SEMINAR ”"DIFFERENTIAL FORMS IN ALGEBRAIC
TOPOLOGY”, SUMMER TERM 2010

JOHANNES EBERT

The principal method of algebraic topology is to associate with a geometric sit-
uation an algebraic model which helps to solve geometric problems. Finding good
models is always a compromise between two extremes: if the algebraic picture is
too close to the geometric reality, then it tends to be as complicated the original
geometric situation. In particular, solving the algebraic problem might be as diffi-
cult as solving the geometric problem and nothing is gained. On the other hand, if
the algebraic invariant is too easy to compute, the reason might be that it discards
too much of the original geometry. Again, the algebraic picture fails to make the
geometric problem accesible.

Experience shows that homology is a good compromise between these extremes.
Another example of an algebraic model is given by the homotopy groups 7, (X) of
a space. There are two important theorems of Whitehead. The first one says that
amap f : X — Y between connected CW-complexes is a homotopy equivalence
if f induces an isomorphism of homotopy groups. The second one says a map
f X — Y induces an isomorphism in (integral) homology if and only if it induces
an isomorphism on homotopy groups (at least if X and Y are simply connected).
In a sense, the information given by homology and homotopy groups is equivalent.

Note that these results do not say that a space X is determined (up to homotopy
equivalence) by its homotopy groups. It is also not true that the homotopy groups
are determined by the homology groups or vice versa. Neither can we recover the
homotopy class of a map f : X — Y from the effect on homotopy or homology.
Another drawback is that the homotopy groups m.(X) are tremendously hard to
compute. Even for such simple-looking spaces as S?, the group 7% (S?) is only known
for a finite number of dimensions k. In fact, there is no finite, simply-connected
CW-complex X such that all groups m,(X) are known.

It was the ingenious insight by two mathematicians, Jean Pierre Serre (around
1953) and Dennis Sullivan (20 years later) that the situation is drastically simplified
if one considers the rational homotopy groups m.(X) ® Q. The process of tensoring
the homotopy groups with Q discards all torsion information and it is of course not
true that a map f : X — Y between simply-connected CW-complexes inducing an
isomorphism 7, (X) ® Q — m.(Y) ® Q is an isomorphism.

But Serre discovered that we can save the other of Whiteheads theorems: given
two simply-connected spaces X and Y and amap f: X — Y, then f: H.(X;Q) —
H.(Y;Q) is an isomorphism if and only if f : m.(X) ® Q — m.(Y) ® Q is an
isomorphism. Moreover, the groups 7 (S") ® Q have a simple structure: they vanish
unless £ = n or £ = 2n — 1 and n even, in which case they are one-dimensional
vector spaces.

Sullivan pushed these ideas further. There is a construction which associates to
any (simply-connected) space X a space Xg and a map X — Xg which induces

an isomorphism in rational homology and such that 7.(Xg) = 7m.(X) ® Q; the
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rationalization of Q. It turns out that the space X is homotopy equivalent to
a "twisted product” of Eilenberg Mac-Lane spaces K (m,(Xg);n). The twisting is
described by the so called ”Postnikov invariants”.

For some spaces, the rational Postnikov tower can be computed by traditional
methods of homotopy theory. In these cases the rational cohomology ring contains
all information that is needed to determine the rational homotopy type. Examples
include spheres, complex projective spaces, compact Lie groups and their classifying
spaces; we will see both the computations and the abstract reason why this is possible
("formality”). For the vast majority of spaces, however, the cohomology algebra does
not contain enough information and one needs new ideas.

The new idea, due to Sullivan, is to import a concept from differential geometry
into homotopy theory. Let M be a manifolds and A*(M) be the differential graded
algebra (d.g.a.) of differential forms. The famous theorem of de Rham asserts that
there is a natural isomorphism of algebras H*(A*(M)) = H*(M;R).

There are three special features of differential forms. The first is that they are
really local, which makes the proof of results like the Mayer-Vietoris sequence or
Poincaré duality much easier. The second property is that they are sensitive to geo-
metric information, for example symmetries (Lie group actions) or Kéhler metrics.

The most important feature of differential forms, however, is that A*(M) is com-
mutative, whereas the singular cochains on a space C*(X) are not commutative.

To use differential forms in homotopy theory, two hurdles must be taken. First of
all, not any space is a manifold. Surprisingly, this is not too much a serious issue.
We could consider simplicial smooth forms. Such a simplicial p-form associates to
any singular simplex o : A" — X a smooth form w, € AP(A"). The different w,
have to be compatible and the collection of these simplicial smooth forms form a
commutative d.g.a. that computes H*(X;R).

The other, more subtle hurdle is that we need a d.g.a. over QQ that computes
H*(X;Q) in order to come in contact with homotopy theory (in the above con-
struction X +— Xgq, one cannot replace Q by R. This problem is overcome by the
introduction of rational polynomial forms, which form a commutative d.g.a. A%, (X)
such that H*(Ap, (X)) = H*(X;Q).

The next step is to simplify A%, (X). The result is that there exists a minimal
model f: Mx — Ay (X). Here My is a "minimal” d.g.a (essentially, it is the
product of a polynomial algebra with an exterior algebra and there is a condition on
the differential) and f induces an isomorphism in cohomology. The minimal model
is unique up to isomorphism.

In the next step, is turns out that the minimal model completely characterizes the
rational homotopy type of X! Moreover, each minimal d.g.a is the minimal model
of some space and we can also see all homotopy classes of maps Xqg — Y in this
algebraic model.

In short, the theory gives a completely algebraic picure of rational homotopy
theory.



De Rham cohomology of smooth manifolds.

Talk 1. (Oznur Albayrak)

Background material from global analysis. This talk should give an overview
of several topics from the theory of smooth manifolds: Vector fields, differential
forms, exterior derivative d and the equation d o d = 0, Lie derivative, insertion
operators and the infinitesimal homotopy formula, wedge products. Integration of
differential forms and Stokes’ theorem. This material is covered in [13], chapters
1.4, 2.1, 2.2, 3.2. Other recommendable sources are [17] and [10].

Prerequisites/Comments: The material is straighforward and only a little back-
ground knowledge on manifolds and multilinear algebra is necessary. Nevertheless
this talk requires a good organization. Due to time reasons, you can only sketch
the proofs. In order to give a convincing sketch of a proof, you have to separate the
idea of the proof from routine calculations.

Talk 2. (Benjamin Schmidt)

The de Rham cohomology and de Rham’s theorem. The de Rham com-
plex; functoriality. Homotopy invariance of the de Rham cohomology (a short proof
can be found in [10], p. 199 f.); Poincaré lemma. The de Rham homomorphism and
the proof of the de Rham theorem, which asserts that Hj,(M) — H, (M;R) is an
isomorphism. References: [2], section V.5, V.9 is probably the most accesible refer-
ence, but you can also follow the proof in [3] or [5]. ([13] is a bit clumsy; [17] offers
a more conceptual proof in the realm of sheaf theory). For enthusiastic students:
prove that the de Rham isomorphism is also an isomorphism of rings, i.e. the wedge
product of forms corresponds to the cup product, e.g.[5]. If time permits, you can

present the proof of Poincaré duality from [3], p.44 f.

Prerequisites: This talk is rather straightforward to prepare once you know singu-
lar cohomology theory and the contents of talk 1. Multiplicativity is more difficult,
though.

Some applications.
Talk 3. (Viktoria Ozornova)

Cohomology of Lie groups and their homogeneous spaces. The first goal
is to recall the definition of Lie groups, homogeneous spaces and the Lie algebra of
a Lie group. This is covered in [17], chapter 3.

The second goal is to show how symmetries of a manifold (i.e, Lie groups acting on
M) can be used to effectively cut down the size of the de Rham complex and allow
explicit calculations. More precisely, if G is a connected compact Lie group that
acts on a manifold M, then the inclusion A*(M)% — A*(M) is a quasiisomorphism.
This is shown in [2], section V.12, especially Theorem 12.3.

Then some special cases should be discussed: if G acts on itself by translations,
then A*(G)% = A*(g"). Slightly more generally, if H C G a closed subgroup, M =
G/H, then A*(G/H)% is the Chevalley-FEilenberg complex C*(g,h) that computes
the Lie algebra cohomology ([14], p. 60). If moreover G/H is a symmetric space,
then all invariant forms are closed, which simplifies the computations even further
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and leads to the isomorphism H*(G;R) =2 A*(g¥)“. The classical reference for this
is [4]

Prerequisites/Comments: The first part should be a survey without proofs, but
precise definitions and theorems. You should only present the material that you need
later on. The second part is straightforward, however: do not get lost in routine
calculations. Unfortunately, I did not find a coherent reference for the material
of part 3, so you have to browse through the literature and discover some of this
material for yourself.

Talk 4. The Chern-Weil isomorphism.(Lars Borutzky)

The purpose of this talk is the Chern-Weil theorem. Let P — M be a G-
principal bundle on the manifold M. Then there is a natural ring homomor-
phism CWp : Sym*(gV)¢ — H*(M), where Sym*(gV)% is the graded algebra of
G-invariant polynomial functions on g. In the universal case FG — BG and if G is
compact, then CWgq is an isomorphism.

Topics: Connections in principal bundles and their curvature. The Weil algebra
W(g) and the fundamental homomorphism W*(g) — A*(P) induced by any con-
nection on P. From this, one constructs the homomorphism C'W. Reference: [13],
265-282, but take the definition of a connection from [5], p.46. Then: state the
isomorphism theorem. Then either sketch the proof ([5], section 8 for one proof, [9]
for another and [1] for a sketch of yet another proof) or give some credibility to the
theorem by discussing examples (G = U(n), SO(n), Sp(n), [5], chapter 7).

Prerequisites/Comments: you need some aquaintance with Lie groups, Lie alge-
bras, smooth principal bundles and some virtuosity in multilinear algebra, either
in coordinates or coordinate-free. Again, a good organization is required and the
ability to give convincing sketches of computations. If you are ambitious and prove
the isomorphism, this will be a difficult talk. Warning: there is one seemingly minor
detail in the proof from [5] whose solution requires the whole structure theory of
compact Lie groups. Don’t waste your time with looking for your own simple proof
of Proposition 8.3. loc. cit. The proof from [1] is easier, at least if you know spectral
sequences and the results from talk 3; however, [1] only give a sketch.

From spaces to commutative differential graded algebras.
Talk 5. (Valentin Krasontovitsch)

Introduction to simplicial technology Simplicial objects in a category. The
first aim of the talk is to explain the relationship between topological spaces and
simplicial sets: the singular simplicial set functor goes from spaces to simplicial sets
and the geometric realization functor goes in the other direction. These functors
are adjoint; and the realization of the singular simplicial set of a space is homotopy
equivalent to the space. One reference is the beginning of [12], but there are hundreds
of other places in the literature. Then introduce the algebra of simplicial differential
forms A}, (X) on a simplicial set X. This is a functor from simplicial sets to
differential graded algebras over Q, [6], p.116-121.

Prerequisites: sympathy for category theory. If you don’t know what a simplicial
set is, this is a good opportunity to learn it.



Talk 6. (Ruth Joachimi)

The simplicial de Rham theorem The goal of this talk is the proof of the
simplicial de Rham theorem. Also, the multiplicativity of both, the simplicial and
the smooth de Rham homomorphism is proved.

Prerequisites: a detailed understanding of talk 5. Needless to say: the speaker of
this talk has to communicate with the speaker of talk 5.

From commutative graded algebras to minimal commutative graded al-
gebras.

Talk 7. (Sgren Boldsen)

Homotopy theory of differential graded algebras I. Definitions, minimal
d.g.a’s. Definition of minimal models and construction of a minimal model. [14],
1.2.

Prerequisites/Comment: the arguments in this talk are entirely algebraic and
rather elementary. In a technical sense, this is one of the easiest talks in this seminar.
However, the challenge is to motivate the constructions and not to get lost in details
of computations. Communicate with the speaker of talk 8

Talk 8. (N.N.)

Homotopy theory of differential graded algebras II. Homotopy of mor-
phisms of d.g.a’s and uniqueness of the minimal model up to isomorphism. Examples
of minimal models for spaces like spheres, projective spaces...

Prerequisites/Comments: Same as for talk 7. Communicate with the speaker of
talk 7.

Back to spaces.
Talk 9. (Nikolas Kulke)

An overview of homotopy theory. Fibrations and homotopy fibres, long exact
homotopy sequence, Hurewicz and Whitehead theorems, Filenberg-MacLane spaces
K(G,n) and the isomorphism H"(X,G) = [X, K(G,n)], elementary obstruction
theory, Postnikov decomposition of a space. Quite a lot of this material is known
from the lecture Topology III. You should cover the material which is surveyed in
[14], p. 1-10. You can find more details in the relevant chapters of [§].

Prerequisites/Commment: if you do not already know these parts of homotopy
theory, this is a good opportunity to learn them. This should be rather a survey
talk, with few details of proofs (but qualified sketches)

Talk 10. (Roland Birth)

Rationalization of simply-connected spaces. The goal of this talk is to
develop homotopy theory with coefficients in Q for simply-connected spaces, [14],
p. 10-17, [8], ch. VII. Main results: f : X — Y a map of simply-connected CW-
complexes. Then f : H.(X;Q) — H,(Y;Q) is an isomorphism iff f: 7, (X)® Q —
m.(Y) ® Q is an isomorphism (Whitehead-Serre). Definition of rational spaces,
universal property and construction of the rationalization of a space.

Prerequisites/Comments: this relies heavily on the material from talk 9. Apart
from that, the Leray-Serre spectral sequence is used again and again.
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Talk 11. (Irakli Patchkoria)

The comparison theorem. To a simply-connected space X, we have can asso-
ciate a minimal c.d.g.a M x, namely the minimal model of the algebra of simplicial
differential forms. On the other hand, we get a Postnikov tower of rational spaces
via homotopy theory (talk 10). The main goal of this talk is to show that both data
contain the same information in the precise sense that X +— My induces an equiv-
alences of the homotopy category Ho7 OPg of rational spaces with the category of
minimal c.d.g.a’s with homotopy classes as morphisms. As a consequence, one can
show how to compute the rational homotopy groups of X out of the minimal model.

A good sketch of the proof can be found in [14], p.38-42. For more details, see
[8], ch. XI or [6], ch. 15. There is another, more conceptual path to this result via
the ”spatial realization” functor [6], ch. 17 or [16], section 8, just in case you are
interested.

Prerequisites/Comments: it is a good idea to start from the sketch from the sketch
in [14]. You should concentrate on the simply-connected case throughout.

Examples and applications.
Talk 12. (Hanno Becker)

Examples. The goal of this talk is twofold. First you should present examples.
Second goal: formality of d.g.a.’s. Browse through the literature [8], [6], [7], [14],
[16] to choose the examples you prefer.

Talk 13. (N.N.)

What happens for non-simply-connected spaces? The title is self-explanatory.
Sources: [16], [14], p. 43-49 (both references suppress a lot of details).

There are several points in the theory where the simple connectivity of the spaces
was used in an essential way. However, some pieces of the theory can be saved if one
concentrates on "nilpotent spaces”, which lie between simply-connected and general
spaces. A space X is nilpotent if its fundamental group is nilpotent in the sense of
group theory and if it acts 'nilpotently” on the higher homotopy groups.

A consequence is that the theory of Postnikov towers can be refined to capture
nilpotent spaces. Moreover, for any nilpotent group I, there is a rationalization

' Q.

Prerequisites/Comments: this will be a challenging talk. You’ll need a good
overview of the previous theory, especially talks 10, 9, 7, 7, 11. Apart from that,
some pieces of the theory of nilpotent Lie groups and group cohomology is used.
There seems to be an interesting relation of this theory to the results of [15] which
might be interesting to look at.
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