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SOME RATIONAL HOMOLOGY COMPUTATIONS FOR

DIFFEOMORPHISMS OF ODD-DIMENSIONAL MANIFOLDS

JOHANNES EBERT AND JENS REINHOLD

Abstract. We calculate the rational cohomology of the classifying space
of the diffeomorphism group of the manifolds Un

g,1 := #g(Sn × Sn+1) \

int(D2n+1), for large g and n, up to approximately degree n. The answer
is that it is a free graded commutative algebra on an appropriate set of Miller–
Morita–Mumford classes.

Our proof goes through the classical three-step procedure: (a) compute the
cohomology of the homotopy automorphisms, (b) use surgery to compare this
to block diffeomorphisms, (c) use pseudoisotopy theory and algebraic K-theory
to get at actual diffeomorphism groups.
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1. Introduction

1.1. Context: Madsen–Weiss type theorems. For a smooth compact manifold
with boundary M , let Diff∂(M) denote the group of diffeomorphisms of a smooth
compact manifold M which are equal to the identity near ∂M . One of the success
stories of differential topology in the 21st century was a (partial) computation
of the cohomology of the classifying space BDiff∂(M) for some even–dimensional
manifolds, by Madsen–Weiss [48] (for surfaces) and by Galatius–Randal-Williams
[24] [26] [25] (in the higher dimensional case). The simplest case of these results
concern the manifolds

Wn
g,1 := #g(Sn × Sn) \ int(D2n),

the connected sum of g copies of Sn×Sn, minus the interior of a disc, and are formu-
lated in terms of the Madsen–Tillmann spectra1 MTθn2n, the Thom spectrum of the
additive inverse of the universal 2n-dimensional vector bundle over the n-connected
cover BO(2n)〈n〉 → BO(2n). There is a natural map αg : BDiff∂(W

n
g,1) →

Ω∞
0 MTθn2n to the unit component of the infinite loop space. These maps are com-

patible for varying value of g, and induce a map

α∞ : hocolimg→∞BDiff∂(W
n
g,1) → Ω∞

0 MTθn2n

in the limiting case, which is an integral homology equivalence (for n = 1 by [48], for
n ≥ 3 by [24] and for n = 2 by [25]). This is complemented by homological stability
theorems (unless n = 2) due to [33] and [26], so that αg induces an isomorphism in
homology in a range of degrees increasing with g.

The rational cohomology of Ω∞
0 MTθn2n (and more general Madsen–Tillmann

spectra) is easily calculated using the standard tools from algebraic topology. The
answer is that it is the free graded-commutative algebra generated by the vector
space (s−2nH∗(BO(2n)〈n〉;Q))>0, the positive degree part of the desuspension of
H∗(BO(2n)〈n〉;Q). Let µc ∈ Hk−2n(Ω∞

0 MTθn;Q) be the element correspond-
ing to c ∈ Hk(BO(2n)〈n〉;Q). The pullback α∗

gµc ∈ Hk−2n(BDiff∂(W
n
g,1);Q)

is the tautological class κc of the universal bundle over BDiff∂(W
n
g,1). Finally

H∗(BO(2n)〈n〉;Q) is the polynomial algebra generated by the Pontrjagin classes
pm with n+1

4 ≤ m ≤ n− 1 and the Euler class. So altogether, in a range of degrees,
H∗(BDiff∂(W

n
g,1);Q) is a polynomial algebra in certain tautological classes.

All these results are for even-dimensional manifolds. The construction of the
map αg can be generalized to any manifold, and yields for orientedM of dimension

1We use the notation from [37] instead of that from [24].
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d a map αM : BDiff+
∂ (M) → Ω∞

0 MTSO(d) (the maps αg above are a refinement of
this construction due to the fact thatWn

g,1 is (n−1)-connected and n-parallelizable).
It has been observed by the first named author [13] that the classes α∗

MµLm
associ-

ated to the components of the Hirzebruch L-class vanish, for each odd-dimensional
d, though µLm

is nonzero. Hence any naive generalization of say [48] or [24] will
fail in odd dimensions.

1.2. Main result. Even though some substantial inroads into the odd-dimensional
situation have been made recently [57], [7], [56], [37], it remains a mystery and there
does not seem to be a convincing conjectural odd-dimensional analogue of the main
result of [24]. Our modest hope in this work is that our main result, Theorem A
below, might eventually serve as a piece of evidence which helps to formulate an
odd-dimensional version of these results. Let us consider the manifolds

Un
g,1 := ♯g(Sn × Sn+1) \ int(D2n+1)

which we consider as an odd-dimensional variant of the manifolds Wn
g,1. Being

(n− 1)-connected and n-parallelizable, one obtains a map

βn
g : BDiff∂(U

n
g,1) → Ω∞

0 MTθn2n+1, (1.1)

where the target is the Madsen–Tillmann spectrum ofBO(2n+1)〈n〉 → BO(2n+1).
Note that

H∗(BO(2n + 1)〈n〉;Q) ∼= Q[Lm|
n+ 1

4
≤ m ≤ n]

(there is no Euler class; and it is more convenient to use the components of
the Hirzebruch L-class instead of the Pontrjagin classes as generators). Hence
H∗(Ω∞

0 MTθn2n+1;Q) is the exterior algebra generated by the elements {µLm1 ···Lmr
},

where n+1
4 ≤ m ≤ n.

Theorem A. Assume that n ≥ 5. Then the map

(βn
g )

∗ : H∗(Ω∞
0 MTθn2n+1;Q) → H∗(BDiff∂(U

n
g,1);Q)

is surjective in degrees ∗ ≤ min( g−2
2 , n − 4), and in that range of degrees, the

kernel is the ideal generated by the classes µLm
(all m) and by the linear subspace

H1(Ω∞
0 MTθn2n+1;Q).

Remark 1.2. (1) That µLm
lies in the kernel of (βn

g )
∗ is the main result of [13].

(2) The space H1(Ω∞
0 MTθn2n+1;Q) is zero unless n ≡ 3 (mod 4), say n =

4k − 1. In that case, one checks that

H1(Ω∞
0 MTθ4k−1

8k+7 ;Q) = Q{µL2k
, µL2

k
}.

Hence the only new relation is κL2
k
= 0, which holds more generally for

all stably parallelizable manifolds of those dimensions. We give the fairly
elementary proof in Proposition 2.10 below; for the special manifolds Un

g,1

the relation comes out of the proof of Theorem A.
(3) The bound in g stems from a homological stability result due to Perlmutter

[56, Corollary 1.3.2]: the stabilization map BDiff∂(U
n
g,1) → BDiff∂(U

n
g+1,1)

is homologically g−2
2 -connected (with integral coefficients).

(4) The bound in n comes from our method of proof which we describe infor-
mally in §1.4 below.
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1.3. Relation to Hebestreit–Perlmutter’s work. Let us comment on the re-
lationship of the present work with [37]. The disjoint union

BD :=
∐

g

BDiff∂(U
n
g,1)

carries a natural structure of an algebra over the operad of little (2n + 1)-discs.
Hence we can form its group completion ΩB(BD) which is a (2n+1)-fold loop space.
We clearly have π0(ΩB(BD)) ∼= Z, and an application of the group completion the-
orem shows that the homology of each of the components is H∗(Ω0B(BD)) ∼=
H∗(hocolimgBDiff∂(U

n
g,1)); hence Theorem A also evaluates the rational cohomol-

ogy of Ω0B(BD) in a range of degrees. In [37], a larger E2n+1-algebra is considered,
namely

M2n+1 :=
∐

[W ]

BDiff∂(W ),

where [W ] ranges through all diffeomorphism classes of (n − 1)-connected (2n +
1)-manifolds W with boundary S2n which are moreover n-parallelizable, i.e. the
restriction of TW to the n-skeleton is trivial. The main result of [37] is that the
group completion of M2n+1 has the homotopy type of an infinite loop space if
n ≥ 4 and n 6= 7 (this is an odd-dimensional version of a theorem by Tillmann
[69] for surfaces). They do this by showing that ΩBM2n+1 is homotopy equivalent
to the infinite loop space of a spectrum denoted MTL2n+1. The latter is not
a Madsen–Tillmann spectrum despite the notation, but rather obtained from a
certain cobordism category of manifolds equipped with certain subspaces of their
homology by using infinite loop space machinery. That cobordism category does
not fit into the general theory of cobordism categories as in [27]; there is however
a map MTL2n+1 → MTθn2n+1 of spectra.

Clearly BD ⊂ M2n+1 is a union of path components. However, while π0(BD) ∼=
N0, π0(M2n+1) is much larger; [37, Proposition 3.2.5] deduces a description of
π0(M2n+1) from [74]. It is therefore not clear how to relate the group completions
of BD and of M2n+1. As Fabian Hebestreit and Manuel Krannich pointed out
to us, it seems conceivable that the map Ω0B(BD) → Ω0BM2n+1 is a rational
homology equivalence. If that turns out to be true, Theorem A computes the
rational homology of Ω∞

0 MTL2n+1 in a range of degrees.

1.4. Method of proof. Having said that the methods of [24] must fail in the
odd-dimensional case we need to say how we approach Theorem A. There is an
established three-stage procedure to describe the topology of BDiff∂(M) for a high-
dimensional manifold (d = dim(M) ≥ 5) in a range depending on d. The first step is
to get a hold on BhAut∂(M), the classifying space of the homotopy automorphisms
ofM , relative to the boundary. The second step uses Quinn’s space-level version of
the surgery exact sequence [61] to compare BhAut∂(M) with the classifying space

BD̃iff∂(M) of the block diffeomorphism group; the difference is in terms of the L-
theory of the group ring of π1(M). The third step compares block diffeomorphisms
to diffeomorphisms in a range of degrees, in terms of algebraic K-theory.

Our strategy in this paper is to first compute H∗(BD̃iff∂(U
n
g,1);Q) in the same

range of degrees as in Theorem A (the first and second step can largely be merged),
and then to use the comparison from the third step (which holds in a larger range
of degrees) to arrive at H∗(BDiff∂(U

n
g,1);Q). Let us first note that the map (1.1)

does not extend to block diffeomorphisms, hence the spectrum MTθn2n+1 does not
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play an important role in the calculation. However, the tautological classes can be
extended by [15]. To state our results property, let us introduce some notation.
Define a graded vector space Z(d) as follows:

Z(d)i =

{
0 i ≤ 0

Hd+i(BO;Q) i > 0.

The element of Z(d)i corresponding to c ∈ Hd+i(BO;Q) is denoted kc.
For each d-manifold M , we therefore obtain maps

ΦM : F(Z(d)) → H∗(BDiff+
∂ (M);Q)

and

Φ̃M : F(Z(d)) → H∗(BD̃iff
+

∂ (M);Q)

from the free graded-commutative algebra generated by Z(d). Sending kc to µc ∈
H∗(Ω∞

0 MTθn2n+1;Q) also gives an algebra map

Ψ : F(Z(2n+ 1)) → H∗(Ω∞
0 MTθn2n+1;Q)

which is surjective and whose kernel is the ideal generated by all kLmc with 4m ≤ n
and c ∈ H∗(BO;Q), and by all kc with c ∈ ker(H∗(BO;Q) → H∗(BO(2n+1);Q).
Moreover (βn

g )
∗ ◦ Ψ = ΦUn

g,1
. Therefore Theorem A is equivalent to the following

result.

Theorem 1.3. Assume that n ≥ 5. Then ΦUn
g,1

is surjective in degrees ∗ ≤

min( g−2
2 , n − 4), and in that range of degrees, the kernel is the ideal generated

by the following list of elements:

kLm
all m, (1.4)

kLmc 4m ≤ n, c ∈ H∗(BO;Q), (1.5)

kLm0Lm1
4(m0 +m1) = 2n+ 2. (1.6)

To state our result concerning BD̃iff∂(U
n
g,1), let B be the graded vector space

B :=
⊕

k≥1

Q[4k + 1]

and recall that H∗(BGL∞(Z);Q) ∼= F(B) by Borel’s famous calculation [5]. The
action of the block diffeomorphism group on Hn(U

n
g,1;Z) ∼= Zg gives a map

F(B) ∼= H∗(BGL∞(Z);Q) → H∗(BGLg(Z);Q) → H∗(BD̃iff∂(U
n
g,1);Q).

Combining this with Φ̃Un
g,1

, we obtain an algebra map

Γ : F(B ⊕ Z(2n+ 1)) → H∗(BD̃iff∂(U
n
g,1);Q) (1.7)

and we will prove the following result.

Theorem 1.8. Let n ≥ 5. The map Γ is surjective in degree ∗ ≤ n − 4 and for
g ≫ n, and the kernel is spanned by the same elements as given in Theorem 1.3.

Grey [29, Theorem B] has shown a homological stability result for block diffeo-
morphism groups which applies to the manifolds Un

g,1 and can be used to give an
explicit lower bound for g for which Theorem 1.8 holds (a worse bound can also be
deduced from our proofs).
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As already said, the proof of Theorem 1.8 uses Quinn’s theory, which roughly

expresses the homotopy fibre of the forgetful map BD̃iff∂(M) → BhAut∂(M) in
terms of L-theory which is quite manageable for simply connected M . We refer to
[2] for a more informative survey; more importantly, that paper contains a conse-
quence of Quinn’s theory [2, Theorem 1.1] which allows us to use surgery theory

completely as a black box. The result is that the calculation of H∗(BD̃iff∂(U
n
g,1);Q)

is equivalent to the calculation of

H∗(map∗(U
n
g,1;BOQ)

0 � hAut∂(U
n
g,1);Q), (1.9)

up to some smallprint that we shall ignore for the moment (map∗(U
n
g,1;BOQ)

0 is
the component of the pointed mapping space containing the constant map). The
computation of (1.9) fills the largest portion of this paper. The component group
π0(hAut∂(U

n
g,1)) is very close to GLg(Z) so that naturally Borel’s work on the

cohomology of arithmetic group enters. This is one of the reasons why g needs to be
large in Theorem 1.8. The cohomology of mapping spaces such as map∗(U

n
g,1;BOQ)

0

is fairly easy to compute, but rather large. To get from there to Theorem 1.8, we
employ Borel’s vanishing theorem in a similar way to its use in [16] or [45], and a
calculation in classical invariant theory.

While in principle the general theory allows us to compute the cohomology of
block diffeomorphisms in arbitrary degrees, we ran into several difficulties which we

could only resolve in small degrees (the main results of [2] aboutH∗(BD̃iff∂(W
n
g,1);Q)

show that H∗(BD̃iff∂(W
n
g,1);Q) behaves very differently from H∗(BDiff∂(W

n
g,1);Q)

in high degrees, so that this is certainly to be expected). We invite the curious and

capable reader to figure out H∗(BD̃iff∂(U
n
g,1);Q) in the homological stability range

given by [29], or at least up to degree 2n− 6, which is the range of degrees in which
the third step, the comparison of diffeomorphisms and block diffeomorphisms, is
valid.

Let us now turn to this step. One feature is that the Borel classes coming from
the action on homology vanish on H∗(BDiff∂(U

n
g,1);Q). We deduce this from the

Dwyer–Weiss–Williams index theorem [12] in Proposition 2.14. In general, the
comparison of diffeomorphisms and block diffeomorphisms is in terms of pseudo-
isotopy theory and algebraic K-theory, with the stable h-cobordism theorem [72]
and Igusa’s stability theorem [40] as the main points; the last one enforces a bound
depending on the dimension of the manifold. An elaborate formulation of this step
was given by Weiss–Williams in [75], but a simpler variant suffices for us. Let us
describe briefly how the comparison is done. Recall the classical result by Farrell–
Hsiang [20] stating that

πk(BDiff∂(D
2n+1))⊗Q ∼=

{
Q k ≡ 0 (mod 4)

0 k 6≡ 0 (mod 4)

holds in a range of degrees. This range which is nowadays known to be roughly 2n,
by recent work of Krannich [43] and Krannich–Randal-Williams [42]. An instance
of Morlet’s lemma of disjunction states that the homotopy fibre of

BDiff∂(U
n
g,1) → BD̃iff∂(U

n
g,1) (1.10)

is rationally equivalent to BDiff∂(D
2n+1) up to degree approximately 2n, and the

main result of [14] (which is a consequence of [7] and [57]) says that the inclusion of
the homotopy fibre into the total space of (1.10) induces the trivial map on rational
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homology in a range of degrees. To combine those facts, we use an elementary ar-
gument borrowed from [43] to show that the fibration (1.10) is “plus-constructible”.

Our treatment of this step is analogous to an argument in Krannich’s paper [43].
He considers

BDiffD(V n
g ) → BD̃iffD(V n

g ) (1.11)

instead, where V n
g is the boundary connected sum of g copies of Sn ×Dn+1, and

D is a fixed disc in ∂V n
g . The homotopy fibre of (1.11) is also rationally equiva-

lent to BDiff∂(D
2n+1). Krannich used knowledge about BDiffD(V n

g ) from [7] and

BD̃iffD(V n
g ) from surgery theory to deduce knowledge about the homotopy fibre of

(1.11) (and thereby extends the range in Farrell-Hsiang’s theorem to roughly 2n).
In the present paper, the logic is reversed: we use knowledge about the base of
(1.10) from surgery theory and the fibre from Farrell-Hsiang’s theorem (or Kran-
nich’s improvement thereof) to deduce knowledge about the total space.

1.5. Overview of the chapters. To navigate the reader through this rather long
paper, let us briefly describe the content of the chapters. §2: after setting up
notation, we introduce the tautological classes and show in §2.3 the three vanishing
theorems implied by Theorems A and 1.8 (one of the vanishing results is needed for
the proof, the other two fall out as byproducts). In §2.4, we prove another vanishing

result, namely Proposition 2.14 which says that the Borel classes on BD̃iff∂(U
n
g,1)

vanish when pulled back to BDiff∂(U
n
g,1); this is a fairly straightfoward consequence

of the Dwyer–Weiss–Williams theorem.
§3 is about the general theory behind the proof of Theorem 1.8. The goal is

Proposition 3.27 which essentially gives a formula for the rational cohomology of
BDiff∂(M) under some hypotheses on M , which are satisfied by Un

g,1. The consi-
tutents for this formula are hAut∂(MQ), the homotopy automorphisms (relative to
the boundary) of the rationalization ofM , and the mapping space map∂(M ;BOQ).
This is derived from surgery theory, through a result of Berglund–Madsen [2]. §3.1
reviews some generalities on rational homotopy theory, and §3.3 describes the co-
homology of mapping spaces of the above sort.

In §4, we begin to apply this theory to the manifolds Un
g,1. Many of the results

are exercises in standard homotopy theory (and already contained in [29]). The
goal is Proposition 4.30, which computes the E2-page of the spectral sequence of
the fibration map∂(U

n
g,1;BOQ)

0 � hAut∂(U
n
g,1)

id → BhAut∂(U
n
g,1)

id (in a range of
degrees, and including the d2-differential).

Having determined the E2-page of the spectral sequence, our tactical goal is to
calculate the π0(hAut∂(U

n
g,1))-invariant part of the E∞-page. For this, we need a

calculation in classical invariant theory which we carry out in the purely algebraic
§5. In §6, we eventually complete the proof of Theorem 1.8, with a use of Borel’s
vanishing theorem [6]. The rather short section §7 derives TheoremA from Theorem
1.8 along the lines sketched above.

Notations. We use the following standard notations in this paper. For two N0-
graded algebras A and B, A ⊗ B always denotes the graded tensor product, to
conform the conventions of homological algebra. The free graded-commutative
algebra generated by a graded vector space V is denoted F(V ). If V is a vector
space and n ∈ N0, we let V [n] be the graded vector space which is V in degree n
and 0 otherwise (and not the degree shift of a graded vector space).
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2. Characteristic classes of smooth and block bundles

2.1. Automorphism groups. Let us first establish some notation. Let Md be a
compact oriented smooth manifold with boundary. We write Diff(M) for the dif-
feomorphism group and Diff∂(M) ⊂ Diff(M) for the subgroup of diffeomorphisms
which are the identity near ∂M . We furthermore let Diff+(M) ⊂ Diff(M) and
Diff+

∂ (M) ⊂ Diff∂(M) the subgroups of orientation-preserving diffeomorphisms;

note that Diff+
∂ (M) = Diff∂(M) if the inclusion ∂M →M is 0-connected.

In the present paper, we make heavy use of the block diffeomorphism group

D̃iff(M). We won’t repeat the definition here and refer instead to §1 and 2 of

[43] for an up-to-date exposition. There are block analogues D̃iff∂(M), D̃iff
+
(M),

D̃iff
+

∂ (M) of respective diffeomorphism groups. Let us also note that the natural
map

I : Diff(M) → D̃iff(M)

is by definition 0-connected; the same holds for the decorated versions.
We shall need various flavours of homotopy automorphism groups. When form-

ing mapping spaces, we secretly replace all spaces that occur by their singular sim-
plicial set, and view the mapping space as a simplicial set. For a CW-pair (X,A)
and a pointed space Y , we let mapA(X ;Y ) be the space of maps X → Y whose
restriction to A is the constant map to the basepoint in Y (or more formally the
fibre of the restriction map map(X ;Y ) → map(A;Y ) over the constant map). For a
CW-pair (X,A), we let hAutA(X) be the monoid of all homotopy self-equivalences
of X which are the identity on A. For an oriented compact manifold, we let also
hAut∂(M)+ ⊂ hAut∂(M) the submonoid of those self-equivalences which preserve
the fundamental homology class. There are natural maps

D̃iff∂(M) → hAut∂(M) and D̃iff
+

∂ (M) → hAut+∂ (M)

(or rather a zig-zag, see the discussion in [2, p. 98 f] for more details).
Assume that V → X is a vector bundle and that C ⊂ A is a subcomplex. We let

hAutCA(V ) be the monoid of all pairs (f, f̂) where f ∈ hAutA(X) and f̂ : V → V is
a bundle map covering f which is fibrewise an isomorphism, and such that f |V |C

is the identity, see [2, p. 107f] for more details. There is a stable version of that
construction given on p. 110 loc.cit.; we define

hAutCA(V )st := colimkhAut
C
A(V ⊕ Rk).

All the monoids we just introduced are grouplike E1-spaces and therefore admit
classifying spaces. The classifying space BhAutCA(V )st has a convenient description
as follows. If V |C is stably trivial and a stable trivialization is chosen, Proposition
4.13 of [2] provides a weak equivalence

BhAutCA(V )st ≃ (mapC(X ;BO) � hAutA(X))V , (2.1)
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where

(mapC(X ;BO) � hAutA(X))V ⊂ mapC(X ;BO) � hAutA(X)

denotes the connected component determined by a fixed classifying map λ : X →
BO of V which extends the given trivialization of V |C , viewed as a point in
mapC(X ;BO). The map in (2.1) arises as follows: the total space of the universal

fibration over BhAutCA(V )st with fibre X carries a stable vector bundle which is
built from V . For a detailed construction on the point-set level, we refer to [2].

One important feature of block diffeomorphisms is the existence of the derivative
map

D : D̃iff∂(M) → hAut∂∂(TM)st, (2.2)

which is a map of E1-monoids and can therefore be delooped to a map

BD : BD̃iff∂(M) → BhAut∂∂(TM)st. (2.3)

The derivative map is constructed in [2, §4.3], see also [43, §1.9], and is an expression
of the fact, first proven in [15] and expanded on in [36, §2.4], that block bundles
have a stable vertical tangent bundle. By virtue of its definition, the derivative
map is a map over hAut∂(M).

2.2. Tautological classes. Tautological classes (aka Miller–Morita–Mumford clas-
ses or κ-classes) for block bundles have been constructed in [15] and more systemat-
ically in [36]. The most streamlined construction can be given using the derivative
map (2.3), and we sketch the definition briefly, in a level of generality that will
prove to be useful for us later on.

Construction 2.4. Assume that Md is a compact oriented smooth manifold with
boundary. Consider the universal fibration pair (E, ∂E) with fibre (M,∂M) over
the space B := map∂(M ;BO) � hAut+∂ (M). The evaluation map

ev : map∂(M ;BO)×M → BO

is hAut∂(M)-equivariant and maps map∂(M ;BO)× ∂M to the basepoint. As E =
(map∂(M ;BO)×M)� hAut+∂ (M) and ∂E = (map∂(M ;BO)× ∂M)� hAut+∂ (M),
ev induces a map ǫ : E → BO sending ∂E to the basepoint. We may think of ǫ as
a stable vector bundle on E, trivialized on ∂E. The Leray–Serre spectral sequence
for the fibration pair (E, ∂E) → B yields maps

π! : H
k(E; ∂E) → Ek−d,d

∞ ⊂ Ek−d,d
2

∼= Hk−d(B;Hd(M ; ∂M)) → Hk−d(B)

(with coefficients in an arbitrary ring). Given a class c ∈ Hk(BO), we can therefore
form

κc := π!(ǫ
∗c) ∈ Hk−d(map∂(M ;BO) � hAut+∂ (M)).

Construction 2.5. LetMd be an oriented compact smooth manifold with boundary
and assume that TM |∂M is stably trivial. Combining the derivative map BD with
(2.1) yields a map

BD̃iff
+

∂ (M) → BhAut∂∂(TM)st → map∂(M ;BO) � hAut+∂ (M),

and we can pull back κc to a class, also denoted κc ∈ Hk−d(BD̃iff
+

∂ (M)). Pulling

this further back along BI : BDiff∂(M) → BD̃iff∂(M), we obtain the usual κ-
classes on classifying spaces of diffeomorphism groups.
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A map γ from a space X to one of the classifying spaces BDiff+
∂ (M), BD̃iff

+

∂ (M)

or map∂(M ;BO) � hAut+∂ (M) classifies E → X , which is a smooth fibre bundle
/ block bundle / fibration with a stable vector bundle on its total space. In such
situations, we use the suggestive notation κc(E) := γ∗κc.

We now specialize to rational coefficients. Recall that H∗(BO;Q) is the poly-
nomial algebra in the Pontrjagin classes. For our purposes, it is useful to observe
that one can also write

H∗(BO;Q) ∼= Q[L1, L2, . . .],

where Lm ∈ H4m(BO;Q) is the mth component of the Hirzebruch L-class. The
above is true by the well-known fact [39, p. 14] that the coefficient am of pm in Lm

is nonzero.

2.3. Some vanishing theorems for tautological classes. In this subsection, we
review the three vanishing theorems that are entailed by Theorem A. Only one of
them (Theorem 2.8) is actually used in the proof of our main theorem; the other two
(Proposition 2.7 and Proposition 2.10) are only stated for sake of completeness; the
fact that they are valid for the manifolds Un

g,1 is a byproduct of our computations
below.

An additivity property. Let us begin with a fact which is well-known for diffeomor-
phism groups; the argument we give is essentially contained in [52], [54].

Lemma 2.6. Let M and N be compact oriented d-manifolds with boundary with a
common (closed) part ∂0 ⊂ ∂M, ∂N of their boundary. Let

µ : map∂(M ;BO) � hAut+∂ (M)×map∂(N ;BO) � hAut+∂ (N) →

→ map∂(M ∪∂0 N ;BO) � hAut+∂ (M ∪∂0 N)

be the obvious gluing map, let pM be the projection to map∂(M ;BO)� hAut+∂ (M),
and define pN similarly. Then for each c ∈ Hk(BO) with k > d, we have

µ∗κc = p∗Mκc + p∗Nκc.

Proof. We must show the following: assume that πE : E → X and πF : F → X
are two oriented fibrations with fibres M and N and trivialized boundaries, and
that E and F contain a common part A ⊂ ∂E, ∂F of their boundary. Then for two
vector bundles V → E and W → F of the same rank n which are trivialized over
the respective boundaries and each c ∈ Hk(BO), we have

πE∪AF
! (c(V ∪W )) = πE

! (c(V )) + πF (c(W )) ∈ Hk−d(X),

provided that k − d > 0. We may suppose that X is a finite CW complex. It is an
exercise in linear algebra to prove an isomorphism

(V ∪A Rn
F )⊕ (Rn

E ∪A W ) ∼= (V ∪A W )⊕ (Rn
E ∪A Rn

F )

of clutched bundles on E ∪A F (hint: picking bundle maps f : Rn → V and
g : Rn → W which are the identity on the boundary is a good start). Hence the
classifying map γE∪AF : E ∪A F → BO of V ∪A W can be factored as

E ∪A F → E/∂ ∨ F/∂
γE∨γF
→ BO ∨BO

fold
→ BO.

The claim follows from the observation that

H∗(E, ∂E) ∼= H∗(E ∪A F, ∂E ∪ F ) → H∗(E ∪A F, ∂(E ∪A F ))
π
E∪AF

!→ H∗−d(X)
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is nothing else than πE
! (and the similar fact for F in place of E). �

The next result is fairly simple-minded; compare [24, Lemma 7.16] for a more
elaborate, but closely related result about diffeomorphism groups.

Proposition 2.7. Let M be a compact oriented d-manifold, assume that TM |∂M
is stably trivial, that ∂M → M is (k − 1)-connected and assume that all rational
Pontrjagin classes of TM up to degree k are zero. Then

κc = 0 ∈ H |c|−d(BD̃iff
+

∂ (M);Q)

whenever c ∈ H∗(BO;Q) with d < |c| ≤ k.

Proof. We use an easy cohomological argument as follows. The cohomological
Leray–Serre spectral sequence for the universal block bundle pair (E, ∂E) over

(BD̃iff
+

∂ (M), ∗) reads as follows:

Ep,q
2 = Hp(BD̃iff

+

∂ (M), ∗;Hq(M,∂M ;Q)) ⇒ Hp+q(E,M ∪ ∂E).

The connectivity assumption onM prove that H∗(E,M∪∂E) = 0 whenever ∗ ≤ k.
Hence H∗(E) → H∗(M)⊕H∗(∂E) is injective for ∗ ≤ k. The Pontrjagin classes of
TvE go to (p(TM), pr∗∂Mp(TM)) = 0 and therefore vanish in degrees ≤ k. Hence
c(TvE) = 0, and a fortiori κc = 0. �

The family signature theorem. The classical family signature theorem for smooth
fibre bundles (which uses elliptic operators in its proof) holds more generally for
block bundles, as shown by Randal–Williams in [62]. It has two cases, the odd-
dimensional and the even-dimensional case. The odd case reads as follows.

Theorem 2.8. Let Md be an odd-dimensional oriented manifold, and assume for
simplicity that TM |∂M is stably trivial. Then

κLm
= 0 ∈ H4k−d(BD̃iff

+

∂M ;Q)

for each m ∈ N (and hence the same is true for diffeomorphisms).

References. By Lemma 2.6, it is enough to show the theorem for closed M , and
this is done in [62, Theorem 3.1] for block diffeomorphisms, and in [13] for diffeo-
morphisms. The proof in the latter paper uses families of elliptic operators and
cannot be generalized to block diffeomorphisms. �

Let us state the even-dimensional case for sake of completeness, and only for the
case where M is closed or ∂M is a sphere. The point is that in the case dim(M) =
2n, the action of hAut+∂ (M) on Hn(M ;Q) preserves the (nondegenerate) intersec-

tion form IM . This fact produces a map f : hAut+∂ (M) → BAut(Hn(M ;Q); IM );
the latter is the classifying space of a symplectic or an orthogonal group, depending
on the parity of n. Randal–Williams defines classes σi ∈ Hi(BAut(Hn(M ;Q); IM );Q),
which live in degrees i ≡ 2 (mod 4) if n is odd and i ≡ 0 (mod 4) if n is even, and
shows in [62, Theorem 3.1] that

κLm
= f∗σ4m−2n ∈ H4m−2n(BD̃iff

+

∂ (M);Q); (2.9)

he uses index theory to identify these classes in terms of ordinary characteristic
classes, see [62, Theorem 4.1].
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Consequence of the family signature theorem.

Proposition 2.10. Let M be a compact oriented d-manifold, assume that TM |∂M
is stably trivial, and suppose that all rational Pontrjagin classes of M are trivial.
Then for each c ∈ Hk(BO;Q), k > dim(M), the homomorphism

πk−d(BD̃iff
+

∂ (M)) → Q

given by

[f ] 7→ 〈f∗κc; [S
k−d]〉

is the zero map. In particular, if k = d+ 1, then κc = 0 ∈ H1(BD̃iff
+

∂ (M);Q).

Proof. For diffeomorphisms, this is a well-known fact, see e.g. [44, Proposition 13]
or [32, Proposition 1.9]. To see that the proof also applies to block diffeomorphisms,
we review the argument.

Firstly, the double M ∪∂M M has trivial rational Pontrjagin classes, by an argu-
ment given in the proof of [17, Theorem F]; hence by Lemma 2.6 it suffices to give
the argument for closed M .

Let k = 4m and let π : E → S4m−d be an oriented block bundle with fibre M ,

classified by f : S4m−d → BD̃iff
+
(M). The restriction of the stable vertical tangent

bundle TvE to the fibre M over ∗ is stably isomorphic to TM . A brief inspection
of the Leray–Serre spectral sequence of π proves that c(TvE) = 0 if c can be
written as a product of classes in positive degrees. Hence we only have to prove
that κLm

(E) = 0. This follows from [62, Theorem 3.1] (in the even-dimensional
case, we only need to consider bundles over spheres of even dimension, which are
simply-connected and (2.9) shows that κLm

is pulled back from an asperical space).
The last sentence follows by the Hurewicz theorem. �

2.4. Borel classes. Let K(Z) denote the algebraic K-theory spectrum of the in-
tegers; recall that π0(K(Z)) ∼= Z and that Ω∞

0 K(Z) ≃ BGL∞(Z)+. A celebrated
result of Borel describes the rational cohomology of the latter space.

Theorem 2.11 (Borel). The rational cohomology H∗(Ω∞
0 K(Z);Q) = H∗(BGL∞(Z);Q)

is the exterior algebra with generators β4k+1 ∈ H4k+1(Ω∞
0 K(Z);Q), k ≥ 1. The

classes β4k+1 are primitive. The restriction maps

Hp(BGL∞(Z);Q) → Hp(BGLg(Z);Q) → Hp(BSLg(Z);Q)

are isomorphisms provided that g ≥ 2p+2. The group homomorphism κ : GLg(Z) →
GLg(Z) given by κ(x) := (x⊤)−1 has the following effect on these classes:

(Bκ)∗β4k+1 = −β4k+1.

References. The first part is of course a famous theorem of Borel [5] (he treats real
cohomology which makes little difference as the cohomology spaces are all finite-
dimensional by [60]). A range in which the map from the stable cohomology to
the unstable cohomology is an isomorphism is also determined in Borel’s paper; the
range stated above follows from Van der Kallen’s homological stability theorem [71,
Theorem 4.11], using that the Bass stable rank of the integers is 2; see [31, §4.1.11].
The last statement can also easily be deduced from Borel’s work. Since we do not
know a reference, we shall indicate the proof here. It suffices to prove the statement
for SLg(Z) instead of GLg(Z), since the covering map BSLg(Z) → BGLg(Z) induces
an injection in rational cohomology. We need to recall how the Borel classes are
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constructed. Let X be the symmetric space SLg(R)/SO(g) and let A∗(X)SLg(R)

be the chain complex of invariant differential forms, which has trivial differential
as each SLg(R)-invariant differential form on X is closed, by a general fact about
symmetric spaces. On the other hand, X is contractible and the SLg(Z)-action is
proper, so that there is a natural isomorphism

H∗(BSLg(Z);R) ∼= H∗(A∗(X)SLg(Z)).

On X , there is the Cartan involution τ : X → X , τ(xSO(g)) := (x⊤)−1SO(g). It is
easily verified that τ induces an involution on A∗(X)SLg(R), and that the diagram

A∗(X)SLg(R)

τ∗

��

// H∗(BSLg(Z);R)

Bι∗

��

A∗(X)SLg(R) // H∗(BSLg(Z);R)

commutes. By definition, the Borel classes come from certain invariant forms on
X . It is therefore enough to show that τ∗ : Ap(X)SLg(R) → Ap(X)SLg(R) is multi-
plication by (−1)p. The involution τ fixes the basepoint o := SO(g) ∈ X , and since
invariant forms on X are determined by their values at x, it is enough to check that
Toτ = −1. But this is easily verified by a direct calculation. �

Now let X be a finite CW-complex. For each p, the action on Hp(X ;Z) provides
a map

Bρp : BhAut(X) → BGL(Hp(X ;Z)).

For each finitely generated abelian group A with torsion subgroup TA, there is a
map

ι : BGL(A) → BGL(A/TA) → Ω∞K(Z)

well defined up to homotopy; it hits the component of rank(A) ∈ Z = π0(K(Z)).
Composing ι and Bρp gives classes

βp
4k+1 := (ι ◦Bρp)

∗β4k+1 ∈ H4k+1(BhAut(X);Q).

Using the infinite loop space structure on Ω∞K(Z), we can form the alternating
sum

χ :=
∑

p≥0

(−1)pι ◦Bρp : BhAut(X) → Ω∞K(Z),

the algebraic K-theory Euler characteristic. Because the Borel classes are primitive,
the relation

χ∗β4k+1 =
∑

p≥0

(−1)pβp
4k+1 ∈ H4k+1(BhAut(X);Q)

holds.

Theorem 2.12 (Dwyer–Weiss–Williams). Let M be a smooth compact manifold,
possibly with boundary. Then

χ∗β4k+1 = 0 ∈ H4k+1(BDiff(M);Q).

Let us remark that the analogue of Theorem 2.12 for block diffeomorphism groups

is false; in fact our computation of H∗(BD̃iff∂(U
n
g,1);Q) certifies its failure.
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References. The Dwyer–Weiss–Williams index theorem [12, Corollary 8.12] shows
that the map χ factors through the Becker–Gottlieb transfer BDiff(M) → QS0, so
that the result simply follows from Serre’s finiteness theorem. See also §2 of [14]
for a more detailed summary. �

We now use Poincaré duality to deduce a sharper vanishing theorem from The-
orem 2.12.

Lemma 2.13. Let Md be a connected smooth oriented manifold with boundary,
and suppose that ∂M = Sd−1. Then

βp
4k+1 = −βd−p

4k+1 ∈ H4k+1(BDiff+
∂ (M);Q)

for all p.

Proof. We can consider M̂ := M ∪∂M Dd instead, without changing the Borel
classes. Poincaré duality, the universal coefficient theorem and the last statement
of Theorem 2.11 proves the claim. �

Proposition 2.14. Let M be as in Lemma 2.13. If d = 2n, then

βn
4k+1 = 0 ∈ H4k+1(BDiff+

∂ (M);Q).

If d = 2n+ 1, then

n∑

p=0

(−1)pβp
4k+1 = 0 ∈ H4k+1(BDiff+

∂ (M);Q).

Proof. For d = 2n, compute

0
(2.12)
=

n−1∑

p=0

(
(−1)pβp

4k+1 + (−1)2n−pβ2n−p
4k+1

)
+ (−1)nβn

4k+1 =

(2.13)
=

n−1∑

p=0

(−1)p
(
βp
4k+1 − βp

4k+1

)
+ (−1)nβn

4k+1 = (−1)nβn
4k+1.

For d = 2n+ 1, compute

0
(2.12)
=

n∑

p=0

(
(−1)pβp

4k+1 + (−1)2n+1−pβ2n+1−p
4k+1

)
=

(2.13)
=

n∑

p=0

(
(−1)pβp

4k+1 + (−1)2n+1−p+1βp
4k+1

)
=

2
n∑

p=0

(−1)pβp
4k+1.

�

Remark 2.15. The even-dimensional case of Proposition 2.14 can be shown directly
from Borel’s work, without recourse to [12]. The point is that by Poincaré duality,
Bρn factors through the symplectic group or through an orthogonal group of some
signature, depending on the parity of n, and Borel also computed the stable rational
cohomologies of such groups: they are concentrated in even degrees.
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3. Rational cohomology of block diffeomorphism spaces: general

theory

3.1. Some words about rational homotopy theory. Let us recall some notions
and results from rational homotopy theory. For us, a space will be a Kan complex.
The category of spaces is denoted S, and the category of pointed spaces by S∗.
Recall that the category S is enriched over itself.

We say that a space X is finite if the geometric realization |X | is homotopy
equivalent to a finite CW complex.

A map f : X → Y is a HQ-equivalence if the induced map f∗ : H∗(X,Q) →
H∗(Y,Q) is an isomorphism. When all path components of X and Y are nilpotent
(e.g. simply connected or simple), this requirement is equivalent to saying that
f∗ : π0(X) → π0(Y ) is bijective and that f∗ : πk(X, x)⊗Q → πk(Y, f(x))⊗Q is an
isomorphism for all k ≥ 1 and all x ∈ X (for an arbitrary nilpotent group G, we
use the notation G⊗Q for the Q-localization of G, see [38, §I]). If source and target
are nilpotent, we call an HQ-equivalence also a rational homotopy equivalence.

A space Z is Q-local if for each HQ-equivalence f : X → Y and all choices of
basepoints, the map

◦ f : map∗(Y ;Z) → map∗(X ;Z)

is a weak equivalence (equivalently the map induced by ◦ f on π0 is bijective for
all such f). If Z is nilpotent, this is equivalent to saying that all homotopy groups
πk(Z, z) for k ≥ 2 are Q-vector spaces and that the fundamental groups π1(Z, z)
are Q-local nilpotent groups in the sense of [38, p.4].

A map f : X → Y is a Q-localization if f is an HQ-equivalence and Y is Q-
local. Such a map, if it exists, is unique up to weak equivalence. It was proven by
Sullivan [67] that each nilpotent space admits a Q-localization. We make use of the
following fact, which follows from Theorem 2.5 on p.66 and Theorem 3.11 on p. 77
of [38].

Theorem 3.1. Let X and Y be connected pointed spaces and assume that X is
finite. Then each component map∗(X ;Y )g ⊂ map∗(X ;Y ) of the pointed mapping
space is nilpotent. Moreover, if Y is nilpotent and f : Y → Z is a Q-localization,
the induced map

map∗(X ;Y )g → map∗(X ;Z)f◦g

is a rational homotopy equivalence, for each choice of g.

For our purposes, it will be convenient to have a strictly functorialQ-localization2.

Theorem 3.2. There is an enriched functor ( )Q : S → S, together with an en-
riched natural transformation η : id → ( )Q, such that for each X ∈ S, the map
ηQ : X → XQ is a Q-localization.

Being enriched means that the functor comes along with natural maps

iX,Y : map(X ;Y ) → map(XQ;YQ),

and the enriched natural transformation η is given by maps ηX : X → XQ such
that the composition

map(X ;Y )
iX,Y
→ map(XQ;YQ)

◦ηX
→ map(X ;YQ)

2The only place in the paper where this enters essentially is in Observation 4.24.
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agrees with the map ηY ◦ . See [65, §3] for more details on the vocabulary of
enriched category theory. There is an induced enriched functor S∗ → S∗ of pointed
spaces.

References for Theorem 3.2. This is due to Bousfield; first in [8] without the word
“enriched”, the enrichment is constructed in [9, §5]. �

Lemma 3.3. Let X and Z be connected pointed spaces and let g : X → Z be a
pointed map. Then if X is finite, the natural map

igX,Z : map∗(X ;Z)g → map∗(XQ;ZQ)
gQ

is a rational homotopy equivalence.

Proof. The composition

map∗(X ;Z)g
i
g
X,Z
→ map∗(XQ;ZQ)

gQ ◦ηX
→ map∗(X ;ZQ)

gQ◦ηX

is equal to ηZ ◦ . The three spaces are nilpotent by Theorem 3.1, and the second
map is a weak equivalence since ZQ is Q-local and ηX is an HQ-equivalence. The
composition is a rational homotopy equivalence by Theorem 3.1, and so igX,Z is a
rational homotopy equivalence as well. �

A similar fact is true for homotopy automorphisms. Rationalization gives maps

jX : hAut∗(X) → hAut∗(XQ)

and

jX,A : hAutA(X) → hAutAQ
(XQ)

when X is a pointed space or (X,A) is a space pair. We write hAutA(X)id for the
unit component of hAutA(X), and let moreover

hAutAQ
(XQ)Z ⊂ hAutAQ

(XQ)

be the union of all path components which are hit by jX,A; this are clearly grouplike
submonoids.

Lemma 3.4. Suppose that (X,A) is a pair of finite spaces. Then the natural map

jX,A : hAutA(X)id → hAutAQ
(XQ)

id

is a rational homotopy equivalence.

Proof. The case A = ∗ is a special case of Lemma 3.3. In the general case, consider
the commutative diagram

hAut∗(X)id
jX

//

��

hAut∗(XQ)
id

��

map∗(A;X)inc
iincA,X

// map∗(AQ;XQ)
inc.

The horizontal maps are rational homotopy equivalences by Lemma 3.3. It follows
that the induced map on vertical homotopy fibres induces an isomorphism on all
rational homotopy groups in degrees ≥ 2. The same is true on fundamental groups,
using [38, Proposition 1.10]. On the other hand, restricting the map on vertical
fibres to the path component of the identity gives the map jA,X . �
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Having understood these matters, we usually abuse notation and write

hAutA(XQ) := hAutAQ
(XQ)

and use the notation hAutA(XQ)Z, hAutA(X)id similarly.

3.2. Block diffeomorphisms versus tangential homotopy automorphisms.

We shall use the surgery-theoretic approach to the topology of diffeomorphism
groups which is due to Quinn [61]; a detailed exposition is available in [55]. For
our purposes, work of Berglund and Madsen [2, §4] enables us to treat all the
surgery theory as a black box. Let us describe the result we need, starting with the
introduction of some more notation.

Notation 3.5. (1) We write Diff∂(M)∼id ⊂ Diff∂(M) for the subgroup of
diffeomorphisms which are homotopic to the identity (relative boundary),

and define D̃iff∂(M)∼id ⊂ D̃iff∂(M) analogously.
(2) Assume that C ⊂ A ⊂ X are subcomplexes and that V → X is a vector

bundle. In that situation, we denote by

hAutCA(V )∼id ⊂ hAutCA(V )

the preimage of hAutA(X)id under the forgetful map hAutCA(V ) → hAutA(X);

in other words the space of pairs (f, f̂) with f ∼ id (relative A). We define

hAutCA(V )st,∼id ⊂ hAutCA(V )st similarly.

The derivative map (2.2) is, by virtue of its definition, a map over hAut∂(M),
and hence it restricts to a map

D : D̃iff∂(M)∼id → hAut∂∂(TM)st,∼id.

If ∗ ∈ ∂M is a basepoint, we can furthermore compose the derivative map with
the forgetful map hAut∂∂(TM)st → hAut∗∂(TM)st. Hence by restriction and taking
classifying spaces, we obtain a map

BD : BD̃iff∂(M)∼id → BhAut∗∂(TM)st,∼id. (3.6)

All the surgery theory we need enters the proof of the following result.

Theorem 3.7. [2, Theorem 1.1] Assume that Md is 1-connected, ∂M = Sd−1 and

that d ≥ 5. Then the spaces BD̃iff∂(M)∼id and BhAut∗∂(TM)st,∼id are nilpotent,
and the map BD from (3.6) is a rational homotopy equivalence.

In the rest of this subsection, we derive a version of Theorem 3.7 which involves
the full block diffeomorphism group and not just Diff∂(M)∼id and which is directly
applicable to the manifolds Un

g,1. Our goal is Theorem 3.12 below.
We begin with the introduction of some more pieces of notation. We let

hAut∂(M)id ⊂ hAut∂(M)
∼= ⊂ hAut∂(M)

be the union of the components which are hit by the forgetful map D̃iff∂(M) →
hAut∂(M), and we define for a subcomplex C ⊂ ∂M

hAutC∂ (TM)st,
∼= ⊂ hAutC∂ (TM)st

as the preimage of hAut∂(M)
∼= under the forgetful map. Using this notation, the

derivative map yields

BD : BD̃iff∂(M) → BhAut∂∂(TM)st,
∼= → BhAut∗∂(TM)st,

∼=. (3.8)
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Corollary 3.9. Let M be as in Theorem 3.7. Then the composition 3.8 is an
HQ-equivalence.

Proof. There is a diagram

BD̃iff∂(M)∼id BD
//

��

BhAut∂(TM)st,∼id

��

BD̃iff∂(M)
BD

//

��

BhAut∂(TM)st,
∼=

��

Bπ0(hAut∂(M)
∼=) Bπ0(hAut∂(M)

∼=)

whose columns are fibre sequences, so the claim follows immediately from Theorem
3.7 and an application of the Leray–Serre spectral sequence. �

For stably parallelizable manifolds, such as Un
g,1, the spaces BhAut∂∂(TM)st,

∼=

and BhAut∗∂(TM)st,
∼= have a simpler description.

Lemma 3.10. Assume that V → X is stably trivial, and that a stable trivialization
of V |C is fixed. Then there is a weak equivalence

BhAutCA(V )st ≃ mapC(X ;BO)0 � hAutA(X),

where mapC(X ;BO) is the space of maps which are constant on C, and mapC(X ;BO)0

is the component of the constant map.

Proof. This is an almost immediate consequence of [2, Proposition 4.13] which was
stated above as (2.1). The component

(mapC(X ;BO) � hAutA(X))V ⊂ mapC(X ;BO) � hAutA(X)

agrees with

mapC(X ;BO)V � hAutA(X)

where (mapC(X ;BO) � hAutA(X))V ⊂ mapC(X ;BO) � hAutA(X) is the union
of components which belong to the orbit of a classifying map λ : X → BO. If
V is stably trivial, we can pick λ to be the constant map. On the other hand
π0(mapC(X ;BO)) = KO0(X,C) is an abelian group and hAutA(X) acts by group
automorphism and therefore fixes the neutral element. It follows that for stably
trivial V , mapC(X ;BO)V = mapC(X ;BO)0 is the component of the constant
map. �

With the help of Lemma 3.10, we can replace the spaces in (3.8) and reformulate
Corollary 3.9 as follows.

Corollary 3.11. Assume that M is a simply connected and stably parallelizable
manifold of dimension d ≥ 5, and that ∂M = Sd−1. Then the derivative map
induces maps

BD̃iff∂(M) → map∂(M ;BO)0 � hAut∂(M)
∼= → map∗(M ;BO)0 � hAut∂(M)

∼=

whose composition is an HQ-equivalence. �
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Using the rationalization functor, we now give the variant of Theorem 3.7 which
we shall eventually use. We let

hAut∂(MQ)
∼= ⊂ hAut∂(MQ)Z

the union of components which are hit by the rationalization map

hAut∂(M)
∼= → hAut∂(MQ)Z.

Theorem 3.12. LetM be a simply connected manifold of dimension d ≥ 5, assume
that M is stably parallelizable and that ∂M = Sd−1. Then the composition

BD̃iff∂(M) → map∗(M ;BO)0 � hAut∂(M)
∼= → map∗(MQ;BOQ)

0 � hAut∂(MQ)
∼=

is an HQ-equivalence.

Proof. Corollary 3.11 leaves us with the task of proving that the second map is an
HQ-equivalence. This second map can clearly be factored as

map∗(M ;BO)0�hAut∂(M)
∼= → map∗(MQ;BOQ)

0�hAut∂(M)
∼= → map∗(MQ;BOQ)

0�hAut∂(MQ)
∼=.

The first of those maps is a HQ-equivalence, by Lemma 3.3 and a straightfoward
spectral sequence argument. To prove that the second map is also anHQ-equivalence,
observe that there is a homotopy cartesian diagram

map∗(MQ;BOQ)
0 � hAut∂(M)

∼= //

��

BhAut∂(M)
∼=

��

map∗(MQ;BOQ)
0 � hAut∂(MQ)

∼= // BhAut∂(MQ)
∼=.

Therefore, it is sufficient to prove that the homotopy fibre F of the right vertical
map is rationally acyclic.

The definition of BhAut∂(MQ)
∼= shows that F is connected, and Lemma 3.4

shows that πk(F )⊗ Q = 0 for all k ≥ 2. Hence the universal cover F̃ is rationally

acyclic, and the Leray–Serre spectral sequence of the fibre sequence F̃ → F →
Bπ1(F ) shows that

Hk(F ;Q) ∼= Hk(Bπ1(F );Q). (3.13)

The exact sequence

π1(hAut∂(M)
∼=) → π1(hAut∂(MQ)

∼=) → π1(F ) → π0(hAut∂(M)
∼=) → π0(hAut∂(MQ)

∼=)

yields a short exact sequence

0 → T → π1(F ) → Q→ 1 (3.14)

of groups, where

T := coker
(
π1(hAut∂(M)

∼=) → π1(hAut∂(MQ)
∼=)

)

is an abelian torsion group by Lemma 3.4 and

Q := ker
(
π0(hAut∂(M)

∼=) → π0(hAut∂(MQ)
∼=)

)

is finite by [18, Theorem 1.1]. The latter is a relative version of a Theorem of
Sullivan [68, Theorem 10.2] which asserts that π0(hAut∗(X)) → π0(hAut∗(XQ))
has finite kernel whenever X is a finite and simply connected CW complex. As Q
is finite, we get

Hk(π1(F );Q) ∼= Hk(T ;Q)Q
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from the Lyndon–Hochschild–Serre spectral sequence of the group extension (3.14).
Since Hk(T ;Q) = 0 for k ≥ 1, being the colimit ofHk(H ;Q), where H runs through
the finitely generated (and hence finite, as T is torsion) subgroups of T , Bπ1(F ) is
rationally acyclic. By (3.13), F is rationally acyclic as claimed. �

3.3. Cohomology of mapping spaces. Theorem 3.12 shows that we need to un-
derstand the cohomology of mapping spaces map∗(M ;BOQ)

0 and map∂(M ;BOQ)
0.

Since map∂(M ;BOQ)
0 = map∗(M/∂M ;BOQ)

0, it suffices to consider pointed map-
ping spaces.

In what follows, all homology and cohomology groups are taken with coefficients
in Q. Though this is not needed for large parts of the section, it is all we shall need
later on. To ease notation, we often write αβ := α ∪ β for the cup product of two
cohomology classes.

The slant product. Let us first recall from [66, Chapter 6.1] the slant product

Hn(Y ×X)⊗Hk(X) → Hn−k(Y ), (ξ, x) 7→ ξ/x,

which is related to the cohomology cross product and the Kronecker product by
the formula

(η × ζ)/x = η〈ζ, x〉

for η ∈ H∗(Y ), ζ ∈ H∗(X) and x ∈ H∗(X). Assume that X has finite type over
Q (i.e. each Hk(X) is finite-dimensional) and pick a homogeneous basis (bi)i of
H∗(X) and let (βi)i be the dual basis of H∗(X). An arbitrary γ ∈ H∗(Y ×X) can
be written in the form γ =

∑
i γi × βi by the Künneth formula, and we get

γ/bj =
∑

i

(γi × βi)/bj =
∑

i

γi〈βi, bj〉 = γj .

or

γ =
∑

i

(γ/bi)× βi (3.15)

The λ-classes.

Definition 3.16. Let X and Z be pointed spaces, with X of finite type over Q.
The evaluation map ev : map∗(X ;Z)×X → Z and the slant product yields

λ : Hn(Z)⊗Hk(X) → Hn−k(map∗(X ;Z)), ξ ⊗ x 7→ λx,ξ := (ev∗ξ)/x.

This construction enjoys a naturality property, which is most concisely expressed
by saying that λ is a natural transformation of functors

S∗ × Sop
∗ → Q−Mod

from (X,Z) 7→ Hn(Z) ⊗ Hk(X) to (X,Z) 7→ Hn−k(map∗(X ;Z)). The formula
(3.15) leads to the equation

ev∗z =
∑

i

(ev∗z/bi)× βi =
∑

i

λbi,z × βi ∈ H∗(map∗(X ;Z)×X) (3.17)

for each z ∈ H∗(Z).

Lemma 3.18. Let cki,j be the structure constants of the algebra H∗(X) with respect
to the basis (βi), i.e.

βiβj =
∑

k

cki,jβk.
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Then

λbk,zy =
∑

i,j

(−1)|βi|(|y|−|bj|)cki,jλbi,zλbj ,y

for all z, y ∈ H∗(Z).

Proof. Using (3.17), one checks that firstly

ev∗(z)ev∗(y) = ev∗(zy) =
∑

k

λbk,zy × βk,

and secondly

ev∗(z)ev∗(y) = (
∑

i

λbi,z × βi)(
∑

j

λbj ,y × βj) =

=
∑

i,j

(−1)|βi|(|y|−|bj|)(λbi,zλbj ,y)× (βiβj) =

=
∑

i,j,k

(−1)|βi|(|y|−|bj|)cki,j(λbi,zλbj ,y)× βk.

Comparing coefficients yields the result. �

Lemma 3.19. Assume that X is connected and that the cup length of X is ≤ r−1
(i.e. cup products of r elements of H̃∗(X) vanish). Then for z1, . . . , zr ∈ H∗(Z),
we have

λbk,z1···zr = 0.

Proof. Using (3.17), we compute
∑

k

λbk,z1···zr × βk = ev∗(z1 · · · zr) = ev∗(z1) · · · ev
∗(zr) =

=
∑

j1,...,jr

ǫj1,...,jr (λbj1 ,z1
· · ·λbjr,zr

)× (βj1 · · ·βjr ) = 0

for some signs ǫj1,...,jr ∈ {±1}. The claim follows immediately. �

The case of an Eilenberg–Mac-Lane space. Now we consider the case Z = K(Q,m)
and let um ∈ Hm(K(Q,m);Q) be the fundamental class. We assume that X
is connected, and we wish to calculate H∗(map∗(X ;K(Q,m))0) in terms of the
classes λai,ur , where (ai) is a homogeneous basis of H∗(X) and (αi) is dual basis.

There are a couple of relations between the classes λai,ur which we state first.

Lemma 3.20. Assume that X is connected. Then

λai,ur
m
= 0 ∈ H∗(map∗(X ;K(Q,m))0)

unless 0 < |ai| < rm.

Proof. For degree reasons, we get that λai,ur
m

= 0 if |ai| > rm. For the remaining

cases, note that the evaluation map map∗(X ;K(Q,m))0 × X → K(Q,m) factors
through the smash product map∗(X ;K(Q,m))0 ∧X . It follows that in the sum

ev∗urm =
∑

i

λai,ur
m
× αi,

all terms in which one factor has degree 0 must vanish. This happens if |αi| =
|ai| = 0 and rm− |ai| = 0. �
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Proposition 3.21. Assume that X is of finite type over Q. Then the natural map

F(
m−1⊕

k=1

Hk(M)[m− k]) → H∗(map∗(X ;K(Q,m)0)

induced by the maps

Hk(M) → Hm−k(map∗(X ;K(Q,m)0), a 7→ λa,um

is an isomorphism. Hence H∗(map∗(X ;K(Q,m)0) is the free graded commutative
algebra generated by the elements λai,um

, where ai runs through a homogeneous

basis for H̃∗<m(X).

Proof. The space map∗(X ;K(Q,m))0 is a connected infinite loop space; in fact it
is a generalized Eilenberg–Mac Lane space with homotopy groups

πk(map∗(X ;K(Q,m)))⊗Q = [X,ΩkK(Q,m)]∗ = [X,K(Q,m− k)]∗ = H̃m−k(X)
(3.22)

in positive degrees. It follows from the Milnor–Moore theorem [53] and the as-
sumption that X is of finite type that H∗(map∗(X ;K(Q,m)0) is isomorphic (as a

graded algebra) to F(
⊕m−1

k=1 Hk(M)[m − k]). The only issue is to verify that the
map in question is indeed an isomorphism.

To achieve this, we use the following general principle. Assume that Y is a
connected infinite loop space3 of finite type, let V∗ be a N0-graded, degreewise
finite-dimensional Q-vector space with V0 = 0 and let σ : V∗ → H∗(Y ;Q) be a
graded linear map. Then the induced algebra map

F(σ) : F(V∗) → H∗(Y ;Q)

from the free graded-commutative algebra on V to the cohomology of Y is an
isomorphism if and only if the bilinear form

Bk : πk(Y )⊗Q× Vk → Q, (f, v) 7→ 〈σ(v), hur(f)〉

is nondegenerate for each k. This principle is easily shown for Y = K(Q, n); the
general case follows from that and the fact that Y splits rationally as a product of
Eilenberg–Mac-Lane spaces [21, §16].

We must therefore show that the bilinear form

BX,k : πm−k(map∗(X ;K(Q,m)0))× H̃k(X) → Q

given by
([f ], a) 7→ 〈λa,u, hur([f ])〉

is nondegenerate. If F : X → Y is a map of pointed spaces, we denote by F ♯ :
map∗(Y ;K(Q,m))0 → map∗(X ;K(Q,m))0 the induced map. By the naturality of
the slant product and the Kronecker product, we have

BY,k([f ], F∗a) = BX,k((F
♯)∗[f ], a).

If F∗ : Hk(X) → Hk(Y ) is an isomorphism then so is the induced map (F ♯)∗ :
πm−k(map∗(Y ;K(Q,m))0) → πm−k(map∗(X ;K(Q,m))0) by (3.22), and it follows
that nondegeneracy of BY,k is equivalent to nondegeneracy of BX,k (in degree k).
Now there are maps X → K(Hk(X ;Q), k) and

∨g
Sk → K(Hk(X ;Q), k) inducing

isomorphisms on Hk( ;Q). This argument proves that it suffices to consider the
case where X is a wedge of finitely many k-spheres. Using the naturality again, the

3It would be enough to assume that Y is a connected homotopy-commutative H-space.
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form B∨
g Sk,k decomposes as the direct sum of k copies of the form BSk,k, and so

we are left with the case X = Sk.
Both, πm−k(map∗(S

k;K(Q,m)0)) ⊗ Q and H̃k(S
k;Q) are 1-dimensional and

map∗(S
k;K(Q,m))0 ≃ K(Q,m − k) is (m − k − 1)-connected. Hence (by the

Hurewicz theorem) it is left to be proven that λ[Sk],um
∈ Hm−k(map∗(S

k;K(Q,m)))
is nonzero. On the other hand, the map

Hm(K(Q,m);Q) → Hm−k(map∗(S
k;K(Q,m))) = Hm−k(ΩkK(Q,m)), u 7→ ev∗(u)/[Sk]

can be identified with the ”transgression“ map

Hm(K(Q,m);Q) = [K(Q,m);K(Q,m)]
Ωk

→ [ΩkK(Q,m); ΩkK(Q,m)] = Hm−k(ΩkK(Q, n))

which is well-known to be an isomorphism. �

Corollary 3.23. Let X be a connected space of finite type over Q. Then the map

F
( ⊕

m≥1,0<k<4m

Hk(M)[4m− k]
)
→ H∗(map∗(X ;BOQ)

0;Q)

which on the generators is the direct sum of the maps

Hk(M)[4m− k] → H4m−k(H∗(map∗(X ;BOQ)
0;Q)); a 7→ λa,Lm

is an isomorphism. Thus H∗(map∗(X ;BOQ)
0;Q) is the free graded-commutative

algebra with generators

λai,Lm
∈ H4m−|ai|(map∗(X ;BOQ)

0;Q)

where ai runs through a homogeneous basis for H̃∗(X) and m through the natural
numbers and 4m−|ai| > 0. The classes λai,Lm1 ···Lmr

are determined by the relation
stated in Lemma 3.18. �

The naturality of the construction of the λ-classes, together with Lemma 3.3,
has the following consequence which turns out to be helpful for us.

Corollary 3.24. Let X be a connected space of finite type over Q. Then the
π0(hAut∗(X))-action on H∗(map∗(X ;BOQ)

0;Q) is, under the isomorphism of Corol-
lary 3.23, induced by the usual action of π0(hAut∗(X)) on the rational homol-
ogy of X. Furthermore, the action extends to an action of π0(hAut∗(XQ)) on
H∗(map∗(X ;BOQ)

0;Q) which is induced by the usual action of π0(hAut∗(XQ)) on
H∗(XQ;Q) ∼= H∗(X ;Q).

3.4. Consequences for block diffeomorphism spaces. We now collect some
consequences of the above calculations.

Lemma 3.25. For M be as in Construction 2.4, the fibre inclusion

q : map∂(M ;BO) → map∂(M ;BO) � hAut+∂ (M)

pulls back the κ-classes to the λ-classes, i.e.

q∗κc = λc

for each c ∈ H∗(BO;Q).

Proof. This is a consequence of the definitions and the fact that for each space Y ,
the Gysin map of the trivial bundle π : Y × (M/∂M) → Y is given by π!(ξ) =
ξ/[M ]. �
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Corollary 3.26. Let Md be an oriented compact manifold. Then the algebra ho-
momorphism

F(κLm
|4m− d > 0) → H∗(map∂(M ;BO)0 � hAut+∂ (M))

is injective. The same conclusion is true for the homotopy quotient

map∂(M ;BO)0 �G,

where G is any group complete E1-monoid with an E1-map ϕ : G → hAut+∂ (M).
Moreover, these statements continue to hold if map∂(M ;BO)0 gets replaced by
map∂(MQ;BOQ)

0 and ϕ by an E1-morphism G→ hAut+∂ (MQ).

Proof. Corollary 3.23, together with Lemma 3.25, proves both statements forG = 1,
and the general follows immediately. �

Proposition 3.27. Assume that Md is a smooth manifold which satisfies the hy-
potheses of Theorem 3.12. Then the algebra map

H∗(map∂(MQ;BOQ)
0 � hAut∂(MQ)

∼=) → H∗(BD̃iff∂(M))

is surjective. Moreover

(1) If d is odd, the kernel is the ideal generated by the classes κLm
, 4m−d > 0.

(2) If d = 2n is even, the kernel is the ideal generated by the classes κLm
−

σ4m−d, 4m− d > 0.

Proof. The composition

BD̃iff∂(M) → map∂(MQ;BOQ)
0�hAut∂(MQ)

∼= → map∗(MQ;BOQ)
0�hAut∂(MQ)

∼=

is an HQ-equivalence by Theorem 3.12, and so surjectivity is immediate. Theorem
2.8 and (2.9) prove that the classes listed in (1) and (2) lie in the kernel, and so it
remains for us to show that the kernel is not larger. Consider the map

Π : map∂(MQ;BOQ)
0�hAut+∂ (MQ)

∼= → map∗(MQ;BOQ)
0�hAut+∂ (MQ)

∼=×
∏

4m−d>0

K(Q, 4m−d)

(3.28)
made out of the forgetful map and the classes κLm

or κLm
− σ4m−d (for odd d or

even d). If we can prove that Π is a weak equivalence, the claim follows.
To prove this, note first that Π is a map over BhAut+∂ (MQ)Z. The induced map

on the homotopy fibres of the respective maps to BhAut+∂ (MQ)Z is the map

map∂(MQ;BOQ)
0 → map∗(MQ;BOQ)

0 ×
∏

4m−d>0

K(Q, 4m− d); (3.29)

made out of the forgetful map and the classes λLm
. This follows from Lemma 3.25

and the fact that the classes σ4m−d are pulled back from BhAut+∂ (MQ)Z.
To see that (3.29) is a weak equivalence, one uses Corollary 3.23 for both mapping

spaces and the naturality of the λ-classes. �

Remark 3.30. The proof suggests that one might extract a proof of Theorem 2.8
out of the arguments in [2, §4]. While surely true, it seems simpler to us to use the
independent proof of Theorem 2.8, as it allows us to treat [2, §4] as a black box.
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4. Homotopy calculations for the manifolds Un
g,1

4.1. Low dimensional homotopy groups. Let us now focus our attention to
the manifolds we are actually interested in, i.e.

Un
g,1 := ♯g(Sn × Sn+1) \ int(D2n+1). (4.1)

Most of the following facts are also proven in [29], but as the setup in [29] is more
general, we prefer to indicate the proofs here. Note that

Un
g,1 ≃

g∨
Sn ∨

g∨
Sn+1.

Let us denote
N(g)Z := Hn(U

n
g,1;Z) ∼= Zg

and
N(g) := Hn(U

n
g,1;Q) = N(g)Z ⊗Q.

By Poincaré duality and the universal coefficient theorem, we have

Hn+1(U
n
g,1;Z) ∼= Hn(Un

g,1;Z) ∼= N(g)∨Z .

These isomorphisms are natural with respect to the action of hAut∂(U
n
g,1), and

hold similarly for rational coefficients. The group hAut∂(U
n
g,1) acts trivially on

H2n+1(U
n
g,1, ∂;Z), H2n+1(U

n
g,1, ∂;Q), H2n+1(Un

g,1, ∂;Z) and H
2n+1(Un

g,1, ∂;Q).
Let x1, . . . , xg ∈ πn(U

n
g,1) be the elements represented by the inclusion of the

g different Sn’s, and similarly let y1, . . . , yg ∈ πn+1(U
n
g,1) be represented by the g

copies of Sn+1. The inclusion of the boundary S2n = ∂Un
g,1 → Un

g,1 represents an
element ω ∈ π2n(U

n
g,1) which agrees with the sum

ω =

g∑

j=1

[xj , yj] (4.2)

of Whitehead products of the generators, if the numbering and the signs of the
generators are chosen appropriately. This is obvious from the definition of the
Whitehead product when g = 1, and follows for higher g. We denote by

aj := hur(xj) ∈ Hn(U
n
g,1;Z) and bj := hur(yj) ∈ Hn+1(U

n
g,1;Z)

the images under the Hurewicz homomorphism, and use the same symbol for the
image in rational homology.

We let (α1, . . . , αg) the basis of H
n(Un

g,1;Z) = Hn(Un
g,1, ∂;Z) dual to (a1, . . . , ag)

and let (β1, . . . , βg) be the basis of Hn+1(Un
g,1;Z) = Hn+1(Un

g,1, ∂;Z) dual to

(b1, . . . , bg). Let ν ∈ H2n+1(Un
g,1, ∂;Z) be dual to the fundamental class [U ] = [Un

g,1].
The cup product structure of H∗(Un

g,1;Z) is then given by

αiβj = δijν; (4.3)

all other cup products are zero for degree reasons. The cup length of Un
g,1/∂ is

therefore 2, and it follows from Lemma 3.18 that

λ[U ],LmLk
=

g∑

j=1

λaj ,Lm
λbj ,Lk

+

g∑

j=1

λbj ,Lm
λaj ,Lk

. (4.4)

Having understood the homological structure, let us turn to homotopy groups.
The Hurewicz homomorphism

hur : πn(U
n
g,1) → Hn(U

n
g,1;Z)
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is an isomorphism. An element ρ ∈ πn+m(Sn) yields a natural map

θρ : πn(X) → πn+m(X)

given by composition with a representative for ρ. For η ∈ πn+1(S
n) the suspension

of the Hopf map, we obtain

θη : πn(X) → πn+1(X),

which is a group homomorphism when n ≥ 3, by [76, Corollary XI.1.12]. Moreover,
[76, XI.1(1.1)] and 2η = 0 proves that θη descends to a map πn(U

n
g,1) ⊗ Z/2 →

πn+1(U
n
g,1).

Lemma 4.5. For n ≥ 3, the sequence

0 → πn(U
n
g,1)⊗ Z/2

θη
→ πn+1(U

n
g,1)

hur
→ Hn+1(U

n
g,1;Z) → 0

is exact.

Proof. The inclusion

Un
g,1 ≃

g∨
Sn ∨

g∨
Sn+1 → (Sn)g × (Sn+1)g

is the inclusion of the (2n − 1)-skeleton and hence (2n − 1) ≥ (n + 2)-connected.
It is therefore enough to prove the lemma for (Sn)g × (Sn+1)g = (Sn × Sn+1)g in
place of Un

g,1. The Künneth formula reduces to the case g = 1, where the claim is
clear because πn+1(S

n) ∼= Z/2 as long as n ≥ 3. �

4.2. Homotopy automorphisms.

Lemma 4.6. The map

π0(hAut∗(U
n
g,1)) → GL(N(g)Z)×GL(N(g)∨Z )

given by the action on integral homology is surjective when n ≥ 1, and has finite
kernel, provided that n ≥ 3.

The analogous map

π0(hAut∗((U
n
g,1)Q)) → GL(N(g))×GL(N(g)∨)

is an isomorphism, which maps the subgroup π0(hAut∗((U
n
g,1)Q)Z) ⊂ π0(hAut∗((U

n
g,1)Q))

onto the subgroup GL(N(g)Z)×GL(N(g)∨Z ).

Proof. Since hAut∗(
∨g

Sn) → GL(Hn(
∨g

Sn;Z)) is surjective, and similarly for a
wedge of (n + 1)-spheres, surjectivity follows. To see that the kernel is finite, we
factor the map in question as

π0(hAut(U
n
g,1)) → GL(πn(U

n
g,1))×GL(πn+1(U

n
g,1)) → GL(N(g)Z)×GL(N(g)∨Z ).

(4.7)
The first map is injective: a pointed map f : Un

g,1 → Un
g,1 which induces the identity

on both, πn and πn+1, must be homotopic to the identity, as Un
g,1 is a wedge of

spheres. The second map is the product of two maps, the first induced by the
isomorphism πn(U

n
g,1)

∼= N(g)Z, and the second coming from the fact that N(g)∨Z
is the torsionfree quotient of πn+1(U

n
g,1), which stems from Lemma 4.5. By that

Lemma, the kernel of the second map in (4.7) can be identified with the finite group

Hom(Hn+1(U
n
g,1;Z);πn(U

n
g,1)⊗ Z/2) ∼= Hom(Zg ;Z/2g).

The rational case is analogous. The proof of surjectivity is similar (using elementary
matrices to generate GLg(Q)), and in the factorization analogous to (4.7), the
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second map is an isomorphism by Lemma 4.5. The last statement follows easily
from the others. �

Let us turn to a description of some of the higher homotopy groups of hAut∗(U
n
g,1).

Lemma 3.4 shows that the map

πk(hAut∗(U
n
g,1))⊗Q → πk(hAut∗((U

n
g,1)Q))⊗Q = πk(hAut∗((U

n
g,1)Q))

is an isomorphism when k ≥ 1. Let us moreover note that these homotopy groups
carry representations of the group π0(hAut∗((U

n
g,1)Q))

∼= GL(N(g))×GL(N(g)∨).

Lemma 4.8. We have

dimQ(πk(BhAut∗(U
n
g,1))⊗Q) =

{
g2 k = 2 and n ≥ 3,

0 3 ≤ k ≤ n− 2.

The same is true for (Un
g,1)Q in place of Un

g,1. Moreover

dimQ(πn−1(BhAut∗(U
n
g,1))⊗Q) 6= 0.

Proof. For k ≥ 1, we have πk(hAut∗(U
n
g,1))

∼= πk(map∗(U
n
g,1;U

n
g,1); id). Since the

inclusion Un
g,1 → (Sn × Sn+1)g is (2n− 1)-connected, the induced map

map∗(U
n
g,1;U

n
g,1) → map∗(U

n
g,1; (S

n × Sn+1)g)

is (2n− 1)− (n+ 1) = (n− 2)-connected. Since

map∗(U
n
g,1; (S

n × Sn+1)g) ≃ (Ωn(Sn × Sn+1)g))g × (Ωn+1(Sn × Sn+1)g))g,

we obtain an isomorphism

πk(map∗(U
n
g,1;U

n
g,1))

∼=

(πn+k(S
n))⊕g2

⊕ (πn+k(S
n+1))⊕g2

⊕ (πn+1+k(S
n))⊕g2

⊕ (πn+k+1(S
n+1))⊕g2

for 1 ≤ k ≤ n − 3, and an epimorphism if k = n − 2. The claim follows by using
the known rational homotopy groups of the spheres.

The rational case is an immediate consequence of the integral one and Lemma
3.4. �

We need to know a precise description of π1(hAut∗(U
n
g,1))⊗Q ∼= π1(hAut∗((U

n
g,1)Q)),

not merely its dimension which we just computed. We identify

π1(hAut∗(U
n
g,1))

∼= π2(BhAut∗(U
n
g,1)) = H2((BhAut∗(U

n
g,1))

id;Z).

An element γ ∈ π2(BhAut∗(U
n
g,1)) classifies a fibration Eγ → S2, together with a

cross-section and a homotopy equivalence of the fibre over the basepoint with Un
g,1.

The only potentially nonzero differential of the homological Leray–Serre spectral
sequence of Eγ → S2 is the map

d22,n : E2
2,n → E2

0,n+1,

which can be rewritten as

d(γ) : N(g)Z ∼= H2(S
2;N(g)Z) → H0(S

2;N(g)∨Z )
∼= N(g)∨Z .

Therefore, assigning γ 7→ d(γ) gives a map

d : π2(BhAut∗(U
n
g,1)) → Hom(N(g)Z;N(g)∨Z ). (4.9)

Similarly, we obtain

dQ : π2(BhAut∗((U
n
g,1)Q) → Hom(N(g);N(g)∨). (4.10)
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Source and target of (4.9) are Z[π0(hAut∗(Un
g,1))]-modules; and source and target

of (4.10) are Q[π0(hAut∗(U
n
g,1)Q)]-modules.

Lemma 4.11. The map d is a homomorphism of Z[π0(hAut∗(Un
g,1))]-modules, and

similarly dQ is a homomorphism of Q[π0(hAut∗(U
n
g,1)Q)]-modules. When n ≥ 4, dQ

is an isomorphism.

Proof. The group π0(hAut∗(U
n
g,1)) acts on π2(BhAut∗(U

n
g,1)) by changing the iden-

tification of the fibres. Therefore, it is clear that d is π0(hAut∗(U
n
g,1))-equivariant;

and the same argument applies to dQ.
That d and dQ are additive requires a more detailed argument. The argument

is the same in both cases, so we concentrate on d. Let γ0, γ1 be two elements of
π2(BhAut∗(U

n
g,1)). Identification of the fibres over the basepoint gives a fibration

over S2∨S2 which we denote by Eγ0∨Eγ1 → S2∨S2, abusing notation for simplicity.
The fold map S2 ∨ S2 → S2 is covered by a fibrewise homotopy equivalence Eγ0 ∨
Eγ1 → Eγ0+γ1 , and the inclusions S2 → S2∨S2 are covered by fibrewise homotopy
equivalences Eγj

→ Eγ0 ∨ Eγ1 . We obtain a commutative diagram

H2(S
2;N(g)Z)⊕H2(S

2;N(g)Z)

d(γ0)⊕d(γ1)

��

// H2(S
2 ∨ S2;N(g)Z) //

��

H2(S
2;N(g)Z)

d(γ0+γ1)

��

H0(S
2;N(g)∨Z )⊕H0(S

2;N(g)∨Z )
// H0(S

2 ∨ S2;N(g)∨Z)
// H0(S

2;N(g)∨Z )

and the two horizontal composition maps are just the addition. Additivity of d
follows. In a similar way, one proves that dQ is additive and hence Q-linear.

For the second part of the proof, consider the diagram

π2(BhAut∗(U
n
g,1))

d
//

��

Hom(N(g)Z;N(g)∨Z )

��

π2(BhAut∗((U
n
g,1)Q)

dQ
// Hom(N(g);N(g)∨)

(4.12)

which obviously commutes. We will show that

ker(d) ⊂ ker
(
π2(BhAut∗(U

n
g,1)) → π2(BhAut∗((U

n
g,1)Q))

)
. (4.13)

Both vertical maps in (4.12) are rationalizations (the left one by Lemma 3.4), and
so (4.13) shows that ker(d) is finite. Hence dQ is injective, and Lemma 4.8, together
with a dimension count, proves that dQ is an isomorphism.

To show (4.13), we must show that a fibration π : E → S2 with fibre Un
g,1 and a

cross-section whose Leray–Serre spectral sequence collapses at the E2-stage is ra-
tionally fibre-homotopy equivalent to S2× (Un

g,1)Q. Since the spectral sequence col-
lapses and since n ≥ 3, the inclusion of the fibre Un

g,1 → E induces isomorphisms on
Hn and Hn+1 and so gives isomorphisms N(g)Z → Hn(E) and N(g)∨Z → Hn+1(E).
From the inverses of those isomorphisms, we obtain a map

f : E → K(N(g)Z, n)×K(N(g)∨Z , n+ 1) → K(N(g), n)×K(N(g)∨, n+ 1)

inducing an isomorphism on rational homology in degrees n and n + 1. The nat-
ural map (Un

g,1)Q → K(N(g), n)×K(N(g)∨, n+ 1), which induces the identity on
homology in degrees n and n + 1, is (2n − 1) ≥ (n + 3)-connected, and since the
homotopy dimension of E is n + 3, we can deform f to a map g : E → (Un

g,1)Q,
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such that the composition with the inclusion of the fibre is the rationalization map
Un
g,1 → (Un

g,1)Q. The map

h := (π, g) : E → S2 × (Un
g,1)Q

over S2 induces an isomorphism in rational homology up to degree n+ 1. Using a
spectral sequence comparison argument, we obtain that h is a rational homology
equivalence, and hence also a rational homology equivalence on the fibres. �

4.3. Homotopy automorphisms relative to the boundary. At this point, we
understand the rational homotopy groups of hAut∗(U

n
g,1) in a range of degrees. We

are interested in those of hAut∂(U
n
g,1), however. These two spaces are related by a

fibre sequence

hAut∂(U
n
g,1) → hAut∗(U

n
g,1) → Ω2nUn

g,1. (4.14)

Lemma 4.15. For n ≥ 3, the map

π0(hAut∂(U
n
g,1)) → GL(N(g)Z)

induced by the action on nth homology is surjective and has finite kernel. The map

π0(hAut∂((U
n
g,1)Q)) → GL(N(g))

is an isomorphism for such n, and maps the subgroup π0(hAut∂((U
n
g,1)Q)Z) onto

GL(N(g)Z).

Proof. Consider the diagram

π0(hAut∂(U
n
g,1)) //

��

GL(N(g)Z)

∆

��

π0(hAut∗(U
n
g,1)) // GL(N(g)Z)×GL(N(g)∨Z );

(4.16)

the left vertical map is the obvious one, and the map ∆ sends h ∈ GL(N(g)Z) to
(h, (h−1)∨). The horizontal maps are induced by the action on homology. To verify
that (4.16) commutes, pick ϕ ∈ hAut∂(U

n
g,1). Let f = (fij) and g = (gij) be the

matrices which describe the effect of ϕ on Hn(U
n
g,1) and Hn+1(U

n
g,1), respectively,

in terms of the bases (a1, . . . , ag) and (b1, . . . , bg). Since ϕ fixes ∂Un
g,1 pointwise,

we have ϕ∗(ω) = ω. Using (4.2), this condition translates into the relation

f⊤g = 1 ∈ GLg(Z),

which is equivalent to the commutativity of (4.16).
The top horizontal map of (4.16) is surjective: start with h ∈ GL(N(g)) and use

Lemma 4.6 to find ϕ ∈ hAut∗(U
n
g,1) which realizes ∆(h) on Hn ⊕Hn+1. Reading

the above computation backwards, this means ϕ∗(ω) = ω, and so ϕ is homotopic
relative to the basepoint to a map which is the identity on ∂Un

g,1.
The left vertical map in (4.16) fits into an exact sequence

π2n+1(U
n
g,1)

δ
→ π0(hAut∂(U

n
g,1)) → π0(hAut∗(U

n
g,1))

coming from the fibre sequence (4.14). It is proven in [29] that the connecting
homomorphism δ has finite image (see Proof of Proposition 6.6 and Remark 6.7 of
the quoted paper). Together with Lemma 4.6, this finishes the proof of the integral
statement. The proof of the rational statement is analogous. �
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Proposition 4.17. We have

πk(BhAut∂(U
n
g,1))⊗Q = 0

for 3 ≤ k ≤ n− 3. If n ≥ 5, the map

π2(BhAut∂(U
n
g,1))⊗Q → π2(BhAut∗(U

n
g,1))⊗Q

is injective and can be identified, π0(hAut∂((U
n
g,1)Q)-equivariantly, with the inclu-

sion of {
S2(N(g)∨) n even

Λ2(N(g)∨) n odd

into N(g)∨ ⊗N(g)∨ = Hom(N(g);N(g)∨).

Proof. For a graded vector space V , we denote the desuspension by (s−1V )k :=
Vk+1. For a (simply connected) space X , s−1π∗(XQ) is a graded Lie algebra under
the Whitehead product, and since Un

g,1 is a wedge of spheres, we have

s−1π∗((U
n
g,1)Q)

∼= L(πn((U
n
g,1)Q)⊕ πn+1((U

n
g,1)Q)),

the free Lie algebra on the graded vector space which is πn((U
n
g,1)Q) in degree n− 1

and πn+1((U
n
g,1)Q) in degree n, by [21, Theorem 24.5]. It follows that

π2n+k(U
n
g,1)⊗Q = 0 if 2 ≤ k ≤ n− 3.

Hence πk(BhAut∂(U
n
g,1))⊗Q → πk(BhAut∗(U

n
g,1))⊗Q is injective if 2 ≤ k ≤ n−3,

by the fibre sequence (4.14). Together with Lemma 4.8, the first claim follows, and
also the injectivity on π2.

The fibre sequence (4.14), together with π2n+2((U
n
g,1)Q) = 0 (which holds when

n ≥ 5), gives us an exact sequence

0 → π2(BhAut∂((U
n
g,1)Q)) → π2(BhAut∗((U

n
g,1)Q)) → π2n+1((U

n
g,1)Q) →

→ π1(BhAut∂((U
n
g,1)Q)) → π1(BhAut∗((U

n
g,1)Q)) → π2n((U

n
g,)Q).

Now π0(hAut∗(U
n
g,1)Q)

∼= GL(N(g))×GL(N(g)∨) and π0(hAut∂(U
n
g,1)Q)

∼= GL(N(g)),
and the map between these two groups is injective as we saw in the proof of Lemma
4.15. Thus from the above sequence, we obtain a short exact sequence

0 → π2(BhAut∂((U
n
g,1)Q)) → π2(BhAut∗((U

n
g,1)Q)) → π2n+1((U

n
g,1)Q) → 0.

(4.18)
The vector space π2n+1((U

n
g,1)Q) is generated by the Whitehead brackets [yi, yj],

modulo the relations that are universally satisfied by Whitehead brackets of two
elements of degree n+ 1, that is

[yi, yj ] = (−1)(n+1)2 [yj , yi] = −(−1)n[yj , yi].

It follows that

π2n+1((U
n
g,1)Q)

∼=

{
S2(N(g)∨) n odd

Λ2(N(g)∨) n even.
(4.19)

The sequence (4.18) is a sequence of π0(hAut∂((U
n
g,1)Q)) = GL(N(g))-modules, and

as S2(N(g)∨), as well as Λ2(N(g)∨) are irreducible GL(N(g))-modules, the second
map in (4.18) must, up to multiplication by a nonzero constant, agree with the nat-
ural projection from Hom(N(g);N(g)∨) = (N(g)∨)⊗2 to S2(N(g)∨) or Λ2(N(g)∨).
Therefore, the kernel of these maps are as asserted. �
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Lemma 4.20. Provided that n ≥ 3, we have

hAut∂((U
n
g,1)Q)

∼= = hAut∂((U
n
g,1)Q)Z.

Proof. By Lemma 4.15, hAut∂((U
n
g,1)Q)Z is isomorphic to GL(N(g))Z ∼= GL(N(g)Z)

via the action on Hn(U
n
g,1;Z). Hence we need to check that every linear automor-

phism of Hn(U
n
g,1;Z) can be realized by a diffeomorphism fixing the boundary

pointwise. It is explained in the proof of [29, Proposition 5.3] how to deduce this
from [73, Lemma 17]. �

Lemma 4.20 and Proposition 3.27 prove the following.

Corollary 4.21. The algebra map

H∗(map∂((U
n
g,1)Q;BOQ)

0 � hAut∂((U
n
g,1)Q)Z) → H∗(BD̃iff∂(U

n
g,1))

is surjective if n ≥ 3, and the kernel is the ideal generated by the classes κLm
,

m ∈ N. �

4.4. The spectral sequence for tangential homotopy automorphisms. Corol-

lary 4.21 paves the way for the calculation of H∗(BD̃iff∂(U
n
g,1)). We approach this

through the spectral sequences for the two fibrations

map∂((U
n
g,1)Q;BOQ)

0�hAut∂((U
n
g,1)Q)

id → map∂((U
n
g,1)Q;BOQ)

0�hAut∂((U
n
g,1)Q)Z → BGL(N(g)Z),
(4.22)

(where we identified the base space using π0(hAut∂((U
n
g,1)Q)Z)

∼= GL(N(g)Z) which
is valid when n ≥ 3 by Lemma 4.15), and

map∂((U
n
g,1)Q;BOQ)

0 → map∂((U
n
g,1)Q;BOQ)

0�hAut∂((U
n
g,1)Q)

id → BhAut∂((U
n
g,1)Q)

id.
(4.23)

In this section, we are concerned with (4.23). Let us start with a crucial observation,
deduced from Corollary 3.24.

Observation 4.24. The whole fibre sequence (4.23) is π0(hAut∂((U
n
g,1)Q))

∼= GL(N(g))-
equivariant; hence its Leray–Serre spectral sequence is a spectral sequence of GL(N(g))-
representations.

Combining or work so far, the E2-term of the spectral sequence of (4.23) is
readily computed in a range of degrees. Let us introduce some notation.

Notation 4.25. (1) We denote

L2(N(g)) :=

{
S2(N(g)) n even

Λ2(N(g)) n odd.

(2) We fix an integer M ; everything that matters is that M is large enough
(see 4.29).

(3) Let V (n) be the graded vector space

V (n) :=
⊕

4m−2n−1>0,m≤M

Q[4m− 2n− 1],

(4) let U(n) be the graded vector space

U(n) :=
⊕

4m−n−1>0,m≤M

Q[4m− n− 1]
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(5) and let W (n) be the graded vector space

W (n) :=
⊕

4m−n>0,m≤M

Q[4m− n].

Definition 4.26. Let n ≥ 6 be even. We define a map

S∗(S2(N(g)))⊗Λ∗(V (n))⊗S∗(N(g)⊗W (n))⊗Λ∗(N(g)∨⊗U(n)) → E∗,∗
2 (4.27)

of bigraded algebras as follows.

• On S2(N(g)), which is in bidegree (2, 0), it is the isomorphism S2(N(g)) ∼=
H2(BhAut∂((U

n
g,1)Q)

id from Proposition 4.17.
• On V (n)4m−n−1 = Q, which is in bidegree (0, 4m − n − 1), it is the map
which sends 1 to the class λ[Un

g,1 ],Lm
∈ H4m−2n−1(map∂((U

n
g,1)Q;BOQ)

0) =

E0,4m−2n−1
2 (using the notations introduced in §4.1 and Definition 3.16).

• On N(g) ⊗W (n)4m−n = N(g), which is in bidegree (0, 4m− n), it is the
map which sends a ∈ N(g) to λa,Lm

∈ H4m−n(map∂((U
n
g,1)Q;BOQ)

0) =

E0,4m−n
2 .

• On N(g)∨ ⊗U(n)4m−n−1 = N(g)∨, which is in bidegree (0, 4m− n− 1), it
sends b ∈ N(g)∨ to λb,Lm

∈ H4m−n−1(map∂((U
n
g,1)Q;BOQ)

0) = E4m−n−1
2 .

We similarly define for odd n ≥ 5 a map

S∗(Λ2(N(g)))⊗Λ∗(V (n))⊗Λ∗(N(g)⊗W (n))⊗S∗(N(g)∨⊗U(n)) → E∗,∗
2 (4.28)

by the analogous formulas.

Proposition 4.29. The maps (4.27) and (4.28) are π0(hAut∂((U
n
g,1)Q))

∼= GL(N(g))-
equivariant. If n ≥ 5, they are isomorphisms in bidegrees (p, q) with p ≤ n− 3 and
q ≤ 4M − 2n+ 2.

Proof. Equivariance follows from the naturality of the λ-classes that was recorded
after Definition 3.16, and from the equivariance statement of Proposition 4.17. The
statement about the maps being isomorphisms follows from Proposition 4.17 and
Corollary 3.23. �

Proposition 4.30. Assume n ≥ 5 and g ≥ 2. With respect to the isomorphism
of Proposition 4.29, the d2-differential in the spectral sequence of the fibre sequence
(4.23) is given on generators as follows.

(1) On L2(N(g)), it is zero.
(2) On V (n), it is zero.
(3) On N(g)∨ ⊗ U(n), it is zero.
(4) On N(g)⊗W (n), it is of the form

N(g)⊗W (n)
p⊗S
→ L2(N(g))⊗N(g)∨ ⊗ U(n)

where p : N(q) → L2(N(g))⊗N(g)∨ is adjoint to the projection N(g)⊗2 →
L2(N(g)) and S : W (n) → U(n) is a degree −1 map whose restriction
W (n)4m−n → U(n)4m−n−1 is an isomorphism unless 4m− n− 1 = 0.

Proof. Item (1) holds for degree reasons. For item (2), note that the inclusion
map map∂((U

n
g,1)Q;BOQ)

0 → map∂((U
n
g,1)Q;BOQ)

0 � hAut∂((U
n
g,1)Q)

id pulls back
κLm

to the class λ[Un
g,1],Lm

. Therefore, the latter class is a permanent cycle, which

verifies (2).
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For the other two claims, we use the hAut∂((U
n
g,1)Q)-equivariant homotopy equiv-

alence

map∂((U
n
g,1)Q;BOQ)

0 ≃
∏

m≥1

map∂((U
n
g,1)Q;K(Q, 4m))0

given by the cohomology classes (Lm)m≥1. Since the latter homotopy equiv-
alence, combined with the projection onto the mth factor, pulls back λa,um

∈
H∗(map∂((U

n
g,1)Q;K(Q, 4m))0;Q) to λa,Lm

, the proposition follows from the next
Lemma. �

Lemma 4.31. The E2-term of the spectral sequence of the fibration

map∂((U
n
g,1)Q;K(Q, k))0 � hAut∂((U

n
g,1)Q)

id → BhAut∂((U
n
g,1)Q)

id (4.32)

is (in the columns up to degree n− 3, by Proposition 4.17) given by

F(L2(N(g)))[2, 0]⊕N(g)[0, k − n]⊕N(g)∨[0, k − n− 1])

(if k−n−1 > 0; if k−n−1 = 0, the last summand is dropped and if k−n ≤ 0, the
last two summands are dropped). The differential d2 vanishes on N(g)∨[0, k−n−1],
and on N(g)[0, k−n], it is, up to a sign, the map adjoint to the projection N(g)⊗2 →
L2(N(g)), if k − n− 1 > 1.

Proof. The differential vanishes on N(g)∨[0, k − n − 1] for degree reasons, and
because the fibration (4.32) has a section. The claim about N(g)[0, k − n] is true
for the same reason if k−n− 1 = 0, and so we may suppose k−n− 1 > 0. We pair
the spectral sequence of (4.32) with the spectral sequence of the universal fibration

(Un
g,1)Q � hAut∂((U

n
g,1)Q)

id → BhAut∂((U
n
g,1)Q)

id. (4.33)

We write Ẽ∗,∗
∗ for the rational cohomological spectral sequence of the latter. The

E2-term is of the form

Ẽ2 = S∗(L2N(g))⊗H∗(Un
g,1;Q)

(in the columns up to degree (n − 3), by Proposition 4.17). Let xij ∈ L2(Ng)
the image of ai ⊗ aj ∈ N⊗2

g under the projection map; these elements satisfy

xji = (−1)nxij . By Proposition 4.17), the differential d̃2 : Ẽ0,n+1
2 → Ẽ2,n

2 is given
on basis elements by the formulas

d̃2(βi) =
∑

j

xij ⊗ αj (4.34)

and

d̃2(αi) = 0. (4.35)

To transfer this knowledge about Ẽ∗,∗
∗ to information about E∗,∗

∗ , observe that
the evaluation map ev : Un

g,1 × map∂(U
n
g,1;K(Q, k))0 → K(Q, k) is hAut∂(U

n
g,1)-

equivariant and hence induces a map

(Un
g,1 ×map∂(U

n
g,1;K(Q, k))0) � hAut∂(U

n
g,1) → K(Q, k).

It follows that ev∗uk ∈ Hk(Un
g,1 × map∂(U

n
g,1;K(Q, k))0) lies in the image of the

map induced by the inclusion

Un
g,1 ×map∂(U

n
g,1;K(Q, k))0 → (Un

g,1 ×map∂(U
n
g,1;K(Q, k))0) � hAut∂(U

n
g,1)
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of the fibre in the total space. This forces ev∗uk ∈ Ê0,k
2 to be a permanent cycle in

the spectral sequence Ê∗,∗
∗ of

(Un
g,1 ×map∂(U

n
g,1;K(Q, k))0) � hAut∂((U

n
g,1)Q)

id → BhAut∂((U
n
g,1)Q)

id,

so d̂2(ev
∗uk) = 0. By formula (3.17)

ev∗uk =

g∑

i=1

αi × λai,uk
+

g∑

i=1

βi × λbi,uk
.

Using (4.34) and (4.35), and that d2(λbi,uk
) = 0 for degree reasons, we obtain

0 =

g∑

i=1

d̂2(αi × λai,uk
) + d̂2(βi × λbi,uk

) =

=

g∑

i=1

(d2αi)×λai,uk
+

g∑

i=1

(−1)nαi×(d2λai,uk
)+

g∑

i=1

(d̃2βi)×λbi,uk
+

g∑

i=1

(−1)n+1βi×(d̃2λbi,uk
) =

=

g∑

j=1

(−1)nαj × (d2λaj ,uk
) +

g∑

i,j=1

xij ⊗ (αj × λbi,uk
).

Comparing coefficients leads to the identity

d2λaj ,uk
= (−1)n+1

g∑

i=1

xij ⊗ λbi,uk

which finishes the proof. �

Propositions 4.29 and 4.30 were the goals of this section. Before we can use these
to evaluate the two spectral sequences for (4.22) and (4.23), we need to switch gears
and introduce some more algebraic background.

5. A representation-theoretic calculation

5.1. Generalities.

Rational representations. Let K be a field of characteristic 0, and let N be a finite-
dimensional K-vector space. Recall that a representation ρ : GL(N) → GL(W ) on
some other K-vector space is rational if the matrix entries (after choice of a basis) of
ρ(g) are polynomial functions of the matrix entries of g and of det(g)−1. A similar
definition applies to representations of SL(N).

Let K ⊂ L be a field extension, let N and W be K-vector spaces and let ρ :
GL(N) → GL(W ) be rational. Then ρ extends to a rational representation ρL :
GL(NL) → GL(WL). A similar statement is true for SL(N).

If there is w ∈ Z such that each element λ ∈ K× ⊂ GL(N) in the centre acts
by multiplication with λw on W , we say that ρ has weight w. We shall use the
notation T k,l(N) := N⊗k ⊗ (N∨)⊗l.

The rational representations are described in terms of Schur functors, whose
definition we briefly recall. Let Pn be the set of partitions of n, thought of as
Young diagrams. If λ is a partition of n, we also write |λ| = n. The height ht(λ)
of λ ∈ Pn is the number of rows of λ. To a partition λ of n, there is associated
the Young symmetrizer cλ ∈ Q[Σn] ⊂ K[Σn] and the associated irreducible Σn-
representation Mλ (over K; it is irreducible since it is irreducible when the scalars
are extended to the algebraic closure K). The tensor power T n,0(N) has a canonical



DIFFEOMORPHISMS OF SOME ODD-DIMENSIONAL MANIFOLDS 35

GL(N)×Σn-representation, and the Schur functor Sλ(N) is defined as the GL(N)-
representation

Sλ(N) := cλ · T n,0(N).

The theory of rational representations can be summarized in the following result.

Theorem 5.1. Let N be a finite-dimensional K-vector space.

(1) As GL(N)× Σn-modules, we have

T n,0(N) =
⊕

λ∈Pn

Sλ(N)⊗Mλ.

If ht(λ) > dim(N), then Sλ(N) = 0, and if ht(λ) ≤ dim(N), Sλ(N) is
nonzero and irreducible. The Schur functors Sλ(N) and Sµ(N) are iso-
morphic only if they both vanish or if λ = µ.

(2) After taking the tensor product with a suitable power of the determinant
representation det(N), each GL(N)-representation embeds into a sum of
copies of T n,0(N), for some n. The same is true for SL(N)-representations
instead.

(3) Rational GL(N)- and SL(N)-representations are completely reducible, and
the Schur functors give a complete list of the irreducible representations.

(4) Let N, V,W be K vector spaces and let GL(N) → GL(V ) and GL(N) →
GL(W ) be rational representations. Let K ⊂ L be a field extension. Then
W is irreducible if and only if WL is irreducible; V and W are isomorphic
if and only if VL and WL are isomorphic, and furthermore

(WGL(N))L = (WL)
GL(NL).

The same is true for SL in place of GL.

References. Statements (1)–(3) are well-known when K is algebraically closed. We
explain why the proof given in the textbook [58] carries over to arbitrary K.

(1) the decomposition is shown for algebraically closed fields (of characteristic
0) in [58, Theorem 9.3.1.4], but it exists over any ground field of characteristic 0
because the Young symmetrizer have rational coefficients. For a field extension
K ⊂ L, we have Sλ(NL) ∼= (Sλ(N))L as GL(NL)-representations. The statement
about the (non)vanishing of the Schur functors follows immediately. Since Sλ(N) is
irreducible when the ground field is algebraically closed, irreducibility follows for an
arbitrary field. The statement about isomorphisms Sλ(N) ∼= Sµ(N) follows from
the fact that the character of Sλ(N) at x ∈ GL(N) is the Schur polynomial sλ,
evaluated on the eigenvalues of x.

(2) The proof of [58, Lemma 7.1.4] does not use that K is algebraically closed.
(3) follows from (2), since T n,0(N) is completely reducible, and by generalities
on completely reducible representations, e.g. [19, Proposition 3.1.4]. (4) If WL is
irreducible, then clearly W is irreducible. Conversely, if W is irreducible, it must
be a Schur functor, hence WL is also a Schur functor, hence irreducible. By what
we just saw, the identity (WGL(N))L = (WL)

GL(NL) is true for irreducible W , and
follows for all W by complete reducibility. The statement about isomorphisms is
also clear from all the other statements. �

To see how T k,l(N) for l > 0 fits in, one uses the isomorphism

N∨ ∼= det(N)−1 ⊗ Λg−1(N)

of GL(N)-representations for g-dimensional N .
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Definition 5.2. Let ρ : SL(N) → GL(W ) be a rational representation. We say
that ρ (or W ) has load ≤ n if each irreducible summand of W is a direct summand
of T k,l(N), for some k, l with k + l ≤ n.

The fundamental theorem of invariant theory. We need the fundamental theorem of
invariant theory of GL(N). We can identify Tm,m(N) ∼= End(N)⊗m ∼= End(N⊗m).
There is a natural map

σN,m : K[Σm] → End(N⊗m)GL(N) ∼= Tm,m(N)GL(N) (5.3)

given by the Σm-action permuting the factors.

Theorem 5.4. Let N be a finite-dimensional K-vector space. The map σN,m is
surjective, and it is also injective if m ≤ dim(N).

Surjectivity is the content of the first fundamental theorem which is proven in
e.g. [58, §9.1.2], [46, Theorem 9.1.2] or [28, Theorem 5.3.1] (and is a key ingredient
for Theorem 5.1). Injectivity is the second fundamental theorem. The treatment of
that result in [58] or [28] has a slightly different layout; the version as stated above
is shown in [46, Theorem 9.1.3].

Let (a1, . . . , ag) be a basis of N and let (a1, . . . , ag) be the dual basis of N∨.
Under the identification Tm,m(N) ∼= End(N⊗m), the map σN,m is given by the
formula

s 7→
∑

i1,...,im

ai1 ⊗ . . .⊗ aim ⊗ ais−1(1) ⊗ . . .⊗ ais−1(m) . (5.5)

Special linear groups. For technical reasons, we have to consider the special linear
groups as well.

Lemma 5.6. Let N be a finite-dimensional K-vector space. Then

(1) T k,l(N)GL(N) = 0 unless k = l.
(2) T k,l(N)SL(N) = 0 unless dim(N) divides k − l.
(3) T k,k(N)SL(N) = T k,k(N)GL(N).

Proof. (1) is easy; just look at the action of a scalar matrix. (2) Use Theorem 5.1 (4)
to replace K by its algebraic closure. Then SL(N) contains a primitive gth root of
unity ζg, where g = dim(N), which acts by ζk−l

g on T k,l(N). Hence T k,l(N)SL(N) =
0 unless g divides k−l. (3) Use Theorem 5.1 (4) to replaceK by its algebraic closure.
The canonical isomorphism T k,k(N) ∼= End(N⊗k) identifies T k,k(N)GL(N) with
the commutant algebra of the image of ρGL : K[GL(N)] → End(N⊗k). Similarly,
T k,k(N)SL(N) is the commutant of the image of ρSL : K[SL(N)] → End(N⊗k), so it
is enough to prove that ρGL and ρSL have the same image. Each element A ∈ GL(N)
can be written as A = λB with λ ∈ K× and B ∈ SL(V ) (here we are using that K
is algebraically closed). It follows that ρGL(A) = λkρSL(B) ∈ im(ρSL). �

5.2. A special invariant calculation. In this section, we carry out a representa-
tion-theoretic calculation that will be used later on. The main ideas for the proof
were communicated to us by Jerzy Weyman, and we thank him for allowing to
reproduce his argument here.

Let K be a field of characteristic 0, and let N , W and U be finite-dimensional
K-vector spaces. We let g := dim(N) and fix a basis (a1, . . . , ag) of N , with dual
basis (a1, . . . , ag). We consider the algebras

A := S∗(S2(N))⊗ S∗(N ⊗W )⊗ Λ∗(N∨ ⊗ U)
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and
C := S∗(Λ2(N))⊗ Λ∗(N ⊗W )⊗ S∗(N∨ ⊗ U).

These algebras have an obvious trigrading and actions of the group GL(N) ×
GL(W ) × GL(U). We want to determine the algebras AGL(N) and CGL(N) of
GL(N)-invariants. There are some obvious invariants. We define

ϕA : Λ2(U) → (S1(S2(N))⊗ S0(N ⊗W )⊗ Λ2(N∨ ⊗ U))GL(N) = A
GL(N)
1,0,2

by

u1 ∧ u2 7→

g∑

i,j=1

(ai · aj)⊗ 1⊗ ((ai ⊗ u1) ∧ (aj ⊗ u2)),

and we define

ψA : W ⊗ U → (S0(S2(N))⊗ S1(N ⊗W )⊗ Λ1(N∨ ⊗ U))GL(N) = A
GL(N)
0,1,1

by

w ⊗ u 7→

g∑

i=1

1⊗ (ai ⊗ w) ⊗ (ai ⊗ u).

For x0, x1 ∈ Λ2(U) and y0, y1 ∈W ⊗ U , the relations

ϕA(x0)ϕA(x1) = ϕA(x1)ϕA(x0),

ψA(y0)ψA(y1) = ψA(y1)ψA(y0)

and
ϕA(x0)ψA(x1) = ψA(x1)ϕA(x0)

hold, and these imply that ϕA ⊕ ψA extends to an algebra map

G : S∗(Λ2(U))⊗ Λ∗(W ⊗ U) → AGL(N).

Similarly let us define

ϕC : Λ2(U) → (S1(Λ2(N))⊗Λ0(N ⊗W )⊗S2(N∨⊗U))GL(N) = C
GL(N)
1,0,2 ⊂ CGL(N)

by

u1 ∧ u2 7→
∑

1≤i<j≤g

(ai ∧ aj)⊗ 1⊗ ((ai ⊗ u1) · (a
j ⊗ u2))

and

ψC :W ⊗U → (S0(Λ2(N))⊗Λ1(N⊗W )⊗S1(N∨⊗U))GL(N) = C
GL(N)
0,1,1 ⊂ CGL(N)

by

w ⊗ u 7→

g∑

i=1

1⊗ (ai ⊗ w) ⊗ (ai ⊗ u).

A similar argument as above shows that ϕC ⊕ ψC extends to an algebra map

H : S∗(Λ2(U))⊗ Λ∗(W ⊗ U) → CGL(N).

Proposition 5.7. We have A
GL(N)
p,q,r = C

GL(N)
p,q,r = 0 unless 2p + q − r = 0, and

A
SL(N)
p,q,r = C

SL(N)
p,q,r = 0 unless g := dim(N) divides 2p+ q − r. The maps

Sp(Λ2(U))⊗ Λq(W ⊗ U)
G
→ A

GL(N)
p,q,2p+q ⊂ A

SL(N)
p,q,2p+q

and

Sp(Λ2(U))⊗ Λq(W ⊗ U)
H
→ C

GL(N)
p,q,2p+q ⊂ C

SL(N)
p,q,2p+q

are surjective, and isomorphisms as long as 2p+ q ≤ g.
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We use Proposition 5.7 in conjunction with Proposition 5.8 below. To state it,
let us assume that K = Q and that N has an integral form, i.e. a subgroup NZ ⊂ N
such that NZ ⊗ Q = N . In that case, we have the subgroup SL(NZ) ⊂ SL(N) of
automorphisms preserving NZ; note that SL(NZ) ∼= SLg(Z).

Proposition 5.8. If K = Q and N has an integral form NZ, the inclusions

A
SL(N)
p,q,2p+q ⊂ A

SL(NZ)
p,q,2p+q

and
C

SL(N)
p,q,2p+q ⊂ C

SL(NZ)
p,q,2p+q

are equalities.

Proof of Proposition 5.7, surjectivity. The first sentence is a straightforward appli-

cation of Lemma 5.6. It also follows from Lemma 5.6 that A
GL(N)
p,q,2p+q = A

SL(N)
p,q,2p+q

and C
GL(N)
p,q,2p+q = C

SL(N)
p,q,2p+q . So we must only show that G and H are isomorphism,

and we start with surjectivity.
Consider the case of G first. We establish a commutative diagram

Q[Σ2p+q]⊗W⊗q ⊗ U⊗2p+q F
//

Q

��

(N⊗2p+q ⊗ (N∨)⊗2p+q ⊗W⊗q ⊗ U⊗2p+q)GL(N)

S

��

Sp(Λ2(U))⊗ Λq(W ⊗ U)
G

// A
GL(N)
p,q,2p+q ,

(5.9)
and show that F and S are surjective. The map S is the restriction of the (GL(N)-
equivariant) quotient map

N⊗2p+q⊗(N∨)⊗2p+q⊗W⊗q⊗U⊗2p+q ∼= N⊗2p⊗(N⊗W )⊗q⊗(N∨⊗U)⊗2p+q → Aq,p,2p+q

to the invariant subspace. As the quotient map is surjective and as the category of
rational representations of GL(N) is semisimple, S is surjective.

The map F sends

s⊗w1⊗. . .⊗wq⊗u1⊗. . .⊗u2p+q ∈ Σ2p+q⊗W
⊗q⊗U⊗2p+q ⊂ Q[Σ2p+q]⊗W

⊗q⊗U⊗2p+q

to ∑

i1,...,i2p+q

ai1⊗. . .⊗ai2p+q
⊗ais−1(1)⊗. . .⊗ais−1(2p+q) ⊗w1⊗. . .⊗wq⊗u1⊗. . .⊗u2p+q,

and is clearly GL(N)-invariant. Formula (5.5) shows that (upon identification of its
target) F is the tensor product of the map σN,2p+q defined in (5.3) and the identity
on W⊗q ⊗ U⊗2p+q. Therefore, by Theorem 5.4, F is surjective.

We define the map Q on Σ2p+q ⊗W⊗q ⊗ U⊗2p+q by

s⊗ w1 ⊗ . . .⊗ wq ⊗ u1 ⊗ . . .⊗ u2p+q 7→

sgn(s)(us(1) ∧ us(2)) · · · (us(2p−1) ∧ us(2p))⊗ (w1 ⊗ us(2p+1)) ∧ . . . ∧ (wq ⊗ us(2p+q)).

It remains to prove that (5.9) commutes, but this follows from

SF (s⊗ w1 ⊗ . . .⊗ wq ⊗ u1 ⊗ . . .⊗ u2p+q) =
∑

i1,...,i2p+q

(ai1 ·ai2) · · · (ai2p−1 ·ai2p)⊗(ai2p+1⊗w1) · · · (ai2p+q
⊗wq)⊗(ais−1(1)⊗u1)∧. . .∧(a

i
s−1(2p+q)⊗u2p+q)

and
GQ(s⊗ w1 ⊗ . . .⊗ wq ⊗ u1 ⊗ . . .⊗ u2p+q) =
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sgn(s)
∑

i1,...,i2p+q

(ai1 ·ai2) · · · (ai2p−1 ·ai2p)⊗(ai2p+1⊗w1) · · · (ai2p+q
⊗wq)⊗(ai1⊗us(1))∧. . .∧(a

i2p+q⊗us(2p+q)).

This finishes the proof that G is surjective. The case of H is almost identical.
In that case, we consider

Q[Σ2p+q]⊗W⊗q ⊗ U⊗2p+q F
//

Q′

��

(N⊗2p+q ⊗ (N∨)⊗2p+q ⊗W⊗q ⊗ U⊗2p+q)GL(N)

S′

��

Sp(Λ2(U))⊗ Λq(W ⊗ U)
G

// C
GL(N)
p,q,2p+q.

(5.10)
The map F is the same map as before. The map Q′ is defined just as Q, the only
difference being that the factor sgn(s) in front of the definition of Q is dropped,
and the map S′ is again the quotient map. �

For the proof of injectivity of G andH , we need some classical results of invariant
theory. Here is some notation: the conjugate partition to λ ∈ Pn is denoted λ̃ ∈ Pn.
By Per

2p, we denote the set of partitions of 2p with even rows, and by Pec
2p the set of

partitions of 2p with even columns. The first ingredient we shall use are the Cauchy
formulas which state that [58, §9.6.3, p. 271]

Sq(V ⊗W ) =
⊕

λ∈Pq

Sλ(V )⊗ Sλ(W ), (5.11)

[58, §9.8.4]

Λr(V ⊗W ) =
⊕

λ∈Pr

Sλ(V )⊗ Sλ̃(W ) (5.12)

and [58, §11.4.5]

Sp(S2(V )) =
⊕

λ∈Per
2p

Sλ(V ), (5.13)

as well as [58, §11.4.5]

Sp(Λ2(V )) =
⊕

λ∈Pec
2p

Sλ(V ). (5.14)

Furthermore, we need the formula [58, §12.5.1]

Sλ(V )⊗ Sµ(V ) =
⊕

|κ|=|λ|+|µ|

cκλ,µSκ(V ). (5.15)

The coefficients cκλ,µ ∈ N0 are the well-known Littlewood–Richardson coefficients.

These are the structure constants of the ring
∧

of symmetric functions (over the
integers) when one takes the Schur functions sλ, λ ∈ P , as a basis. From this, it
follows that the coefficients in (5.15) do not depend on dim(V ). The symmetry

cκλ,µ = cκµ,λ;

of the Littlewood–Richardson coefficients is obvious; we also need to know the
relation

cκλ,µ = cκ̃
λ̃,µ̃
. (5.16)

To see (5.16), let ω :
∧

→
∧

be the involutive (ring) automorphism which is
constructed in [47, p.21]; formula (3.8) on p.42 of [47] shows that ω(sλ) = sλ̃. Since
the Littlewood–Richardson coefficients are the structure constants with respect to
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the Schur functions, (5.16) follows. An alternative proof of (5.16) can be found in
[22, p. 62].

Proof of Proposition 5.7, injectivity. Since we already saw that G and H are sur-
jective, it suffices to show that the dimensions of the two vector spaces agree (de-
greewise, and in the range of degrees we claimed). It is therefore of no danger to
write S = S′ for isomorphic representations S and S′, and nS := S⊕n.

We first turn to the map G. Its components are maps

Sp(Λ2U)⊗ Λq(W ⊗ U) → (Sp(S2(N))⊗ Sq(N ⊗W )⊗ Λ2p+q(N∨ ⊗ U))GL(N).

As a GL(N)×GL(W )×GL(U)-representation, we have by (5.13), (5.11) and (5.12)

Sp(S2(N)) ⊗ Sq(N ⊗W )⊗ Λ2p+q(N∨ ⊗ U) =
⊕

λ∈Per
2p,|µ|=q,|ν|=2p+q

Sλ(N)⊗ Sµ(N)⊗ Sµ(W )⊗ Sν(N
∨)⊗ Sν̃(U).

By (5.15), the latter is isomorphic to
⊕

λ∈Per
2p,|µ|=q,|ν|=|κ|=2p+q

cκλ,µSκ(N)⊗ Sµ(W )⊗ Sν(N
∨)⊗ Sν̃(U).

Since the Sλ(N) are mutually nonisomorphic irreducible GL(N)-representations or
trivial, we have, with g := dim(N),

(Sκ(N)⊗ Sν(N
∨))GL(N) ∼=

{
Q κ = ν and ht(ν) = ht(κ) ≤ g

0 κ 6= ν or ht(ν) > g or ht(κ) > g.
(5.17)

Therefore

(Sκ(N)⊗Sµ(W )⊗Sν(N
∨)⊗Sν̃(U))GL(N) =

{
Sµ(W )⊗ Sν̃(U) κ = ν and ht(ν) = ht(κ) ≤ g

0 κ 6= ν or ht(ν) > g or ht(κ) > g,

and so

(Sp(S2(N))⊗ Sq(N ⊗W )⊗ Λ2p+q(N∨ ⊗ U))GL(N)

=
⊕

λ∈Per
2p,|µ|=q,|ν|=2p+q,ht(ν)≤g

cνλ,µSµ(W )⊗ Sν̃(U)

=
⊕

λ∈Per
2p,|µ|=q,|ν|=2p+q,ht(ν)≤g

cν̃
λ̃,µ̃
Sµ(W )⊗ Sν̃(U) (by (5.16)).

Under the hypothesis that g ≥ 2p + q, ht(ν) ≤ g holds for all ν ∈ P2p+q. Using
(5.15) again, the latter is isomorphic to

⊕

λ∈Per
2p,|µ|=q

Sµ(W )⊗ Sλ̃(U)⊗ Sµ̃(U),

and by (5.12), this agrees with
⊕

λ∈Per
2p

Λq(W ⊗ U)⊗ Sλ̃(U) = Λq(W ⊗ U)⊗
⊕

λ∈Pec
2p

Sλ(U) =

= Λq(W ⊗ U)⊗ Sp(Λ2(U)).

The proof for H is almost identical. The components of H are maps

Sp(S2U)⊗ Λq(W ⊗ U) → (Sp(Λ2(N))⊗ Λq(N ⊗W )⊗ S2p+q(N∨ ⊗ U))GL(N).
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We compute, by (5.14), (5.11) and (5.12) and (5.15),

Sp(Λ2(N)) ⊗ Λq(N ⊗W )⊗ S2p+q(N∨ ⊗ U) =

=
⊕

λ∈Pec
2p,|µ|=q,|ν|=2p+q

Sλ(N)⊗ Sµ(N)⊗ Sµ̃(W )⊗ Sν(N
∨)⊗ Sν(U) =

=
⊕

λ∈Pec
2p,|µ|=q,|ν|=|κ|=2p+q

cκλ,µSκ(N)⊗ Sµ̃(W )⊗ Sν(N
∨)⊗ Sν(U).

Taking GL(N)-invariants and using (5.17) yields

(Sp(Λ2(N))⊗ Λq(N ⊗W )⊗ S2p+q(N∨ ⊗ U))GL(N) =

=
⊕

λ∈Pec
2p,|µ|=q,|ν|=2p+q,ht(ν)≤g

cνλ,µSµ̃(W )⊗ Sν(U).

If g ≥ 2p+ q, (5.15) shows that this is equal to
⊕

λ∈Pec
2p,|µ|=q

Sµ̃(W )⊗ Sλ(U)⊗ Sµ(U) =

(
⊕

λ∈Pec
2p

Sλ(U))⊗ (
⊕

|µ|=q

Sµ̃(W )⊗ Sµ(U))
(5.14),(5.12)

=

Sp(Λ2(U))⊗ Λq(W ⊗ U)

as claimed. �

Finally, we give the short proof of Proposition 5.8. This is an immediate conse-
quence of a more general result.

Lemma 5.18. Let NZ be a finitely generated free abelian group, write N := NZ⊗Q
and let ρ : SL(N) → GL(W ) be a rational representation. Then

W SL(N) =W SL(NZ).

Proof. Assume N = Zg. A special case of Borel’s density theorem [4] states that
SLg(Z) ⊂ SLg(Q) is Zariski dense (a very short and elementary proof for the special

linear group has been written down by Putman [59]). For v ∈ V SLg(Z) and ℓ ∈ V ∗,
the function SLg(Q) → Q, A 7→ ℓ(v − Av), is polynomial and vanishes on SLg(Z),
hence on SLg(Q), whence v = Av for all A ∈ SLg(Q). �

6. The cohomology of the block diffeomorphism space

6.1. Using invariant theory. In this section, we finish our partial evaluation of
the spectral sequence of the fibration

map∂((U
n
g,1)Q;BOQ)

0 → map∂((U
n
g,1)Q;BOQ)

0�hAut∂((U
n
g,1)Q)

id → BhAut∂((U
n
g,1)Q)

id.
(6.1)

Before we state the result, let us fix some bounds that the various parameters have
to fulfil.

Assumption 6.2. (1) We assume throughout that n ≥ 5.
(2) We pick M in (4.25) large enough so that

4M ≥ 3n− 5.
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(3) We furthermore choose g large enough to satisfy

g > n− 3,

which implies also that g ≥ 3.

Using the number M , we define the graded vector spaces U(n), V (n) and W (n)
as in (4.25). We let vm ∈ V (n)4m−2n−1 and wm ∈ W (n)4m−n be the obvious
generators, and let um := S(wm) ∈ U(n)4m−n−1 be the image under the map
S from Proposition 4.30. To formulate the result we are aiming at, some more
notation is necessary.

Definition 6.3. We let K(n) be the following graded vector space. It has basis
elements km ∈ K(n)4m−2n−1 for m ≤ M and 4m − 2n − 1 > 0, and it has basis
elements km0,m1 ∈ K(n)4(m0+m1)−2n−1 for m0 ≤ m1 ≤ M , 4m0 ≥ n + 1, 4(m0 +
m1)− 2n− 1 > 0.

Note that all generators in K(n) are in odd degrees. We define a (degree-
preserving) map

ξ : Λ∗(K(n)) → H∗(map∂((U
n
g,1)Q;BOQ)

0 � hAut∂((U
n
g,1)Q)Z (6.4)

by
ξ(km) := κLm

, ξ(km0,m1) := κLm0Lm1
.

The composition of ξ with the pullback map

H∗(map∂((U
n
g,1)Q;BOQ)

0�hAut∂((U
n
g,1)Q)Z;Q) → H∗(map∂((U

n
g,1)Q;BOQ)

0�hAut∂((U
n
g,1)Q)

id;Q)

goes into the SL(N(g)Z)-invariant part. Here is the goal of this subsection.

Proposition 6.5. The map

ξ : Λ∗(K(n)) → H∗(map∂((U
n
g,1)Q;BOQ)

0 � hAut∂((U
n
g,1)Q)

id;Q)SL(N(g))Z

is an isomorphism in degrees ∗ ≤ (n− 4), provided that M and g satisfy the bounds
from (6.2).

Recall from Observation 4.24 that the spectral sequence E∗,∗
∗ of (6.1) is a spectral

sequence of GL(N(g)) ∼= π0(hAut∂((U
n
g,1)Q))-modules. Let us elaborate this a little.

Proposition 6.6. Let n ≥ 5 and g ≥ 3.

(1) For q ≤ (n − 3), Hq(map∂((U
n
g,1)Q;BOQ)

0 � hAut∂((U
n
g,1)Q)

id;Q) is a ra-
tional representation of SL(N(g)Z), of load ≤ q.

(2) Let E∗,∗
∗ denote the spectral sequence of (6.1), and define

E
p,q

r := (Ep,q
r )SL(N(g)Z).

Then E
∗,∗

∗ is a spectral sequence, and it converges toH∗(map∂((U
n
g,1)Q;BOQ)

0�

hAut∂((U
n
g,1)Q)

id;Q)SL(N(g))Z .

Proof. (1) We have to invoke a deep result by Bass–Milnor–Serre [1, Corollary 16.6].
The quoted result implies that a homomorphism SL(N(g)) → GL(V ), where V is
a finite-dimensional Q-vector space and g ≥ 3, is actually rational (see also the
discussion on p. 63 f and p. 134 of loc.cit.). Hence Hq(map∂((U

n
g,1)Q;BOQ)

0 �

hAut∂((U
n
g,1)Q)

id;Q) is a rational SL(N(g))-representation.
From the description of the E2-term given in Proposition 4.29, it is apparent

that (in total degrees ∗ ≤ (n − 3)) the GL(N(g))-representations in the E2-term
are all rational. Since subquotients of rational representations are again rational
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(and the load does not increase), the representations occuring in E∗,∗
∞ with total

degree q are all rational, of load ≤ q.
(2): Theorem 5.1 and Lemma 5.18 together imply that taking SL(N(g)Z)-invariants

is an exact functor from rational GL(N(g))-representations to Q-vector spaces.

Hence E
∗,∗

∗ is also a spectral sequence. The claim about convergence follows from
Theorem 6.17. �

Hence in order to prove Proposition 6.5, we can focus our attention completely

on E
∗,∗

∗ .

Definition 6.7. Let D∗,∗ be the bigraded algebra

D∗,∗ := Λ∗(V (n)⊕W (n)⊗ U(n))⊗ S∗(Q[2, 0]⊗ Λ2(U(n)))

where the graded vector spaces W (n), U(n) and V (n) are as in (4.25), but sit in
bidegrees (0, ∗). Let δ : D∗,∗ → D∗,∗ be the differential of degree (2,−1) which is a
derivation, and is given on the generators as follows:

(1) δ|V (n) = 0,

(2) δ|W (n)⊗U(n) is the map W (n) ⊗ U(n)
S⊗1
→ U(n) ⊗ U(n) → Λ2(U(n)) ∼=

Q[2, 0]⊗ Λ2(U(n)),
(3) δ|Q[2,0]⊗Λ2(U(n)) = 0.

We define a graded algebra homomorphism

η : D∗,∗ → E
∗,∗

2 = (E∗,∗
2 )SL(NZ(g)) (6.8)

to the invariant part of the spectral sequence of (6.1), by sending

vm 7→λ[Un
g,1 ],Lm

∈ E0,4m−2n−1
2

wm0 ⊗ um1 7→
∑

i

λai,Lm0
λbi,Lm1

∈ E0,4m0+4m1−2n−1
2

um0 ∧ um1 7→
∑

ij

xij ⊗ λbi,Lm0
λbj ,Lm1

∈ E2,4m0+4m1−n−2
2 .

Here xij ∈ E2,0
2 are the generators in E2,0

2
∼= L2(N(g)).

Proposition 6.9. The map η is a map of differential bigraded algebras, and it
is an isomorphism in total degrees ≤ (n − 3), provided that the bounds of 6.2 are
satisfied.

Proof. That η is an isomorphism in the indicated range of degrees follows from
Propositions 4.29, 5.7 and 5.8. The first two conditions of 6.2 are needed for 4.29,
and the third for 5.7.

Proposition 4.30 and the definition of the maps in Proposition 5.7 show that η
is compatible with the differential. �

Let us next compute the cohomology of the differential graded algebras D∗,∗.
This is in terms of the following well-known construction.

Definition 6.10. Let F : Y → X be a linear map of finite-dimensional Q-vector
spaces. The Koszul complex of the map F is the graded commutative differential
graded algebra

DF := Λ∗(Y )⊗ S∗(X),
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where S1(X) has degree 2, Λ1(Y ) has degree 1, and the differential dF : DF → DF

is the derivation of degree +1 given by the condition that dF |S1(X) = 0 and that

dF : Λ1(Y ) → S1(X) is the map F .

Up to a different grading, D∗,∗ is DF , where F is the map

V (n)⊕W (n)⊗ U(n)
0⊕S⊗1U(n)

→ U(n)⊗2 → Λ2(U(n)). (6.11)

In order to compute H∗(D∗,∗) and hence (E∗,∗
3 )SL(NZ(g)) in a range of degrees, we

compute H∗(DF ) in general. There are obvious linear maps

ker(F ) ∼= ker
(
dF : Λ1(Y ) → S1(X)

)
→ H1(DF )

and

coker(F ) ∼= coker
(
dF : Λ1(Y ) → S1(X)

)
→ H2(DF ).

They give a map of graded commutative algebras

ηF : Λ∗(ker(F ))⊗ S∗(coker(F )) → H∗(DF ).

Lemma 6.12. The map ηF is an isomorphism.

Proof. It follows from the Künneth formula that if ηF0 and ηF1 are isomorphisms,
then so is ηF0⊕F1 .

By elementary linear algebra, we can write F as a direct sum of an isomorphism
and a zero map, and so it suffices to treat these two cases separately. If F is a zero
map, the claim is obvious. If F is an isomorphism, we can assume without loss of
generality that F is an identity map. In that case, DidV

is the Koszul complex of
the vector space V which is well-known to be acyclic (since we are over a field of
characteristic 0), see e.g. [30, §3.1]. �

Proof of Proposition 6.5. The map in (6.11) is surjective. Lemma 6.12 and Propo-
sition 6.9 prove that

E
p,q

3 = 0

if p+ q ≤ n− 3 and p 6= 0. Hence, using Proposition 6.6, the natural map

A : Hq(map∂((U
n
g,1)Q;BOQ)

0 � hAut∂((U
n
g,1)Q)

id;Q)SL(N(g))Z → E
0,q

∞ ⊂ E
0,q

3

is an isomorphism if q ≤ n − 4. It is therefore sufficient to show that A ◦ ξ :

Λ∗(K(n)) → E
0,∗

3 is an isomorphism in the indicated range of degrees. By the
definition of ξ and by Lemma 3.25, A ◦ ξ is given by

km 7→ λ[Un
g,1],Lm

and

km0,m1 7→ λ[Un
g,1 ],Lm0Lm1

.

We must therefore check that E
0,∗

3 is the free graded-commutative algebra on the
listed generators. Lemma 6.12 tells us how to do that. We distinguish to cases.

First let n 6≡ 3 (mod 4). Then the map S : W (n) → U(n) is an isomorphism.
We deduce that the following set is a basis for the kernel of (6.11):

{vm, (wm0⊗um1+wm1⊗um0)| 4m−2n−1 > 0,m ≤M,m0 ≤ m1 ≤M, 4m0−n−1 > 0}.
(6.13)
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Under the map η from (6.8), the element vm is mapped to λ[Un
g,1],Lm

. The element

wm0 ⊗ um1 + wm1 ⊗ um0 is mapped to
∑

i

λai,Lm0
λbi,Lm1

+ λai,Lm1
λbi,Lm0

=
∑

i

λai,Lm0
λbi,Lm1

+ λbi,Lm0
λai,Lm1

(for degree reasons)

= λ[Un
g,1],Lm0Lm1

(by (4.4)).

This completes the proof if n 6≡ 3 (mod 4).
If n ≡ 3 (mod 4), the kernel of (6.11) is larger: one obtains a basis by adding

the elements
wn+1

4
⊗ um, 4m− n− 1 > 0,m ≤M

to the list of elements in (6.13). Using (6.8) and (4.4) again, these elements go to
λ[Un

g,1],Ln+1
4

Lm
. So the proof is complete. �

6.2. Using Borel’s vanishing theorem. We now look at the spectral sequence
of the fibration

map∂((U
n
g,1)Q;BOQ)

0�hAut∂((U
n
g,1)Q)

id → map∂((U
n
g,1)Q;BOQ)

0�hAut∂((U
n
g,1)Q)Z → BGL(N(g)Z).
(6.14)

Recall the graded vector space K(n) from Definition 6.3 and from (6.4) the map

ξ : Λ∗(K(n)) → H∗(map∂((U
n
g,1)Q;BOQ)

0 � hAut∂((U
n
g,1)Q)Z;Q).

Let moreover B be the graded vector space B :=
⊕

k≥1 Q[4k + 1]. Mapping the
generators to the Borel classes gives furthermore a map

β : Λ∗(B) → H∗(map∂((U
n
g,1)Q;BOQ)

0 � hAut∂((U
n
g,1)Q)Z;Q).

Proposition 6.15. Assume the bounds from (6.2) (which in particular means n ≥
5), but strengthened by

g ≥ 2n− 4.

Then the map

ξ ⊗ β : Λ∗(K(n)⊕B) → H∗(map∂((U
n
g,1)Q;BOQ)

0 � hAut∂((U
n
g,1)Q)Z;Q)

is an isomorphism in degrees ∗ ≤ (n− 4).

When combined with Proposition 3.27, we obtain the following result as a corol-
lary. This establishes Theorem 1.8 from the introduction.

Corollary 6.16. Assume the bounds of Proposition 6.15. Then in degrees ≤ (n−

4), H∗(BD̃iff∂(U
n
g,1);Q) is the exterior algebra on the Borel classes and on the

tautological classes κLm0Lm1
with m0 ≤ m1, 4m0−n > 0 and 4(m0+m1)−2n−1 >

0. �

The proof of Proposition 6.15 relies on Borel’s vanishing theorem [6] that we
shall state first.

Theorem 6.17 (Borel). Let V be a rational representation of SLg(Q) of load at
most n. Then the map

Hp(SLg(Z);Q)⊗V SLg(Z) = Hp(SLg(Z);Q)⊗V SLg(Q) → Hp(SLg(Z);V
SLg(Q)) → Hp(SLg(Z);V )

is an isomorphism, provided that 2p+2 ≤ g−n (the first equation holds by Lemma
5.18).



46 JOHANNES EBERT AND JENS REINHOLD

References. This is essentially due to Borel [6, Theorem 4.4], but the ranges are
not made explicit in Borel’s work, so some more words need to be said here. By
complete reducibility, we can assume that V ⊂ T k,l(Qg) with k+ l ≤ n, and finally
suppose that V = T k,l(Qg). Moreover, it is enough to prove that statement for Q
replaced by R and Qg replaced by Rg.

Borel proved in loc.cit. that

Hp(SLg(Z);R) ⊗ T k,l(Rg)SLg(R) → Hp(SLg(Z);T
k,l(Rg)) (6.18)

is an isomorphism provided that p ≤ min(M(SLg(R), (k, l)), C(SLg(R), (k, l))),
where M(SLg(R), (k, l)) and C(SLg(R), (k, l)) are constants which can be read
off from the root system of slg and the weights of T k,l(Qg). In loc.cit., Borel
showed that M(SLg(R), (k, l)) ≥ g − 2, but left C(SLg(R), (k, l)) implicit. A rela-
tively naive counting argument given in the proof of [42, Theorem 7.3] shows that
C(SLg(R), (k, l)) ≥

1
8g

2−max(k, l)−1, which implies that (6.18) is an isomorphism
when p ≤ fk,l(g), and fk,l is a function with limg→∞ fk,l(g) = ∞.

To get at the range claimed by us, we use Van der Kallen’s work on homological
stability, more precisely [71, Theorem 5.6]. The latter result implies that for 2q+2 ≤
g − (k + l) and all h ≥ g, the map Hq(SLg(Z);T k,l(Rg)) → Hq(SLh(Z);T k,l(Rh))
is an isomorphism. This implies a cohomological statement by an instance of the
universal coefficient theorem [64, Lemma 3.5], and we can pick h large enough so
that f(h) ≥ q. �

Remark 6.19. Tshishiku [70] showed by a careful analysis of root systems that the
corresponding result is true for SOg,g(Z) and Sp2g(Z), but in a range that only
depends on g, not on the representation V . We have been informed by him that
the analogous procedure for SLg(Z) does not lead to a range independent of V .

Proof of Proposition 6.15. Since Theorem 6.17 is about the special linear group
rather than the general linear group, we modify the sequence a bit and look at

map∂((U
n
g,1)Q;BOQ)

0�hAut∂((U
n
g,1)Q)

id → map∂((U
n
g,1)Q;BOQ)

0�ShAut∂((U
n
g,1)Q)Z → BSL(N(g)Z),
(6.20)

where ShAut∂((U
n
g,1)Q)Z ⊂ hAut∂((U

n
g,1)Q)Z consists of those homotopy automor-

phisms whose action on Hn(U
n
g,1) is by maps of determinant 1. The natural map

map∂((U
n
g,1)Q;BOQ)

0�ShAut∂((U
n
g,1)Q)Z → map∂((U

n
g,1)Q;BOQ)

0�hAut∂((U
n
g,1)Q)Z

is, up to homotopy, a 2-fold covering. Hence it induces an injective map in ratio-
nal cohomology by a general argument [34, Proposition 3G.1]. We may therefore
show the Proposition with map∂((U

n
g,1)Q;BOQ)

0 � hAut∂((U
n
g,1)Q)Z replaced by

map∂((U
n
g,1)Q;BOQ)

0 � ShAut∂((U
n
g,1)Q)Z.

Let E∗,∗
∗ be the spectral sequence for (6.20). Its E2-term is

Ep,q
2 = Hp(SL(N(g)Z);H

q(map∂((U
n
g,1)Q;BOQ)

0 � hAut∂((U
n
g,1)Q)

id;Q)).

By Proposition 6.6, the coefficient module is a rational representation of load ≤ q.
Hence if 2p+ q + 2 ≤ g, we may invoke Theorem 6.17 and see that

Ep,q
2 = Hp(SL(N(g)Z);Q)⊗Hq(map∂((U

n
g,1)Q;BOQ)

0�hAut∂((U
n
g,1)Q)

id;Q))SL(N(g)Z).
(6.21)

Under our bound on g, this holds for all p, q with p+ q ≤ n− 4.
It follows from Proposition 6.5 and (6.4) that the map

H∗(map∂((U
n
g,1)Q;BOQ)

0�ShAut∂((U
n
g,1)Q)Z;Q) → H∗(map∂((U

n
g,1)Q;BOQ)

0�hAut∂((U
n
g,1)Q)

id;Q)SL(N(g)Z)
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is surjective if ∗ ≤ (n− 4), but that can be identified with the edge homomorphism
of the spectral sequence, so that all differentials starting in the zeroeth column
vanish (in degrees ∗ ≤ n − 4). The isomorphism (6.21) implies that the map

E∗,0
2 ⊗ E0,∗

2 → E∗,∗
2 of bigraded vector spaces is an isomorphism in total degrees

≤ n − 4. As the spectral sequence is a spectral sequence of algebras, we conclude
that all differentials starting in a term Ep,q

r with p+ q ≤ (n− 4) are trivial.
An application of Theorem 2.11 and the Leray–Hirsch theorem shows that the

map ξ ⊗ β is an isomorphism in degrees ≤ (n− 4). �

7. The endgame: from block diffeomorphisms to actual

diffeomorphisms

7.1. Getting the mapping class group under control. To shorten notation,
we introduce the following notations:

Dg := Diff∂(U
n
g,1); D̃g := D̃iff∂(U

n
g,1).

We let BD∞ := hocolimg→∞BDg and define BD̃∞ analogously. The spaces

BD :=
∐

g≥0

BDg and BD̃ :=
∐

g≥0

BD̃g

carry E2n+1-structures, analogous to the E2-structure described in [23, §3] for dif-
feomorphisms of surfaces; we refrain from giving any more details here. As a
consequence of May’s recognition principle [49], the group completions ΩBBD and

ΩBBD̃ have the structures of (2n+ 1)-fold loop spaces.

Lemma 7.1. The natural maps

Z×BD∞ → ΩBBD (7.2)

and

Z×BD̃∞ → ΩBBD̃ (7.3)

are acyclic (i.e. their homotopy fibres have the integral homology of a point). The

commutator subgroups of π1(BD∞) and π1(BD̃∞) are perfect. The maps (7.2) and
(7.3) identify their targets with the Quillen plus construction on their source (here
the Quillen plus construction is performed one component at a time, on the maximal
perfect normal subgroup of the fundamental group).

Proof. A straightforward application of the group completion theorem [51] shows
that the two maps are integral homology equivalences. An improved version of the
group completion theorem, namely [63, Theorem 1.1], proves the (stronger) claim of
acyclicity. Perfectness of the commutator subgroups follows from [63, Proposition
3.1], and the statement about the Quillen plus construction is a consequence: by
[35, Proposition 3.1], acyclic maps out of a given space are classified up to homotopy
equivalence by the kernels of their induced maps on fundamental groups. �

Our next step is to let

BDg → Eg → BD̃g

be the (2n− 5)th stage of the Moore–Postnikov tower of the natural map BDg →

BD̃g. Let us motivate this maneuver.

Lemma 7.4.
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(1) The natural map

BDg → BD̃g

induces an isomorphism on fundamental groups.
(2) The diagram

Eg //

��

Eg+1

��

BD̃g
// BD̃g+1

is homotopy cartesian, for each g.
(3) The fibration Eg → D̃g is “very simple” in the following sense: if Fg denotes

its homotopy fibre, then the monodromy action µ(γ) : Fg → Fg, for each

γ ∈ π1(BD̃g), is homotopic to the identity.

Proof. (1): Surjectivity of π1(BDiff∂(M)) → π1(BD̃iff∂(M)) follows from the very

definition of D̃iff∂(M), and injectivity follows from Cerf’s theorem [11, Théorème
0].

(2): It is an immediate consequence of a version of the so-called Morlet’s lemma
of disjunction, more precisely [10, Corollary 3.2 on page 29], that the comparison
maps of vertical homotopy fibres in the

BDg
//

��

BDg+1

��

BD̃g
// BD̃g+1

are (2n− 4)-connected. The claim then follows from the general properties of the
Moore–Postnikov factorization.

(3): We follow the outline of a very similar argument contained in [43, §5.3]. We
present the core argument first. Let

σ : D̃0/D0 → D̃g/Dg

be the stabilization map and let γ ∈ D̃g. Note that σ is given by gluing in (block)
diffeomorphisms in a fixed disc, and note that γ can be isotoped so that it fixed
this disc. It follows that

Lγ ◦ σ ∼ σ : D̃0/D0 → D̃g/Dg,

where Lγ denotes the left translation by γ on the homogeneous space D̃g/Dg.
To turn this observation into an argument concerning the monodromy action,

note that the monodromy action of γ on D̃g/Dg is exactly Lγ , and note that the

map q : D̃g/Dg → Fg is the (2n− 5)th Postnikov truncation, and equivariant with
respect to the two monodromy actions. Also, pick a definite CW model for Fg.

Since πk(Fg) = 0 if k ≥ 2n−5 by construction, two maps f0, f1 : K → Fg from a
CW complex are homotopic if and only if the restrictions fj|K(2n−5) are homotopic.
Apply this to f0 = idFg

and f1 = µ(γ). The inclusion of the (2n − 5)-skeleton

F
(2n−5)
g → Fg can be factored through maps

F (2n−5)
g

h
→ D̃0/D0

σ
→ D̃g/Dg

q
→ Fg.
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Let γ ∈ D̃g. Then

µ(γ)|
F

(2n−5)
g

∼ µ(γ) ◦ q ◦ σ ◦ h ∼ q ◦ Lγ ◦ σ ◦ h ∼ q ◦ σ ◦ h = id|
F

(2n−5)
g

,

so that µ(γ) ∼ id, as desired. �

To proceed, we need a general property of the Quillen plus construction.

Lemma 7.5. Let f : X → Y be a n-connected map of connected spaces, n ≥ 2,
let P ⊂ π1(X) = π1(Y ) be a perfect normal subgroup of the common fundamental
group, and let X → X+, Y → Y + be the Quillen plus constructions on P . Then
f+ : X+ → Y + is n-connected.

Proof. If P = π1(X), there is not much say, besides quoting Hurewicz’ theorem. In

the general case, let X̃ → X , Ỹ → Y be the coverings with fundamental group P .
Now X+ can be realized as the homotopy pushout

X̃ //

��

X̃+

��

X // X+,

see e.g. [34, p.374], and the claim follows. �

Lemma 7.6. We let E∞ := hocolimg→∞Eg. The commutator subgroup of π1(E∞)
is perfect, and the diagram

E0 //

��

E∞

��

// E+
∞

��

BD̃0
// BD̃∞

// BD̃+
∞

(7.7)

is homotopy cartesian. Furthermore, the natural map

BD+
∞ → E+

∞

is (2n− 5)-connected.

Proof. First note that the composition

BD∞ → E∞ → BD̃∞

induces an isomorphism on fundamental groups by Lemma 7.4 (1), and the first
map is (2n − 5)-connected by definition, so that both maps induce isomorphisms
on fundamental groups. By Lemma 7.1, the commutator subgroup of E∞ is hence
perfect.

Lemma 7.4 (2) shows that the left square in (7.7) is homotopy cartesian. The
right half of the diagram arises from applying the Quillen plus construction (on the
commutator subgroups) to the middle column. For the proof that the right square
is homotopy cartesian, we use a theorem by Berrick [3, Theorem 1.1].

Let F∞ be the homotopy fibre of E∞ → BD̃∞. The latter map induces an
isomorphism on fundamental groups, which three consequences: F∞ is connected;
π1(F∞) is abelian (because it is a quotient of π2(BD̃∞)); and F∞ is nilpotent (F∞

is also the homotopy fibre of the map Ẽ∞ → B̃D̃∞ induced on universal coverings,
so it is the homotopy fibre of a map of 1-connected spaces; it is a general fact
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that such homotopy fibres are nilpotent, see e.g. [50, Proposition 4.4.1]). Hence
F+

∞ = F∞ is nilpotent, which is part of hypothesis (b) of [3, Theorem 1.1]. Lemma

7.4 (3) shows that the commutator subgroup of π1(BD̃∞) acts trivially on the
homology of F∞. It now follows from [3, Theorem 1.1] that

F∞ → E+
∞ → BD̃+

∞

is a fibre sequence, which is exactly the statement that the right square in (7.7) is
homotopy cartesian.

Finally, Lemma 7.5 implies that BD+
∞ → E+

∞ is (2n− 5)-connected. �

We now arrive at the goal of these constructions.

Lemma 7.8. Let G be the homotopy fibre of the map ΩBBD → ΩBBD̃ at the
basepoint, so that there is a fibre sequence

G
j
→ Ω0BBD → Ω0BBD̃.

Then

(1) G has the homotopy type of a connected (2n + 1)-fold loop space, and its
rational homotopy groups in degrees k ≤ 2n− 6 are given by

πk(G)⊗Q =

{
Q 1 ≤ k ≤ 2n− 6, k ≡ 0 (mod 4)

0 1 ≤ k ≤ 2n− 6, k 6≡ 0 (mod 4).

(2) The map j induces the zero map on (reduced) rational homology up to degree
2n− 5.

Proof. It is clear that G has the homotopy type of a connected loop space, so for
(1) it suffices to calculate the dimensions of the rational homotopy groups in the
indicated range. By Lemma 7.1 and Lemma 7.6, the homotopy groups of G agree

with the homotopy groups of the fibre of BDiff∂(D
2n+1) → BD̃iff∂(D

2n+1), up to

degree 2n− 6. The homotopy group πk(BD̃iff∂(D
2n+1)) can be identified with the

group Θ2n+1+k of homotopy spheres, which is of course finite by [41]. The rational
homotopy groups of BDiff∂(D

2n+1) are famously related to algebraic K-theory,
originally by [20]; the range we need was given by Krannich in [43, Corollary B].
This establishes (1).

For (2), consider the diagram

D̃0/D0

��

// G

j

��

BD0
//

��

BD∞
// BD+

∞

��

BD̃0
// BD̃∞

// BD̃+
∞.

The first named author proved in [14, Theorem 1.7], based on [7] and [57] that
BD0 → BD∞ induces the zero map on (reduced) rational homology, up to degree

2n−3. The top map is (2n−5)-connected, and as BD̃0 has finite homotopy groups,

D̃0/D0 → BD0 is a rational homotopy equivalence. Putting these facts together,
triviality of H∗(j) follows. �
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7.2. Computation of the cohomology. Having established Lemma 7.8, the com-
pletion of the proof of our main result is straightforward.

Proof of Theorem A. The three spaces in the fibre sequence

G
j
→ Ω0BBD

p
→ Ω0BBD̃

are connected double loop spaces. Hence by the Milnor–Moore theorem [53], their
rational homology (with the Pontrjagin product) is the free graded commutative
algebra on the rational homotopy. It follows from Lemma 7.8 that the map π∗(j)⊗Q
is also trivial map up to degree (2n − 5). Hence π∗(p) ⊗ Q is injective up to
degree (2n−5), so H∗(p;Q) is injective, and H∗(P ;Q) is surjective, both in degrees
≤ (2n − 5). Using the knowledge about the rational homotopy of G, we see that
coker(π∗(p)⊗Q) is concentrated in degrees 4k + 1, k ≥ 1 and in these degrees has
dimension 1 (again in degrees ≤ (2n− 5).

Hence the kernel of H∗(p;Q) must, degrees ≤ (2n − 5), be an ideal generated
by classes in each degree 4k + 1, k ≥ 1. However, we know by Proposition 2.14
that the ideal generated by the Borel classes lies in the kernel of H∗(p;Q), and
by a dimension count must be equal to the kernel. This finishes the evaluation of
H∗(Ω0BBD;Q), which by Lemma 7.1 gives H∗(BD∞;Q). At the very last, we
invoke [56, Corollary 1.3.2] to get the statement for finite values of g. �
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