of V ,
and that Z ∶= s−1(0) is compact. Let U ⊃ Z be a relatively compact neighborhood of
Z. We say that a metric connection ∇ on V is adapted if ∇ preserves the orthogonal
decomposition

V ∣M−Z = span{s}⊕ span{s}�

on some open neighborhood of M ∖ U . Adapted connections exist: pick a con-
nection on each of the two bundles span{s} and span{s}� and take the direct sum.
Then pick any connection on V ∣U and glue the connections together by means of a
partition of unity.

Lemma 7.9.6. Let ∇ be an adapted connection. Then the form CW(∇,Pfn) has
support in U .

Proof. The condition on the section s and the connection means that (outside
U) the bundle V has a reduction of the structure group to SO(2n − 1) and the
connection is induced from an SO(2n − 1)-connection. Thus it will be enough to
show that the polynomial Pfn vanishes when restricted to so(2n − 1). Recall that
Pfn(A)2 = cdet(A) for a nonzero constant. But if A ∈ so(2n − 1) ⊂ so(2n), then
det(A) = 0, as desired. �
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Definition 7.9.7. The relative Euler class egeo(V, s) is the cohomology class (in
H2n
c (M)) of the form CW(∇,Pfn) of an adapted connection.

The relative Euler class is defined for each section s whose zero set is compact.
It is clear that under H2n

c (M) → H2n(M), the relative Euler class maps to the
(absoute) geometric Euler class. The key for the proof of Theorem 7.9.5 is

Proposition 7.9.8. Let π ∶ V → M be an oriented 2n-dimensional vector bundle
and let s(v) ∶= (v, v) be the tautological section of π∗V → V . Then egeo(π∗V, s) ∈
A2n
c (V ) is a Thom class.

Proof of Theorem 7.9.5, assuming Proposition 7.9.8. Let t ∶ M → V be the zero
section. Then

etop(V ) = t∗τV = t∗egeo(π∗V, s) = t∗egeoπ∗V = (π ○ t)∗egeoV = egeo(V ).
�

Proof. By the characterization of the Thom class, it is enough to prove that ∫Vx e(π
∗V, s) =

1. But by the naturality of the Euler class, this means that it is enough to show
the relative Euler class of the trivial vector bundle R2n ×R2n → R2n, relative to the
identity section, has integral 1.

For this computation, we view R2n as Cn.
The proof is completed by embedding this trivial vector bundle into a bundle

over a closed manifold, whose Euler class we can compute geometrically. Consider
the dual H → CPn of the tautological line bundle. For i = 1, . . . , n, we get a section
si, by taking the linear form ei on Cn+1 defining si(`) ∶= ei∣`.

Consider h ∶ Cn → CPn, (z1, . . . , zn) ↦ [1 ∶ z1 ∶ . . . ∶ zn]. A bundle chart k for H
over h(Cn) is given by

`∗ ∋ α ↦ α(1, z1, . . . , zn).
Now compute

k(si(h(z1, . . . , zn))) = ksi([1 ∶ z1 ∶ . . . ∶ zn]) = k(ei∣[1∶z1∶...∶zn]) = e
i(1, z1, . . . , zn) = zi.

These computations prove the following. Consider the section s = (s1, . . . , sn) of
Hn → CPn. Then in the bundle chart k ⊕ . . . k, this section becomes the identity
section of Cn ×Cn → Cn. The whole point is now that the identity section extends
to a continuous section over a closed manifold. We are now ready for the final
argument. The image of egeo(Cn, id) under the map h! ∶ H2n

c (Cn) → H2n(CPn) is
the same as egeo(Hn). Therefore

∫
Cn
egeo(Cn, id) = ∫

CPn
egeo(Hn) = ∫

CPn
egeo(H)n = ∫

CPn
c1(H)n = 1,

by the multiplicativity of the Euler class, Theorem 7.2.4 and Theorem 6.3.12. �

7.10. Remarks. There are many sources for the Chern-Weil construction. Basi-
cally, there are two approaches: one possibility is to stay in the realm of vector
bundles. You find expositions in [20], [14] and in many other places. The other ap-
proach is to use only principal bundles, see [16] and the superb monograph [7]. One
disadvantage of [7] is that he does not make a close connection to vector bundles.
The above exposition mixes both approaches, which in my opinion is clearer.
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