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Abstract. Given two metrics of positive scalar curvature on a closed spin manifold, there is

a secondary index invariant in real K-theory. There exist two definitions of this invariant, one
of homotopical flavor, the other one defined by an index problem of Atiyah-Patodi-Singer type.

We give a complete and detailed proof of the folklore result that both constructions yield the

same answer. Moreover, we generalize this result to the case of two families of positive scalar
curvature metrics, parametrized by a finite CW complex. In essence, we prove a generalization

of the classical “spectral-flow-index theorem” to the case of families of real operators.

1. Introduction

1.1. Two secondary index invariants for positive scalar curvature metrics. The space
of metrics of positive scalar curvature R+(M) on a closed spin manifold M of dimension d has
attracted the attention of homotopically minded geometric topologists. One tool for its study
comes from index theory. Given any Riemannian metric g on M , one can consider the Atiyah-
Singer-Dirac operator /Dg, which is an odd, Cld,0-linear and symmetric elliptic operator that acts

on the space H = L2(M ; /SM ) of sections of the real spinor bundle /SM →M . Thus it yields a point

in Fredd,0(H), the space of self-adjoint odd Cld,0-linear Fredholm operators. By a classical result

of Atiyah-Singer and Karoubi, Fredd,0(H) represents the real K-theory functor KO−d, and thus
we get an index indexd,0( /Dg) ∈ KO−d(∗). If g has positive scalar curvature, then indexd,0 /Dg = 0:

the well-known argument using the Schrödinger-Lichnerowicz formula proves that /Dg is invertible,
which shows that at first glance, the index does not convey any information. There are, however,
useful secondary index-theoretic invariants that one can attach not to single metric of positive
scalar curvature, but to a pair (g−1, g1) of such. There are two constructions of such invariants.
What they have in common is that one starts by considering the family gt = 1−t

2 g−1 + 1+t
2 g1 of

metrics, parametrized by [−1, 1]. Of course, and this is the point, the metric gt typically does not
have positive scalar curvature.

For the first construction, we consider the path /Dgt in the space Fredd,0(H) (in this introduction,

we are glossing over the detail that /SM and hence H depends on g). This path begins and ends at
an invertible operator, since g±1 has positive scalar curvature. As the space of invertible operators
is contractible (Kuiper’s theorem), the path contains the homotopical information of a point in the

loop space Ω Fredd,0. This space represents the functor KO−d−1, and in this way we obtain the
first version of the index difference inddiffH(g−1, g1) ∈ KO−d−1(∗). This viewpoint was introduced
by Hitchin [20].

For the second construction, we extend the metric dt2 + gt on M × [−1, 1] to a metric h on the
cylinder M × R (constant outside [−1, 1]) and consider the Dirac operator /Dh on M × R of this

metric. As the dimension of M ×R is d+1, this is a Cld+1,0-linear operator. It defines a Fredholm
operator on H := L2(M × R; /SM×R), and we can consider it as a point in Fredd+1,0(H), giving
another element inddiffGL ∈ KO−d−1(∗) (one could view this an index of an Atiyah-Patodi-Singer
boundary value problem as in [4], but we use a different setup). This viewpoint on the index
difference is due to Gromov and Lawson [17].
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An obvious question is whether both constructions yield the same result and this question is
most cleanly formulated in the family case, to which both constructions can be generalized. There
are well-defined homotopy classes of maps

inddiffH : R+(M)×R+(M)→ Ω Fredd,0(H),

inddiffGL : R+(M)×R+(M)→ Fredd+1,0(H).
(1.1)

Both map the diagonal to the (contractible) space of invertible operators. The Bott periodicity
map is a weak equivalence

bott : Fredd+1,0 '→ Ω Fredd,0 .

Theorem A. The two maps bott ◦ inddiffGL and inddiffH are weakly homotopic. In other words,
if X is a finite CW complex and f : X → R+(M) × R+(M) is a map, then bott ◦ inddiffGL ◦f
and inddiffH ◦f are homotopic. Moreover, if the subcomplex Y ⊂ X is mapped to the diagonal, the
homotopy can be chosen to be through invertible operators on Y .

The restriction to finite CW pairs is out of convenience; it can probably be removed, but we
opine that this is not worth the effort. Certainly, Theorem A does not come as a surprise at all and
in fact it has the status of a folklore result. However, we are not aware of a published adequate
exposition. As indicated, the secondary index is an important tool to detect homotopy classes
in the space R+(M), compare [17, 20, 18, 15]. The authors of these works have been careful to
avoid any use of Theorem A. In [13], a stronger detection theorem for π∗(R+(M)) is proven, for
manifolds of all dimensions dim(M) ≥ 6. In that paper, Theorem A is used in an essential way
to pass from 2n-manifolds to (2n+ 1)-dimensional manifolds. Thus, filling this gap was motivated
not by an encyclopedic striving for completeness, but by necessity.

1.2. Spectral-flow-index theorem. Let us explain the strategy for the proof of Theorem A,
first under the assumption that X = ∗ and d + 1 ≡ 0 (mod 8). In this case, π0(Fredd+1,0(H)) is

isomorphic to Z, detected by an ordinary Fredholm index. The space Fredd,0(H) is homeomorphic
to the space of self-adjoint Fredholm operators on a real Hilbert space. The fundamental group
π1(Fredd,0(H)) is isomorphic to Z, and it is detected by the “spectral flow” sf: if A is a family of
operators such that A(±1) invertible, then sf(A) is the number of eigenvalues of A(t) that cross 0,
counted with multiplicities. This concept was introduced by Atiyah-Patodi-Singer [5, §7]. To such
a family, one can associate the operator DA := ∂t + A(t), acting on L2(R;H). This is Fredholm,
and so has an index. The “spectral-flow index theorem” states that sf(A) = ± index(DA) (for the
moment, we ignore the sign). The basic idea why Theorem A is expected to be true is that Hitchin’s
index difference is given by the spectral flow of the family A(t) = /Dgt , while Gromov-Lawson’s
index difference is the index of the operator DA.

There are many approaches to spectral-flow-index theorems in the literature. Atiyah-Patodi-
Singer gave a proof for a special case [5, Theorem 7.4]: A(t) has to be an elliptic operator on a
closed manifold, and the crucial assumption is that A(1) = A(−1). This is important, because
their proof is by gluing the ends together in order to reduce to an index problem on M ×S1, which
can be solved by the usual Atiyah-Singer index theorem. However, this assumption is not satisfied
in our case. One obvious first idea for such a reduction would be to use that A(1) and A(−1) are
homotopic through invertible operators, by Kuiper’s theorem. Composing the family A(t) with
such a homotopy would result in a closed family A′, and the operator D′A would have the same
index. But the index problem for the new family still cannot be reduced to a problem on M ×S1,
for a very fundamental reason: for that to work the homotopy must be through pseudo-differential
operators. Even though A(1) and A(−1) are homotopic through elliptic differential operators and
through invertible operators on the Hilbert space, we cannot fulfill both requirements at once! In
fact, our proof will clearly show that this is the essential information captured by the spectral flow.

Before we describe our argument, let us discuss several other approaches that appeared in the
literature. Bunke [14] considers the case when A(t) is a family of differential operators with the
same symbol. He reduces the problem to the closed case; but his answer is in terms of cohomology,
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and he does not treat the parametrized situation. Translating his argument to real K-theory
would, as far as we can see, not have resulted in a shorter proof of Theorem A. Robbin and
Salamon [29] worked in an abstract functional analytic setting, ignoring that the operators are
pseudo-differential. For the case X = ∗, d + 1 ≡ 0 (mod 8), they gave a detailed proof in this
abstract setting. We will use a special case of their result in our proof; but we failed with an
attempt at a straightforward generalization of their argument to the family case. Another proof
in the framework of KK-theory is due to Kaad and Lesch [22], again the details are only for the
complex case and X = ∗; our knowledge of Kasparov theory does not suffice to carry out the
generalization to the case we need.

1.3. Overview of the paper. Let us now give a description of what we actually do. Chapter
2 surveys background material on Clifford algebras and K-Theory. In section 2.1, we collect the
conventions on Clifford algebras that we use (we use all Clifford algebras Clp,q to make the linear
algebra work better). Section 2.2 recalls the classical Fredholm model for real K-Theory. We
have to generalize the Fredholm model in such a way that a Hilbert bundle, together with a
Fredholm family represents an element in K-Theory. There are well-known difficulties with the
structural group and the continuity condition on a Fredholm family. Therefore, we spend some
pages explaining these conditions (section 2.3). Section 2.4 discusses the generalized Fredholm
model; the proof that the construction gives the correct answer is deferred to the appendix A.
A side-purpose of chapter 2 is to close a gap in the literature. Classically, the family index
theorem is only formulated for compact base spaces, and even a definition of the family index
over a noncompact base does not seem to be discussed properly in the literature. In [13], we need
to consider family indices over not even locally compact bases, and chapter 2, together with the
appendix, was partially written with that goal in mind.

The goal of chapter 3 is to give the rigorous definition of the secondary index invariants and
the formulation of the main result of this paper (Theorem 3.22). Section 3.1 collects some facts on
elliptic regularity for manifolds with cylindrical ends; the key result is Proposition 3.7. In order to
cover the other index-theoretic arguments that appear in [13], we prove more general versions than
necessary for Theorem A. The overall structure of the proof of Theorem A forces us to leave the
realm of Dirac operators; we have to work with pseudo-differential operators that have the leading
symbol of a Dirac operator (we call them “pseudo-Dirac operators”). The general setting for our
index theorem are families A(t) of Clp,q-linear pseudo-Dirac operators on a closed manifolds. Given
such a family, we get a new operator DA on the manifold M × R, which is Clp+1,q-linear (called
suspension). While the family A(t) yields inddiffH , the operator DA corresponds to inddiffGL. We
organize the curves of Dirac operators on M , parametrized by a space X, in a suitable K-group
that we call Lp,q(X). The two constructions (family index of A(t) and family index of DA) give
maps Lp,q(X)→ KOq−p−1(X) and our main result (Theorem 3.22) says that both maps are equal.
In section 3.4, we deduce Theorem A from Theorem 3.22.

Chapter 4 contains the proof of Theorem 3.22 and we follow a common strategy for proving
index theorems. The crucial analytical ingredient for the proof of Theorem 3.22 is Proposition 4.3
which states that the space of curves of Clp,q-linear pseudo-Dirac operators A(t), A(±1) invertible,
is rich enough to realize Ω Fredp,q. This is inspired by a theorem of Booß-Wojciechowski [12] and
would be false if we tried to use differential operators. In section 4.3, we use Proposition 4.3 and
formal properties of K-theory to reduce everything to the special case X = ∗ and (p, q) = (0, 1),
which is the case that was dealt with by Robbin and Salamon (in fact, we use an explicit index
computation instead).
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citing collaboration (of which the present paper is an outsourced part); moreover I want to thank
Boris and his wife Irina for the warm welcome in their home. Thomas Schick made several useful
comments on this paper, but in particular I want to thank the anonymous referee for reading the
paper in an extremely careful way.
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2. Preliminaries on K-Theory and Clifford algebras

2.1. Clifford algebra. Throughout the paper, we work over the real numbers; the proofs can
easily be “complexified”. Without any further mentioning, we assume (or claim implicitly) that
all Hilbert spaces are separable.

Definition 2.1. Let V and W be two finite-dimensional euclidean vector spaces and let H be a
Hilbert space. A ClV,W -structure on H is a pair (ι, c), where ι is a self-adjoint involution of H
and c : V ⊕W → Lin(H) is a linear map to the space of bounded operators on H such that

c(v, w)ι = −ιc(v, w), c(v, w)∗ = c(−v, w), c(v, w)2 = −|v|2 + |w|2

for all v ∈ V , w ∈W . A ClV,W -Hilbert space is a Hilbert space, equipped with a ClV,W -structure.
The opposite ClV,W -Hilbert space is (H, ι, c)op := (H,−ι,−c) and is shortly denoted by Hop. A

bounded linear operator F : (H, ι, c) → (H ′, ι′, c′) of ClV,W -Hilbert spaces will be called Clifford-
linear if Fc(x) = c(x)F holds all x ∈ V ⊕W . A Clifford-linear bounded operator F is even if
Fι = ι′F , and odd if Fι = −ι′F .

If there is no risk of confusion, we write x for c(x). Of particular interest to us is the case
V = Rp, W = Rq, both with the standard scalar product. In this case, we write Clp,q instead of

ClR
p,Rq . A Clp,q-structure on H is given by orthogonal automorphisms ι, e1, . . . , ep, ε1, . . . , εq of

H, satisfying the relations

(2.2) ι2 = 1, eiεj + εjei = eiι+ ιei = εjι+ ιεj = 0, −(eiej + ejei) = εiεj + εjεi = 2δij .

There are various functors between the categories of ClV,W -Hilbert spaces for different values
of (V,W ), the classical Morita equivalences. If (H0, c0, ι0) is a ClV,W -Hilbert space, we obtain a

ClV⊕R,W⊕R-Hilbert space (H, ι, c), H := H0 ⊕H0 and

c :=

(
c0
−c0

)
, ι :=

(
ι0
−ι0

)
, c(e) :=

(
−1

1

)
, c(ε) :=

(
1

1

)
(here e and ε are the standard basis vectors of R⊕ R). If F0 is a Clifford-linear endomorphism of

H0, then F =

(
F0

F0

)
is a Clifford-linear endomorphism of H, and if F0 is even or odd, then

so is F . Vice versa, if H is a ClV⊕R,W⊕R-Hilbert space with e and ε being the actions of the basis
vectors in the R-summands, consider H0 := ker(εe − 1); this inherits a ClV,W -structure from the
given one on H. Clifford-linear endomorphisms of H restricts to Clifford-linear endomorphisms
of H0, and if F is even or odd, then so is F |H0

. Both procedures are mutually inverse. In a

similar fashion, ClV⊕R
4,W -Hilbert spaces and ClV,W⊕R

4

-Hilbert spaces are equivalent. Let H be

a ClV⊕R
4,W -Hilbert space and put η := e1 · · · e4, so that η2 = 1. Then we obtain a ClV,W⊕R

4

-
Hilbert space (H, ι, c′); c′|V⊕W = c|V⊕W , εi := ηei for i = 1, . . . , 4. Clifford-linear, even (or odd)

endomorphisms are preserved under this procedure. By a similar recipe one transforms ClV,W⊕R
4

-

Hilbert spaces back into ClV⊕R
4,W -Hilbert spaces. Combining both types of equivalences, one gets

equivalences between ClV,W -, ClV⊕R
8,W - and ClV,W⊕R

8

-Hilbert spaces. All these definitions and
constructions generalize without effort to nontrivial Riemannian vector bundles V , W and Hilbert
bundles H.

The structure theory of Clp,q-Hilbert spaces is well-known [26, §I.5]. For brevity, we call finite-
dimensional Clp,q-Hilbert spaces just Clp,q-modules. Each Clp,q-Hilbert space decomposes into
a Hilbert sum of (finite-dimensional) irreducible ones. If p − q 6≡ 0 mod 4, then there is exactly
one irreducible Clp,q-module, up to isomorphism. If p − q ≡ 0 (mod 4), there are exactly two
irreducible Clp,q-modules, up to isomorphism. These are mutually opposite and distinguished by
their chirality : consider the operator ω = ωp,q := ιε1 · · · εq · e1 · · · ep. If p − q ≡ 0 (mod 4), then
ω is Clp,q-linear, even and satisfies ω2 = 1. In an irreducible Clp,q-module, ω must act by ±1
(Schur’s lemma), and this sign is the chirality.

Definition 2.3. A Clp,q-Hilbert space H is called ample if it contains each irreducible Clp,q-
module with infinite multiplicity.
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Note that two ample Clp,q-Hilbert spaces are isomorphic. If H is an ample Clp,q-Hilbert space,
s ≥ p, t ≥ q, one can extend the Clp,q-structure on H to an ample Cls,t-structure. There are strong
homotopy theoretic versions of these statements. Let H be a real Hilbert space and let Sp,q(H)
be the set of ample Clp,q-structures; a point in Sp,q(H) is given by p+ q+ 1 linear isometries and
we topologize Sp,q(H) as a subspace of Lin(H)p+q+1, equipped with the norm topology. If H is
understood, we write Sp,q := Sp,q(H). The following result is well-hidden in [7] and [23], and we
make the proof explicit.

Lemma 2.4. If H is infinite dimensional, the space Sp,q = Sp,q(H) is contractible. Moreover, if
s ≥ p, t ≥ q, then the forgetful map Ss,t → Sp,q is a Serre fibration with contractible fibers.

Proof. Fix cs,t ∈ Ss,t and let cp,q ∈ Sp,q be obtained by restriction. Let U = U(H) be the group
of isometries of H, equipped with the norm topology. This group acts by conjugation on Ss,t,
and the action is transitive, by the structure theory of Clifford modules. Let Up,q ⊂ U be the
stabilizer of cp,q. This is the group of all Clp,q-linear and even isometries. By Kuiper’s theorem
[25], U ' ∗. By Morita equivalences and ampleness, Up,q is homeomorphic to either the group
of isometries of an infinite-dimensional Hilbert space over R,C or H or a product of such. Thus
Up,q ' ∗ by [25] as well. The space Sp,q is the homogeneous space U/Up,q and so is contractible.
The forgetful map can be identified with the Up,q/Us,t-bundle U/Us,t → U/Up,q and so the proof
is complete. To make this argument valid, it remains to be shown that U → Sp,q has local sections
(so that U → Sp,q is a Up,q-principal bundle). For this, use that a Clp,q-structure can be viewed
as an orthogonal representation of the finite group G generated by symbols ei, εj , ι, subject to the
Clifford relations and invoke the following general lemma (take V to be the sum of all irreducible
Clp,q-modules). �

Lemma 2.5. Let G be a finite group and let H be a Hilbert space. Let ρ : G→ U(H) be a unitary
representation. Let X ⊂ Hom(G,U(H)) be the space of representations σ such that Hσ (i.e., H
equipped with the G-action induced by σ) is G-isomorphic to Hρ. Endow X with the norm topology,
as a subspace of U(H)G. Then the map π : U(H)→ X, u 7→ uρu−1, has local sections.

Proof. (This proof was suggested to us by the referee) We first construct the local section around
the basepoint ρ. We need to find a neighborhood Y ⊂ X of ρ and a map Y → U(H), σ 7→ Bσ
such that Bσ : Hρ → Hσ is G-equivariant. For each σ ∈ X, define the bounded operator

Aσ :=
1

|G|
∑
g∈G

σ(g)ρ(g−1) ∈ Lin(H).

It is clear that Aρ = 1 and that Aσ ◦ ρ(h) = σ(h) ◦Aσ. Moreover

‖Aσ0 −Aσ1‖ ≤
1

|G|
∑
g∈G
‖σ0(g)− σ1(g)‖

so that σ 7→ Aσ is continuous. In particular, Aσ is invertible if σ is close to ρ. Now let Aσ =
Bσ
√
A∗σAσ be the polar decomposition, with Bσ unitary. The operator

√
A∗σAσ is equivariant as

a map Hρ → Hρ, and so Bσ is equivariant as a map Hρ → Hσ, as claimed.

Now let τ ∈ X be arbitrary. Since π is surjective, there is a unitary u with τ = uρu−1. A
section to π near τ is given by σ 7→ uBu−1σu. �

2.2. The Fredholm model for K-Theory, version 1.

Definition 2.6. For each Hilbert space H, Fred(H) denotes the space of all bounded Fredholm
operators F : H → H, equipped with the operator norm topology. Let H be a Clp,q-Hilbert
space. A Clp,q-Fredholm operator on H is a bounded, Clp,q-linear, self-adjoint and odd Fredholm
operator F : H → H. If H is ample and p − q 6≡ −1 (mod 4), let Fredp,q(H) be the space of
all Clp,q-Fredholm operators on H, equipped with the operator norm topology. If p − q ≡ −1
(mod 4), then Fredp,q(H) is the space of all such Fredholm operators F with the property that the
(self-adjoint) operator ωp,qFι is neither essentially positive nor essentially negative. The subspace
of invertible elements is denoted Gp,q(H) ⊂ Fredp,q(H).
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The relevance of the condition in the case p − q ≡ −1 (mod 4) is the following. One restricts
F to an invertible operator F0 on ker(F )⊥. By a spectral deformation, F0 is homotopic to an
involution f . The datum (ι, ei, fι, εj) forms a Clp+1,q-structure on ker(F )⊥, and the condition is
that this structure is ample. The following is a classical result due to Atiyah-Singer and Karoubi.

Theorem 2.7. [7, 23] If H is an ample Clp,q-Hilbert space, then Fredp,q(H) is a representing
space for the functor KOq−p.

Using the Morita equivalences, it is easy to derive Theorem 2.7 from the version proven in [7].

Lemma 2.8. If H is ample, then Gp,q(H) is contractible.

Proof. This follows without pain from Lemma 2.4: inside Gp,q(H), there is the subspace Gp,q0 (H) of
involutions. By a spectral deformation argument, the inclusion Gp,q0 (H)→ Gp,q(H) is a homotopy
equivalence (the details of this argument can be found in [7]). If F ∈ Gp,q0 (H), then Fι defines an

extension of the Clp,q-structure to a Clp+1,q-structure. Therefore, we can identify Gp,q0 (H) with
the fiber of the restriction map Sp+1,q → Sp,q, and so it is contractible by Lemma 2.4. �

By the symbol Ω Fredp,q(H), we denote the space of continuous paths γ : I := [−1, 1] →
Fredp,q(H) such that γ(±1) ∈ Gp,q(H). This space indeed has the weak homotopy type of the
homotopy-theoretic loop space of Fredp,q(H), provided that H is ample. The proof is a standard
exercise in elementary homotopy theory, using Lemma 2.8.

For many practical purposes, the description of KO-Theory given in Theorem 2.7 is not flexible
enough. Before we can describe a more useful model, we need to say a few words about Fredholm
families on Hilbert bundles.

2.3. A digression on Hilbert bundles.

Convention 2.9. For the rest of this paper, we work in the category CG of compactly generated
Hausdorff spaces [30]. In particular, function spaces and products are understood to be taken
in CG. Likewise, all notions derived from the product, such as topological groups, actions, and
fibre bundles, refer to the product in CG. We remind the reader that metrizable spaces (such as
subspaces of Frechét spaces) belong to CG.

For us, a Hilbert bundle will always be a fiber bundle V → X with structural group U(H)c.o.
and fiber H. Here, H is a separable (possibly finite-dimensional) real Hilbert space and U(H)c.o.
is its unitary group, with the compact-open topology. The fiber over x ∈ X will be denoted Vx.
The trivial Hilbert bundle with fiber H over X will be denoted by the symbol HX . A Clp,q-
structure on V will be described by a tuple of isometric automorphisms ι, e1, . . . , ep, ε1, . . . , εq of
V , satisfying the relations (2.2). A Fredholm family F on V will be given by a collection (Fx)x∈X ,
Fx a Fredholm operator on Vx, and likewise a Clp,q-Fredholm family will be a Fredholm family
such that Fx : Vx → Vx is a Clp,q-Fredholm operator for each x ∈ X. One needs a continuity
condition on x 7→ Fx, and the right formulation of it is a highly nontrivial insight by Dixmier and
Douady [16]. It is given in Definitions 2.10, 2.13 and 2.15 below (we were also strongly influenced
by Atiyah-Segal [9] and Kasparov’s KK-Theory).

Definition 2.10. A homomorphism F : V → V ′ of Hilbert bundles is a fiber-preserving continuous
map which is linear in each fiber.

A homomorphism is determined by a collection (Fx)x∈X of bounded linear operators Fx : Vx →
V ′x. If X is locally compact or metrizable, then the function X → R, x 7→ ‖Fx‖ is locally bounded,
by the Banach-Steinhaus theorem (but in general not continuous).

Example 2.11. Let H be a separable Hilbert space, X a compactly generated topological space
and F : X → Lin(H) be a map. The map HX → HX , (x, v) 7→ (x, F (x)v) is a homomorphism
of Hilbert bundles if and only if F is continuous when the target Lin(H) is equipped with the
compact-open topology.
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The collection (F ∗x )x∈X of adjoint operators may or may not form a homomorphism, and if it
does, we say that F is adjointable. Note that a homomorphism which is pointwise self-adjoint is
adjointable. The set of adjointable endomorphisms of V is a unital ∗-algebra LinX(V ). We say
that F : V → V is an isomorphism or invertible if it is a unit in LinX(V ), in other words: (Fx)x∈X
is an isomorphism if Fx is an isomorphism for all x ∈ X and if the collection ((Fx)−1)x∈X is a
homomorphism. For self-adjoint homomorphisms F : V → V , there is a functional calculus: if
F : V → V is self-adjoint and f : R→ R is a continuous function, then the collection (f(Fx))x∈X
is a homomorphism, see [16, p. 245].

Lemma 2.12. Let V → X be a Hilbert bundle and let F : V → V be a self-adjoint homomorphism.
Assume that there is a continuous function ε : X → (0,∞) such that F 2

x ≥ ε(x)2 for all x ∈ X.
Then F is invertible.

Proof. Invertibility of F is a local (in X) property: if there is an open cover U of X such that
F |U is invertible for all U ∈ U , then F is invertible. Under the assumptions of the Lemma, there
is an open cover U of X and for each U ∈ U , there is ε > 0 such that F 2

x ≥ ε2 > 0 for all
x ∈ U . Let f : R → R be an odd continuous function with f(t) = 1/t for |t| ≥ ε. Then f(F ) is a
homomorphism and for x ∈ U , we have f(Fx)Fx = Fxf(Fx) = 1. Therefore, F |U is invertible for
all U ∈ U and hence F is invertible. �

The notion of a compact operator V → V is more difficult to formulate and we follow [16,
§22] (see also Proposition 3 loc.cit.). Let Γ be the space of continuous sections of V , and for each
s, t ∈ Γ, one defines the adjointable operator θs,t ∈ LinX(V ) by θs,t(v) := 〈s(x), v〉t(x) (for v ∈ Vx).
The linear span of all these operators is a ∗-ideal FinX(V ) ⊂ LinX(V ) (if F is adjointable, then
Fθs,t = θs,F t and θs,tF = θF∗s,t). Clearly, the operator (θs,t)x ∈ Lin(Vx) is of finite rank and
hence an element of Kom(Vx), the space of compact operators in Vx.

Definition 2.13. An endomorphism F = (Fx)x∈X of V is compact if for each x ∈ X and each
ε > 0, there exists G ∈ FinX(V ) and a neighborhood U of x such that for all y ∈ U , one has
‖Fy−Gy‖ ≤ ε. The space of all compact operators is denoted KomX(V ) and is a two-sided ∗-ideal
in LinX(V ).

Note that if F is compact, then Fx is compact for all x ∈ X. It is not hard to characterize
compact operators in trivial bundles.

Lemma 2.14. The compact operators of the trivial Hilbert bundle HX are precisely the continuous
maps X → Kom(H) (the target has the norm topology, in contrast to the situation of Example
2.11).

Definition 2.15. Let V → X be a Hilbert bundle and F ∈ LinX(V ). We say that F is a Fredholm
family if there exists G ∈ LinX(V ) such that FG − 1, GF − 1 ∈ KomX(V ). We say that G is a
parametrix to F . If V is equipped with a graded Clp,q-structure, then a Clp,q-Fredholm family is
a Fredholm family F = (Fx) such that each Fx is self-adjoint, Clifford linear and odd.

We need criteria to check that a family is Fredholm. The first useful thing to know is that on
reasonable spaces, being Fredholm is a local property (it is not a pointwise property).

Lemma 2.16. Let V → X be a Hilbert bundle over a paracompact space and F ∈ LinX(V ).
Assume that there is an open cover U of X such that F |U is Fredholm for all U ∈ U . Then F is
Fredholm.

Proof. Let GU be a parametrix for F |U . Let (λU )U∈U be a partition of unity subordinate to U .
Then

∑
U∈U λUG|U is a parametrix to F (since the property of being compact is local in X). �

Lemma 2.17. Let V → X be a Hilbert bundle over a space. Let (Fx)x∈X be a collection of bounded
operators Fx ∈ Lin(Vx). Assume that each x ∈ X admits a neighborhood U of x and a trivialization
V |U ∼= U × H such that in this trivialization F is given by a continuous map X → Lin(H) (the
target has the norm topology). Then F ∈ LinX(V ). If Fx is compact (invertible) for each x ∈ X,
then F is compact (invertible). If Fx is Fredholm for all x ∈ X, then F is Fredholm, provided that
X is paracompact.
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Proof. The statements on adjointability, compactness and invertibility are trivial consequences of
what we have said so far. Next, recall that the quotient map Lin(H) → Lin(H)/Kom(H) has a
continuous section (both spaces are equipped with the norm topology). This follows from a general
theorem by Bartle and Graves which states that if φ : X → Y is a surjective bounded operator
between Banach spaces, then there is a continuous cross-section σ : Y → X ([10], see also [21, p.
187] for the explicit statement). Using this section, one constructs a map σ : Fred(H)→ Fred(H)
such that σ(F ) is a parametrix for F , for each F ∈ Fred(H). Therefore, if Fx is Fredholm for all
x ∈ X, then F is locally Fredholm. By Lemma 2.16, it follows that F is globally Fredholm. �

Lemma 2.18. Let V → X be a Hilbert bundle, X paracompact and let F ∈ LinX(V ) be self-
adjoint. The following statements are equivalent.

(1) F is a Fredholm family.
(2) There is a continuous function ε : X → (0,∞) such that F 2 ≥ ε2 mod KomX(V ) in the

sense that there exists K ∈ KomX(V ) with F 2 +K ≥ ε2 (pointwise).

Proof. If F is Fredholm, then there is a parametrix G, and we can assume that G is self-adjoint.
Then K = FG− 1 and K∗ = GF − 1 are compact. For x ∈ X, we pick δ > 0 and a neighborhood
U of x such that ‖Gy‖ ≤ δ and hence G2

y ≤ δ2 for y ∈ U (the norm of a homomorphism is

locally bounded). It follows that Fyδ
2Fy ≥ FyG

2
yFy = (1 + Ky)(1 + K∗y ) =: 1 + Ly and therefore

F 2
y ≥ δ−2(1 + Ly) throughout U . Put εx := δ−1. This proves the desired inequality locally.

Globally, one patches the constant functions εx on these neighborhoods together with a partition
of unity.

For the reverse implication, pick K and ε as in (2). Then F 2 +K is invertible (Lemma 2.12) and
FF (F 2 +K)−1−1 = −K(F 2 +K)−1 is compact, proving that F (F 2 +K)−1 is a right-parametrix
of F . Similarly, (F 2 +K)−1F is a left-parametrix. �

2.4. The Fredholm model for K-Theory, version 2. We denote the product of space pairs by
(X,Y )× (Z,W ) := (X × Z,X ×W ∪ Y × Z).

Definition 2.19. Let (X,Y ) be a space pair. A (p, q)-cycle on (X,Y ) is a pair (V, F ), where V
is a Clp,q-Hilbert bundle (with separable fibers) and F a Clp,q-Fredholm family on V . Moreover,
we require that F |Y is invertible. There are obvious notions of pullbacks, direct sum and isometric
isomorphisms of (p, q)-cycles. Two (p, q)-cycles (V0, F0) and (V1, F1) are homotopic or concordant
if there exists a (p, q)-cycle (V, F ) on (X × [0, 1], Y × [0, 1]) such that the restriction of (V, F ) to
X × {i} is isomorphic to (Vi, Fi). Homotopy is an equivalence relation. A (p, q)-cycle is acyclic if
F is invertible. The set of homotopy classes of (p, q)-cycles is an abelian monoid, and we define the
abelian group F p,q(X,Y ) as the quotient of that monoid by the submonoid of homotopy classes
that contain acyclic representatives.

We implicitly said in the definition that F p,q(X,Y ) is a group, and this is indeed true. For
this and similar purposes, we use the following convenient criterion to prove that two (p, q)-cycles
are concordant. We say that a space pair (X,Y ) is a paracompact pair if X is paracompact and
Y ⊂ X is closed. We denote the anticommutator of two operators by

{F0, F1} := F0F1 + F1F0.

Lemma 2.20. Let (V, c, ι, F0) and (V, c, ι, F1) be two (p, q)-cycles on the paracompact space pair
(X,Y ). If the anticommutator {F0, F1} is nonnegative, i.e. {(F0)x, (F1)x} ≥ 0 for all x ∈ X, then
[V, c, ι, F0] = [V, c, ι, F1] ∈ F p,q(X,Y ).

This is a generalization of a special case of a result in KK-theory due to Connes and Skandalis
[11, Proposition 17.2.7]. One important feature of Lemma 2.20 is that the positivity condition can
be checked pointwise, hence often the proof for general X is only notationally more involved than
that for X = ∗.
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Proof. The homotopy is given by Ps := cos(s)F0 + sin(s)F1, s ∈ [0, π/2]. Compute

P 2
s = cos(s)2F 2

0 + sin(s)2F 2
1 + 2 sin(s) cos(s)(F0F1 + F1F0) ≥ cos(s)2F 2

0 + sin(s)2F 2
1 .

There is a function ε : X → (0,∞) such that F 2
i ≥ ε2 mod KomX(V ) (Lemma 2.18) and such that

(F 2
i )|Y ≥ ε2|Y . Therefore P 2

s ≥ ε2 mod KomX(V ) and Ps is a Fredholm family on X × [0, π/2] by
Lemma 2.18. Moreover, the restriction of P to Y × [0, π/2] is invertible by Lemma 2.12. �

Lemma 2.21. Let (X,Y ) be a paracompact pair. Then F p,q(X,Y ) is a group, and the additive
inverse to [V, c, ι, F ] is [V,−c,−ι, F ] or [V, c,−ι,−F ].

Proof. We claim that [V ⊕ V, c ⊕ −c, ι ⊕ −ι, F ⊕ F ] = 0. The operator Q :=

(
ι

ι

)
is an odd,

Clp,q-linear involution that anticommutes with F ⊕F and a straightforward application of Lemma

2.20 concludes the proof. The second formula is proven in the same way with Q =

(
1

1

)
. �

How do these new groups relate to KO-Theory?

Theorem 2.22. Let (X,Y ) be a compact pair. Then the obvious comparison map

[(X,Y ); (Fredp,q(H),Gp,q(H))]→ F p,q(X,Y ).

is bijective.

Moreover, the functor F p,q is representable for paracompact pairs.

Theorem 2.23. There exists a space pair (Kp,q, Dp,q) and a natural map

[(X,Y ); (Kp,q, Dp,q)]→ F p,q(X,Y )

which is bijective whenever X is paracompact and compactly generated and Y ⊂ X closed. More-
over, the space Dp,q is weakly contractible.

Theorems 2.22 and 2.23 are proven in the appendix A. From both theorems, one obtains a
comparison map

(Fredp,q(H),Gp,q(H))→ (Kp,q, Dp,q)

and a formal consequence of the above results is that it is a weak homotopy equivalence (because
Fredp,q(H) and Gp,q(H) are by definition metric spaces and therefore paracompact). Let us have
a look at Bott periodicity in this framework. We write I := [−1, 1], ∂I := {±1} and

ΩF p,q(X,Y ) := F p,q((I, ∂I)× (X,Y )).

Let p ≥ 1 and (V, F ) be a (p, q)-cycle over (X,Y ). Put J := (e1ι). Define a (p− 1, q)-cycle β(V, F )
on (I, ∂I)× (X,Y ) by the formula

β(F )(s,x) := Fx + sJ.

The operator J is self-adjoint and odd and hence so is β(F )(s,x). Since J anticommutes with each

Fx, the formula (β(F )(s,x))
2 = F 2

x +s2 holds and β(F )(s,x) is invertible if s 6= 0 or if F is invertible.
Observe that β(F )(s,x) commutes with ε1, . . . , εq and e2, . . . , ep, but not with e1. When we define

a Clp−1,q-action by reindexing the ei generators, β(F )(s,x) is Clp−1,q-linear. This construction
preserves the equivalence relation defining the F -groups, and we obtain a group homomorphism,
the Bott map

(2.24) bott : F p,q(X,Y )→ ΩF p−1,q(X,Y ).

The Bott periodicity theorem states that (2.24) is an isomorphism for all paracompact and
compactly generated pairs; this follows from the main result of [7], together with Theorems 2.22
and 2.23. Using the Morita equivalences, we obtain natural isomorphisms of functors

Mor1,1 : F p,q ∼= F p+1,q+1, Mor8,0 : F p,q ∼= F p+8,q, Mor0,8 : F p,q ∼= F p,q+8.
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The formulas for the Morita equivalences that we gave make it clear that these maps are compat-
ible with the Bott maps whenever this statement makes sense, i.e. if p > 0. Another fundamental
structure is a KO0-module structure on F p,q(X,Y ). To define it, we use the model for KO0(X,Y )
by complexes of vector bundles, see [3, Part II]. We can slightly reformulate this construction by
saying:

Definition/Proposition 2.25. Let (X,Y ) be a compact pair. Consider the monoid of con-
cordance classes of (0, 0)-cycles such that the underlying Hilbert bundle has finite rank and the
same equivalence relations as in Definition 2.19. The quotient group is naturally isomorphic to
KO0(X,Y ).

The natural map KO0(X,Y ) → F 0,0(X,Y ) is an isomorphism for compact pairs (X,Y ). For
[H, ι, c, F ] ∈ F p,q(Z,W ) and [E, η, P ] ∈ KO0(X,Y ), we define

[H, ι, c, F ] · [E, η, P ] := [H ⊗ E, ι⊗ η, c⊗ 1, F ⊗ 1 + ι⊗ P ].

It is easy to see that this definition yields a well-defined bilinear map

F p,q(Z,W )×KO0(X,Y )→ F p,q((Z,W )× (X,Y )).

If (p, q) = (0, 0), this defines the usual cross product onKO0 under the isomorphism from Theorems
2.22 and 2.23. This product is compatible with Morita equivalences and Bott periodicity, in the
sense that these maps are linear over KO0.

3. Analytical arguments

3.1. Preliminaries on elliptic theory. In this subsection, we recollect some purely analytical
results from the literature. It was written for the convenience of the readers with less background
in analysis (including the author), and we also want to give a reference for further analytical results
needed in [13], which is why we formulate the analysis in greater generality.

Even though our main result only involve differential operators, the proof requires to use the
bigger class of pseudo-differential operators. Let us first summarize the essential properties of
pseudo-differential operators that we will use, following Atiyah and Singer [6, 8]. Let M be a
closed manifold and let E → M be a smooth vector bundle. In [6, §5], a vector space ΨDOm(E)
of linear maps Γ(M ;E) → Γ(M ;E), called pseudo-differential operators of order m ∈ Z (denoted
Pm(M ;E,E) in loc. cit.), is considered whose properties we briefly recall.

Proposition 3.1.

(1) ΨDOm(E) ⊂ ΨDOm+1(E) and
⋃
m∈Z ΨDOm(E) is a filtered algebra. Pseudo-differential

operators have (formal) adjoints.
(2) Pseudo-differential operators have symbols. Let π : T ∗M \ 0→M be the cotangent bundle

without the zero section. The leading symbol of P ∈ ΨDOm(E) is a smooth section smbP
of π∗Hom(E,E)→ T ∗M \0 which is positively homogeneous of degree m in the sense that
smbP (tξ) = tm smbP (ξ), for all 0 6= ξ ∈ T ∗M and t > 0. There is an associated notion of
ellipticity. Moreover, smbP (ξ) ◦ smbQ(ξ) = smbP◦Q(ξ) and smbP∗(ξ) = smbP (ξ)∗.

(3) A differential operator of order m is in ΨDOm(E).
(4) The inverse of an invertible elliptic P ∈ ΨDOm(E) is in ΨDO−m(E).
(5) Convolution operators with smooth kernels lie in ΨDO−∞(E) =

⋂
m ΨDOm(E).

(6) Let P ∈ ΨDOm(E). For each s ∈ R and m ≤ r ∈ R, P induces a bounded operator of the
L2-Sobolev spaces W s(M ;E)→W s−r(M ;E), whose norm we denote by ‖P‖s,s−r.

(7) There is a Fréchet space structure on ΨDOm(E), defined in [8, p. 123 f.]. The map
ΨDOm(E)→ Lin(W s(M ;E),W s−r(M ;E)) is continuous for all s, r ≥ m.

(8) Let Diff(M ;E) be the group of pairs (f, f̂), f a diffeomorphism of M , and f̂ is a smooth
bundle isomorphism E → E covering f . This is a topological group with the topology
described in [8, p. 123]. The group Diff(M ;E) acts linearly on ΨDOm(E) by pulling back,
and this action is continuous (i.e. Diff(M ;E) × ΨDOm(E) → ΨDOm(E) is continuous),
compare [8, Proposition 1.3].



THE TWO DEFINITIONS OF THE INDEX DIFFERENCE 11

We have to consider pseudo-differential operators on noncompact manifolds as well, but only in
a very restricted situation. Let E →M be a smooth vector bundle on a smooth manifold and let
U ⊂M be an open and relatively compact subset. We only consider pseudo-differential operators
P : Γc(M ;E)→ Γc(M ;E) such that

(1) supp(Pu) ⊂ U for all u ∈ Γc(M ;E) and
(2) there is a function λ ∈ C∞c (U) such that P ((1− λ)u) = 0 for all u ∈ Γc(M ;E).

The space of these operators is denoted ΨDOm(E)U . It has all the properties listed above; the

group Diff(M ;E) needs to be replaced by the group Diff(M ;E)U of pairs (f, f̂) such that f is the
identity outside U . A simple method to obtain the Fréchet space structure is to take a compact
submanifold U ⊂ K ⊂ M of codimension 0 and to take the double K ′ of K with E′ → K ′ the
double of E. Extension by zero yields a linear embedding ΨDOm(E)U → ΨDOm(E′). We will
consider the following specific situation.

Assumption 3.2.

(1) Let N be a d-dimensional manifold, equipped with a proper smooth map t : N → R and
let E → N be a smooth vector bundle. For a subset A ⊂ R, we denote NA := t−1(A) ⊂ N
and EA = E|NA . We assume the following conditions on N , t and E.

(2) There are (d − 1)-dimensional closed manifolds M±, smooth vector bundles V± → M±
and numbers r− < R− < R+ < r+ ∈ R such that N− := N(−∞,R−) = (−∞, R−) ×M−,
E− := E(−∞,R−) = (−∞, R−)×V− (as spaces over (−∞, R−)) and the analogous condition
for N+ := N(R+,∞) hold. We write N0 := N(r−,r+) and E0 := E|N0 . The data so far
introduced is called a manifold with cylindrical ends, together with a vector bundle with
cylindrical ends.

(3) A Riemannian metric g on N is cylindrical at the ends if there are Riemannian metrics g±
on M± such that g = dt2 + g± on N±. Likewise, a bundle metric h on E is cylindrical at
the ends if there are metrics h± on V± such that the equality E− = (−∞, R−) × V− and
the analogous equality over (R+,+∞) are equalites of Riemannian vector bundles.

(4) Next, let σ = (σ−, σ+), with σ± being a skew-adjoint endomorphism of V± such that
σ2
± = −1.

(5) The last piece of datum is a linear map D : Γc(N ;E)→ Γc(N ;E) which is symmetric and
has the following properties.

(6) D maps each of the spaces Γc(N0;E) and Γc(N±;E) to itself.
(7) The restriction of D to Γc(N0;E) is a formally self-adjoint first order elliptic pseudo-

differential operator of order 1.
(8) There are invertible formally self-adjoint first order elliptic pseudo-differential operators B±

on V± →M± such that σ±B± +B±σ± = 0 and such that the operators D± = ∂tσ± +B±
on Γc(N±;E) coincide with the restriction of D to Γc(N±;E). To understand this formula,
note that an element in Γc(N±;E) can be viewed as a smooth function R→ Γ(M±;V±).

Note that at least in a formal sense, one can view D as a pseudo-differential operator. Also,
the operators B± are determined by D. We denote H := L2(N ;E), W := W 1(N ;E), H± =
L2(M±;V±) and W± = W 1(M±;V±). The norm on L2(N ;E) = W 0(N ;E) is given by the Rie-
mannian metric on N and the bundle metric on E. To define the Sobolev 1-norm on compactly
supported smooth sections Γc(N ;E), recall first for each relatively compact subset U ⊂ N , the
Sobolev norm on Γc(U ;E) is unique up to equivalence of norms. Let µ+, µ−, µ0 be smooth non-
negative functions on R such that µ− + µ+ + µ0 = 1, such that µ0 is supported in (r−, r+), µ−
is supported in (−∞, R−) and µ+ is supported in (R+,∞). To avoid heavy notation, we use the
symbol µi for the function µi ◦ t on N , which is supported in Ni (and µ0 is compactly supported).
The Sobolev 1-norm ‖u‖W of u ∈ Γc(N ;E) is defined by

‖u‖2W := ‖µ0u‖2W 1(N0) +

∫ R−

−∞
(‖u(t)‖2W− + ‖u̇(t)‖2H−)dt+

∫ ∞
R+

(‖u(t)‖2W+
+ ‖u̇(t)‖2H+

)dt

and its equivalence class does not depend on the specific choice of the functions µi.
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Proposition 3.3.

(1) There are constants C1, C2, C3, such that for all u ∈ W, the elliptic estimate holds:

(3.4) ‖u‖0 ≤ C1‖u‖1 ≤ C2(‖µ0u‖0 + ‖Du‖0) ≤ C3(‖u‖0 + ‖Du‖0).

(2) The operator D with dom(D) =W is a self-adjoint (unbounded) Fredholm operator.

Proof. The first and third inequality in (3.4) are clear. For the second inequality, let u be supported
in N+. Then

‖Du‖2H =

∫ ∞
R+

‖B+u(t)‖2H+
+ ‖u̇(t)‖2H+

dt

since B+ and σ+ anticommute. Since B+ is invertible, there is a constant c > 0 such that
‖B+u(t)‖2H+

≥ c‖u(t)‖2W+
. Altogether, we obtain ‖u‖W ≤ C‖Du‖H for such sections. A similar

estimate holds for sections supported in N−. For sections supported in N0, the usual elliptic
estimate (G̊ardings inequality) holds. One patches all these estimates together by an argument
similar to that for [29, Lemma 3.7].

The proof for essential self-adjointness is the same as that for differential operators given in [19,
Lemma 10.2.1, 10.2.5, Proposition 10.2.10]. The elliptic estimate, Rellich’s theorem and a general
fact [29, Lemma 3.5] imply that D :W → H has closed image and finite-dimensional kernel. Since
D is self-adjoint, the orthogonal complement of the image of D is the same as the kernel, and so
D is Fredholm. �

3.2. Families of pseudo-differential operators with cylindrical ends. We will, very crucially
for our purposes, study families of pseudo-differential operators on bundles of manifolds. Let us
first state precisely what we mean by this term. Let N, t,M±, E, V± be as in Assumption 3.2, but
without metrics and choose functions µi as above. Let F be the set of all tuples (g, h, σ,D) as in
Assumption 3.2. The assignment (g, h, σ,D) 7→ (g, h, σ−, σ+, µ0D0µ0, B−, B+) is an injective map
from F to the Fréchet space

Γ(N ; Sym2T ∗N)× Γ(N ; Sym2E∗)× Γ(M−; End(V−))× Γ(M+; End(V+))×
×ΨDO1(N ;E)N0 ×ΨDO1(M−;V−)×ΨDO1(M+;V+).

We equip F with the subspace topology induced by this map. Let G be the topological group

of all pairs (f, f̂), where f : N → N is a diffeomorphism which is the identity on N− ∪ N+ and

f̂ : E → E is a bundle automorphism covering f such that on the parts E±, f̂ is constant in the
R-direction. This group has the C∞-topology, and it acts on the space F by pullbacks. This action
is continuous, by [8, Proposition 1.3].

Let X be a paracompact space and Q → X be a G-principal bundle. Let Z := Q ×G N → X;
this is a bundle of manifolds “with cylindrical ends” (note that the “end bundle” is trivial). On the
total space Z, there is an associated vector bundle Q×G E → Z. We denote the fiber of Z → X
over x by Zx and the restriction of Q×G E to Zx by Ex.

Definition 3.5. Let Z → X be as above. A family of formally self-adjoint order one elliptic
pseudo-differential operators with cylindrical ends and invertible at infinity is a section of the fiber
bundle Q×G F→ X.

Note that such a family induces Riemannian metrics on the fiber Zx and bundle metrics on the
vector bundles Ex → Zx. Therefore, we can form the Hilbert spaces L2(Zx;Ex) of L2-sections.
We now show how to arrange all these Hilbert spaces in a Hilbert bundle. To this end, we first
consider the case of topologically trivial bundles.

Let M be the space of all (g, h) as in Assumption 3.2, let (g0, h0) ∈ M be a basepoint and
let L2(N ;E)g,h be the Hilbert space of sections with respect to the inner product induced by the
Riemannian metric g and the bundle metric h. We want to define a Hilbert bundle structure on
the disjoint union ∐

(g,h)∈M

L2(N ;E)g,h →M

(which does not yet have a topology). This is based on the following observation.
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Observation 3.6. Let V be a finite-dimensional real vector space and h0 be an inner product on
V . For each other inner product h on V , there exists a unique h0-self-adjoint and positive definite
endomorphism τh0,h of V such that

h(v, w) = h0(τh0,hv, τh0,hw)

for all v, w ∈ V . Since τh0,h depends smoothly on h0 and h, this carries over to the bundle situation.

Similarly, if N is a manifold and g0 a Riemannian metric on N , then for any other Riemannian
metric g on N , let αg0,g : N → (0,∞) be the function with α2

g0,gvolg0 = volg, where volg denotes
the volume measure induced by g. The function αg0,g depends smoothly on the choice of g0 and g.

Let E → N be a real vector bundle. Let L2(N ;E)g,h be the Hilbert space of sections with
respect to the inner product induced by the Riemannian metric g and the bundle metric h. Then
for each s, t ∈ Γc(N ;E), we have

〈s, t〉g,h =

∫
N

h(s, t)dvolg =

∫
N

h0(τh0,hs, τh0,ht)α
2
g0,gdvolg0 = 〈αg0,gτh0,hs, αg0,gτh0,ht〉g0,h0

.

In other words, s 7→ αg0,gτh0,hs defines an isometry

T(g,h),(g0,h0) : L2(N ;E)g,h → L2(N ;E)g0,h0
.

Now let

T =
∐

(g,h)∈M

T(g,h),(g0,h0) : L =
∐

(g,h)∈M

L2(N ;E)g,h →M× L2(N ;E)g0,h0
;

this is bijective and fiberwise an isometry. We declare T to be a homeomorphism; this defines
a bundle structure on L → M. The group G acts on M by pullbacks; the precise formula is

(f, f̂) · (g, h) := ((f−1)∗g, (f̂−1)∗h). This action is covered by an isometric action of G on the
Hilbert bundle L: define

(̃f, f̂) : L2(N ;E)(g,h) → L2(N ;E)((f−1)∗g,(f̂−1)∗h)

by

s 7→ f̂(s(f−1(x))).

It is straightforward to check that this defines an action of G on L, and that (̃f, f̂) is an isometry.
We obtain a Hilbert bundle

Q×G L→ Q×G M,

and given a section of Q×GM→ X (i.e. a choice of metrics on the fibers Zx and Ex), we can pull
back this bundle to a Hilbert bundle on X. To avoid heavy notation, we write H → X for this
Hilbert bundle. Inside Hx, there is the Sobolev space, denoted Wx.

Given a family of pseudo-differential operators as in Definition 3.5, we can form the individual
self-adjoint unbounded Fredholm operators Dx : Wx → Hx (using Proposition 3.3). Using the
functional calculus, we may form the bounded transforms Dx

(1+Dx2)1/2
, which are bounded and self-

adjoint Fredholm operators. Altogether, we obtain a collection x 7→ Dx
(1+Dx2)1/2

of self-adjoint

Fredholm operators on the fibers of H → X. We wish to show that this is a Fredholm family.

Proposition 3.7. The family x 7→ Dx
(1+Dx2)1/2

is a self-adjoint Fredholm family (in the sense of

Definition 2.15) on the Hilbert bundle H → X. Moreover, the family has the stronger continuity
condition described in Lemma 2.17.

The proof is carried out in three steps. The overall structure is best understood in a formal
context. There is a tautological bundle F × N → F, and this carries a tautological family of
pseudo-differential operators. For a given Riemannian metric g on N and bundle metric h on E
(always satisfying the conditions from Assumption 3.2), we denote by Fg,h ⊂ F the subspace of
tuples (g, h, σ,D).

The first step of the proof is to prove the result for the tautological family over Fg,h. In that
case, the Hilbert bundles H is trivialized, and the domains of all the unbounded operators are
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equal. The second step is to prove the result for the tautological family over F, which is reduced
to the first step by a “gauging trick”. The third step is to use general nonsense to reduce the case
of arbitrary bundles to the tautological family. For the first step, we use the following criterion by
Nicolaescu for the continuity of the bounded transform of a family of unbounded operators.

Lemma 3.8. [27, Proposition 1.7] Assume that H is a Hilbert space, Dn, n ∈ N and D are
self-adjoint unbounded operators on H. Assume that

(1) D has a spectral gap.
(2) The domains of all the operators Dn −D contain the domain of D.
(3) There is a sequence of positive numbers cn → 0 with ‖(D −Dn)u‖ ≤ cn(‖u‖+ ‖Du‖) for

all u ∈ dom(D).

Then Dn → D is “Riesz convergent”, which by definition [27, §1] means that Dn
(1+Dn2)1/2

→
D

(1+D2)1/2
is norm convergent.

Proof of Proposition 3.7, first step. We first prove that the map X = Fg,h → Fred(L2(M ;E)),

x 7→ Dx
(1+Dx2)1/2

is continuous (the target has the norm topology induced by g and h). Because X

is a metric space, it suffices to prove sequential continuity. Let Dn → D be a sequence of operators
associated with the convergent sequence xn → x in X. The operators Dn and D all have the same
domain W. Thus the second condition of Lemma 3.8 holds. The first condition of Lemma 3.8
holds in our situation. If 0 is not in the spectrum of D, there is nothing to show, and if 0 is in the
spectrum of D, then it is an isolated eigenvalue because D is a self-adjoint Fredholm operator. In
that case, any sufficiently small λ > 0 does not lie in the spectrum of D, hence D has a spectral
gap. For the third condition, observe that the sequences ‖µ0(Dn−D)‖1,0 and ‖B±,n−B±‖1,0 are
null sequences (use Proposition 3.1). Likewise, the operator norm of σ±,n − σ± on H± converges
to zero. Estimate

(3.9) ‖(Dn −D)u‖H ≤ ‖µ0(Dn −D)u‖H + ‖µ+(Dn −D)u‖H + ‖µ−(Dn −D)u‖H.
The first term is estimated by ‖µ0(Dn −D)‖1,0‖u‖W . The second summand is

‖µ+(Dn −D)u‖H ≤ ‖(B+,n −B+)µ+u‖H + ‖µ+(σ+,n − σ+)u̇‖H ≤
≤ ‖B+,n −B+‖1,0‖u‖W + ‖σ+,n − σ+‖‖u‖W .

The third summand in (3.9) is similarly estimated. So we can find a null sequence cn with ‖(Dn−
D)u‖H ≤ cn‖u‖W and the elliptic estimate proves that the third condition of Lemma 3.8 holds.
Therefore Dx

(1+Dx2)1/2
depends continuously on x. By Lemma 2.17, x 7→ Dx

(1+Dx2)1/2
is a Fredholm

family on the trivial Hilbert bundle HX . �

We now drop the condition that all metrics are constant, in other words, we move to the space
F. This is done by a “gauging trick”, based on Observation 3.6.

Proof of Proposition 3.7, second and third step. Fix a metric g0 on N and a metric h0 on E, both
with cylindrical ends. We will construct a map Φ : F→ Fg0,h0

which is covered by a Hilbert bundle

isometry Φ̂ of the tautological Hilbert bundles that conjugates the families ( Dx
(1+Dx2)1/2

)x over these

spaces. We use Observation 3.6 and define Φ by

(3.10) Φ : (g, h, σ,D) 7→ (g0, h0, τh0,hστ
−1
h0,h

, T(g,h),(g0,h0)DT
−1
(g,h),(g0,h0)).

The Hilbert space isometry is given by T(g,h),(g0,h0) : Hx → HΦ(x). This proves that the tautological
family over F is the pullback of the tautological family over Fg0,h0

, and as the latter is continuous
by the first step of the proof, so is the former.

Now we have proven Proposition 3.7 for the tautological family over F, i.e. for trivial manifold
bundles. If Q→ X is a G-principal bundle, and the manifold bundle is Z = Q×G X, we argue as
follows. Being a continuous family of Fredholm operators is a local property. We may choose a local
section s of Q→ X over U ⊂ X. Under this section, we can view the family of pseudo-differential
operators as a map U → F. This completes the proof. �
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3.3. Formulation of the generalized spectral-flow index theorem.

Assumption 3.11. Let M be a closed manifold and let X be a paracompact space. The projection
map π : X ×R×M → X ×R is an M -bundle, and the projection map Π : X ×R×M → X is an
R×M -bundle, which has cylindrical ends. Let E → X × R×M be a graded (finite-dimensional)
Clp,q-Hilbert bundle. Let g = (g(x,t))(x,t)∈X×R be a family of Riemannian metrics on M . Finally,
let A = (A(x,t))(x,t)∈X×R be a family of odd Clp,q-linear pseudo-differential operators of order 1
(A(x,t) is a pseudo-differential operator on the bundle E(x,t) := E|(x,t)×M ). We assume that all
data are smooth in the R×M -direction and cylindrical outside I, and that A(x,t) is invertible for
|t| ≥ 1.

There is a version of these data relative to a closed subspace Y ⊂ X. In that case, we assume
that g(y,t) is independent of t for y ∈ Y , that E|Y×R×M is of the form pr∗Y×M E0 (as a Clp,q-Hilbert
bundle) and that Ay,t does not depend on t if y ∈ Y (note that in particular A(y,t) is invertible for
all (y, t) ∈ Y × R).

Definition 3.12. Let M , X, Y , g, E and A be as in Assumption 3.11. The family (x, t) 7→
A(x,t)

(1+A(x,t)
2)1/2

defines an element Λ(E,A) ∈ ΩF p,q(X,Y ) (by a simple application of Proposition

3.7).

So far, we considered the M -bundle π. We want to define a family of operators on the R×M -
bundle Π, and obtain an index in F p+1,q(X) (using the analysis contained in Proposition 3.7). For
that, we need one more piece of datum.

Assumption 3.13. Let M , X, g, E and A be as in Assumption 3.11. Consider E as a vector
bundle over the manifold bundle Π, and pick a Clp,q-linear metric connection ∇ on E such that
the grading involution ι is parallel and such that ∇ is cylindrical outside X × I and over Y × R
(this implies that outside X × I and over Y × R, the operator ∇∂t is the same as ∂t). For x ∈ X,
we obtain a vector bundle Ex = E|x×R×M → R×M . The operators A(x,t) induce an operator Ax
on Γc(R×M ;Ex) (which is not elliptic). Likewise, the connection ∇ induces an operator ∇∂t on
Γc(R×M ;Ex).

Definition 3.14. The suspension of the data (E,A,∇) is the following amount of data. Let
ΣE := E ⊕ E → X × R×M . We define a Clp+1,q-action c′ and a grading ι′ by

ι′ :=

(
ι
−ι

)
, c′(e1) :=

(
ι

−ι

)
, c′(εi) :=

(
εi

εi

)
, c′(ei) :=

(
ei−1

ei−1

)
(i ≥ 2).

It is easy to see that

(3.15) (DA)x :=

(
Ax −∇∂t
∇∂t −Ax

)
is a symmetric, odd and Clp+1,q-linear pseudo-differential operator (DA)x : Γc(x×R×M ; ΣE)→
Γc(x× R×M ; ΣE) of order 1. Since outside X × I, ∇∂t = ∂t, the operator (DA)x is of the form
that was considered in section 3.1 so that all the results now apply to this situation. In particular,
we get a Clp+1,q-Fredholm operator (DA)x by Proposition 3.3. Due to Proposition 3.7, we get a
Clp+1,q-Fredholm family

x 7→ (DA)x
(1 + (DA)2

x)1/2

over X and hence a well-defined element susp(E,A,∇) ∈ F p+1,q(X).

We wish to have a relative index as well.

Lemma 3.16. We use the notation of Assumptions 3.11 and 3.13. Then susp(E,A,∇) defines a
relative K-theory class in F p+1,q(X,Y ) which does not depend on the choice of ∇. This K-theory
class is denoted by susp(E,A).
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Proof. There is a function c : Y → (0,∞) such that A2
y ≥ c(y) holds for all y ∈ Y . Then

(DA)2
y =

(
A2
y +∇∗∂t∇∂t

A2
y +∇∗∂t∇∂t

)
≥ c(y)

(to get this simple formula for D2
A, it is necessary that Ay,t does not depend on t). Therefore(

(DA)y

(1 + (DA)y
2
)1/2

)2

≥ c(y)2

1 + c(y)2
.

The function y 7→ c(y)2

1+c(y)2 is positive on Y , and thus
(DA)y

(1+(DA)y
2)1/2

is invertible, by Lemma 2.12.

The independence of ∇ is clear: the space of connections with the properties used in the
construction is convex, and we built in concordance invariance into the definition of F p,q. �

Definition 3.17. A symmetric elliptic pseudo-differential operator D of order 1 on sections of a
vector bundle E → M on a Riemannian manifold is called pseudo-Dirac operator if the leading
symbol smbD is the leading symbol of a differential operator of Dirac type [12, Def. 3.1]. In
other words, we require that ξ 7→ smbD(ξ) is a linear map and for all ξ ∈ T ∗M , the equation
smbD(ξ)2 = +|ξ|2 holds.

We can now finally state the first version of the main result of this paper, which is a generalization
of the spectral-flow index theorem. Recall the Bott map bott : F p+1,q(X,Y )→ ΩF p,q(X,Y ).

Theorem 3.18. Let (X,Y ) be a compact CW pair. Assume that M , g, E and A is as in Assump-
tion 3.11 and that in addition, A(x,t) is a pseudo-Dirac operator for all (x, t) ∈ X × R. Then the
two elements bott ◦ susp(E,A) and Λ(E,A) in ΩF p,q(X,Y ) are equal.

The proof of Theorem 3.18 will use a K-theoretic reformulation that we now develop.

Definition 3.19. Let (X,Y ) be a pair of spaces and let M be a closed Riemannian manifold.
Consider the abelian group, generated by isomorphism classes of pairs (V,A), where

(1) V → X ×M is a finite-dimensional Clp,q-Hilbert bundle, smooth in M -direction.
(2) A = (A(x,t))(x,t)∈X×R is a smooth (in t-direction) family of Clp,q-linear, odd pseudo-Dirac

operators on R× V → X ×R×M such that A(x,t) = A(x,1) for t > 1, A(x,t) = A(x,−1) for
t < −1, A(x,±1) is invertible for each x ∈ X and A(y,t) is t-independent for each y ∈ Y .

There are obvious notions of direct sum, isomorphism and concordance of pairs (V,A), and concor-
dance is an equivalence relation on the set of isomorphism classes. We consider the abelian group
generated by the concordance classes of pairs [V,A] and divide out the subgroup generated by the
following relations.

(1) [V0, A0] + [V1, A1] = [V0 ⊕ V1, A0 ⊕A1].
(2) [V,A] = −[V,A′], where A′ is the family A′(x,t) = A(x,−t).

The quotient group by this equivalence relation is denoted Lp,qM (X,Y ).

Given such a pair (V,A), we have the bundle R× V → X ×R×M and we are in the situation
of Assumptions 3.11 and 3.13. Therefore, using Lemma 3.16, we have elements

susp(V,A) := susp(R× V,A) ∈ F p+1,q(X,Y ) and Λ(V,A) := Λ(R× V,A) ∈ ΩF p,q(X,Y ).

Remark 3.20. The connection ∇ on R × V used to define the suspension can be chosen so that
∇∂t = ∂t.

Proposition 3.21. The classes susp(R × V,A) ∈ F p+1,q(X,Y ) and Λ(R × V,A) ∈ ΩF p,q(X,Y )
only depend on the equivalence class [V,A] ∈ Lp,qM (X,Y ).
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Proof. That both construction preserve direct sums is trivial. That they preserve concordances is
also quite clear, using Proposition 3.7 (since a homotopy defines a pair on the product bundle over
X× I). Reflection in the R-axis acts by multiplication with −1 on ΩF p,q(X,Y ). This follows from
Theorems 2.22, 2.7 and [1, Lemma 2.4.5]. Therefore the Λ-construction preserves the reflection
relation in Lp,qM (X,Y ). That the suspension preserves the reflection relation is less trivial to prove.
Let φ : H → H be the involution induced by reflection t 7→ −t, which preserves the Clifford
structure and the grading. Conjugating DA′ by φ gives the operator φDA′φ. The direct sum
DA ⊕ φDA′φ is

F :=


At −∂t
∂t −At

At ∂t
−∂t −At

 , and we define Q :=


1

−1
−1

1

 .

The operator Q anticommutes with F , is Clp+1,q-linear, self-adjoint, odd and satisfies Q2 = 1.
This implies that F

(1+F 2)1/2
is homotopic to an invertible operator, by Lemma 2.20 (note that the

normalizing function x
(1+x2)1/2

is odd, and thus F
(1+F 2)1/2

anticommutes with Q). �

Therefore, we have two maps

bott ◦ susp, Λ : Lp,qM (X,Y )→ ΩF p,q(X,Y ).

The K-theoretic version of Theorem 3.18 is

Theorem 3.22. If the manifold M is nonempty and of positive dimension, then the two maps
bott ◦ susp and Λ : Lp,qM (X,Y )→ ΩF p,q(X,Y ) agree for each finite CW pair (X,Y ).

It might seem that Theorem 3.18 follows immediately from Theorem 3.22. However, the proof
requires a nontrivial argument and is therefore deferred to section 4.2 below.

3.4. The definitions of the index difference. Let Md be a closed d-dimensional spin manifold,
with a Riemannian metric g. Let us briefly recall the spin package [26, §II.7]. The spinor bundle
/Sg → M is a finite-dimensional, fiberwise irreducible ClTM -Cld,0-Hilbert bimodule bundle. It
carries a canonical connection ∇ inherited from the Levi-Civita connection on M . Using Clif-
ford multiplication and the connection, one defines the Atiyah-Singer-Dirac operator /Dg as the
composition

Γ(M ; /Sg)
∇→ Γ(M ;T ∗ ⊗ /Sg)

c→ Γ(M ; /Sg);

this is a Cld,0-linear, odd and symmetric elliptic differential operator. It is related to scalar
curvature by the Schrödinger-Lichnerowicz formula

(3.23) /D
2
g = ∇∗∇+

1

4
scalg.

We wish to give the precise definitions of the index difference and to this end, we produce the
data as described in Assumption 3.11. Let R(M) be the space of Riemannian metrics (an open
convex subspace of the Fréchet space of smooth symmetric bilinear forms on the tangent bundle
of M) and R+(M) ⊂ R(M) be the subspace of metrics with positive scalar curvature. We put
X = R+(M)×R+(M) and let Y = ∆ ⊂ X be the diagonal. Pick a smooth function a : R→ [0, 1]
that is 1 on (−∞,−1] and 0 on [1,∞). Let x = (x−1, x1) ∈ R+(M)×R+(M) and t ∈ R. Let

g(x,t) := a(t)x−1 + (1− a(t))x1.

If |t| ≥ 1, the scalar curvature of g(x,t) is positive; likewise, if x ∈ Y (i.e. x−1 = x1), then g(x,t)

does not depend on t and has positive scalar curvature. This construction yields a fiberwise metric

on the M -bundle π : X ×R×M → X ×R. Let /S
d → X ×R×M be the fiberwise spinor bundle

(the superscript should remind the reader that it is a Cld,0-bundle). On the fiber π−1(x, t), there

is the Atiyah-Singer-Dirac operator /Dg(x,t) , which is Cld,0-linear and yields a family /D
d

of elliptic

operators over X × R. By construction, all these data are cylindrical outside X × I and constant
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in R-direction over Y . Therefore, we are in the situation of Assumption 3.11 and the connection
∇ satisfies the properties of Assumption 3.13. By the formula (3.23), /Dg(x,t) is invertible whenever

|t| ≥ 1 or x inY . All the assumptions of our analysis are satisfied, and we define Hitchin’s version
of the index difference as

inddiffH := Λ( /S
d
, /D

d
) ∈ ΩF d,0(X,Y ).

Since (X,Y ) is a paracompact and compactly generated pair, we can invoke Theorem 2.23 and
obtain a well-defined homotopy class

inddiffH : (R+(M)×R+(M),∆)→ (ΩKd,0,ΩDd,0).

To give Gromov and Lawson’s definition of the index difference, we consider the trivial R×M -
bundle

Π : R+(M)×R+(M)× R×M → R+(M)×R+(M).

We equip the fiber over x ∈ R+(M) × R+(M) with the metric dt2 + g(x,t). There is the spinor

bundle /S
d+1

of the R×M -bundle Π (with the above metric), with the family of Dirac operators

/D
d+1

. The suspension of /S
d

is /S
d+1

. This of course depends on a convention how a spin structure
on M induces a spin structure on the cylinder R ×M , but we do not spell out the convention

here. The operators /D
d+1

and D /Dd are not quite the same, but they have the same symbol and

they agree over Y × R and outside X × I. Therefore, the Fredholm families defined by /D
d+1

and
D /Dd are concordant over (X,Y ) and so they define the same element in F d+1,0(X,Y ). We define

Gromov and Lawson’s version of the index difference as

inddiffGL := susp( /S
d
, /D

d
) ∈ F d+1,0(X,Y )

and get a map

inddiffGL : (R+(M)×R+(M),∆)→ (Kd+1,0, Dd+1,0).

If (X,Y ) is a finite CW pair and f : (X,Y ) → (R+(M) × R+(M),∆), then inddiffH ◦f ∼
bott ◦ inddiffGL ◦f (relative homotopy) by Theorem 3.18, and so we have proven Theorem A.

4. Proof of the main result

In this section, we give the proof of Theorem 3.22 which follows a common pattern in index
theory: we use K-theoretic arguments to reduce the problem to a single index computation, and
this formal idea is the same as in the classical papers [6, 2]. Recall that Theorem 3.22 asserts the
commutativity of the diagram

Lp,qM (X,Y )
susp //

Λ ''

F p+1,q(X,Y )

bott

��
ΩF p,q(X,Y ).

The most difficult step is the following result.

Theorem 4.1. If M is nonempty and of positive dimension and (X,Y ) a CW pair, the map
Λ : Lp,qM (X,Y )→ ΩF p,q(X,Y ) is an isomorphism.

This is proven in section 4.1 and relies on the richness of the class of pseudo-differential operators.
An interesting aspect is that Lp,qM does not depend on M . In section 4.3, we prove certain formal
properties of the groups Lp,q := Lp,qM and the maps susp and Λ; these formal properties are then
used to reduce everything to the simple special case (p, q) = (0, 1) and (X,Y ) = (∗, ∅). We give
an explicit computation for this case, alternatively, one could use the classical spectral-flow-index
theorem as proven by Robbin and Salamon [29].
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4.1. Spaces of invertible pseudo-differential operators with given symbol. Here we prove
Theorem 4.1, which is essentially a result on spaces of invertible pseudo-differential operators.
Throughout this section, we fix a Clifford index (p, q) (the case (p, q) = (0, 1) is what is really
important for us).

Definition 4.2. Let M be a closed Riemannian manifold and V → M be a finite-dimensional
Clp,q-Hilbert bundle. For m ∈ Z, let ΨDOm

Cl(V ) ⊂ ΨDOm(V ) be the space of order m, Clp,q-linear
pseudo-differential operators acting on V . Let ΨDOm

Cl(V )sa,odd ⊂ ΨDOm
Cl(V ) be the subspace of

symmetric and odd elements (a similar national convention is used for all Z/2-graded ∗-algebras
in the sequel). These spaces carry the Fréchet space topology inherited from ΨDOm(V ).

Assume that V has a Cl(TM)-left module structure, so that pseudo-Dirac operators on V exist.
Let ΨDir(V ) ⊂ ΨDO1

Cl(V )sa,odd be the space of (Clp,q-linear, odd) pseudo-Dirac operators and
let ΨDir(V )× be the open subspace of invertible operators. We assume that ΨDir(V )× 6= ∅ and
pick a basepoint B ∈ ΨDir(V )×. Then ΨDir(V ) is the affine subspace B + ΨDO0

Cl(V )sa,odd ⊂
ΨDO1

Cl(V )sa,odd. Let

X := mapC∞((I, ∂I,−1); (ΨDir(V ),ΨDir(V )×, B))

be the space of all smooth families A : I→ ΨDir(V ) such that A(1) is invertible and A(−1) = B.
There is a map

Θ : X→ Ω Fredp,q(L2(M ;V )), Θ(A) := (t 7→ A(t)

(1 +A(t)
2
)1/2

);

one uses Proposition 3.7 to show that t 7→ A(t)

(1+A(t)2)1/2
defines an element in Ω Fredp,q(L2(M ;V ))

and that Θ is continuous. The analytical core of Theorem 4.1 is the following result.

Proposition 4.3. Let M and V as above. Assume that the Hilbert space H := L2(M ;V ) is ample
and that there exists an invertible Clp,q-linear, odd pseudo-Dirac operator B on V . Then the map
Θ is a weak homotopy equivalence.

The idea for the proof of Proposition 4.3 that we give is borrowed from Booß-Wojciechowski
[12, §15]. We will use the following general result on homotopy types of open subsets of topological
vector spaces, due to Palais.

Theorem 4.4. [28, Corollary to Theorem 12] Let f : V0 → V1 be a continuous linear map between
locally convex topological vector spaces. Assume that f has dense image. Let U ⊂ V1 be open.
Then f |f−1(U) : f−1(U)→ U is a weak homotopy equivalence.

The linear structure in Theorem 4.4 is essential, and the first step is to replace A 7→ A
(1+A2)1/2

by a linear map. Consider S := (1 + B2)−1/2, which is an invertible pseudo-differential operator
of order −1.

Lemma 4.5. The map Θ′ : X → Ω Fredp,q(H), A 7→ (t 7→ S1/2A(t)S1/2) is continuous and
homotopic to Θ.

Proof. The map ΨDO1(V ) → Lin(W 1/2,W−1/2) that takes a pseudo-differential operator to its
induced map on Sobolev spaces is continuous by Proposition 3.1. On the other hand, the estimate

‖S1/2AS1/2‖0,0 ≤ ‖S1/2‖−1/2,0‖A‖1/2,−1/2‖S1/2‖0,1/2
shows that the map Lin(W 1/2,W−1/2) → Lin(W 0,W 0), A 7→ S1/2AS1/2 is continuous as well.
Therefore, Θ′ is continuous. A homotopy between Θ and Θ′ is given by

Θs : A 7→
(
t 7→ (1 + sB2 + (1− s)A(t)2)−1/4A(t)(1 + sB + (1− s)A(t)2)−1/4

)
. �
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For the rest of the proof of Proposition 4.3, we work with Θ′. Recall that we fixed a basepoint
B ∈ ΨDir(V )× and we let B0 := S1/2BS1/2 = B

(1+B2)1/2
. Let KomCl(H)sa,odd ⊂ Kom(H) be the

space of self-adjoint, odd, Clifford-linear compact operators on H and (B0 + KomCl(H)sa,odd)
×

be the space of all invertible (self-adjoint, odd, Clifford-linear) operators on H that differ from B0

by a compact operator. Observe that we get a map

ϕ : ΨDir(V )× → (B0 + KomCl(H)sa,odd)
×, A 7→ S1/2AS1/2

(by Rellich’s theorem), which is continuous by the argument given in the proof of Lemma 4.5. The
next step is to prove:

Proposition 4.6. The map ϕ is a weak homotopy equivalence.

Proof. Consider the continuous linear map θ : ΨDO0
Cl(V )sa,odd → KomCl(H)sa,odd, θ(P ) :=

S1/2PS1/2. Let U ⊂ KomCl(H)sa,odd be the open subset of all Q such that B0 +Q is invertible.
There is a commutative diagram

θ−1(U)
θ|θ−1(U) //

P 7→B+P

��

U

Q 7→B0+Q

��
ΨDir(V )×

ϕ // (B0 + KomCl(H)sa,odd)
×;

the vertical maps are homeomorphisms. Proposition 4.6 follows if we can show that θ−1(U)→ U
is a weak homotopy equivalence, and this follows from Theorem 4.4 once we know that θ has
dense image. The map θ factors as ΨDO0

Cl(V )sa,odd → ΨDO−1
Cl (V )sa,odd → KomCl(H)sa,odd, the

first is P 7→ S1/2PS1/2 and a homeomorphism, and so we have to prove that ΨDO−1
Cl (V )sa,odd →

KomCl(H)sa,odd has dense image. It is a standard result that infinitely smoothing operators are
dense in the space of all compact operators (without the conditions “self-adjoint, Clp,q-linear,
odd”) and so the image of ΨDO0(V ) → Kom(H) is dense: one picks an orthonormal basis (en)
in H = L2(M ;V ) consisting of smooth sections. The operators u 7→ 〈u, em〉en are infinitely
smoothing and they span a dense subspace of the compact operators. To see that one can built in
the algebraic conditions (“self-adjoint, odd and Clp,q-linear”), let Γ ⊂ Clp,q be the multiplicative
subgroup generated by all ei, εj . Then the formula

(4.7) K 7→ 1

4|Γ|

∑
γ∈Γ

γKγ−1 − ιγKγ−1ι

+
1

4|Γ|

∑
γ∈Γ

γKγ−1 − ιγKγ−1ι

∗

defines a projection Kom(H) → KomCl(H)sa,odd which maps the image of ΨDO−1(V ) to the

image of ΨDO−1
Cl (V )sa,odd. �

Corollary 4.8. The map

X→ map((I, ∂I,−1); (B0 + KomCl(H)sa,odd, (B0 + KomCl(H)sa,odd)
×, B0)),

defined by A 7→ (t 7→ S1/2A(t)S1/2), is a weak homotopy equivalence.

Proof. The spaces B0 + KomCl(H)sa,odd and ΨDir(V ) are convex, and by Proposition 4.6, the
map between the spaces of invertibles is a weak homotopy equivalence. Hence

(ΨDir(V ),ΨDir(V )×, B)→ (B0 + KomCl(H)sa,odd, (B0 + KomCl(H)sa,odd)
×, B0)

induces a weak homotopy equivalence on mapping spaces. By smooth approximation and another
application of Theorem 4.4, one shows that the inclusion

X = mapC∞((I, ∂I,−1); (ΨDir(V ),ΨDir(V )×, B))→ map((I, ∂I,−1); (ΨDir(V ),ΨDir(V )×, B))

is a weak homotopy equivalence. �
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The third and last step of the proof of Proposition 4.3 is purely topological, and needs another
lemma.

Lemma 4.9. Let

L

j

��

⊂ // K

��
G

⊂ //

��

F

q

��
C C

be a commutative diagram of fibrations, and let y ∈ L be a basepoint. Assume that G and K are
contractible. Then the map

map((I, ∂I, 0); (K,L, y))→ map((I, ∂I); (F,G)) ' ΩF

induced by the inclusion K ⊂ F is a weak homotopy equivalence.

Proof. The map factors as

map((I, ∂I, 0); (K,L, y))→ map((I, ∂I, 0); (F,G, j(y)))→ map((I, ∂I); (F,G)),

and the second map is a weak equivalence since G is contractible. The effect of the first map on πk
is easily identified with the map πk+1(K,L, y) → πk+1(F,G, j(y)) induced by the inclusion. This
latter map is an isomorphism by [31, Proposition 6.3.8]. �

Proof of Proposition 4.3. One applies the previous lemma. Let F ⊂ Fredp,q(H) be the compo-
nent containing Gp,q, G = Gp,q. As we assumed that H is ample, G is contractible by Lemma
2.8. Let C be the image of F under the quotient map q : LinCl(H)sa,odd → CalCl(H)sa,odd :=
(LinCl(H)/KomCl(H))sa,odd to the Calkin algebra. We define y := B0 ∈ G. Then the fibers over
q(y) ∈ C are L = (B0 + KomCl(H)sa,odd)

× ⊂ K = (B0 + KomCl(H)sa,odd), respectively. The
quotient map q : F → C and the restriction q : G → C are Serre fibrations. This is a folklore
result, stated and proven as Proposition B.1 below. Invoking Corollary 4.8 and Lemma 4.9 finishes
the proof. �

We now turn to the proof of Theorem 4.1. The first step is to show that here exist enough
Clp,q-bundles on M so that the statement has a chance to be true.

Lemma 4.10. Assume that M 6= ∅ is a closed Riemannian manifold of positive dimension. Then
there exists a Clp,q-bundle V → M such the Hilbert space L2(M ;V ) is ample and such that there
is an invertible, Clp,q-linear, odd pseudo-Dirac operator on V .

Proof. Start with any nonzero Cl0,0-Dirac bundle V0 → M , for example, one could take V0 :=
Λ∗T ∗M . Let N0 be a finite-dimensional graded Clp,q-module that contains each of the finitely
many irreducible graded real Clp,q-modules and consider the Clp,q-Dirac bundle V1 := V0⊗̂N0

(graded tensor product). The Clp,q-Hilbert space L2(M ;V1) is then ample. Consider V = V1⊕V op1 .

There exists a Clp,q-linear odd pseudo-Dirac operator A on V . For example, one can take an
arbitrary Dirac operator on V1 and apply the operation (4.7) to obtain a Clp,q-linear and odd
operator A1 and define A := A1⊕A1. By Lemma 2.21, A has index zero in KOq−p(X). Therefore,
there exists a compact operator R such that A + R is invertible. Among the compact operators,
those with a smooth integral kernel lie dense and thus we can pick R to be a smoothing operator.
Then A+R is the desired invertible pseudo-Dirac operator. �

Proof of Theorem 4.1. First we prove surjectivity. Any element in ΩF p,q(X,Y ) can be represented
as the class [H,F ], where H is an ample Clp,q-Hilbert space and F : X → Ω Fredp,q(H) a map
which maps Y to constant paths of invertible operators. By Lemma 4.10, there exists an ample
Clp,q-bundle V →M (i.e. L2(M ;V ) is ample) and an invertible pseudo-Dirac operator B on V . It
follows that H ∼= L2(M ;V ), since ample Clp,q-linear Hilbert spaces are unique up to isomorphism.
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Thus F can be assumed to be a map X → Ω Fredp,q(L2(M ;V )) that sends Y to paths of invertible
operators. By Proposition 4.3, F is homotopic to a family of smooth curves of pseudo-Dirac
operators beginning at B and ending with an invertible one (here we used that (X,Y ) is a CW
pair, as the map in Proposition 4.3 is only a weak homotopy equivalence). This proves surjectivity.

Injectivity is by a similar argument. Let
∑
i ai[Vi, Ai] ∈ L

p,q
M (X,Y ) be an element in the kernel

of Λ. Due to the relation [V,A] = −[V,A′] in Definition 3.19, we can assume that all coefficients
ai ∈ Z are positive. By the direct sum relation, we can represent the element by a single [V,A]. If
V is not ample, we pick an ample bundle V ′ and the constant invertible family A′ (Lemma 4.10).
Then [V ′, A′] = 0 and the bundle V ⊕ V ′ is ample. Thus, without loss of generality, the element is
[V,A] with an ample V . The statement that Λ[V,A] = 0 means that the family Λ(A) of Fredholm
operators is homotopic to an invertible family, by Theorem 2.22. Again, by Proposition 4.3, we
can lift this homotopy to a homotopy of pseudo-Dirac operators and this means, by the homotopy
relation in Lp,qM (X,Y ), that [V,A] = 0. �

4.2. From Theorem 3.22 to Theorem 3.18: Deformation of symbols. Let M be a closed
manifold and let (X,Y ) be a finite CW pair. Let E → X × R ×M be a Clp,q-Hilbert bundle,
which is cylindrical over Y × R and outside X × I. In the situation of Theorem 3.18, we have a
family g(x,t) of Riemannian metrics on M and a family A(x,t) of pseudo-Dirac operators, subject to
the conditions from Assumption 3.11. We can apply the gauging trick as in the second step of the
proof of Proposition 3.7 to make the bundle E constant in R-direction (as a Clp,q-Hilbert bundle).
Thus, we can assume that E = R × V , for some Clp,q-bundle V → X ×M . If the Riemannian
metric g(x,t) were independent of (x, t), we would be in the situation of Theorem 3.22 and could
conclude that bott(susp(E,A)) = Λ(E,A), as required.

However, Theorem 3.18 does not assume that g(x,t) does not depend on (x, t), and for the
application to positive scalar curvature, it is of course essential to allow for varying metrics. We
could try to apply the gauging trick to the metrics g(x,t), as in the proof of Proposition 3.7, and
turn them into the Riemannian metric g0, which does not depend on (x, t). However, changing
the operator family as in (3.10) leaves the symbol of A(x,t) invariant. Therefore, the transformed
operator is no longer a pseudo-Dirac operator, because the square of the leading symbol is ξ 7→
g(x,t)(ξ, ξ), and this is different from g0(ξ, ξ). However, we have achieved something, and summarize
our progress.

Proposition 4.11. Let X, Y , M , E = R × V and (g(x,t))(x,t) be as in Assumption 3.11. Let
(A(x,t))(x,t) be a family of pseudo-Dirac operators, satisfying Assumption 3.11. Let g0 be a fixed
Riemannian metric on M . Then there exists a family of pseudo-differential operators (B(x,t))(x,t)

such that

(1) The family (B(x,t)) satisfies Assumption 3.11 with respect to the metric g0.

(2) smbB(x,t)
= smbA(x,t)

, in particular smbB(x,t)
(ξ)2 = g(x,t)(ξ, ξ).

(3) Λ(V,B) = Λ(V,A) ∈ ΩF p,q(X,Y ) and susp(V,B) = susp(V,A) ∈ F p+1,q(X,Y ).

The remaining task is to show that we can deform the operator family B back into a family of
pseudo-Dirac operators, without changing either index.

Proposition 4.12. Assume the notations of Proposition 4.11. Then there exists a family B(s,x,t),
(s, x, t) ∈ [0, 1]×X×R, satisfying Assumption 3.11 with base space pair ([0, 1]×X, [0, 1]×Y ) such
that B(0,x,t) = B(x,t) and such that B(1,x,t) is a pseudo-Dirac operator.

Writing (Bs)(x,t) := B(s,x,t), it then follows that Λ(V,B0) = Λ(V,B1) and susp(V,B0) =
susp(V,B1), as claimed.

Proof. As all operators are independent of t for |t| > 1, we restrict our attention to X × I. Let

X × I q→ Z := X × I/ ∼, (x, t) ∼ (x′, t′) :⇔ x = x′ ∈ Y.
The initial family B(x,t) is pulled back via q, and we shall construct the family B(s,x,t) over Z pull
it back using q, to guarantee t-independence over Y . We denote points in Z by (x, t). We write
Z0 :=:= (Y × I ∪X × ∂I)/ ∼.
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We first construct the symbol b(s, x, t) of B(s,x,t) and then show how to lift the deformation
of symbols to a deformation of operators. Let h(x,t) be the g0-positive definite endomorphism of
T ∗M such that

g(x,t)(h(x,t)ξ, h(x,t)ξ) = g0(ξ, ξ)

holds for all ξ ∈ T ∗M . As explained in Observation 3.6, we can pick h(x,t) to depend smoothly on
t and continuously on x. Let

b(s,x,t)(ξ) := smbB(x,t)
(((1− s) + sh(x,t))ξ), (s, x, t) ∈ [0, 1]× Z

for unit cotangent vectors ξ of length 1. Clearly, b(s,x,t) is an elliptic symbol which is Clp,q-linear,
self-adjoint and odd.

Pick a basepoint o ∈ X and let Vo := V |o×M . Let H be the topological group of all even,
Clp,q-linear isometries of Vo. Then there is an H-principal bundle P → Z, constant in I-direction
and an isomorphism V ∼= P ×H Vo of bundles over Z.

Let Smb0(Vo) be the ∗-algebra of Clifford-linear smooth symbols of order 0 on V . More precisely,
it is the algebra of all smooth sections of the bundle π∗ EndCl(V )→ ST ∗M , the bundle of Clp,q-
linear endomorphisms of V , pulled back to the unit cotangent bundle of M . Let Smb0(Vo) be
the closure under the maximum norm; this is a C∗-algebra. It is a graded C∗-algebra, by the
even/odd-grading and the maximum norm.

The closure ΨDO
0

Cl(Vo) under the ‖ ‖0,0-operator norm is a graded C∗-algebra. By [6, (5.2)],

the symbol map ΨDO
0

Cl(Vo) → Smb0(Vo) is a surjective ∗-homomorphism. The group H acts on
both algebras and we get the bundle map

P ×H ΨDO
0

Cl(Vo)→ P ×H Smb0(Vo)

over Z. The induced map

(4.13) Γ(Z;P ×H ΨDO
0

Cl(Vo))→ Γ(Z;P ×H Smb0(Vo))

is a surjective homomorphism of C∗-algebras (with the maximum norm). By Proposition B.1, the
restriction

Γ(Z0;P ×H ΨDO
0

Cl(Vo))
×
sa,odd → Γ(Z0;P ×H Smb0(Vo))

×
sa,odd

to the subspaces of odd, self-adjoint invertible elements is a fibration. Pick a Clp,q-linear metric
even connection ∇ on V . The family C(0,x,t) := (1 +∇∗∇)−1/4B(x,t)(1 +∇∗∇)−1/4 is a section of

Γ(Z;P ×HΨDO
0

Cl(Vo))sa,ev, with smbC(0,x,t)
(ξ) = b(0,x,t)(ξ) for all unit vectors ξ, while s 7→ b(s,x,t)

is a homotopy of sections of Γ(Z;P ×H Smb0(Vo))sa,ev. Over Z0, C(0,x,t) is invertible. Thus we
can lift the homotopy of symbols b(s,x,t) to a homotopy C(s,y,t) of invertible operators of order 0
(for (x, t) ∈ Z0), beginning with the invertible operator C(0,x,t). This lift can be extended to a lift
of the symbols to a (non-invertible) family of operators C(s,x,t). The operator C(s,x,t) is not yet a
pseudo-differential operator, but lies in the closure with respect to the ‖ ‖0,0-norm. To overcome
this problem, note that there exists a family D(s,x,t) of pseudo-differential operators with symbol
b(s,x,t) (but without the invertibility condition). To construct such a family, one argues as follows.
Because the symbol map ΨDOm

Cl(Vo) → Smb0(Vo) is a surjective map of Fréchet spaces, it has
a local section, by [28, Theorem 10]. It then follows by an argument with a partition of unity
that the map (4.13), but without taking closures, is surjective, and this proves the existence of

the family D(s,x,t). The family E(s,x,t) := C(s,x,t) − D(s,x,t) lies in Γ(Z;P ×H ΨDO
0

Cl(Vo)sa,ev),
and after adding D(s,x,t), it becomes invertible over Z0 (which is an open condition). There

are arbitrarily close approximations of E(s,x,t) by families of pseudo-differential operators Ẽ(s,x,t).

Choose the approximation close enough to guarantee that C̃(s,x,t) := Ẽ(s,x,t) +D(s,x,t) is invertible

for (x, t) ∈ Z and furthermore, one can pick Ẽ(0,x,t) = E(0,x,t). To get the desired operator B(s,x,t),
put

B(s,x,t) := (1 +∇∗∇)1/4C̃(s,x,t)(1 +∇∗∇)1/4. �
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4.3. Proof of the main result - formal structures. From now on, we identify all groups Lp,qM
using the isomorphism of Theorem 4.1 and drop the subscript.

Definition 4.14. Let P(p,q)(X,Y ) be the statement that the conclusion of Theorem holds for the
finite CW pair (X,Y ) and the pair of numbers (p, q), i.e. that the diagram

Lp,q(X,Y )
susp //

Λ ''

F p+1,q(X,Y )

bott

��
ΩF p,q(X,Y )

commutes and let P(p,q) be the statement that P(p,q)(X,Y ) holds for all pairs (X,Y ).

In the rest of this subsection, we mimic the formal structure found on the groups F p,q and
reduce the statement P(p,q) to the case (p, q) = (0, 1) which is treated in the next section.

Proposition 4.15. There is a natural bilinear map Lp,q(X,Y ) × KO0(Z,W ) → Lp,q((X,Y ) ×
(Z,W )). The induced product Lp,q(X,Y ) × KO0(X,Y ) → Lp,q(X,Y ) turns Lp,q(X,Y ) into a
right-KO0(X,Y )-module. The maps susp and Λ are KO0-linear.

Proposition 4.16. There are natural Morita equivalence isomorphisms Mor1,1 : Lp,q(X,Y ) ∼=
Lp+1,q+1(X,Y ) such that the diagrams

Lp,q(X,Y )
Mor //

susp

��

Lp+1,q+1(X,Y )

susp

��

Lp,q(X,Y )
Mor //

Λ

��

Lp+1,q+1(X,Y )

Λ

��
F p+1,q(X,Y )

Mor // F p+2,q+1(X,Y ) ΩF p,q(X,Y )
Mor // ΩF p+1,q+1(X,Y )

commute. There are analogous Morita equivalences Mor0,8 and Mor8,0.

The proofs are straightforward adaptions of those for the groups F p,q and are left to the reader.
Since the horizontal maps in Proposition 4.16 are isomorphisms and since the Bott map on the
F -groups is compatible with Morita equivalences, we immediately conclude:

Corollary 4.17. The equivalences P(p+1,q+1) ⇔ P(p,q), P(p,q) ⇔ P(p+8,q) and P(p,q) ⇔ P(p,q+8)

hold.

We now turn to Bott periodicity on the Lp,q-groups. One defines ΩLp,q in an analogous fashion
as in the case of the group F p,q.

Definition 4.18. Let (V,A) be a pair for Lp,q(X,Y ), p > 0. Consider the operator J = e1ι,
acting on V . We get a new pair on X × I × M , by taking the product of the bundle V with
I and by taking bott(A)(x,s,t) = A(x,t) + sJ . For s 6= 0, this is invertible and if A(x,t) was
invertible, then so is A(x,t) + sJ (the same calculation as for the Bott map on the F -groups). This
respects the equivalence relations in the group Lp,q and thus defines a natural homomorphism
bott : Lp,q(X,Y )→ ΩLp−1,q(X,Y ).

It is immediately verified that Bott periodicity commutes with Morita equivalences. The com-
patibility with the maps susp and Λ takes some work.

Proposition 4.19. For p ≥ 1, the following two diagrams commute:
(4.20)

Lp,q(X,Y )
bott //

Λ

��

ΩLp−1,q(X,Y )

ΩΛ

��

Lp,q(X,Y )
bott //

bott ◦ susp

��

ΩLp−1,q(X,Y )

Ω(bott ◦ susp)

��
ΩF p,q(X,Y )

bott // Ω2F p−1,q(X,Y ) ΩF p,q(X,Y )
bott // Ω2F p−1,q(X,Y ).
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Proof. We apply Lemma 2.20 in both cases, and the argument for the case (X,Y ) = (∗, ∅) and the
general case are the same, up to change of notation. Let A(t) be a family of pseudo-Dirac operators
representing an element in Lp,q(∗). The images under (ΩΛ) ◦ bott and bott ◦Λ are represented by
the 2-parameter families

(4.21) (s, t) 7→ F (s, t) :=
A(t) + sJ

(1 + (A(t) + sJ)2)1/2
and (s, t) 7→ G(s, t) :=

A(t)

(1 +A(t)
2
)1/2

+ sJ.

According to Lemma 2.20, it is enough to prove that the anticommutator {F (s, t), G(s, t)} is
a positive operator. Since A(t) and J anticommute, (A(t) + sJ)2 = A(t)2 + s2. Moreover, J
commutes with P = (1 +A(t)2)−1/2 and Q(s, t) = (1 + (A(t) + sJ)2)−1/2. The anticommutator is
equal to

{A(t)Q(s, t),
A(t)

(1 +A(t)
2
)1/2
}+ {A(t)Q(s, t), sJ}+ {sJQ(s, t),

A(t)

(1 +A(t)
2
)1/2
}+ {sJQ(s, t), sJ}.

The second and third term vanish. The first is 2A(t)2Q(s, t)P ≥ 0, and the fourth one is
2s2Q(s, t) ≥ 0. Thus Lemma 2.20 applies, and this proves the commutativity of the left diagram.

For the right diagram, the computation is very similar. Let

D =

(
A(t) −∂t
∂t −A(t)

)
, L :=

(
−1

−1

)
, K :=

(
ιe1

−ιe1

)
.

The images under bott ◦ bott ◦ susp and (Ω(bott ◦ susp)) ◦bott are represented by the 2-parameter
families

(s, u) 7→ D

(1 +D2)1/2
+ sL+ uK and (s, u) 7→ D + uK

(1 +D + uK2)1/2
+ sL,

whose anticommutator is

2D2 1

(1 +D2)1/2

1

(1 + u2 +D2)1/2
+ 2u2 1

(1 + u2 +D2)1/2
+ 2s2 ≥ 0. �

Corollary 4.22. The implication P(0,1) ⇒ P(p,q) for all (p, q) holds. In particular, to prove
Theorem 3.22, it suffices to consider the case (p, q) = (0, 1).

Proof. By the Bott periodicity theorem, the bottom maps in the diagrams (4.20) are isomorphisms.
Therefore, the implication P(p,q) ⇒ P(p+1,q) holds for all p ≥ 0. Assume that P(0,1) holds. By
Corollary 4.17, P(p,p+1) follows for all p ≥ 0. Combining both observations, P(p,q) follows for all
q ≥ 1, p ≥ q − 1. Using the implication P(p+8,q) ⇒ P(p,q), P(p,q) follows for all q ≥ 1. Finally
P(p+1,1) ⇒ P(p,0). �

4.4. A simple special case and conclusion of the argument. What is left to complete the
proof of Theorem 3.22 is the statement P(0,1). This will be done in two steps. First, we prove
P(0,1)(∗) and then we use Theorem 4.1 and KO-linearity to conclude P(0,1)(X,Y ) for all pairs
(X,Y ). Consider the diagram

(4.23) L0,1(∗)
∼=

Λ %%

susp // F 1,1(∗) Mor−1

∼=
//

bott∼=
��

F 0,0(∗) ∼=
index // Z

ΩF 0,1(∗).

The isomorphism index is defined as follows. Let (H, ι, F ) be a (0, 0)-cycle over ∗. We can write

ι =

(
1
−1

)
, F =

(
F ∗0

F0

)
where F0 is a Fredholm operator (without further conditions) and we define index[H, ι, F ] to be
the usual Fredholm index of F0.

Proposition 4.24. The diagram (4.23) commutes. Hence P(0,1)(∗) holds.
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Proof. The maps index, Mor and bott are isomorphisms. By Theorem 4.1, the map Λ is also an
isomorphism, so that all groups in (4.23) are isomorphic to Z. Therefore, it is enough to construct
an element u ∈ L0,1(∗) such that Λ(u) = bott(susp(u)) and Λ(u) 6= 0.

Let V0 →M be a real vector bundle (without grading or Clifford structure) and B be a pseudo-
Dirac operator on V0. Assume that the kernel of B is 1-dimensional; such an operator is easily
constructed by adding a suitable finite rank operator to an arbitrary pseudo-Dirac operator. Let p
be the projection onto ker(B) and let a : R→ R be a smooth function with a(t) = −1 for t ≤ −1
and a(t) = −1 for t ≥ 1. Then V = V0 ⊕ V0 has the Cl0,1-structure

ι =

(
1
−1

)
, ε =

(
1

1

)
and the curve A(t) =

(
B + a(t)p

B + a(t)p

)
represents an element u ∈ L0,1(∗). We now show

(1) Λ(u) = bott ◦Mor ◦ index−1(1),
(2) index ◦Mor−1 ◦ susp(u) = 1,

and this finishes the proof. Let us first compute bott ◦Mor ◦ index−1(1) ∈ F 1,1(∗). The class
index−1(1) ∈ F 0,0 is represented by the one-dimensional space R, with grading operator +1 and
F = 0. Under Morita equivalence, this becomes the element defined by

ι :=

(
1
−1

)
, e :=

(
−1

1

)
, ε :=

(
1

1

)
, F = 0

in F 1,1(∗). The Bott path on this element is

t 7→ teι =

(
t

t

)
∼
(

a(t)
a(t)

)
.

Let H = L2(M ;V ) and let K ⊂ H be the kernel of A(0) with orthogonal complement K⊥. Then

Λ(u) is represented by (K, A(t)

(1+A(t)2)1/2
|K)⊕(K⊥, A(t)

(1+A(t)2)1/2
|K⊥). The second summand is acyclic,

and the first summand is a representative for bott ◦Mor ◦ index−1(1), by the above computation.
This completes the computation of Λ(u).

The computation of Mor−1(susp(u)) ∈ F 0,0(∗) is straightforward, using the formulas for the

Morita equivalence and the suspension. We have to restrict the operator

(
A(t) −∂t
∂t −A(t)

)
to the

+1-eigenspace of

(
ε

ε

)(
ι

−ι

)
. This eigenspace is isomorphic to L2(R ×M ;V ); the grading

on the suspension and the operator restrict to

(4.25) ι =

(
1
−1

)
and C :=

(
−∂t +B + a(t)p

∂t +B + a(t)p

)
.

To verify that index ◦Mor−1 ◦ susp(u) = 1, we have to show that

index(∂t +B + a(t)p) = dim(ker(∂t +B + a(t)p))− dim(ker(−∂t +B + a(t)p)) = 1.

To compute these kernels, observe that for u : R→ Γ(M ;V ), we have

‖Cu‖2 = ‖
(

B
B

)
u‖2 + ‖

(
−∂ + ap

∂ + ap

)
u‖2

and so the kernel is precisely the space of L2-functions u : R→ ker

(
B

B

)
that satisfy the ODE(

−∂t + a(t)
∂t + a(t)

)
u(t) = 0.

But it is easy to see that the L2-kernel of ∂t+a(t) is 1-dimensional, and the L2-kernel of −∂t+a(t)
is zero. �
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The index of the operator (4.25) can alternatively be computed using the spectral-flow index
theorem as proven by Robbin and Salamon [29, Theorem 4.21].

Corollary 4.26. Theorem 3.22 holds for (p, q) = (0, 1).

Proof. Let x ∈ L0,1(X,Y ) and let u ∈ L0,1(∗) be the element constructed in the proof of Proposition
4.24. Let a be the image of x under the composition

L0,1(X,Y )
Λ→ ΩF 0,1(X,Y )

bott−1

→ F 1,1(X,Y ) ∼= KO0(X,Y )

of KO0-linear isomorphisms. Since the element u ∈ L0,1(∗) maps to 1 under these isomorphisms
for (X,Y ) = ∗ by the proof of Proposition 4.24, it follows that x = u · a. Then

bott(susp(x)) = bott(susp(u · a)) = bott(susp(u)) · a = Λ(u)a = Λ(u · a) = Λ(x);

the first and last equations are clear, the third is Proposition 4.24 and the two others follow from
KO-linearity. �

Appendix A. Comparison of the models for K-Theory

A.1. Comparison for compact pairs. In this subsection, we prove Theorem 2.22. Recall the
statement. For each space pair (X,Y ), there is a map

α : [(X,Y ); (Fredp,q(H),Gp,q(H))]→ F p,q(X,Y ).

We have to show that α is bijective whenever (X,Y ) is a compact pair. The proof can be summa-
rized in the commutative diagram

[(X,Y ); (Fredp,q(H),Gp,q(H))]
α // F p,q(X,Y )

[(X,Y ); (Fredp,q0 (H),Gp,q0 (H))]
α0 //

OO

F p,q0 (X,Y )

OO

γ // KK(Clq,p; R0(X − Y )).

The groups in this diagram have the following meaning:

(1) The space Fredp,q0 (H) ⊂ Fredp,q(H) is the subspace of operators F such that F 2 − 1 is
compact. The space Gp,q0 (H)) ⊂ Gp,q(H)) is the space of involutions F . The left upwards
map is induced by forgetting the stronger conditions and is an isomorphism by a spectral-
deformation argument as in [7].

(2) Similarly, the group F p,q0 (X,Y ) is defined in the same way as F p,q(X,Y ), using Fredholm
families, except that we impose the stronger conditions that F 2−1 is compact and F 2

y −1 =
0 for y ∈ Y . Lemma A.1 below proves that the middle upwards map is an isomorphism.

(3) KK(Clq,p; R0(X − Y )) is Kasparov’s real KK-group (note the switch in the Clifford
degrees). By R0(X−Y ), we denote the real C∗-algebra of real valued continuous functions
on X that vanish on Y . We will define the map γ below. The composition γ ◦ α0 is an
isomorphism by a classical result of Kasparov [24, §6]. Thus the proof of Theorem 2.22
will be complete once we show that the map γ is injective.

Lemma A.1. The map F p,q0 (X,Y )→ F p,q(X,Y ) is an isomorphism.

Proof. First we prove surjectivity. Let (H,F ) be a cycle for F p,q(X,Y ). There exists ε > 0 such
that F 2

y ≥ ε2 for all y ∈ Y and F 2 ≥ ε2 mod KomX(H), by compactness of X. Let f : R→ R be
an odd function such that f(t) = 1 for t ≥ ε. Using functional calculus, we define f(F ) ∈ LinX(H).
The pair (H, f(F )) is a cycle for F p,q0 (X,Y ). The straight-line homotopy between (H, f(F )) and
(H,F ) proves that [H,F ] = [H, f(F )] ∈ F p,q(X,Y ), which proves surjectivity. Injectivity is proven
by the same argument, applied to a concordance. �
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To proceed, the reader should recall the definition of Kasparov’s KK-Theory [11, 24]. In
particular, familiarity with the basic notions of the theory of Hilbert-C∗-modules will be assumed
[32, §15]. Here is the definition of the map γ. Let (V, ι, c, F ) be a (p, q)-cycle on (X,Y ) and assume
that F 2 − 1 is compact and F 2

y − 1 = 0 for y ∈ Y . The space Γc(X − Y ;V ) of sections vanishing
at infinity is a graded Hilbert R0(X − Y )-module. The operator F is an odd self-adjoint operator
on Γc(X − Y ;V ), and we claim that F 2 − 1 : Γc(X − Y ;V ) → Γc(X − Y ;V ) is compact in the
Hilbert module sense. This follows from general principles: given ε > 0, we pick G ∈ FinX(V )
with ‖Gx−(F 2

x −1)‖ ≤ ε/2 and a function a ∈ Cc(X−Y,R) with ‖aGx−Gx‖ ≤ ε/2, for all x ∈ X.
Then aG : Γc(X − Y ;V )→ Γc(X − Y ;V ) is of finite rank, and it follows that F 2 − 1 is compact.

Using the Clp,q-structure, we define a graded ∗-homomorphism ρ : Clq,p → LinR(X)(Γc(X −
Y ;V )) (sic) into the C∗-algebra of adjointable operators of the Hilbert-∗-module by ρ(ei) := c(εiι)
and ρ(εj) := c(ejι). Since we assumed that F is Clp,q-linear and odd, we find that for all z ∈
Clq,p, the graded commutator [ρ(z), F ] = 0 is trivial. Thus (Γc(X − Y ;V ), ρ, F ) is a Kasparov
Clq,p −R0(X − Y )-module and defines an element in KK(Clq,p; R0(X − Y )). We define

γ(V, ι, c, F ) := [Γc(X − Y ;V ), ρ, F ] ∈ KK(Clq,p; R0(X − Y )).

If F 2 − 1 = 0 on all of X, then (Γc(X − Y ;H), ρ, F ) is degenerate and hence the KK-class is
zero, so that the above construction is compatible with the equivalence relations defining F p,q0 (X,Y )
and KK(Clq,p; R0(X − Y )) and so γ is well-defined. It was proven by Kasparov [24, §6] that the
composition γ ◦ α0 is an isomorphism.

Lemma A.2. The map γ : F p,q0 (X,Y )→ KK(Clq,p; R0(X − Y )) is injective.

Proof. Let [V, F ] ∈ F p,q0 (X,Y ) such that γ[V, F ] = 0 ∈ KK(Clq,p; R0(X − Y )). By definition of
the KK-group, this means that the Kasparov module (Γ0(X − Y ;V ), ρ, F ) is homotopic to the
zero module (in the sense of [11, Definition 17.2.2]). Let (E, φ,G) be a nullhomotopy, this is, by
definition, a Kasparov Clq,p-R0([0, 1]× (X−Y ))-module which restricts to 0 in R0({1}× (X−Y ))
and to (Γ0(X − Y ;V ), ρ, F ) in R0({0} × (X − Y )). Let H be an ample Clp,q-Hilbert space.
Consider the graded Hilbert R0([0, 1]× (X −Y ))-module E′ := Γ0([0, 1]× (X −Y );H[0,1]×(X−Y )).
Let ξ : Clq,p → LinR0([0,1]×(X−Y ))(E

′) be the associated representation as constructed above. Any
J ∈ Gp,q0 (H) induces an operator in E′. The Kasparov Clq,p-R0([0, 1]× (X−Y ))-module (E′, ξ, J)
is degenerate, hence nullhomotopic by [11, Proposition 17.2.3] and so zero in the KK-group.
Form the direct sum (E, φ,G) ⊕ (E′, ξ, J) of the nullhomotopy with this degenerate module. By
Kasparov’s stabilization theorem [32, Theorem 15.4.6], the Hilbert module E⊕E′ is isomorphic to
the space of continuous function X−Y → H vanishing at infinity. Therefore, (E, φ,G)⊕ (E′, ξ, J)
provides a concordance of (V, F ) ⊕ (HX−Y , J) to an invertible Fredholm family. This shows that
[H,F ] = 0 ∈ F p,q(X,Y ). �

A.2. Representability of the F p,q-functors. Here we construct the representing space for the
functor F p,q, following ideas of Atiyah and Segal [9].

Definition A.3. Let H be an ample Clp,q-Hilbert space. We define Kp,q as the space of pairs
(F,G) of bounded Clp,q-Fredholm operators on H, with the condition that FG − 1 and GF − 1
are both compact. The topology on Kp,q is induced from the injective map

Kp,q → Lin(H)c.o. × Lin(H)c.o. ×Kom(H)×Kom(H), (F,G) 7→ (F,G, FG− 1, GF − 1).

The subspace Dp,q ⊂ Kp,q is the subspace of pairs (F,G) such that FG = GF = 1.

To understand the rationale of this definition, note that the possible parametrices to a Fredholm
operator form a convex set, the bookkeeping of G and FG− 1, GF − 1 is only there to guarantee
the correct continuity condition.

If (X,Y ) is a space pair, X compactly generated, and F : (X,Y ) → (Kp,q, Dp,q), we get a
Fredholm family (F (x))x∈X on the trivial Hilbert bundle HX → X. Therefore, we obtain a map

(A.4) [(X,Y ); (Kp,q, Dp,q)]→ F p,q(X,Y )
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and Theorem 2.23 asserts that (A.4) is bijective whenever (X,Y ) is a paracompact pair. For the
proof, we use a trick that we propose to call “Dixmier-Douady swindle”, because it first appears in
[16]. The trick itself is stated as Lemma A.6 below. We also need a consequence that was drawn
in [16].

Theorem A.5. [16, Théorème 4] Let X be a paracompact space and let V → X be a Clp,q-Hilbert
bundle. Let H be an ample Clp,q-Hilbert space. Then there is an isomorphism V ⊕HX

∼= HX of
Clp,q-Hilbert bundles.

In [16], only the existence of an isometry of real Hilbert bundles is proven. To upgrade this to
Clp,q-Hilbert bundles, one uses Lemma 2.4.

Let us prove surjectivity of (A.4). Let (V, F ) be a (p, q)-cycle. Let (H,J) be an ample Clp,q-
Hilbert space and J ∈ Gp,q0 (H). By Theorem A.5, there is an isometry of Clp,q-Hilbert bundles
V ⊕HX

∼= HX . In the group F p,q(X,Y ), the equation [V, F ] = [V ⊕HX , F ⊕ J ] holds. But the
right-hand side lies in the image of (A.4).

For the injectivity, we explain the Dixmier-Douady swindle. Let N0 be a Clp,q-module which
contains each irreducible one and form N := N0 ⊕ Nop

0 . Then H := L2([0, 1];N) is an ample

Clp,q-Hilbert space. Let J =

(
1

1

)
, a Clp,q-linear odd involution on N ⊕ Nop. It induces a

self-adjoint isometry J : H → H. The basis for the trick is the following result.

Lemma A.6. [16, Lemme 2] Let Ht ⊂ H be the subspace of all functions that are supported
in [0, t]. Let Pt : H → Ht be the orthogonal projection. Then t 7→ Pt is a continuous map
[0, 1]→ Lin(H)c.o.. Moreover there exist isometries Qt : Ht

∼= H, for t ∈ (0, 1], such that Q1 = 1
and such that the maps (0, 1] → Lin(H)c.o., t 7→ Q−1

t , t 7→ QtPt are continuous. Finally, the
adjoint of QtPt is Q−1

t .

Actually, Dixmier and Douady prove this when Lin(H)c.o. is replaced by Lin(H)stop, the space
of bounded operators with the strong operator topology. By the remarks on page 38 [9], one
gets continuity with target Lin(H)c.o.. Moreover, Dixmier and Douady do not mention Clifford
algebras, but the necessary modifications are easy to do. The last statement is clear from the
construction. Using the functions from Lemma A.6, we define maps

(A.7) (0, 1]× Lin(H)c.o. → Lin(H)c.o., (t, A) 7→ J(1− Pt) +Q−1
t AQtPt

and

(A.8) (0, 1]×Kom(H)→ Kom(H), (t, A) 7→ Q−1
t AQtPt.

These maps preserve Fredholm operators, self-adjoint operators, even/odd operators and Clp,q-
linear operators.

Lemma A.9. The maps (A.7) and (A.8) are continuous.

Proof. The map (A.7) is the composition

(0, 1]× Lin(H)c.o. → (0, 1]× (map((0, 1]; Lin(H)c.o.))
3 × Lin(H)c.o. → Lin(H)c.o.,

the first map is (t, A) 7→ (t, P,Q−1, QP,A) and is obviously continuous. The second map is
(t,X, Y, Z,A) 7→ J(1−X(t)) +Y (t)AZ(t), and this is continuous because the evaluation maps are
continuous, because the composition maps between mapping spaces are continuous (and because
H is compactly generated), and because Lin(H)c.o. is a topological vector space.

For the map (A.8), it is enough to prove sequential continuity. Let Kn → K ∈ Kom(H) (in
norm), and tn → t > 0 in (0, 1]. Let Pn := Ptn , P := Pt etc. By Lemma A.6, QnPn → QP and
(QnPn)∗ = Q−1

n → Q−1 = (QP )∗, both in the compact-open topology. Continuity of the map
(A.8) follows from the following general observation: Assume that Kn → K is a norm convergent
sequence of compact operators and that An and A are bounded operators such that An → A and
A∗n → A∗ in the compact-open topology. Then AnKnA

∗
n → AKA∗, in the norm topology.
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For the proof of this claim, we first observe that, by the Banach-Steinhaus theorem, ‖An‖, ‖A‖ ≤
C for some C. So

‖AnKn −AK‖ ≤ ‖AnKn −AnK‖+ ‖AnK −AK‖ ≤ C‖Kn −K‖+ ‖AnK −AK‖.

Since An → A in the compact-open topology and since K is compact, ‖AnK −AK‖ → 0. Abbre-
viate Bn = AnKn and B = AK. We want to show that BnA

∗
n → BA∗, in norm. But

‖BnA∗n −BA∗‖ = ‖AnB∗n −AB∗‖.

By the first part of the argument, B∗n → B∗ in the norm topology. Again by the first part of the
argument, it follows that AnKnA

∗
n → AKA∗ in the norm topology, as claimed. �

Proposition A.10. Let H be an ample Clp,q-Hilbert space. Then there exists a decomposition
H = H0⊕H1 into ample Clp,q-Hilbert spaces, J ∈ Gp,q0 (H1) and a homotopy Rt : [1/2, 1]×Kp,q →
Kp,q such that R1 = id and such that for all x ∈ Kp,q, R1/2(x) is of the form y ⊕ J , for some y.
The homotopy preserves the subspace Dp,q.

Proof. One uses the homotopies (A.7) and (A.8), for t ∈ [1/2, 1]. �

Proof that the map (A.4) is injective. Let F0, F1 : (X,Y )→ (Kp,q, Dp,q) be two maps that induce
the same element in F p,q(X,Y ). By the definition of F p,q(X,Y ) and by Theorem A.5, this means
that R1/2 ◦ F0 and R1/2 ◦ F1 are homotopic. Since R1/2 ◦ Fi and Fi are homotopic by Proposition
A.10, F0 ∼ F1. The homotopy preserves the subspace Dp,q, and the proof is complete. �

Proposition A.11. The space Dp,q is weakly contractible.

Proof. Inside Dp,q, there is the subspace Ep,q of orthogonal elements. That Ep,q is contractible is
proven using the Dixmier-Douady swindle, in the same way as [9, Proposition A2.1]. It remains
to prove that Ep,q → Dp,q is a weak homotopy equivalence. Let X be a compact space and
F : X → Dp,q a map (there is no need to consider a relative map). The family F : HX → HX ,
(x, v) 7→ (x, F (x)v) is an invertible homomorphism. There exists ε > 0 such that F (x)2 ≥ ε2. Let
f : R → R be an odd continuous function such that f(t) = 1 for |t| ≥ ε. The family over I ×X,
(s, x) 7→ (1− s)F (x) + sf(F (x)) is a homotopy from F to a map into Ep,q. �

Appendix B. A fiber theorem for spaces of units in C∗-algebras

Let A and B be unital Z/2-graded C∗-algebras and π : A → B be a graded surjective ∗-
algebra homomorphism. Let Asa,odd and Bsa,odd be the subspaces of odd self-adjoint elements.
Let C ⊂ Bsa,odd be the (open) subset of invertible elements, F := π−1(C)∩Asa,odd and G ⊂ F be
the subspace of invertible elements.

Proposition B.1. The restriction of π to F → C and to G → C are Serre fibrations, and the
first one even admits a global section.

If we ignore the conditions (self-adjoint, odd), this is a well-known result (see [28, Theorem 11]).
However, we do not see how to derive it from the classical one directly, and therefore we prove
Proposition B.1 from scratch.

One example where this result can be applied is when H is a Clp,q-Hilbert space, and A is the
algebra of all Clifford-linear bounded operators on H (no condition on the grading). The grading
of A is by even/odd operators. In that case, we let B be the Calkin algebra, i.e. the quotient of A
by the ideal of compact operators.

Lemma B.2. Let y : I → C be a continuous path and x0 ∈ G with π(x0) = y(0). Then there
exists a path x : I → G with x(0) = x0 and π ◦ x = y.
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Proof. It is a theorem by Bartle and Graves that if φ : X → Y is a surjective bounded operator
between Banach spaces, then there is a continuous cross-section σ : Y → X ([10], see [21, p. 187]
for an explicit statement). Choose a section σ : Bsa,odd → Asa,odd with σ(0) = 0.

Since x0 and y(t) are invertible, there exists ε > 0 such that [−2ε, 2ε]∩ specB(y(t)) = [−2ε, 2ε]∩
specA(x0) = ∅ for all t ∈ I. Choose δ > 0 with ‖σ(z)‖ < ε for all ‖z‖ < δ. Since y is uniformly
continuous, there is r ∈ N such that |t − t′| ≤ 1

r implies ‖y(t) − y(t′)‖ < δ. Choose an odd
continuous function f : R → R such that f(s) = s for s ≥ 2ε and f(s) = 2ε for ε ≤ s ≤ 2ε. We
wish to construct the lift x in such a way that specA(x(t))∩ [−2ε, 2ε] = ∅ and we do this inductively
on the intervals [0, ir ], i = 0, . . . , r. By the choice of ε, the given initial value x0 has this property.

Now suppose such a lift has been constructed on the interval [0, ir ], for some i ≥ 0. For t ∈ [ ir ,
i+1
r ],

define

x̃(t) := x(
i

r
) + σ(y(t)− y(

i

r
)).

It is clear that π(x̃(t)) = y(t) and because σ(0) = 0, it is also clear that x̃( ir ) = x( ir ). Since

‖σ(y(t) − y( ir ))‖ < ε, it follows that specA(x̃(t)) ∩ [−ε, ε] = ∅. By the choice of the function f ,
f(x̃(t)) has spectrum outside [−2ε, 2ε], and is in Asa,odd, because f is an odd function. Also,
the choice of f implies that f(x̃( ir )) = x( ir ). Set x(t) := f(x̃(t)). It remains to prove that
π(x(t)) = y(t). The function h(s) := f(s)− s has support in [−2ε, 2ε]. But

π(x(t)) = π(x(t)− x̃(t)) + π(x̃(t)) = π(x(t)− x̃(t)) + y(t) = π(h(x̃(t))) + y(t).

Since the functional calculus commutes with algebra homomorphisms, we conclude that

π(h(x̃(t))) = h(π(x̃(t))) = h(y(t)) = 0;

the last equality holds because the support of h is disjoint from the spectrum of y(t). �

Proof of Proposition B.1. The case of F → C is covered by [28, Theorem 10] (or follows quickly
from the Bartle-Graves theorem). The other case follows from Lemma B.2. Let X be a finite
CW complex and consider the C∗-algebras C0(X;A) and C0(X;B). The induced homomorphism
π∗ : C0(X;A) → C0(X;B) is surjective (this follows from the Bartle-Graves theorem). Lemma
B.2, applied to π∗, shows that the map C0(X;G)→ C0(X;C) has the path-lifting property. But
any lifting problem

X × {0}
g //

��

G

π

��
X × [0, 1]

f //

;;

C

is equivalent to a path-lifting problem for π∗. �
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227, 2007.
[28] R. S. Palais. Homotopy theory of infinite dimensional manifolds. Topology, 5:1–16, 1966.

[29] J. Robbin and D. Salamon. The spectral flow and the Maslov index. Bull. London Math. Soc., 27(1):1–33, 1995.

[30] N. E. Steenrod. A convenient category of topological spaces. Michigan Math. J., 14:133–152, 1967.
[31] T. tom Dieck. Algebraic topology. EMS Textbooks in Mathematics. European Mathematical Society (EMS),
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