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Generalised Miller–Morita–Mumford classes
for block bundles and topological bundles

JOHANNES EBERT

OSCAR RANDAL-WILLIAMS

The most basic characteristic classes of smooth fibre bundles are the generalised
Miller–Morita–Mumford classes, obtained by fibre integrating characteristic classes
of the vertical tangent bundle. In this note we show that they may be defined for more
general families of manifolds than smooth fibre bundles: smooth block bundles and
topological fibre bundles.

55R40, 57R20; 55R60, 57N55

1 Introduction

Let M be a smooth, closed, oriented manifold of dimension d and � W E! B be a
fibre bundle with fibre M and structure group DiffC.M /, the topological group of
orientation-preserving diffeomorphisms. The vertical tangent bundle is a d–dimensional
oriented vector bundle TvE ! E , which may be constructed from the principal
DiffC.M /–bundle P ! B associated to � by

TvE WD P �DiffC.M / TM;

using the action of DiffC.M / on TM which sends a diffeomorphism to its differential.

Recall that the ring of characteristic classes of oriented d–dimensional vector bundles
with coefficients in the field F is H�.BSO.d/IF/. If char.F/¤ 2 we have

H�.BSO.2m/IF/Š F Œe;p1; : : : ;pm�=.e
2
�pm/;

H�.BSO.2mC 1/IF/Š F Œp1; : : : ;pm�;

where pi is the i th Pontrjagin class and e is the Euler class, while for char.F/D 2 we
have

H�.BSO.n/IF/Š F Œw2; : : : ; wn�;
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where wi is the i th Stiefel–Whitney class. Thus for any monomial c of degree k in
these classes, we may evaluate the characteristic class c.TvE/ 2H k.EIF/, then push
it forwards along the map � to obtain the generalised Miller–Morita–Mumford class

�c.�/ WD �!.c.TvE// 2H k�d .BIF/;

hereafter MMM class, associated to c . This construction tautologically yields character-
istic classes for smooth oriented fibre bundles with d–dimensional fibres. In particular,
there are universal classes

�c 2H k�d .B DiffC.M /IF/:

In this note we investigate to what extent the characteristic classes �c may be defined
on more general families of manifolds: block bundles and topological bundles. (We
will recall the notion of a block bundle in Definition 2.4.)

By the relation e2 D pm in the cohomology of BSO.2m/ with coefficients in a
field F of characteristic not 2, we may write any monomial in H�.BSO.2m/IF/ in
the form e� �p

i1

1
� � �p

im
m with � D 0 or 1. Let us then define F Œp1;p2; : : :�h1; ei to be

the vector space over F whose basis is the monomials in e and pi , where e occurs
with exponent at most 1.

Theorem 1 Let F be any field, and fix a dimension d . If char.F/¤ 2 then let c be a
monomial in F Œp1;p2; : : :� if d is odd, or a monomial in F Œp1;p2; : : :�h1; ei if d is
even. If char.F/ D 2 then let c be a monomial in F Œw1; w2; : : :�. For each oriented
smooth block bundle .pW E ! jKj;A/ with d–dimensional fibres over a simplicial
complex there is a class

z�c.p;A/ 2H�.jKjIF/

such that

(i) if f W L!K is a simplicial map and .f �pW f �E!jLj; f �A/ is the pullback
block bundle, then f �z�c.p;A/D z�c.f

�p; f �A/;
(ii) if the block bundle .pW E! jKj;A/ arises from a smooth fibre bundle � , then
z�c.p;A/D �c.�/.

We have a similar statement for topological bundles, but only when the coefficients are
a field of characteristic zero or two.

Theorem 2 Let F be a field of even characteristic and fix a dimension d . If char.F/D
0 then let c be a monomial in F Œp1;p2;: : :� if d is odd, or a monomial in F Œe;p1;p2; : : :�

if d is even. If char.F/D 2 then let c be a monomial in F Œw1; w2; : : : ; wd �. For each
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fibre bundle � W E! B with fibre a d–dimensional oriented topological manifold M

and structure group the orientation-preserving homeomorphisms of M there is a class

�TOP
c .�/ 2H�.BIF/

such that

(i) if f W C ! B is a continuous map and f �� W f �E! C is the pullback bundle,
then f � ı �TOP

c .�/D �TOP
c .f ��/;

(ii) if M admits a smooth structure and the bundle � W E ! K admits a reduc-
tion of its structure group to the orientation-preserving diffeomorphisms, then
�TOP

c .�/D �c.�/.

For both block bundles and topological bundles, we will show that the character-
istic classes are in fact defined on suitable classifying spaces (Theorem 3.4 and
Proposition 4.2).

On smooth bundles the characteristic classes �c satisfy the following obvious property:
if the monomial c contains a Pontrjagin class pi with 2i > d , then �c vanishes on
any smooth bundle � W E ! B with d–dimensional fibres. This is simply because
pi.TvE/ already vanishes under these conditions. This property is by no means clear
for topological bundles: we refer the reader to Reis and Weiss [20] for a recent detailed
discussion of this question. For block bundles however, the analogue of this property
fails; we provide a counterexample.

Theorem 3 There exists a smooth oriented block bundle over a simplicial complex
homeomorphic to S12 with fibres homotopy equivalent to HP2 , having z�p5

¤ 0.

The existence of generalised MMM classes for topological bundles and smooth block
bundles may be used to prove the following theorem, comparing smooth automorphisms
of certain basic manifolds with their continuous or smooth block automorphisms. Let us
write W 2n

g WD #g
Sn�Sn for the connected sum of g copies of Sn�Sn , and consider

homeomorphisms and diffeomorphisms of W 2n
g relative to a fixed disc D2n �W 2n

g .

Theorem 4 The maps

B Diff.W 2n
g ;D2n/ �! B Homeo.W 2n

g ;D2n/;

B Diff.W 2n
g ;D2n/ �! BeDiff.W 2n

g ;D2n/

are surjective on rational cohomology in degrees �� .g�4/=2, and injective on rational
cohomology in degrees � � min

�
.2n� 7/=2; .2n� 4/=3

�
. In this range of degrees

the common rational cohomology is the polynomial algebra generated by generalised
MMM classes described by Galatius and the second author in [10, Theorem 1.1].
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2 Block bundles

We will first review some basic notions from the theory of block bundles, essentially
from Rourke and Sanderson [22]. Throughout we will use the term semisimplicial set
to mean a “simplicial set without degeneracies,” ie a �–set in the sense of Rourke and
Sanderson [21].

Suppose that M is a smooth, closed manifold. The basic example of a block bundle
with fibre M over a simplex �p is a map

(2-1) pW �p
�M �!�p

such that for each face � � �p the map � sends � �M to � . Roughly speaking,
a block bundle over jKj, the geometric realisation of a simplicial complex, is a map
assembled by gluing together maps of this form over the simplices of K . The natural
form of gluing to allow is that of a block diffeomorphism.

Definition 2.1 A block diffeomorphism of �p �M is a diffeomorphism

f W �p
�M �!�p

�M

which for each face � ��p restricts to a diffeomorphism of � �M .

The semisimplicial group of block diffeomorphisms eDiff.M /� has as its group of
p–simplices the set of all block diffeomorphisms of �p �M . The group operation is
by composition, and the semisimplicial structure is given by restriction to the faces.
Similarly, if M is oriented we may define eDiff

C
.M /� using only the orientation-

preserving diffeomorphisms of �p �M .

The absolutely key point of this definition is that we do not require that the dif-
feomorphism f commutes with projection to �p : this difference will distinguish
diffeomorphisms and block diffeomorphisms.

The topological group of diffeomorphisms of M , Diff.M /, equipped with the Whitney
C1–topology, is contained in the block diffeomorphism group in the following manner.
Call a continuous map � W �p ! Diff.M / smooth if the induced homeomorphism
.t;x/ 7! .t; �.t/ � x/W �p �M ! �p �M is a diffeomorphism. This defines a

Algebraic & Geometric Topology, Volume 14 (2014)



Generalised Miller–Morita–Mumford classes 1185

semisimplicial subgroup Singsm
� Diff.M /�Sing�Diff.M / of the semisimplicial group

of singular simplices, and the inclusion is a homotopy equivalence.

The diffeomorphism of �p �M induced by an element of Singsm
p Diff.M / preserves

the face structure (and, in fact, the projection to �p ). This observation determines an
inclusion of semisimplicial groups:

Singsm
� Diff.M / ,! eDiff.M /�

The classifying space B eDiff.M / is by definition the geometric realisation of the
bisemisimplicial set N�eDiff.M /� obtained by taking the semisimplicial nerve levelwise.
There are maps

B Diff.M /
�

 � jN� Singsm
� Diff.M /j �! jN�eDiff.M /�j D B eDiff.M /;

where the leftwards map is induced by the evaluation

.Np Singsm
q Diff.M //��q

�!Np Diff.M /;

and is a weak homotopy equivalence. We will always use these maps to compare
ordinary and block diffeomorphisms.

Let us describe another model for B eDiff.M /, which is a semisimplicial (as opposed
to bisemisimplicial) set and has the advantage of being more geometric in flavour. We
will then prove that the two models are homotopy equivalent.

Definition 2.2 Let M.M IRN /p be the set of submanifolds W ��p �RN which
are transverse to � � RN for each face � � �p , and which are diffeomorphic to
�p �M via a diffeomorphism taking W \ .� �RN / to � �M . Define face maps
di WM.M IRN /p!M.M IRN /p�1 by intersecting W with the i th face of �p ; this
gives a semisimplicial set M.M IRN /� . Finally, let M.M /� WD

S
N M.M IRN /� .

Similarly, if M is oriented define M.M /C� using oriented manifolds W and orientation-
preserving diffeomorphisms to �p �M .

Proposition 2.3 There is a weak homotopy equivalence jM.M /�j ' jN�eDiff.N /�j.
Similarly, if M is oriented there is a weak homotopy equivalence jMC.M /�j '

jN�eDiff
C
.N /�j.

Proof We will prove the first statement, as the second is a minor modification. We
introduce an auxiliary bisemisimplicial set X�;� . The set Xp;q of .p; q/–simplices
consists of tuples .W; f0; : : : ; fp/, where W 2M.M /q and fi W W !�q �M is a
diffeomorphism as in Definition 2.2. The i th face map in the q direction is given by
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intersecting W with the i th face of �q and then restricting the fj , and the i th face maps
in the p direction is by forgetting fi . There is an augmentation F�;qW X�;q!M.M /q
by forgetting all the fi .

The fibre of F over each q–simplex has contractible geometric realisation, by general
nonsense. Namely, for any nonempty set Y , the semisimplicial set Y� with YpDY pC1

and the forgetful maps as simplicial structure maps, is contractible. The preimage
F�1.W / is just this construction, applied to the set of diffeomorphisms W Š�q�M ,
which is required to be nonempty by definition. Thus the map

jF�;qjW jX�;qj �!M.M /q

is a homotopy equivalence, and so

jF�;�jW jX�;�j �! jM.M /�j

is too.

There is a map of bisemisimplicial sets Gp;qW Xp;q!Np
eDiff.M /q given by

.W; f0; : : : ; fp/ 7�! .f0f
�1

1 ; f1f
�1

2 ; : : : ; fp�1f
�1

p /:

For fixed p , the semisimplicial map Gp;�W Xp;�! Np
eDiff.M /� is a Kan fibration.

Thus the homotopy fibre after geometric realisation may be computed simplicially. In the
context of semisimplicial sets, this means the following. The target of Gp;� may be made
into a pointed semisimplicial set (ie a semisimplicial object in pointed sets) by choosing
a “basepoint” x� , which is a subsemisimplicial set with a single element in each degree.
Let x WD .h1; : : : ; hp/ 2Np

eDiffM0 be a 0–simplex, so the hi are diffeomorphisms
of M , and let xq be the q–simplex .h1 � id�q ; : : : ; hp � id�q / 2 Np

eDiffMq . We
claim that G�1

p;�.x�/�Xp;� is contractible. It is the semisimplicial set with q–simplices
those .W; f0; : : : ; fp/ with fi�1f

�1
i D hi � id�q . Since hi is fixed, f0 determines

all fi uniquely. So G�1
p;�.x�/ is isomorphic to the semisimplicial set A� , where Aq

is the set of all .W; f /, W 2M.M /q and f W W ! �q �M is a diffeomorphism
as in Definition 2.2. So jA�j is the block embedding space of M in R1 , which is
contractible by Whitney’s embedding theorem.

The structure that is classified by the space B eDiff.M / WD jN�eDiff.M /�j ' jM.M /�j

is that of a block bundle. We define this notion only when the base is a simplicial
complex, and for simplicity only when M is a closed manifold.

Definition 2.4 Let K be a simplicial complex and pW E! jKj be a continuous map.
A block chart for E over a simplex � �K is a homeomorphism h� W p

�1.�/! ��M

which for every face � � � restricts to a homeomorphism p�1.�/! � �M . A block
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atlas is a set A of block charts, at least one over each simplex of K , such that if
h�i
W p�1.�i/ ! �i �M , i D 0; 1, are two elements of A then the composition

h�1
ı h�1

�0
from .�0 \ �1/�M to itself is a block diffeomorphism. A block bundle

structure is a maximal block atlas. The resulting structure is a block bundle.

Suppose that � W E! jKj is a smooth fibre bundle with fibre M , and hence locally
trivial. As simplices are contractible and paracompact, the restriction of � to each
simplex is a trivial bundle, and for each simplex � we may choose trivialisations
��1.�/ ��!��M over � . These trivialisations provide a block atlas for � , exhibiting
it as a block bundle. Hence every smooth fibre bundle over a simplicial complex yields
a smooth block bundle.

If .pW E!jKj;A/ is a block bundle, and f W L!K is a map of simplicial complexes,
we define the pullback block bundle to have as representing space the projection map
qW E �jK j jLj ! jLj. The surjective simplicial map f j� W � ! f .�/ expresses � as
the join �v2V Xv of simplices Xv D f

�1.v/ indexed over the set V of vertices of
f .�/. For each block chart hf .�/ we define a block chart over � by

h� W q
�1.�/D p�1.f .�//�f .�/ � �! � �M;�

e;
X
v2V

tv �xv

�
7�!

�X
v2V

t 0v �xv; �M .hf .�/.e//

�
;

where the t 0v are defined by �f .�/.hf .�/.e// D
P
v2V t 0v � v 2 f .�/. Note that there

exists an hf .�/ for each � , as A is assumed to be a maximal atlas and so contains a
block chart for every simplex.

Lemma 2.5 The functions h� are well-defined homeomorphisms, and the transition
maps h� ı h�1

� are block diffeomorphisms of .� \ �/�M .

Proof To see h� is well-defined note that the only ambiguity is that if tv D 0 then xv
is undefined. But in this case p.e/ D f ı q.e;

P
tv � xv/ D

P
tv � v 2 f .�/ lies in

the face opposite v , so hf .�/.e/ also lies in the face opposite v , so t 0v D 0 too. The
function h� is clearly continuous, and a continuous inverse is given by the formula

h�1
� W � �M �! q�1.�/D p�1.f .�//�f .�/ �;�X

v2V

t 0v �xv;m

�
7�!

�
h�1
f .�/

�X
v2V

t 0v � v;m

�
;
X
v2V

tv �xv

�
;

where the tv are defined by p.h�1
f .�/

.
P
v2V t 0v � v;m//D

P
v2V tv � v 2 f .�/.
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If f .� \ �/ has vertices V , so that � \ � D�v2V Xv , then for .
P
v2V tv �xv;m/ 2

.� \ �/�M we have

h� ı h�1
�

�X
v2V

tv �xv;m

�
D

�X
v2V

ytv �xv; hf .�/ ı h�1
f .�/

�X
v2V

tv � v;m

��
;

where �f .�\�/.hf .�/ ı h�1
f .�/.

P
tv � v;m// D

P
ytv � v . This is clearly smooth and

preserves faces (ytv D 0 if and only if tv D 0, as hf .�/ ı h�1
f .�/ preserves faces), and

h� ı h�1
� is an inverse, so it is a block diffeomorphism.

If the simplicial map f W L ! K is simplexwise injective, there is a simpler, but
equivalent, description of the pullback block bundle. We again take the representing
space to be qW E �jK j jLj ! jLj, equipped with block charts

q�1.�/� p�1.f .�//
hf .�/
�! f .�/�M � � �M

for each simplex � of L and each hf .�/2A, where the two unlabelled homeomorphisms
are induced by the homeomorphism f j� W � ! f .�/.

Definition 2.6 If K is a simplicial complex, and L is a triangulation of jKj � Œ0; 1�
which restricts to the triangulation K at each end of the cylinder, then a block bundle
.pW E ! jLj;A/ is called concordance of block bundles on jKj. We say that the
two block bundles on jKj obtained by restricting .pW E! jLj;A/ to jKj � f0g and
jKj � f1g are concordant.

The notion of concordance defines a relation on the set of block bundles over jKj.
It is clearly transitive and symmetric, and by choosing an ordering of K so that we
can form the cartesian product K ��1 , and pulling back .p;A/ along the projection
K ��1!K , we see that the concordance relation is reflexive.

Proposition 2.7 If K is a finite simplicial complex, the set of concordance classes
of block bundles (with fibre M ) is in bijection with the set of homotopy classes
ŒjKj; jM.M /�j�.

Proof We may choose an ordering of the vertices of K , giving a semisimplicial set K�
with homeomorphic geometric realisation (as we have supposed that K is finite). The
semisimplicial set M.M /� is easily seen to be Kan (this is a consequence of the
Whitney embedding theorem), so by Rourke and Sanderson’s simplicial approximation
theorem [21, Theorem 5.3], each map f W jKj ! jM.M /�j is homotopic to the
geometric realisation of a semisimplicial map f�W K�!M.M /� . Then we let

E WD
[
��K

f�.�/� jKj �R1;
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which has a canonical structure of a block bundle over jKj. For uniqueness, we use the
relative version of simplicial approximation and jK ��1j � jKj � Œ0; 1� to produce a
concordance of block bundles.

In the converse direction, let .pW E!jKj;A/ be a block bundle over a finite simplicial
complex. By induction on the simplices of K , using the Whitney embedding theorem
we may find a topological embedding eW E! jKj �RN for some N � 0 which on
each block chart gives a smooth embedding e ı h�1

� W � �M ,! � �RN . We then
choose an ordering of the vertices of K to obtain K� , and define a semisimplicial map
K� !M.M IRN /� �M.M /� sending a simplex � W �p ,! jKj to the manifold
��e.p�1.�.�p///��p�RN . A relative version of the Whitney embedding theorem
shows that the homotopy class obtained is independent of the choice of embedding e ,
and furthermore depends only on the concordance class of .pW E! jKj;A/.

Proposition 2.8 A block bundle pW E! jKj is a “weak quasifibration” in the sense
that for each vertex v 2 K , the comparison map p�1.v/ ! hofibp.v/ is a weak
homotopy equivalence.

Proof Let pW E ! jKj be a block bundle and recall that jKj is (the geometric
realisation of) a simplicial complex K . We wish to apply the gluing theorem for
quasifibrations by Dold and Thom [6, Satz 2.2] but without further modification, it
cannot be applied since it is not true (and not claimed) that all point preimages of p

have the same weak homotopy type, only those over vertices of jKj.

To get around this problem, we use a seemingly arcane construction due to McCord [16].
Namely, let XK be the quotient of jKj that is obtained by collapsing all open simplices
to points (XK has one point for each simplex of K and is of course not a Hausdorff
space). Let f W jKj !XK be the quotient map. McCord proved that f is a weak ho-
motopy equivalence, by showing that f satisfies the assumptions of the gluing theorem
for quasifibrations (and the point preimages are open simplices, hence contractible).
Let pW E ! jKj be the block bundle under consideration. We will prove that the
composition f ıpW E!XK is a quasifibration in the sense of Dold–Thom. Once this
is done, the argument is finished as follows: if v 2K is a vertex, then the diagram

p�1.v/

��

// hofibp.v/

��
.f ıp/�1.f .v// // hofibf ıp.f .v//

commutes. The left vertical map is a homeomorphism; the bottom map is a weak
equivalence because f ıp is a quasifibration and the right vertical is a weak equivalence
by McCord’s Theorem. So the top map is a weak homotopy equivalence, as asserted.
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For a simplex � of K , we denote the open star by Stı.�/ � jKj. Observe that
Stı.�/ \ Stı.�/ is nonempty if and only if � [ � (as a set of vertices of K ) is a
simplex, in which case Stı.�/\ Stı.�/D Stı.� [ �/. The images U� WD f .Stı.�//
form an open covering of the quotient XK , and this cover is closed under taking finite
intersections. Now we claim that the sets U� are distinguished (“ausgezeichnet”) in
the sense of Dold–Thom. As the set U� is contractible, this amounts to showing that
for each x 2 U� , the inclusion .f ıp/�1.x/! .f ıp/�1.U� / is a weak homotopy
equivalence. Let � be the closure of f �1.x/; this is a simplex of K , lying in the
star of � and not in the link. So what we have to prove is that for each � � St.�/,
� 6� LkK .�/, the inclusion p�1.int �/! p�1.Stı �/ is a weak equivalence.

By the definition of a block bundle, for every simplex � there is a homeomorphism
p�1.�/ Š � �M restricting to a similar homeomorphism on each face of � . Thus,
for each vertex v of � , the inclusions p�1.v/! p�1.�/ p�1.int �/ are homotopy
equivalences. If we can show that for each vertex w 2 � , the inclusions p�1.w/!

p�1.St.�// p�1.Stı.�// are homotopy equivalences, then we can pick a common
vertex v of � and � and observe that the diagram

p�1.int.�// //

��

p�1.Stı.�//

��
p�1.�/ // p�1.St.�//

p�1.v/
id //

OO

p�1.v/

OO

commutes and all vertical maps are weak equivalences, which finishes the argument.

For a subcomplex X �K say a homeomorphism p�1.X /ŠX �M is block smooth
if for each simplex � � X it restricts to a homeomorphism p�1.�/ Š � �M , and
this homeomorphism lies in the block atlas A. Let us write Lk.�/ for the link of
the simplex � , and recall that St.�/ D � � Lk.�/. We claim that we may find a
block smooth homeomorphism p�1.St.�//Š St.�/�M , which will finish the proof
of the proposition as then the maps we are trying to show are equivalences may be
identified with

fwg �M �! St.�/�M  � Stı.�/�M;

which are clearly homotopy equivalences. In order to do so, we choose indiscriminately
a block diffeomorphism h� W p

�1.�/Š � �M for each simplex � � St.�/. The block
diffeomorphism h� provides a block smooth homeomorphism over � D � �∅, and we

Algebraic & Geometric Topology, Volume 14 (2014)



Generalised Miller–Morita–Mumford classes 1191

extend this to a block smooth homeomorphism over St.�/D � �Lk.�/ by induction
over simplices of Lk.�/.

Suppose we have a block smooth homeomorphism ���@�W p
�1.��@�/! .��@�/�M

for a simplex � � Lk.�/. Then it does not necessarily agree with the restriction of the
block chart h��� , but differs from it by a block diffeomorphism of .� � @�/�M . The
semisimplicial set eDiff�.M / is easily seen to be Kan, so this block diffeomorphism
may be extended to a block diffeomorphism ' of .� ��/�M , and then ���@� agrees
with ' ı h���j��@� . Thus we may extend ���@� to a block smooth homeomorphism
over � � � .

3 Block bundles have MMM classes

In order to show that block bundles admit generalised MMM classes, we will prove
more specifically that to a block bundle pW E! jKj over a finite simplicial complex
we can associate the following structures, naturally in the block bundle:

(i) A Leray–Serre spectral sequence

(ii) A transfer map trf�pW H
�.E/!H�.jKj/ of Becker–Gottlieb type (not at all to

be confused with the Gysin map)

(iii) A stable vertical tangent bundle T s
vE!E

If the block bundle is an actual fibre bundle, then all these structures will reduce to
those coming from the smooth bundle structure. Once this work is done, Theorem 1 in
the case where the base is a finite simplicial complex is proved by the following line of
argument.

Proof of Theorem 1 for finite simplicial complexes First note that the Gysin map p!

can be defined in terms of the Leray–Serre spectral sequence (see Borel and Hirze-
bruch [2, Section 8]) as long as the fibres are compatibly oriented. Recall that if
char.F/¤ 2 we let c be a monomial in F Œp1;p2; : : :� if d is odd, and a monomial in
F Œp1;p2; : : :�h1; ei if d is even, and if char.F/D 2 then we let c be a monomial in
F Œw1; w2; : : :�. We aim to define z�c.p;A/.

If char.F/D 2 or if d is odd (so e D 0), the monomial is expressed in terms of just
Pontrjagin classes and Stiefel–Whitney classes. These are stable, in the sense that they
only depend of the stable isomorphism class of a vector bundle, so we may define

z�c.p;A/ WD p!.c.T
s
vE//:
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The nonstable characteristic classes with field coefficients appear for char.F/ ¤ 2

and d even, and are those of the form e � q.p1; : : : ;pn/ for some polynomial q in
the Pontrjagin classes. For a smooth bundle � W E ! B and a class x 2 H�.E/,
the identity trf��.x/D �!.e.TvE/ �x/ holds (see Becker and Gottlieb [1]): for block
bundles, we use this formula as a definition:

z�e�q.p1;:::;pn/.p;A/ WD trf�p.q.p1.T
s
vE/; : : : ;pn.T

s
vE///

As we have discussed, on smooth fibre bundles these definitions recover the usual �c ,
and they are also natural because the structures (i)–(iii) used in their definition are
natural. This finishes the proof of Theorem 1.

We still have to construct the three structures listed above. The key to the transfer and
the Leray–Serre spectral sequence is Proposition 2.8, and does not require that K is
finite. If .pW E! jKj;A/ is a block bundle with fibre over a vertex v the oriented
d–manifold M , the inclusion

M D p�1.v/ �! hofibp.v/

is a weak homotopy equivalence by Proposition 2.8. Thus the Leray–Serre spectral
sequence for the replacement pf W Ef ! jKj of p by a fibration has the form

H s.jKjIHt .M //ŠH s.jKjIHt .hofibp.v///H)H sCt .Ef /ŠH sCt .E/

and is the desired spectral sequence. If .p;A/ is an oriented block bundle, then the
local system Hd .hofibp.v// is trivialised, which allows us to define the pushforward
using this spectral sequence.

A construction of the transfer that is sufficiently general for our purposes was given
by Casson and Gottlieb [4]. The “transfer theorem” stated in the introduction of [4]
states that if f W X ! Y is a Hurewicz fibration over a CW complex base whose
fibres are homotopy equivalent to a finite CW complex then there is a transfer map
trf�f W H

�.X /!H�.Y /. We would like to apply this to pW E! jKj, but this is not
a fibration: if we naïvely replace it by one, we cannot expect its fibre to have the
homotopy type of a CW complex. We instead prove a general lemma showing that
maps may be weakly replaced by Hurewicz fibrations with CW complex fibres.

Lemma 3.1 Let f0W E0 ! B0 be a map of spaces. Then there exists a Hurewicz
fibration f3W E3 ! B3 over a CW complex base which is weakly equivalent (via
a zigzag of maps) to f0 , such that the fibres of f3 have the homotopy type of a
CW complex.
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Proof We construct a commutative diagram

E3

f3

��

E2
oo

f2

��

E1

f1

��

// E0

f0

��
B3 B2

// B1
// B0

such that all horizontal maps are weak homotopy equivalences and such that f3 is a
Hurewicz fibration with the desired property. By taking the geometric realisations of the
singular complexes of B0 and E0 , we can replace f0 by a cellular map f1W E1!B1

of CW complexes. The mapping cylinder of a cellular map is again a CW complex, and
so by replacing f1 by the inclusion into its mapping cylinder, we turn f1 into a cellular
inclusion f2W E2! B2 . The homotopy fibre (using the standard construction, ie by
May [15, page 59]) of a cellular inclusion has the homotopy type of a CW complex by
Milnor [17, Theorem 3]. Thus the fibration replacement f3W E3! B3 of f2 has the
desired properties.

The construction of the transfer is deduced from this lemma as follows. Apply the
lemma to pW E! jKj to obtain a weakly equivalent Hurewicz fibration qW X ! Y

over a CW complex base with CW complex fibres. The fibre of q is weakly equivalent
to the homotopy fibre of p , and so, by Proposition 2.8, to M : these both have the
homotopy types of CW complexes, so they are actually homotopy equivalent, so q has
fibres homotopy equivalent to a finite CW complex. We apply the “transfer theorem”
of [4] to find a map

trf�q W H
�.X / �!H�.Y /;

which passing through the zigzags of weak equivalences relating q and p gives the
desired map

trf�pW H
�.E/ �!H�.jKj/:

Finally, we have to produce a stable analogue of the vertical tangent bundle. If
� W E ! B is a smooth fibre bundle over a compact smooth manifold base, there
exists an embedding i W E!B �RN over B for some N � 0. Then we have bundle
isomorphisms

TE Š ��TB˚TvE; TE˚ �i Š �
�TB˚ �N ; �i ˚TvE Š �

N ;

where �i is the normal bundle of the embedding i . The last of these is the most
convenient description to use to construct the stable vertical tangent bundle.

Proposition 3.2 A smooth block bundle .pW E ! jKj;A/ over a finite simplicial
complex has a natural stable bundle T s

vE!E , which when the block bundle arises
from a smooth fibre bundle agrees with the vertical tangent bundle.
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Proof Let .pW E! jKj;A/ be such a block bundle. We denote EL WD p�1.jLj/ for
each subcomplex L�K . The proof begins with the construction of a suitable embed-
ding. As K has finitely many simplices, we may find an embedding eW E ,!jKj�RN

for large enough N , by induction on simplices, which is a smooth embedding on
each block chart. We do not require that it is an embedding over jKj, but require that
e.p�1.�//� � �RN for each simplex � . Fix moreover an embedding aW jKj !Rk

that is affine on each simplex. We obtain an embedding of E into Rk �RN . For each
simplex � � K the linear embedding � � jKj � Rk induces a metric on T� . We
denote by �� the normal bundle of � inside Rk , and by ��� the normal bundle of �
inside � , when � � � is a subsimplex (these normal bundles are defined by taking
orthogonal complements). We have a submanifold p�1.�/� � �RN of dimension
dim.�/C d . We need to choose the embedding more carefully, though. Namely, we
require that whenever � � � is a face, then the vector bundles Tp�1.�/jp�1.�/ and
Tp�1.�/˚ ��� should agree. (As Tp�1.�/ and ��� are transverse and the sum of
their dimensions is the dimension of Tp�1.�/jp�1.�/ , this condition is equivalent to
asking ��� to lie in Tp�1.�/jp�1.�/ .) This can be achieved by induction over skeleta:
if EK n ! jKj � RN is already constructed, we embed an open neighborhood of
EK n�EK nC1 into jKj�RNC1 so that the desired property holds on this neighborhood
and appeal to the relative version of the Whitney embedding theorem. We shall call
such an embedding good and fix a good embedding.

We have a submanifold p�1.�/� � �RN of dimension d C dim.�/ which at each
point x 2 p�1.�/ has a .dim.�/C d/–dimensional tangent subspace Tx.p

�1.�//�

Tx.� �RN /. By taking Tx.p
�1.�//˚�� , we obtain a .d C k/–dimensional vector

space, hence a point in GrdCk.R
kCN /. The resulting map

t�;e;aW p
�1.�/ �! GrdCk.R

kCN /

is continuous; and by the property of a good embedding, we have tp�1.�/;a;ejp�1.�/ D

tp�1.�/;a;e , so these glue together to a continuous map

tE;a;eW E �! GrdCk.R
NCk/:

The bundle t�
E;a;e

.kCd / on E is a .kC d/–dimensional subbundle of E �RNCk ,
which we call the stable vertical tangent bundle of E with respect to the embeddings e

and a. We allow ourselves to denote the bundle by the same symbol, namely tE;a;e . In
the same way, we can, for x 2p�1.�/, take n�;a;e.x/ to be the orthogonal complement
of t� .x/ in RNCk , this is, in each block, the .N � d/–dimensional normal bundle of
p�1.�/� � �RN . The resulting .N � d/–dimensional vector bundle on E will be
denoted nE;a;e . By construction, it is clear that the following properties hold.
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(i) If L�K is a subcomplex, then nE;a;ejEL
D nEL;ajL;ejEL

.

(ii) If i W Rk !RkCl is an affine isometric embedding, then the normal bundle is
unchanged, and to the stable vertical tangent bundle a trivial bundle is added.

(iii) If j W RN !RNCl is an affine isometric embedding, the stable vertical tangent
bundle is unchanged, while to the normal bundle a trivial bundle is added.

(iv) nE;a;e˚ tE;a;e D �
NCk .

Now we claim that, for fixed a, the stable isomorphism class of nE;a;e does not
depend on e . Let e0 and e1 be two good embeddings. By the third property, we can
assume that the dimension of the target is the same for both embeddings. Choose a
concordance .p0W E0! jKj� Œ0; 1�;A0/ from .pW E! jKj;A/ to itself; cf paragraph
after Definition 2.6. The embeddings e0 and e1 together give a good embedding
eW E0jjK j�f0;1g D E � f0; 1g ! .jKj � f0; 1g/ � RN and, if N is large enough,
we can extend this to a good embedding eW E0 ! jKj � I � RN . Take the affine
embedding a� idI W jKj � I !RkC1 . By the first and second property, we find that
nE0;a�idI ;ejE�fig Š nE;a;ei

, for i D 0; 1, and so by homotopy invariance of vector
bundles this proves the claim. There is no need for us to prove the independence of a, as
there is a canonical affine embedding: suppose that K has k vertices, and take the canon-
ical embedding jKj!Rk . Now we define the stable vertical tangent bundle of E to be

T s
vE WD tE;a;e � �

k

for some good embedding. We have proved that its stable isomorphism class does not
depend on the choices we made.

Suppose that the block bundle arises from a smooth fibre bundle � W E! jKj, with
vertical tangent bundle TvE ! E . We fix the canonical affine embedding from
before and can pick a good embedding, and this time there is no problem to define the
embedding to be over jKj. On each block chart, the map � W E� ! � is a submersion,
and the kernel of its differential is equal to TvEjE� . Taking direct sum with the identity
on �� , we obtain a bundle epimorphism

�� W t�;a;e �! T� ˚�� DRk

and if � � � is a face, then �� j� D �� , because we chose the embedding to be good.
Altogether, we obtain a short exact sequence

0 �! TvE �! tE;a;e �! �k
�! 0;

which proves that the stable vector bundles TvE and T s
vE are isomorphic.
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This finishes the construction of the data required to define MMM classes for smooth
block bundles over finite simplicial complexes. The following lemma is not necessary
for the construction, but will be useful in Section 5.

Lemma 3.3 Let pW E!B be a smooth map between smooth manifolds, �W jKj!B

be a Whitehead triangulation, and A be a block bundle structure on ��pW ��E! jKj
with fibre M . Then under the homeomorphism y�W ��E �E induced by � there is a
stable isomorphism T s

vE Šs y�
�
.TE �p�TB/.

Proof Choose a smooth embedding eW E! B �RN over B , which has a normal
bundle �.e/, and note that there is an isomorphism TE˚�.e/Š p�TB˚ �N . Let us
write ��eW ��E ,! jKj �RN for the induced embedding. We can pick e so that ��e
is a good embedding (in the sense of the proof of Proposition 3.2). What we have to
show is that y�

�
�.e/\ t��E;a;��e D 0 as subbundles of �NCk ; as they are subbundles

of complementary dimension, it will follow that y�
�
�.e/˚ t��E;a;��e Š �

NCk , which
gives the required stable isomorphism. Since the embedding is good, the restriction
of �.e/ to E� is the same as the normal bundle of E� inside � �RN , which proves
that the two subbundles are transverse as required.

We will now explain how to extend the definition of MMM classes to arbitrary base
simplicial complexes, by defining universal MMM classes.

Theorem 3.4 For any d–manifold M and any monomial c as in Theorem 1 there is a
class z�c 2H�.B eDiff.M /IF/ satisfying

(i) for a map f W jKj ! B eDiff.M / from a finite simplicial complex classifying a
block bundle .pW E! jKj;A/, we have f �z�c D z�c.p;A/;

(ii) under the natural map B Diff.M /! B eDiff.M /, the class z�c pulls back to �c .

Proof We have given a homotopy equivalence B eDiff.M / WD jN�eDiff.M /�j '

jM.M /�j. By an observation of Rourke and Sanderson [21, page 327], the second
derived subdivision of a semisimplicial set has the structure of a simplicial complex,
so there is a homotopy equivalence jM.M /�j ' jLjw for some (infinite) simplicial
complex L, where j � jw denotes the geometric realisation with the weak topology.

For each finite subsimplicial complex K � L the map jKj ! jLjw ' jM.M /�j

classifies a block bundle .pK W EK ! jKj;AK /, unique up to concordance, and
we have defined z�c.pK ;AK / 2 H�.jKjIF/. If K0 � K is a subcomplex, then
.pK 0 W EK 0 ! jK

0j;AK 0/ is concordant to .pK jK 0 W EK jK 0 ! jK
0j;AK jK 0/, as both
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are classified by the same homotopy class of map to jM.M /�j, and so z�c.pK 0 ;AK 0/

is equal to the restriction of z�c.pK ;AK /. Thus we obtain a class

z�c 2 lim
K�L

H�.jKjIF/ŠH�
� [

K�L

jKjIF

�
ŠH�.jLjwIF/ŠH�.B eDiff.M /IF/:

The first isomorphism holds as for each i the inverse system fH i.jKjIF/gK�L consists
of finite-dimensional vector spaces, so is Mittag-Leffler and has no lim1 . The second
isomorphism holds as jLjw has the weak topology so is the colimit of its finite
subcomplexes. This class enjoys the properties claimed.

4 Topological bundles have MMM classes

Let � W E!B be an oriented bundle of closed oriented d–dimensional topological man-
ifolds over a compact topological manifold base. The data tvE WD .E

�
�!E�BE �1�!E/

describes an oriented d–dimensional topological microbundle (Milnor [18]) over E ,
and as E is a manifold bundle over a compact base it is again (para)compact and
so the microbundle tvE is representable by an oriented Rd –bundle TvE , by the
Kister–Mazur theorem [14, Theorem 2].

Now, an oriented Rd –bundle V !X has an Euler class and Stiefel–Whitney classes,
but also has rational Pontrjagin classes. Euler and Stiefel–Whitney classes are invariants
of the underlying spherical fibration V n 0!X : eg, the total Stiefel–Whitney class is
defined as th�1.Sq th.1//2H�.X IF2/, where thW H�.X IF2/

�
�!H�Cd .V;V n0IF2/

is the Thom isomorphism. The existence of rational Pontrjagin classes for Rd –bundles
is much deeper and goes back to Novikov’s Theorem on topological invariance of
rational Pontrjagin classes [19]. One way to view these rational Pontrjagin classes is
the fact that TOP=O has finite homotopy groups, see Kirby and Siebenmann [13, Es-
say V Theorem 5.5], so BO! BTOP is a rational homotopy equivalence.

Remark 4.1 If V !X is an oriented vector bundle of rank d , then pmD0 if 4m>2d

and pm D e2 if d D 2m. The question of whether these identities hold for the rational
Pontrjagin classes of topological Rd –bundles is a difficult open problem; cf [20].

Thus we may define, for c 2 F Œe;p1;p2; : : :� (if char.F/D 0, and ignoring e if d is
odd) or c 2 F Œw1; w2; : : : ; wd � (if char.F/D 2) the class

�TOP
c .�/ WD �!.c.TvE// 2H�.BIF/:

The classes so defined are clearly natural under pullback, and agree with the �c for
smooth bundles. This provides the construction for Theorem 2 as long as the bundle in
question has a compact topological manifold base.
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For a closed oriented topological manifold M , we let HomeoC.M / denote the group
of orientation-preserving homeomorphisms of M , in the compact-open topology, and
let B HomeoC.M / be its classifying space. It carries a universal fibre bundle

� W E WDE HomeoC.M /�HomeoC.M /M �! B HomeoC.M /:

Theorem 2 is immediate from the following proposition.

Proposition 4.2 Let char.F/ D 0 or 2. There exist unique cohomology classes
�TOP

c 2 H�.B HomeoC.M /IF/ which pullback to the classes �TOP
c .�/ for every

oriented bundle � W E! B with fibre M over a compact manifold.

Proof Consider first the case char.F/D 0. Let c have degree k , so �TOP
c should have

degree .k�d/. Let f W Bk�d!B HomeoC.M / be a continuous map from an .k�d/–
dimensional smooth oriented manifold. This classifies a fibre bundle � W E!B over a
compact manifold base, and we may extract a rational number

R
B �

TOP
c .�/. The usual

argument shows that this number is invariant if we change the map f by a cobordism,
so we obtain a linear mapZ

�

�TOP
c W �SO

k�d .B HomeoC.M // �! F

from the oriented bordism of B HomeoC.M /.

Furthermore, if gW Bk�d�`!B HomeoC.M / is a continuous map classifying a bun-
dle � W E!B and N ` is a `–dimensional manifold, then the bundle IdN�� W N�E!

N �B is pulled back from the projection to B , soZ
N�B

�TOP
c .IdN ��/D

�
0 ` > 0

ŒN � �
R

B �
TOP
c .�/ `D 0:

Thus
R
�
�TOP

c descends to a mapZ
�

�TOP
c W �SO

� .B HomeoC.M //˝�SO
� .�/

F ŠH�.B HomeoC.M /IF/ �! F Œk � d �;

so it represents a class �TOP
c 2 H k�d .B HomeoC.M /IF/. For an oriented bundle

� W E!B classified by a map f W B!B HomeoC.M / we have f ��TOP
c D �TOP

c .�/,
as both classes give the same function �SO

k�d
.B/! F .

The case char.F/D2 is the same, but replacing oriented bordism �SO
� .�/ by unoriented

bordism ��.�/, and using the fact that ��.�/˝��.�/ F ŠH�.� IF/.
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5 Proof of Theorem 3

The techniques used in this proof we inspired by Hanke, Schick and Steimle [11, Sec-
tion 5]. We will aim to find a homotopy equivalence f W E �

�!S12 �HP2 with

(i) p1.TE/D f �p1.S
12 �HP2/,

(ii) p2.TE/D f �p2.S
12 �HP2/,

(iii) but p5.TE/¤ 0.

Supposing we have done so, we try to give p WD �1 ı f W E! S12 the structure of
a smooth block bundle, using the work of Casson. In particular his [3, Theorem 1]
applies to p , and gives a single obstruction which in our case may be described as
follows. We may homotope f to be smooth and transverse to fbg �HP2 for some
b 2 S12 , giving a pullback square:

F8 g //
� _

��

fbg �HP2
� _

��
E20 f

'
// S12 �HP2

The map g is a degree one normal map, as f is and the two vertical maps are
embeddings with trivialised normal bundle. Casson’s obstruction is then the surgery
obstruction for g , ie 1

8
.sign.F /�sign.HP2//. As the vertical embeddings are normally

framed, we may compute

sign.F /D hL2.TF /; ŒF �i D hL2.TE/; ŒF �i

D hf �L2.T .S
12
�HP2//; ŒF �i D sign.HP2/;

so Casson’s obstruction vanishes and p is homotopic to a “prefibration.” By [3,
Lemma 6] any prefibration is equivalent to a smooth block bundle, pW E!jKj ŠS12 .
By Lemma 3.3 we have T s

vE 's TE �p�TS12 , and so p5.T
s
vE/D p5.TE/¤ 0.

Thus
R

S12 z�p5
D
R

E p5.TE/¤ 0, which finishes the proof of Theorem 3.

It remains to produce the homotopy equivalence f W E �
�! S12 � HP2 with the

properties claimed above. We do so by surgery theory, using a result which is neatly
packaged by Davis in [5, Theorem 6.5]. Namely, if we write x 2H 12.S12IQ/ and
y 2H 4.HP2IQ/ for generators, then by the cited theorem there exists a manifold E

and homotopy equivalence f such that

L.TE/D f �
�
L.T .S12

�HP2//CR �x �y
�
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for some nonzero integer R. As x � y has degree 16, the first two of the desired
properties hold. To establish the last desired property, we simply compute with the
Hirzebruch L–polynomials [12, page 12]. First note that

p.T .S12
�HP2//D 1C 2yC 7y2:

Now, using

L4 D
1

34�52�7

�
381p4� 71p2p1� 19p2

2 C 22p2p2
1 � 3p4

1

�
and noting that TE and T .S12 �HP2/ have the same Pontrjagin classes below the
fourth, we obtain

381
34�52�7

�p4.TE/D f �
�

381
34�52�7

�p4.T .S
12
�HP2//CR �x �y

�
and so

p4.TE/D f �
�

34�52�7
381

�R �x �y
�
:

Secondly, using

L5D
1

35�52�7�11
.5110p5�919p4p1�336p3p2C237p3p2

1C127p2
2p1�83p2p3

1C10p5
1/

and the fact that TE and T .S12 �HP2/ have the same Pontrjagin classes below the
fourth, we obtain

5110 � .p5.TE/�f �p5.T .S
12
�HP2///

D 919 � .p4.TE/�f �p4.T .S
12
�HP2/// �p1.TE/

and so

p5.TE/D 919
5110
�f �

�
34�52�7

381
�R �x �y

�
�f �

�
2 �y

�
D f �

�
124065

9271
�R �x �y2

�
¤ 0:

6 Proof of Theorem 4

We get that H�.B Diff.W 2n
g ;D2n/IQ/ is generated by generalised MMM classes in

degrees � � .g�4/=2 by the main theorems of Galatius and the second author [9; 10].
As these classes may be defined on BHomeo.W 2n

g ;D2n/ by the results of Section 4
of the present paper, we immediately find that

H�.BHomeo.W 2n
g ;D2n/IQ/ �!H�.B Diff.W 2n

g ;D2n/IQ/

is surjective in degrees � � .g � 4/=2. The same argument, using Section 3 in-
stead, proves the surjectivity for the comparison map between diffeomorphisms and
block diffeomorphisms. In [7, Theorem 5.1], we proved (or rather derived from
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results by Waldhausen, Igusa, Farrell–Hsiang and others) that B Diff.W 2n
g ;D2n/!

B eDiff.W 2n
g ;D2n/ induces an isomorphism in rational cohomology, in degrees � �

min
�
.2n� 7/=2; .2n� 4/=3

�
. Thus it is left to prove the next proposition.

Proposition 6.1 The map

H�.B Homeo.W 2n
g ;D2n/IQ/ �!H�.B Diff.W 2n

g ;D2n/IQ/

is a split injection in degrees � �min
�
.2n� 7/=2; .2n� 4/=3

�
.

Proof Note that the statement only has content for 2n � 10, so we may as well
suppose this is the case. Let us denote by F the homotopy fibre of

B Diff.W 2n
g ;D2n/ �! B Homeo.W 2n

g ;D2n/:

We make two claims: that �0.F / is a finite set, and that each path component of F has
trivial rational homology in degrees � �min

�
.2n� 7/=2; .2n� 4/=3

�
. Granted these

claims, the Leray–Serre spectral sequence for f is supported along the line q D 0 in
total degrees pC q �min

�
.2n� 7/=2; .2n� 4/=3

�
, so there is an isomorphism

H�.B Homeo.W 2n
g ;D2n/IQŒ�0.F /�/ŠH�.B Diff.W 2n

g ;D2n/IQ/

in degrees � �min
�
.2n� 7/=2; .2n� 4/=3

�
. The proposition now follows from the

maps of coefficient systems

Q
1 7!

P
x

�����!QŒ�0.F /�
�
�!Q:

It remains to prove the two claims. As we have supposed that 2n � 10, smoothing
theory (cf [13, Essay V Section 3]) applies, and provides a map from the homotopy
fibre F D Homeo.W 2n

g ;D2n/=Diff.W 2n
g ;D2n/ to the space �.W 2n

g ;D2n/ of lifts
in the diagram

D2n //

��

BO.2n/

��
W 2n

g
//

::

BTOP.2n/

and shows that F ! �.W 2n
g ;D2n/ is a homotopy equivalence onto those path com-

ponents which it hits. Thus it is enough to show that �0.�.W
2n

g ;D2n// is finite and
that each path component of �.W 2n

g ;D2n/ has trivial rational homology in degrees
� �min

�
.2n� 7/=2; .2n� 4/=3

�
.
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Choose a handle decomposition of W 2n
g with a single 0–handle the disc D2n , 2g

n–handles, and a single 2n–handle. Let us write M for the union of the handles
of index less than 2n, and �.M;D2n/ for the analogous space of lifts for M . The
tangent bundle of W 2n

g is trivial when restricted to M , so choosing a trivialisation
gives an equivalence:

�.M;D2n/'

�
�n

�
TOP.2n/

O.2n/

��2g

Recall that TOP.2n/=O.2n/! TOP=O is .2nC 1/–connected [13, Essay V The-
orem 5.2], and TOP=O has finite homotopy groups (they are the groups of exotic
spheres), so the set of path components of �.M;D2n/ is a finite set, and each path
component has trivial rational homology in degrees � � 2n� nD n.

Restricting lifts gives a fibration �.W 2n
g ;D2n/! �.M;D2n/, and the fibre over a

point is either empty, or is homotopy equivalent to �2n.TOP.2n/=O.2n//. It will be
enough to show that this space has finitely many path components and trivial rational
homology in positive degrees (in a range). As Homeo.D2n; @D2n/ is contractible (by
the Alexander trick), we have

Homeo.D2n; @D2n/=Diff.D2n; @D2n/' B Diff.D2n; @D2n/

and smoothing theory again provides a map

Homeo.D2n; @D2n/=Diff.D2n; @D2n/ �!�2n

�
TOP.2n/

O.2n/

�
which is a homotopy equivalence onto the path component which it hits. The set
�0.�

2n.TOP.2n/=O.2n///D�2n.TOP.2n/=O.2n// is finite as above, and a theorem
of Farrell and Hsiang [8] shows that the groups �k.B Diff.D2n; @D2n// ˝ Q are
zero for k �min

�
.2n� 7/=2; .2n� 4/=3

�
; see Weiss and Williams [23, Section 6.1]

for a careful treatment of the range. Thus �2n
0
.TOP.2n/=O.2n// has trivial rational

homology in this range.
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