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Abstract We study the singular homology (with field coefficients) of the moduli
stack Mg,n of stable n-pointed complex curves of genus g. Each irreducible boundary
component of Mg,n determines via the Pontrjagin–Thom construction a map from
Mg,n to a certain infinite loop space whose homology is well understood. We show
that these maps are surjective on homology in a range of degrees proportional to the
genus. This detects many new torsion classes in the homology of Mg,n .

Mathematics Subject Classification (2000) 32G15 (14H15 22A22 55R40)

1 Introduction

Let Mg,n denote the moduli stack of stable nodal complex curves of genus g with n
labelled marked points; this is the Deligne–Mumford–Knudsen compactification of
the moduli stack Mg,n of smooth curves. This object plays a central role in Gromov–
Witten theory, conformal field theory, and conjecturally in string topology. The rational
cohomology of Mg,n and its tautological subalgebra have been extensively studied
in the literature, and the structure of the tautological algebra is at least conjecturally
known. However, the mod p (co)homology has received relatively little attention.
Here the distinction between the moduli stack and the associated coarse moduli space

J. Ebert (B)
Mathematisches Institut der Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
e-mail: ebert@math.uni-bonn.de

J. Giansiracusa
Mathematical Institute, Oxford University, 24–29 St. Giles’, Oxford OX1 3LB, UK
e-mail: giansira@maths.ox.ac.uk

123
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becomes important because they are only rationally homology isomorphic. We take
the point of view that the moduli stack is the more fundamental object.

Using the proof of the integrally refined Mumford conjecture by Madsen and Weiss
[27], Galatius [9] completely computed the mod p homology of Mg,n in the Harer–
Ivanov stable range; there are large families of torsion classes. Here we address the
question of torsion in the homology of the compactified moduli stack.

The boundary ∂Mg,n := Mg,n �Mg,n of Mg,n is a union of substacks of complex
codimension 1. These irreducible boundary components are the images of the ‘gluing’
morphisms between moduli stacks defined by identifying two marked points together
to form a node as shown below.

The gluing morphisms are:

ξirr : Mg−1,n+(2) → Mg,n,

ξh,P : Mh,P�{p1} × Mg−h,Q�{p2} → Mg,P�Q,
(1.1)

where P, Q are finite sets, Mg−1,n+(2) is the moduli stack of stable curves with n + 2
marked points, the first n of which are labelled. These morphisms are representable
proper immersions of complex codimension 1 and when P and Q are both nonempty
ξh,P is actually an embedding. These morphisms have transversal (self)-intersections
and their images are precisely the various irreducible components of the Deligne–
Mumford boundary ∂Mg,n .

We study the effect on homology of the Pontrjagin–Thom collapse maps for these
morphisms. We show that the self-intersections produce large families of torsion
homology classes which are unrelated to the known torsion classes on Mg,n .

Recall that if f : Mn−k → N n is a smooth proper embedding of codimension k
then the classical Pontrjagin–Thom collapse map

N → Mν( f ),

from N to the Thom space of the normal bundle of M , is defined by collapsing every-
thing outside of a tubular neighbourhood of the image of f to ∞ and identifying the
tubular neighbourhood with the normal bundle of f . If f is proper but not an embed-
ding then (by replacing f with an embedding into N × R

l ) the same construction
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produces a map

PT f : N → QMν( f ), (1.2)

where Q X = �∞�∞ X is the free infinite loop space generated by X . We refer to the
map PT f as the Pontrjagin–Thom map for f . In the appendix, we extend the classical
construction of Pontrjagin–Thom maps to the category of differentiable local quotient
stacks. A stack X admitting an atlas has an associated homotopy type Ho(X) (see
Sect. 2) which is a space that has the same homological invariants as the stack, and
the Pontrjagin–Thom construction produces a map out of the homotopy type.

A lift of the structure group of ν( f ) along G
j→ GLk(R) induces a map

QMν( f ) → Q BG j∗γk , (1.3)

where γk is the universal k-plane bundle over BGLk(R). Thus we obtain a map

� : N → Q BG j∗γk

as the composition of (1.2) and (1.3).
Let T (2) = U (1) × U (1) denote the maximal torus in U (2), and let N (2) ∼=

Z/2 � U (1)2 denote the normalizer of the maximal torus. There are homomorphisms

T (2) ↪→ N (2) → U (1),

where the first arrow is the inclusion and the second is defined by multiplying the
U (1) components together; we write V for the universal line bundle over BU (1) or its
pullback to B N (2) or BT (2). The normal bundles of ξirr and ξh,P come with preferred
lifts of structure group to N (2) and T (2) respectively. Thus we have Pontrjagin–Thom
maps

�irr : Ho(Mg,n) → Q B N (2)V ,

�h,P : Ho(Mg,n) → Q BT (2)V ,

�′
h,P : Ho(Mg,n) → Q BT (2)V → Q BU (1)V ,

where �′
h,P is the composition of �h,P with the map induced by the multiplication

T (2) → U (1). Our main theorem is the following.

Theorem 1.1 Let g and n be fixed. Let F be a field.

(i) If the characteristic of F is different from 2, then the map �irr is surjective on
Hi (−,F) for i ≤ (2g/7 − 1).

(ii) The map�h,∅ is surjective on Hi (−,F) for i ≤ (2h/3−1), i ≤ (2g/(4h+3)−1)
(the characteristic of F is arbitrary).

(iii) The map �′
h,∅ is surjective on Hi (−,F) for i ≤ (2g/(4h + 3) − 1) (the char-

acteristic of F is arbitrary).
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This theorem detects large families of new torsion classes in the (co)homology
of Mg,n as follows. Let � be one of the above maps. On cohomology with field
coefficients the induced map �∗ is injective in one of the above ranges of degrees.

Rationally The cohomology of Q B N (2)V with coefficients in Q is the free commu-
tative algebra on generators ai, j (i, j ≥ 0) of degree 2+2i +4 j . In this case the image
of �∗ is contained in the tautological algebra; see Sect. 6. The nontriviality of these
tautological classes in rational cohomology is probably well-known, though we could
not find an explicit statement.

Mod p The mod p Betti numbers of Q B N (2)V are much larger than the rational Betti
numbers. If char(F) > 0, then H∗(Q B N (2)V ; F) has a large and rich structure—it is
the free graded-commutative algebra over the free Dyer–Lashof module generated by
˜H∗(B N (2)V ; F); see Sect. 5.4 and Appendix B for details. Hence this detects large
families of new mod p cohomology classes of Mg,n which are not reductions of
rationally nontrivial classes.

Remark 1.2 1. The precise range of degrees in which Theorem 1.1 applies depends
on the range of homological stability for the mapping class group of surfaces and
symmetric groups. The precise range for the latter ones has been known since
Nakaoka. For the mapping class groups, we rely one the improved stability the-
orem recently shown by S. Boldsen in his thesis. The older results due to Harer
and Ivanov give weaker bounds in Theorem 1.1.

2. The cohomology classes produced by the various maps of Theorem 1.1 are distinct
in certain stable ranges. With a small modification of the proof, one can show for
instance that

�irr ×�h,∅ : Mg,n → Q B N (2)V × Q BT (2)V

is surjective on homology in a range of degrees, although this range will be approx-
imately half the size of the surjectivity ranges for�irr and�h,∅ individually. See
Sect. 5.6 for further details.

3. Note that the range of surjectivity is proportional to g in (i) and (iii) but not in
(ii). On the other hand, the homology groups of the target in (ii) are somewhat
larger than those of the target in (iii), so �h,∅ detects more classes than �′

h,∅ but
in a reduced range of degrees.

4. When ∅ �= P � {1, . . . , n} the gluing morphism ξh,P is an embedding. Therefore
its Pontrjagin–Thom map factors through BT (2)V → Q BT (2)V . The cohomol-
ogy classes pulled back from BT (2)V all lie in the tautological ring of Mg,n .
However, one can also consider the quotient Mg,n//�n , where the symmetric
group acts by permuting the labels of the marked points. Now the gluing
morphism

ξh,P : Mh,P�{p1}//�P × Mg−h,Q�{p2}//�Q → Mg,P�Q//�P�Q
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is an immersion with nontrivial self-intersections whenever h < g/2. In this
case, one can easily adapt the proof of Theorem 1.1 to show for instance that
the associated Pontrjagin–Thom map �′

h,P is surjective on homology in degrees
i ≤ 2g/(4h + 3)− 1, provided that n ≥ |P|2g/(4h + 3)− 1.

5. Finally we mention that the restrictions of the Pontrjagin–Thom maps to the open
moduli stack Mg,n of smooth curves are nullhomotopic because the images of
the natural morphisms (1.1) lie in ∂Mg,n . Thus the torsion classes we detect are
independent of the torsion classes on Mg,n which were computed by Galatius [9].

1.1 The idea of the proof

Consider the gluing morphism ξirr and its associated Pontrjagin–Thom map �irr :
Mg,n → Q B N (2)V . We show that there exists an open stratum Z ⊂ Mg,n with cer-
tain nice properties (an open stratum is a substack consisting of stable curves of a fixed
homeomorphism type; only the top stratum is open as a substack of Mg,n). Firstly, it
lies in the image of ξ , so �irr sends it into the zero section subspace Q B N (2)+ ⊂
Q B N (2)V (this inclusion is surjective on homology). Secondly, by the Bödigheimer–
Tillmann stripping-and-splitting theorem [4] (derived from Harer stability) and the
homology stability of symmetric groups, Q B N (2)+ homologically splits off of Z in a
range of degrees. Our theorem is proven by showing that the projection onto this factor
in the partial homological splitting of Z agrees (up to homotopy) with the restriction
of �irr . The other flavours of the theorem are proven by making slightly different
choices for Z .

1.2 Relation with the work of Eliashberg–Galatius

There is a certain overlap between Theorem 1.1 and unpublished work by Eliashberg
and Galatius announced in [10], although our results were obtained independently.
They have announced a determination of the homotopy type of the moduli stack of
stable irreducible curves as the genus tends to infinity—in a stable range and with
coefficients in a field of characteristic �= 2 it splits as a tensor product of the cohomol-
ogy of Q B N (2)V and �∞MT SO(2). Their result should imply part (i) of Theorem
1.1. However, their methods do not distinguish between the different irreducible com-
ponents of the boundary of the full Deligne–Mumford compactification, and therefore
parts (ii) and (iii) of our theorem cannot be derived from their work. The reason is
that [10] only makes use of the local structure of the singularities of stable curves,
while ignoring the global combinatorial structure. We exploit the global combinatorics,
giving rise to finer cohomological information.

In spirit, both their work and ours are based on mapping the moduli stack to an
appropriate infinite loop space by Pontrjagin–Thom maps. Their map is a combination
of the map Mg → �∞MT SO(2) appearing in the proofs of the Mumford Conjec-
ture (see [11,26,27]) and a Pontrjagin–Thom map for the whole Deligne–Mumford
boundary. However, the techniques used to produce the Pontrjagin–Thom maps in our
paper and theirs are quite different: in [10] they construct their map out of the local
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differential topology of a family of stable curves, whereas we develop Pontrjagin–
Thom maps for stacks in a general setting and then apply this global construction to
the moduli stack.

1.3 Outline

In Sect. 2 we recall some material on stacks and explain the notion of the homotopy
type of a topological stack (this section may be skipped if the reader is willing to
pretend that the moduli stacks are manifolds). In Sect. 3 we discuss the Pontrjagin–
Thom construction and what it means to extend it to local quotient stacks. Section 4
recalls some needed facts about the moduli stack Mg,n . In Sect. 5 we give the proof
of our main theorem. Section 6 describes how the classes we detect rationally are
related to the tautological algebra. Appendix A gives the details of the extension of
Pontrjagin–Thom maps from manifolds to local quotient stacks. Appendix B recalls
the computation of the homology of a free infinite loop space Q X , which is needed
in Sect. 5.

2 Some homotopy theory for topological stacks

In this section, we set up the homotopical framework in which the Pontrjagin–Thom
maps for stacks will reside.

The reader who is not comfortable with stacks may wish to skip to Sect. 3.2 for
our perspective on Pontrjagin–Thom maps and then proceed directly to Sect. 4 while
pretending that the moduli stacks are simply manifolds.

2.1 Generalities on stacks

In this section, we will assume that the reader is comfortable with the language of
stacks and therefore we will not repeat the basic definitions in detail. A stack over a
site S is a lax sheaf of groupoids over S. We will consider the sites diff and top of
smooth manifolds and topological spaces. The reader is referred to [15] and [28] for
readable introductions to the theory of stacks over the sites diff and top.

On the site diff there is a subtlety in the definition of representable morphisms
since one needs transversality for the pullback of two smooth maps to be a smooth
manifold. We propose a definition which differs slightly from that given in [15].

Definition 2.1 1. A morphism f : X → Y of stacks on the site diff is a repre-
sentable submersion if for any manifold M and any morphism M → X, the fibre
product M ×Y X is a smooth manifold and the induced map M ×Y X → M is a
submersion.

2. A morphism f : X → Y of stacks over diff is representable if for any represent-
able submersion f : M → Y, the pullback M ×Y X is a smooth manifold and
the induced map M ×Y X → M is a smooth map.

With this definition any smooth map between manifolds is representable when con-
sidered as a morphism of stacks and any morphism from a smooth manifold to a stack
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over diff is representable. Let X be a stack over diff . An atlas is a smooth mani-
fold X together with a representable surjective submersion p : X → X (i.e., for any
map Y → X, there exists an open covering (Ui )ı∈I of Y such that the composition
U = ∐

i∈I Ui → Y → X admits a lift through p). A stack which admits an atlas is
called a differentiable stack.

Similarly, one can define topological stacks. We say that a representable morphism
f : X → Y of stacks over top has local sections if for any space Y and any map
Y → Y, the pullback Y ×Y X → Y admits local sections (observe that maps which
have local sections are surjective and having local sections is a property which is
invariant under base-change). An atlas for a stack X over top is a space X together
with a representable morphism p : X → X having local sections. A topological stack
is a stack X over top which admits an atlas. Our terminology differs from that used by
Noohi [28]: the topological stacks defined above are called “pretopological stacks” in
[28] and his “topological stacks” satisfy a stronger condition.

We write StacksS for the category of stacks on a site S which admit an atlas. Note
that Stackstop contains the category of spaces as a full subcategory. A topological
(or differentiable, respectively) stack is said to be a Deligne-Mumford stack if it has
a proper étale atlas, i.e., there is an atlas p : X → X which is a local homeomor-
phism (local diffeomorphism, respectively) and the map X ×X X → X × X is proper
(throughout the paper, we use Bourbaki’s definition of properness: a map f : A → B
is proper if for any topological space C , the product idC × f : C × A → C × B is a
closed map). A differentiable Deligne–Mumford stack is the same as an orbifold.

There is also the category Stackssch of algebraic stacks, studied in the book [20].
Moduli stacks of (stable) curves, which constitute the example of interest to us, are
most conveniently described (and constructed) as algebraic stacks. There is a func-
tor Stackssch → Stackstop which extends the “complex points functor”, compare
[28], p. 78 f. An atlas X → X gives rise to a groupoid object in schemes X ×X X ⇒ X ,
and the moduli stack of torsors for this groupoid object is canonically equivalent to
the original stack. Taking complex points with the analytic topology gives a grou-
poid in topological spaces which determines a topological stack. The restriction of
this functor to smooth stacks in schemes takes values in differentiable stacks, and its
restriction to smooth Deligne–Mumford algebraic stacks takes values in differentiable
Deligne–Mumford stacks.

2.2 The homotopy type of a topological stack

We now introduce the homotopy type of a topological stack. There is a folklore defi-
nition of the homotopy type as the classifying space of the groupoid associated to an
atlas. We present an axiomatic approach which is equivalent by Proposition 2.3 below.
The content here is an ideological reemphasis of ideas which have been present in the
literature for some time.

Definition 2.2 Let f : X → Y be a representable morphism of topological stacks.
Then f is said to be a universal weak equivalence if for any test map Y → Y from a
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space Y , the left vertical map in the diagram

Y ×Y X ��

��

X

f

��
Y �� Y

is a weak homotopy equivalence of topological spaces.
A homotopy type for a topological stack X is a pair (Ho(X), η), where Ho(X) is a

paracompact topological space and η : Ho(X) → X is a universal weak equivalence
(which is automatically representable, by [28], Corollary 7.3).

Let X be a topological stack with an atlas X0 → X. This determines a simplicial
space Xn = X0×X· · ·×XX0 (n+1 copies) which is in fact the nerve of the topological
groupoid X1 = X0 ×X X0 ⇒ X0. Let ‖X•‖ be the thick realization of the simplicial
space X•. The thick realization of a simplicial space is obtained by forgetting the
degeneracies and using only the boundary maps. In most cases of interest, the thick
geometric realization and the usual geometric realization are homotopy equivalent,
see [33, p. 308].

Proposition 2.3 ([29], Theorem 3.11) If X0 → X is an atlas of a topological stack
with associated simplicial space X•, then there is a universal weak equivalence
‖X•‖ → X.

The space ‖X•‖ is in general not paracompact, but it is if we assume that Xn is
paracompact and Hausdorff for all n ≥ 0 (see [6]). The class of stacks which admit
atlases with this property is quite large and clearly includes all differentiable stacks.

The following statement about the uniqueness and functoriality of homotopy types
is stated more precisely and proven in [6].

Theorem 2.4 1. Any two homotopy types of a topological stack are canonically
homotopy equivalent. In fact, there is a contractible space of preferred homotopy
equivalences between them.

2. Moreover, choosing homotopy types defines a functor from the category of stacks
over top admitting a homotopy type to the homotopy category of spaces (stacks
form a 2-category, but 2-isomorphic morphisms are sent to identical homotopy
classes). This functor can be refined so as to send each morphism of stacks to a
contractible space of maps between between the homotopy types.

2.3 Homotopy types and group actions

There is a pleasant interaction between the notion of the homotopy type of a stack and
more familiar topological constructions.

Firstly, if X is a (paracompact) space then we can consider X as a topological
stack. Clearly, the identity map X → X is a universal weak equivalence and thus
Ho(X) � X .
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An important class of examples of stacks are the (global) quotient stacks. Let G
be a topological group acting on a space X . The quotient stack X//G is defined as
follows. If Y is space, then X//G(Y ) is the groupoid of triples (P, p, f ); p : P → Y
a principal G-bundle and f : P → X a G-equivariant map. The isomorphisms are
defined in the obvious way. There is a natural morphism q : X → X//G defined as
follows: consider the trivial principal G-bundle prX : G × X → X . Note that G
acts on G × X only by group multiplication (and not on X !) and that the action map
μ : G × X → X is G-equivariant. Thus (G × X, prX , μ) is an element of X//G(X),
defining a morphism q : X → X//G. Note that q is a principal G-bundle.

Proposition 2.5 The homotopy type of X//G is homotopy equivalent to the Borel
construction EG ×G X.

Proof The projection map EG × X → X is G-equivariant while the quotient map
EG × X → EG ×G X is a principal G-bundle, so both maps together define a
morphism

η : EG ×G X → X//G.

Clearly, η is a fibre bundle with structure group G and fibre EG: it is associated to
the principal bundle X → X//G. Therefore, if Y is a space and Y → X//G a map,
then the pullback Y ×X//G (EG ×G X) → Y is a fibre bundle with contractible fibres,
hence a weak homotopy equivalence. Hence η is a universal weak equivalence.

An important quotient stack is the moduli stack Mg,n of smooth complex curves. It
is the stack quotient of the Teichmüller space Tg,n by the action of the mapping class
group �n

g of isotopy classes of orientation preserving diffeomorphism of a genus g
surface with n marked points. Hence

Ho(Mg,n) � E�n
g ×�n

g
Tg,n � B�n

g ,

because the Teichmüller space is contractible.
We will have occasion to deal with group actions on stacks. Suppose X is a topo-

logical stack with a strict action of a group G (i.e., the action is not just up to coherent
2-morphisms). We will not have to care about group actions which are not strict. Given
a strict G-action on X and a G-space Y , the notion of an equivariant morphism Y → X
is well-defined.

There are two equivalent descriptions of principal G-bundles over a stack X: as
a morphism X → ∗//G, or as a stack P with a strict G-action and a G-invariant
representable morphism P → X such that the pullback P ×X X → X along any
morphism X → X is a principal G-bundle in the usual sense. An analogous remark
applies to arbitrary fibre bundles.

The quotient stack X//G is defined in the same way as X//G for spaces X : for
a space Y , an object of (X//G)(Y ) consists of a principal G-bundle P → Y and a
G-equivariant morphism P → X. Again, it is clear that X → X//G is a principal
G-bundle.
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Proposition 2.6 Let X be a topological stack with a strict G-action. Then the follow-
ing hold.

1. X//G is a also a topological stack.
2. There exists a homotopy type Ho(X) which is a principal bundle on Ho(X//G)

such that the universal morphism Ho(X) → X is G-equivariant.
3. Ho(X//G) � EG ×G Ho(X).

Proof Let X → X be an atlas, i.e., a representable morphism which admits local
sections. Because X → X//G is a bundle, the composite X → X//G is clearly a
representable morphism with local sections. This shows (1).

For (2), choose a homotopy type Ho(X//G) → X//G and consider the fibre-square

Ho(X//G)×X//G X ��

��

X

��
Ho(X//G) �� X//G.

Because the right vertical map is a principal G-bundle, so is the left vertical map.
Because the bottom horizontal map is a universal weak equivalence, the top horizon-
tal is also a universal weak equivalence. Thus the space Ho(X//G)×X//G X → X is a
homotopy type for X and is also G-equivariant, which shows (2).

For (3), observe that the natural map EG ×G Ho(X) → Ho(X)/G = Ho(X//G)
is a fibre bundle with fibre EG, hence a weak homotopy equivalence.

2.4 Homology of a topological stack

Let X be a topological stack and let Ho(X) → X be a homotopy type. We define

H∗(X) := H∗(Ho(X)).

By Theorem 2.4, different choices of atlases give canonical isomorphisms of homol-
ogy groups and therefore X �→ H∗(X) is a well-defined functor. Clearly the homol-
ogy of a global quotient stack X//G is isomorphic to the Borel-equivariant homology
H G∗ (X) = H∗(EG ×G X). In the same way, we can define cohomology groups of a
stack.

For a topological stack X, let Xcoarse be the coarse moduli space (this is the orbit
space of a groupoid presenting X). There is a natural map X → Xcoarse (which is
almost never representable) and the composition

μX : Ho(X) → X → Xcoarse (2.1)

is a rational homology equivalence when X is an orbifold (see e.g., [12]).
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3 The Pontrjagin–Thom construction for differentiable stacks

In this section we describe an extension of the classical Pontrjagin–Thom construc-
tion of homotopy-theoretic wrong-way maps to the setting of differentiable stacks.
The reader who is not expert with stacks may read Sect. 3.2 for our perspective on the
classical construction and then simply take it on faith that an extension to differentiable
stacks exists.

3.1 Preliminaries on stable vector bundles and Thom spectra

If W → X is a real vector bundle then the Thom space of W , denoted X W is the space
obtained by taking the fibrewise one-point compactification of W and then collaps-
ing the section at infinity to the base-point. (If X is compact then this is simply the
one-point compactification of W .)

A virtual vector bundle on a space X is a pair (E0, E1) of real vector bundles on X ;
one should think of it as the formal difference E0 − E1, and we will sometimes use this
more suggestive notation. The rank of (E0, E1) is the difference dim E0 − dim E1.
An isomorphism (E0, E1) → (F0, F1) is represented by a pair (V, θ) where V is a
vector bundle and

θ : E0 ⊕ F1 ⊕ V → E1 ⊕ F0 ⊕ V

is a bundle isomorphism. Two pairs (θ, V ), (θ ′, V ′) represent the same morphism if
there exists a vector bundle U and an isomorphism V ′ ∼= V ⊕U such that θ ′ ∼= θ⊕idU

(and then take the equivalence relation that this generates). The composition of θ :
E0 ⊕ F1 ⊕ V → E1 ⊕ F0 ⊕ V and φ : F0 ⊕ G1 ⊕ W → F1 ⊕ G0 ⊕ W is defined to
be F1 ⊕ V ⊕ W together with the composition

E0 ⊕ F1 ⊕ G1 ⊕ V ⊕ W
θ⊕idG1⊕W−→ E1 ⊕ F0 ⊕ G1 ⊕ V ⊕ W
φ⊕idE1⊕V−→ E1 ⊕ F1 ⊕ G0 ⊕ V ⊕ W.

The category of virtual vector bundles over a fixed space is a groupoid; these form
a presheaf of groupoids on the site top. Let K denote the stackification of the above
presheaf. The objects of this stack are slightly more general than virtual bundles; they
can locally be presented as formal differences of vector bundles, but globally this
might be impossible. Objects of K are called stable vector bundles.

Let Kd denote the full substack consisting of virtual bundles of rank d. For n ≥ d,
let ∗ → Kd be the arrow representing the stable vector bundle (Rn; R

n−d). It is easy
to see that this is an atlas for Kd (as a topological stack) and in fact Kd is equivalent
to the stack ∗//O . Thus

Ho(K) =
∐

d∈Z

Ho(Kd) � Z × B O,
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as expected, and 2-isomorphism classes of morphisms X → K correspond to homot-
opy classes X → Z × B O .

Stable vector bundles sometimes arise in the following manner. Let X (0) ⊂ X (1)

⊂ · · · ⊂ X be an exhausting filtration, let Vn → X (n) be a real vector bundle of rank
n + d and assume that isomorphisms Vn+1|X (n)

∼= Vn ⊕ R are given. On X (n),Wn :=
Vn − R

n is a virtual vector bundle and there is a given isomorphism Wn+1|X (n)
∼= Wn .

So one obtains from a filtration and a sequence of vector bundles as above a stable
vector bundle on X of rank d.

Vice versa, let W be a stable vector bundle on X , given by a map X → Kd .
Let cW : X → {d} × B O be a classifying map (aka lift to the homotopy type). Put
Xn := c−1

W ({d}×B Od+n); this defines an exhausting filtration of X . Let Vn := c∗
Wγd+n

be the pullback of the d + n-dimensional universal vector bundle. There is an obvious
isomorphism Vn+1|Xn

∼= R ⊕ Vn .
For any stable vector bundle W on X , there is an associated Thom spectrum Th(W ),

produced as follows. Let X (n), Vn be as above. The nth space of Th(W ) is X Wn
n and

the structure maps are

�X Wn
n

∼= XR⊕Wn
n

∼= X
Wn+1|Xn
n ↪→ X Wn+1

n+1 .

The homotopy type of the spectrum Th(W ) depends only on the homotopy class of
cW , which can be viewed as an element in the real K -theory group K O0(X). Further-
more, when W is representable by an actual vector bundle W0 then the Thom spectrum
is homotopy equivalent to the suspension spectrum �∞ X W0 of the Thom space. The
reader who wants to know more details about Thom spectra is advised to consult [31],
chapter IV, §5.

3.2 The classical Pontrjagin–Thom construction

We briefly recall the classical construction. Let f : M → N be a proper smooth map
of codimension d (i.e., dim N − dim M = d) between smooth manifolds. The normal
bundle

ν( f ) := f ∗T N − T M

is a virtual vector bundle of dimension d on M . For n large enough there exists an
embedding j : M ↪→ R

n × N such that prN ◦ j = f . The virtual bundle ν( j)− R
n

is canonically isomorphic to ν( f ).
Choose a tubular neighbourhood U of j (M), identify U ∼= ν( j), and define a map

R
n × N → Mν( j) as follows: if a point lies in U then it is mapped to the corresponding

point in ν( j) ⊂ Mν( j); all points outside U are mapped to the base-point of Mν( j).
Because f is proper, this construction extends to a map �n N+ → Mν( j). The space
Mν( j) is the nth space of the spectrum Th(ν( f )) and letting n tend to infinity defines
a map of spectra

PT f : �∞N+ → Th(ν( f ))
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which is the classical Pontrjagin–Thom map. Recall that the functor �∞ from spaces
to spectra is left adjoint to the functor�∞. The adjoint map of PT f is a map of spaces
N → �∞

Th(ν( f )), which we also denote by PT f , because there is no risk of con-
fusion. The homotopy class of PT f does not depend on the choices involved. The
Pontrjagin–Thom map can be used to define umkehr maps in cohomology, see Sect. 6.

These Pontrjagin–Thom maps satisfy a certain naturality condition.

Proposition 3.1 Suppose

L ×N M M

L N
��˜f

��g̃

�� f

��g

is a pullback square in the category of smooth manifolds ( f and g need not be trans-
verse; we merely require that the pullback exists as a smooth manifold) with f and ˜f
both proper. Suppose in addition that the natural map T (L ×N M) → T L ×T N T M
is an isomorphism. Then there is an induced map of Thom spectra Th(ν(˜f )) →
Th(ν( f )) which restricts to g̃ on the zero sections and gives a homotopy commutative
(strictly commutative after appropriate choices) diagram

L N

�∞
Th(ν(˜f )) �∞

Th(ν( f )).
��
PT

˜f

��g

�� PT f

��

Proof Choose a proper embedding j : M ↪→ R
n for some large n. One then has

proper embeddings

( f, j) : M ↪→ N × R
n, (˜f , j) : L ×N M ↪→ L × R

n

and the diagram

L ×N M M

L × R
n N × R

n
��

(˜f , j)

��g̃

��
( f, j)

��g×idRn

is still a pullback diagram. For any (x, y) ∈ L ×N M, f (y) = g(x) = z, we get a
pullback diagram of tangent spaces

T(x,y)(L ×N M)
∼= �� Tx L ×Tz N Ty M

T g̃ ��

T (˜f , j)
��

Ty M

T ( f, j)
��

Tx L ⊕ R
n T g×idRn �� Tz N ⊕ R

n,

from which one easily derives that the induced vector bundle map of normal bun-
dles ν(˜f , j) → g̃∗ν( f, j) is a monomorphism. Thus there is an induced map of
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Thom spaces

(L ×N M)ν(
˜f , j) → Mν( f, j).

The suspension spectra of these Thom spaces are identified with the Thom spaces
appearing in the statement of the proposition via the canonical isomorphisms of vir-
tual vector bundles

ν(˜f , j) ∼= ν(˜f )⊕ R
n, ν( f, j) ∼= ν( f )⊕ R

n .

This defines the desired map Th(ν(˜f )) → Th(ν( f )) of Thom spectra.
Choose a tubular neighbourhood of the image of ( f, j) and identify it with the

normal bundle ν( f, j). The inverse image of this tubular neighbourhood is a tubu-
lar neighbourhood of the image of (˜f , j) and there is an induced identification of
the inverse image with the normal bundle ν(˜f , j). This fact, together with an easy
diagram chase shows the compatibility of the two Pontrjagin–Thom maps.

Remark 3.2 The hypothesis that T (L ×N M) → T L ×T N T M is an isomorphism is
satisfied, for example, if both f and g are immersions and ˜f is a covering. This is the
case that we need later in the proof of the main theorem.

Note that when ˜f is a finite covering map then its normal bundle is trivial of rank 0,
its Pontrjagin–Thom map is the transfer, and the map Th(ν(˜f )) = �∞(L ×N M)+ →
Th(ν( f )) is induced by the projection onto M followed by the inclusion of the zero
section of ν( f ).

3.3 Normal bundles for stacks and statement of the theorem

To extend the Pontrjagin–Thom construction to stacks one must be able to define the
normal bundle of a morphism.

Let f : X → Y be a proper representable morphism of differentiable stacks. The
codimension d of f is by definition d = dim(Y )− dim(Y ×Y X), where Y → Y is
an atlas. Let Y → Y be an atlas and let X := X ×Y Y → X be the induced atlas for
X. The map f pulls back to a map fY : X → Y which is a proper smooth map. The
normal bundle f ∗T Y − T X is a virtual vector bundle on X , and so it is classified by a
morphism X → Kd . Since normal bundles are natural with respect to pullback along
submersions, this morphism descends to a morphism

ν( f ) : X → Kd

Taking homotopy types produces a map Ho(X) → B O which then yields a Thom
spectrum Th(ν( f )).

We say that two maps are weakly homotopic if their restrictions to any compact
subset of the domain are homotopic. Weakly homotopic maps induce identical homo-
morphisms on homotopy groups and in any generalized homology theory.

The following is the main result of this section.
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Theorem 3.3 1. The construction of Pontrjagin–Thom maps extends to the category
of proper representable morphisms between differentiable local quotient stacks
(see Definition A.1 in Appendix A). More precisely, if f : X → Y is a proper
representable morphism of differentiable stacks with Y a local quotient stack (this
implies that X is a local quotient stack as well) then there exists a Pontrjagin–Thom
map

PT f : Ho(Y) → �∞
Th(ν( f )).

2. Given a pullback square of differentiable local quotient stacks

Z ×Y X X

Z Y

��

��
˜f

��
f

��g

such that f and ˜f are both proper and f and g are transverse, the Pontrjagin–
Thom maps fit into a weakly homotopy commutative diagram.

Ho(Z) Ho(Y)

�∞
Th(ν(˜f )) �∞

Th(ν( f ))

��

��
PT

˜f
��
PT f

��

Taking Z in part (2) to be a manifold explains in which sense this PT-construction
extends the classical one. The classical PT-construction is unique in the sense that it
depends on a contractible space of choices. It is likely that our extended PT-construc-
tion also depends on a contractible space of choices. However, we do not need this fact
here and a proof of it would make the already quite technical proof of Theorem 3.3
even more technical. The proof of Theorem 3.3 is given in Appendix A. For the proof of
our main result, we need part (2) of Theorem 3.3 under a somewhat weaker condition.

Proposition 3.4 Part (2) of Theorem 3.3 holds with the transversality condition
replaced by the requirement that

1. The pullback exists in the category of differentiable local quotient stacks,
2. f, g are immersions, ˜f is a covering,
3. all stacks in the diagram are Deligne–Mumford (whence the tangent bundles exist).

The proof of Proposition 3.4 follows immediately from Proposition 3.1 and the
remark after it.

4 The moduli stack of stable curves

The stack Mg,n was first constructed in the algebraic category by Deligne, Mumford
and Knudsen (in [5] when n = 0 and [18] for general n). We will need only the asso-
ciated orbifold in the category of differentiable stacks. For more information about
Mg,n , we refer to the textbook [16] or the article [7].
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4.1 Definitions and background

A nodal curve is a complete complex algebraic curve C all of whose singularities are
nodal, i.e., ordinary double points. The open subset of smooth points of C will be
denoted by Csm . The arithmetic genus of a connected nodal curve is the dimension
of the vector space H1(C,OC ); it coincides with the usual genus for smooth curves,
and for a nodal curves it is intuitively given by the genus of a smoothing.

All nodal curves in this paper are understood to be connected. Given a finite set
P , a P-pointed nodal curve is a nodal curve C with an embedding of P into Csm .
Such a curve is stable if its automorphism group is finite. This means that the Euler
characteristic of each component of Csm

� P is negative, or equivalently, C does not
contain an irreducible genus 0 component with fewer than 3 marked points and nodes
or a genus 1 component with no marked points or nodes.

The stack Mg,P is the lax sheaf of groupoids on the site of schemes over C in the
étale topology which is given by:

1. The objects of Mg,P (X) are pairs (E
π→ X, j : X × P ↪→ E), where π a proper

morphism all of whose geometric fibres are reduced connected nodal curves of
arithmetic genus g, and j is an embedding over X , and each fibre is a P-pointed
stable nodal curve. Such a pair is a family of pointed curves over X .

2. An isomorphism of families of pointed stable curves is an isomorphism of schemes
over X which respects the embedding j .

Deligne–Mumford–Knudsen [5,18] constructed a smooth étale atlas for Mg,P in the
category of schemes over spec C. In the complex analytic category an orbifold atlas
is given by the degeneration spaces of Bers [1], and another was constructed in [30].
The complex dimension of Mg,P is 3g − 3 + |P|. An important property of this stack
is that its coarse moduli space is compact.

The symmetric group �P acts on Mg,P by permuting the marked points; thus �P

acts on Ho(Mg,P ).

4.2 Vector bundles on Mg,P and stripping and splitting

On Mg,P there is a complex line bundle L p for each element p ∈ P; the fibre of L p

over a given curve is the tangent space at the marked point labelled by p in the curve.
There is a map

Mg,P�Q → Mg,P × BU (1)Q

which maps to the first factor by forgetting the Q marked points and maps to the
second factor by classifying the Q line bundles. This map is known as a stripping and
splitting map in [4].

Proposition 4.1 Restricting to the interior of the moduli stack, the map

Mg,P�Q → Mg,P × BU (1)Q
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is a homology isomorphism in degrees ∗ ≤ 2g/3 − 1. Similarly, the map

Mg,n+k ×�k (Mh,1)
k → Mg,n × E�k ×�k (Mh × BT (2))k

is a homology isomorphism in degrees ∗ ≤ min{2g/3 − 1, 2h/3 − 1}, and the map

Mg,n+2k//(�k ��k
2) → Mg,n × E�k ×�k B N (2)k

is a homology isomorphism in degrees ∗ ≤ 2g/3 − 1.

Proof The first statement is essentially [4, Theorem 1.1], with an improved range due
to the recent paper of Boldsen [3]. The second and third statements follow from the
first by an easy argument with the Serre spectral sequence.

Remark 4.2 Here is a quick proof of the theorem in [4], easier than the original one.
The stripping and splitting map is the middle vertical arrow in the following diagram
(whose rows are homotopy-fibrations)

Mg,P,Q ��

��

Mg,P�Q

��

�� BU (1)Q

Mg,P �� Mg,P × BU (1)Q �� BU (1)Q,

where Mg,P,Q is the moduli stack of smooth curves of genus g with |P| marked points
and |Q| additional marked points equipped with a nonzero tangent vector. The left
vertical arrow is a homology equivalence in the stable range of ∗ ≤ 2g/3 − 1 by
Boldsen’s improved version [3] of Harer–Ivanov stability. The base space is simply-
connected, so both fibrations are simple. Thus a straightforward application of the
Leray–Serre spectral sequence finishes the proof.

In order to prove the�′ flavour of Theorem 1.1, we shall need the following obser-
vation.

Lemma 4.3 The composition

Mg,n+1 × Mh,m+1 → Mg,n × Mh,m × BT (2)
proj→ BT (2) → BU (1),

where the first arrow is stripping-and-splitting and the third arrow is induced by mul-
tiplying the two U (1) factors, is surjective on homology in the degrees min{2g/3 − 1,
2h/3 − 1} (whereas the first arrow is a homology isomorphism in min{2g/3 − 1,
2h/3 − 1}.
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5 The Pontrjagin–Thom maps for Mg,n in homology

5.1 Outline of the proof

First consider the gluing morphism ξh,∅ : Mh,1 × Mg−h,n+1 → Mg,n . The image of
this morphism is one of the irreducible components of the boundary of Mg,n . We will
show that there is an open stratum Z ⊂ Mg,n sitting at a k-fold self-intersection of
the image of ξh,∅ for some fairly large k, such that the composition

Z ↪→ Mg,n
�−→ Q BT (2)V

is surjective on homology in a range of degrees. The reason for the surjectivity is the
following. The stratum Z is chosen so that, using the Bödigheimer–Tillmann strip-
ping and splitting theorem, (Proposition 4.1), Z homologically splits off a factor of
E�k ×�k BT (2)k in a range of degrees. By the Barratt–Priddy–Quillen–Segal The-
orem and homological stability of symmetric groups, this factor has the homology
of Q BT (2)+ in a range of degrees. The Bödigheimer–Tillmann range in this case is
proportional to the minimum of g − kh and h, while the second range is proportional
to k, so one must choose k to maximise the overlap of these two ranges. Since Z lies
in the image of ξh,∅,� maps it to the subspace Q BT (2)+ ⊂ Q BT (2)V , and the key
idea of the proof is that this coincides with the projection onto the Q BT (2)+ factor in
the approximate homological splitting of Z . It is an easy calculation that the inclusion
Q BT (2)+ ↪→ Q BT (2)V is surjective on homology with field coefficients.

The other flavours of the theorem are proven by appropriately modifying the choice
of the stratum Z .

Remark 5.1 As we will see in the proof of this theorem, the homology surjectivity
comes from boundary components that have high numbers of self-intersections. Thus
Pontrjagin–Thom maps for the boundary components which are embedded (rather
than immersed) factor as

Mg,n → BT (2)V → Q(BT (2)V ).

Such maps cannot be surjective in homology in a range because the second map is
not. This is why the theorem refers only to self-intersecting boundary components.

5.2 The choice of detecting stratum Z

First consider the gluing morphism ξh,∅ : Mh,1 × Mg−h,n+1 → Mg,n and the result-
ing Pontrjagin–Thom map �h,∅ : Mg,n → Q BT (2)V . We choose Z to be the open
stratum consisting of curves with precisely k separating nodes, each of which pinches
off a component of genus h with no marked points on it; the component to which each
of these is attached via a node has genus g − kh and contains all of the marked points.
This is pictured below.
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Thus Z ∼= Mg−kh,n+k ×�k (Mh,1)
k . There is a stripping-and-splitting map for this

stratum; its target is

[

Mg−kh,n × E�k ×�k (Mh)
k
]

×
[

E�k ×�k BT (2)k
]

. (5.1)

and it is a homology isomorphism in degrees ∗ ≤ min{2(g − kh)/3−1, 2h/3−1}. In
Sect. 5.3 we shall relate the second factor in the above partial homological splitting
to Q BT (2)+.

For the gluing map ξirr : Mg−1,n+2//�2 → Mg,n , we take Z to be the stratum con-
sisting of those curves which have precisely k nonseparating nodes and are irreducible
(i.e., no subset of the nodes separates the curve), as shown below.

Thus, Z ∼= Mg−k,n+2k//(�k � �k
2), and the target of the relevant stripping-and-

splitting map is

Mg−k,n × E
(

�k ��k
2

)

×�k��k
2

BU (1)2k = Mg−k,n × E�k ×�k B N (2)k .

(5.2)

It is a homology isomorphism in degrees ∗ ≤ 2(g − k)/3 − 1.
In either of these cases, the important point is that the projection onto the second

factor in the partial homological splitting is surjective on homology in the stated range.

5.3 Symmetric groups and Q X+

Here we recall the relation between E�k ×�k Xk and Q X+. Let X be a connected
space. There is an k-fold covering

E(�k−1 × 1)×�k−1×1 Xk → E�k ×�k Xk
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induced by the index k inclusion �k−1 × 1 ↪→ �k . The Becker–Gottlieb transfer is a
map

trf : E�k ×�k Xk → Q(k)(E(�k−1 × 1)×�k−1×1 Xk)+,

where Q(k) denotes the kth component. When X is a manifold or local quotient stack
the transfer can be described as the Pontrjagin–Thom map for the covering projection.
The group completion map is then the composition

gck : E�k ×�k Xk trf→ Q(k)(E(�k−1 × 1)×�k−1×1 Xk)+ → Q(k)X+,

where the second map is induced by projecting onto the kth component of Xk .
The name stems from the following. One can put a monoid structure on the union

∐

k

E�k ×�k Xk,

and the maps {gck} assemble to a monoid map gc : ∐

k E�k ×�k Xk → Q X+.
The Barratt–Priddy–Quillen–Segal Theorem (see e.g. [33]) asserts that this map is the
homotopy-theoretic group completion of the above monoid.

Lemma 5.2 For any connected space X, the map gck : E�k ×�k Xk → Q(k)X+
induces an isomorphism in homology with field coefficients in degrees ∗ ≤ k/2 − 1.

Proof This is a well-known consequence of homology stability for symmetric groups
(with twisted coefficients). After choosing a base-point in X one has stabilization maps

jk : E�k ×�k Xk → E�k+1 ×�k+1 Xk+1

whose colimit is denoted by E�∞ ×�∞ X∞. The induced map

gc∞ : E�∞ ×�∞ X∞ → Q X+

is a homology isomorphism onto the base-point component by the group completion
theorem (see e.g. [25,32]). Up to a shift of component the stabilization map from
E�k ×�k Xk to the colimit followed by gc∞ agrees with gck . The stabilization map
jk induces isomorphism in homology in degrees ∗ ≤ k/2−1, and epimorphism when
∗ ≤ k/2. This has probably been known for a long time (homological stability for
symmetric groups with constant coefficients was first proven by Nakaoka). One proof
can be found in [13], based on a result of [2]. Another proof is a combination of
Proposition 1.6 in [17] with the main result of [19]. The authors are not aware of a
previously published proof.
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5.4 Homology of the Thom spectra and their infinite loop spaces

Here we show that the maps Q BG+ → Q BGV (for G = T (2), N (2), or U (1))
induced by inclusion of the zero section into the Thom space are surjective of homol-
ogy with field coefficients. This is the only part of the proof of Theorem 1.1 where
field coefficients are used seriously. The homology surjectivity is immediate from the
following two lemmata.

Lemma 5.3 The inclusion of the zero section

B N (2) ↪→ B N (2)V

induces a surjection on homology with coefficients in a field of characteristic �= 2.
The inclusions of the zero sections

BT (2) ↪→ BT (2)V , BU (1) ↪→ BU (1)V

induce surjections in homology with coefficients in an arbitrary field.

Proof Let ι denote one of the three above inclusions. The statement is equivalent to
the statement that ι∗ is injective on cohomology. The composition of the Thom iso-
morphism followed by ι∗ is equal to multiplication by the Euler class e(V ) of V , so it
suffices to show that e(V ) is not a zero-divisor in each of the three cases. This is well
known. For B N (2), the Euler class is a zero divisor in characteristic 2.

Lemma 5.4 If f : X → Y is a pointed map between pointed spaces which is surjec-
tive in homology with coefficients in a field F, then the induced map Q f : Q X → QY
is surjective on homology with coefficients in F.

Lemma 5.4 is a well-known fact which we discuss in Appendix B.

5.5 Proof of Theorem 1.1

We shall now relate the projection onto the second factor of the partial homological
splitting of Z (given by (5.1) in the separating case, and (5.2) in the nonseparating case)
to the restriction of the Pontrjagin–Thom map� to Z . We will describe the argument
in the separating case, and then indicate how to modify it for the nonseparating case.

Let ˜Z denote the moduli stack of curves of the type in Z equipped with a marking
of one node. Forgetting the marking gives a k-fold covering π : ˜Z → Z . Naturality
of Pontrjagin–Thom maps/transfers applied to the pullback squares

E(�k−1 × 1)×�k−1×1 BT (2)k ˜Z Mg−h,n+1 × Mh,1

E�k ×�k BT (2)k Z Mg,n

��

� � ����

��
π �� ξh,∅
� � ����
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gives a weakly homotopy commutative diagram

E�k ×�k BT (2)k Z Mg,n

Q(k)

(

E(�k−1 × 1)×�k−1×1 BT (2)k
)

+ Q(k)˜Z+ �∞
Th(νξh,∅)

��trf

����

��
PTπ=trf

��
PTξh,∅

����

by Theorem 3.3 part (2). The lower right horizontal arrow of the above diagram factors
as

Q˜Z+ → Q(Mg−h,n+1 × Mh,1)+ → Q(Mg,n)+
PTξh,∅→ �∞

Th(νξh,∅)

and one observes that the diagram

Q(k)˜Z+ Q(k)(Mg−h,n+1 × Mh,1)+ �∞
Th(νξh,∅ )

Q(k)

(

E(�k−1 × 1)×�k−1×1 BT (2)k
)

+ Q(k)BT (2)+ Q BT (2)V

��

�� ��

�� ��
�� ��ι

is weakly homotopy commutative, where the middle vertical arrow is induced by the
classifying maps for the two line bundles associated with the two marked points that
ξh,∅ glues together.

Assembling the above diagrams, one sees that the composition

Z → E�k ×�k BT (2)k
gck→ Q(k)BT (2)+

ι−→ Q BT (2)V (5.3)

coincides (up to weak homotopy) with the restriction of �h,∅ to Z . The first arrow is
the projection onto the second factor of an approximate homological splitting, so it is
homology surjective in degrees ∗ ≤ min{2(g − kh)/3 − 1, 2h/3 − 1}. The second
map is a homology isomorphism in degrees ∗ ≤ k/2 − 1 by Lemma 5.2, and the third
is homology surjective in all degrees. Choosing k (and Z ) to maximise the overlap of
these ranges yields part (ii) of the main theorem.

Part (i) is proved by essentially the same argument, using the appropriate stratum
Z , and replacing BT (2) with B N (2) throughout. Part (iii) is proved as for part (ii),
using in addition Lemma 4.3.

5.6 Independence of the detected classes

Using a slight modification of the argument in the proof of Theorem 1.1 one can show
that the cohomology classes produced by the various maps � are independent in
certain stable ranges. For example, the open stratum Z ⊂ Mg,n of curves with one
component of genus g − k1h1 − k2h2 attached to k1 components of genus h1 and k2
components of genus h2, as shown below,
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detects that the map

Mg,n
�h1,∅×�h2,∅−→ Q BT (2)V × Q BT (2)V

is surjective on homology in degrees

∗ ≤ min{2(g − k1h2 − k2h2)/3 − 1, 2h1/3 − 1, 2h2/3 − 1, k1/2 − 1, k2/2 − 1}
and one can choose k1 and k2 to optimize this range.

6 Comparison to the tautological algebra

Here we explain the relationship between the rational cohomology classes detected
via Theorem 1.1 and the tautological algebra of Mg,n .

Proposition 6.1 The image of the homomorphism

�∗
irr : H∗(Q B N (2)V ; Q) → H∗(Mg,n; Q)

is contained in the cohomology tautological algebra R∗(Mg,n). The analogous state-
ment is true for the other maps studied in Theorem1.1.

Before we can explain the definition of R∗(Mg,n) and the proof of Proposition 6.1,
we need to say a few words about umkehr maps (also called “pushforward” or “Gysin
map”) in cohomology and their relation to the Pontrjagin–Thom construction.

Let f : M → N be a proper smooth map between manifolds (or a proper represent-
able morphism between differentiable local quotient stacks) of codimension d, and
let PT f : �∞N+ → Th(ν( f )) be its Pontrjagin–Thom map. A cohomological ori-
entation of f is by definition a Thom class in Hd(Th(ν( f )). This orientation induces
a Thom isomorphism th : H∗(M) → H∗+d(Mν( f )) (see [31], ch. V for details). The
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umkehr map f! is defined as the composition

H∗(M) ∼= H∗(�∞M+)
th−→ H∗+d(Mν( f ))

PT∗
f−→ H∗+d(�∞N+) ∼= H∗+d(N ).

(6.1)

The tautological algebra has been studied by many authors; we refer to the survey
paper [34]. Here is the definition. One considers all natural morphisms Mg,n+1 →
Mg,n (forget the last point and collapse an unstable component if it shows up),
Mg−1,n+2 → Mg,n,Mh,k+1 × Mg−h,n−k+1 → Mg,n (the gluing morphisms) and
Mg,n → Mg,n (given by a permutation of the labelling set {1, . . . , n}). All these
morphisms are representable morphisms of complex-analytic stacks and so they have
canonical orientations. Thus there are umkehr maps in integral cohomology for these
morphisms. There is another, more traditional way to define the umkehr maps for
complex orbifolds, based on rational Poincaré duality for the coarse moduli spaces,
but this only works in rational cohomology.

Definition 6.2 The collection of tautological algebras

R∗ (

Mg,n

)

⊂ H2∗ (

Mg,n; Q

)

is the smallest system of unital Q-subalgebras which contain all classesψi = c1(Li ) ∈
H2(Mg,n; Q), for all g, n and i = 1, . . . , n and which is closed under pushforward
by the natural morphisms above.

We prove Proposition 6.1 only for the map �irr : Mg,n → Q B N (2)V , which is
sufficient to clarify the pattern.

First recall that H∗(Q B N (2)V ; Q) = Q[ai, j ], where

ai, j = th
(

yi
1 y j

2

)

∈ H2+2i+4 j (B N (2)V ),

and yi is the i th Chern class of the 2-dimensional complex vector bundle on B N (2)
induced by the inclusion N (2) → U (2). Thus we need to argue that�∗

irr (th(y
i
1 y j

2 )) is
in the tautological algebra. By the definition of �irr , this is precisely PT∗

ξirr

(th(c1(W )i c2(W ) j )), where W = Ln+1 ⊕ Ln+2 → Mg−1,n+(2) is the sum of the
natural line bundles (which is well-defined, although the last two points are permuted).
This can be rewritten, using the definition of the umkehr map, as

(ξirr )!(c1(W )i c2(W ) j ) = (ξirr )!((ψn+1 + ψn+2)
i (ψn+1ψn+2)

j ).

This obviously lies in the tautological ring. There is a little argument needed, because
we used the PT-map starting from Mg−1,n+(2), while the tautological algebra is defined
using the map from the twofold cover Mg−1,n+2. We leave this to the reader.
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Appendix A: Construction of the Pontrjagin–Thom map

A.1 Local quotient stacks

In this appendix, we prove Theorem 3.3. First we have to introduce local quotient
stacks, which we view as the natural setting for the Pontrjagin–Thom construction.

Definition A.1 A local quotient stack is a topological stack X, such that

1. there exists a paracompact atlas for X.
2. there exists a countable cover of open substacks Xk ⊂ X such that Xk ∼= Xk//Gk

for some Hausdorff space Xk and some compact Lie group Gk .
3. The diagonal morphism X → X × X is representable and proper (recall that we

use Bourbaki’s definition of a proper map).

A differentiable stack is a local quotient stack if the spaces Xk are smooth manifolds
with smooth Gk-actions.

Lemma A.2 ([8], Lemma A.14) If Y is a local quotient stack and f : X → Y is a
representable separated (i.e., pullbacks along maps from Hausdorff spaces are Haus-
dorff spaces) morphism of topological stacks then X is a local quotient stack as well.
In particular, every open substack of a local quotient stack is a local quotient stack.
The analogous statements for differentiable local quotient stacks are also true.

Proof First suppose that Y is a global quotient Y//G. Let X := X ×Y Y → X be
the atlas of X obtained by pulling back the atlas Y → Y. One easily checks that
X ×X X ∼= G × X and that the two arrows X ×X X = G × X ⇒ X are the pro-
jection onto X and a group action. Furthermore, one can check that f : X → Y is
represented by a G-equivariant map X → Y . Now suppose Y is a local quotient stack
with a covering by global quotients {Yk ∼= Y//Gk}. The substacks Xk := Yk ×Y X
form an open cover of X and by the above, Xk ∼= Xk//Gk .

Lemma A.2 indicates that the class of local quotient stacks is large and robust.
Orbifolds are local quotient stacks and so are global quotient stacks of the form Y//�,
where � is a (possibly noncompact) Lie group which acts properly on Y . A very gen-
eral result by Zung [35] states that any proper Lie groupoid represents a local quotient
stack.

Lemma A.3 The coarse moduli space Xcoarse of a differentiable local quotient stack
X is a paracompact Hausdorff space.

Proof Given an atlas X → X, one sees that the associated groupoid X ×X X ⇒ X is
proper in the sense of [23]. The coarse moduli space is the orbit space of this groupoid
and hence it is Hausdorff and paracompact.

As an application of this lemma, we have existence of locally finite smooth parti-
tions of unity subordinate to any open cover of Y as follows. Any open cover of Y
gives an open cover of Ycoarse, because the open subsets of Ycoarse are precisely the
coarse moduli spaces of the open substacks of Y, compare [28], Sect. 4.3. On Ycoarse,
we have partitions of unity, which can then be pulled back via Y → Ycoarse.
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A.2 The Whitney embedding theorem for local quotient stacks

First we fix some notations. If f : X → Y is a map of stacks and U ⊂ Y an open
substack, we denote f −1(U) := X ×Y U. Similarly, if Ui and U2 are open substacks
of Y, then U1 ∩ U2 =: U1 ×Y U2; similarly the intersection of a finite number of
substacks is defined.

Let f : X → Y be a proper representable morphism of differentiable local quotient
stacks. Let Y → Y be an atlas which we will use to present the homotopy type Ho(Y).
A homotopy type of X and f is then obtained by pullback:

Ho(X)
ηX ��

Ho( f )
��

X

f
��

Ho(Y)
ηY �� Y.

Note that Ho( f ) is still a proper map. If we have an open cover (Yi )i∈I of Y, we
obtain open substacks Xi := f −1(Yi )which cover X. If (Yi )i∈I is locally finite, then
so is (Xi )i∈I . The cover (Yi )i∈I induces open covers (Ho(Yi ))i∈I and (Ho(Xi ))i∈I of
Ho(Y) and Ho(X), respectively. Likewise, given a vector bundle V → Y, we obtain
a vector bundle Ho(V) := η∗

YV → Ho(Y); similarly we treat vector bundles on X
or vector bundles that are defined on open substacks.

To construct the Pontrjagin–Thom map for f , we of course would like to find
an embedding f : X → Y × R

n whose first component is just f . Usually, this is
not possible. We can ask for less, namely an embedding f : X → V into some
finite-dimensional vector bundle on Y. This is not possible in general, either. It is,
however, always possible to find such an embedding locally on Y. We could glue
these together by means of a partition of unity, but that would lead to the consideration
of infinite-dimensional vector bundles on Y that we rather would like to avoid.

In the course of this section, we will meet the following set of data several times.

Definition A.4 Let Y be a space or a stack. A crude vector bundle on Y consists of
the following data:

1. a countable, locally finite cover (YS)S∈J of Y indexed on a partially ordered set J
such that if S ≤ T , then YT ⊂ YS ,

2. finite-dimensional vector bundles VS → YS , monomorphisms bS,T : VS|YT →
VT for each pair S ≤ T such that bS,U = bT,U ◦ bS,T whenever S ≤ T ≤ U and
bS,S = id.

Here is a typical way to obtain crude vector bundles.

Example A.5 Let (Yi )i∈I be a countable locally finite open cover, and for each i let
Vi → Yi be a finite dimensional vector bundle. Let J be the set of finite nonempty
subsets of I , partially ordered by inclusion. Put YS := ⋂

i∈S Yi and VS := ⊕

i∈S Vi |YS .
The monomorphisms bS,T are just the obvious inclusions. By construction, this is a
crude vector bundle.

123



Pontrjagin–Thom maps and the homology of the moduli stack of stable curves 569

Given a crude vector bundle, we define
⋃

VS := ∐

S∈J {S} × VS/ ∼; the equiva-
lence relation is generated by (S, v) ∼ (T, w) if S ≤ T, v ∈ VS|YT and w = bS,T (v)

and endow it with the quotient topology. There is a natural map π : ⋃

S∈J VS → Y .
To simplify notation, we will occasionally pretend that all the monomorphisms bS,T

are actually inclusions.
Suppose that f : X → Y is a map. An embedding e : X → ⋃

S∈J VS over f is then
an embedding such that π ◦e = f . We will call this set of data a crude embedding over
f . We can also talk about tubular neighborhoods of crude embeddings. First recall
some facts about tubular neighborhoods in the setting of ordinary manifolds. Let e :
M → N be an embedding. A tubular neighborhood is a pair (E, ι), where E → M is
a vector bundle and ι : E → N is an open embedding that restricts to e on the zero sec-
tion of E . The restriction of the differential to the zero section induces an isomorphism

T E |M
T e→ e∗T N . The composition E → T E |M → e∗T M → e∗T N/T M = ν(e)

is an isomorphism. Therefore a bundle E as above is canonically isomorphic to the
normal bundle. Two tubular neighborhoods (Ei , ιi ), i = 0, 1 are called equivalent if
there is an isomorphism a : E0 → E1 with ι1 ◦ a = ι0. The set of equivalence classes
can thus be identified with a subset of the mapping space Map(ν(e), N ) and we put
the subspace topology on it. There is an obvious generalization of these notions to
the G-equivariant case, where G is a compact Lie group. It is a standard fact that the
space of tubular neighborhoods obtained in this way is contractible.

Now suppose that e : X → ⋃

S∈J VS is a crude embedding. A crude tubular
neighborhood of e consists of the following data for each S:

1. a crude vector bundle on X , consisting of vector bundles ES → X S := f −1(YS)

and monomorphisms cS,T : ES|XT → ET ,
2. and open embeddings ιS : ES → VS whose restriction to the zero section is eS ,

and these data are subject to the following compatibility condition:
if S ≤ T , then ιT ◦ cS,T = bS,T ◦ (ιS|(ES |YT )).
Note that a crude tubular neighborhood defines a map ι : ⋃

S ES → ⋃

S VS and it
is entirely determined by this.

Proposition A.6 Let f : X → Y be a proper representable morphism of differen-
tiable local quotient stacks. Then there exists a crude vector bundle π : V → Y, a
crude embedding e : X → V over f with a crude tubular neighborhood.

Proof First assume that Y = Y//G, where G is a compact Lie group acting on the
manifold Y with finite orbit type, i.e., the number of conjugacy classes of isotropy
subgroups is finite. Then X ∼= X//G and f is represented by a G-equivariant map
X → Y (compare the proof of Lemma A.2). Because f is proper, the action on X
also has finite orbit type. Mostow showed ([24], p. 444 f) that there exists a finite-
dimensional G-representation V and a G-equivariant embedding i : X ↪→ V . Then
X → Y × V is also a G-equivariant embedding. For an arbitrary G-representation V ,
an embedding X → (Y × V )//G over Y is the same as a G-equivariant embedding
X → Y × V over Y . Therefore we get an embedding of stacks X//G ↪→ (Y × V )//G.

Now let Y be a local quotient stack. Let (Ui//Gi )i∈I be a countable locally finite
open cover of Y by global quotients. Such an open cover exists by Lemma A.3 and
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Lemma 1.21 of [14]. For each i ∈ I , we choose an open substack Yi = Yi//Gi ⊂
Ui//Gi such that Yi ⊂ Ui is relatively compact and the collection of all Yi covers Y.
Let Xi := f −1(Yi ), i ∈ I be the induced open cover of X. Then the Gi -action on Yi

is of finite orbit type and therefore we can choose a finite-dimensional vector bundle
Vi → Yi and an embedding ẽi : Xi → Vi over f |Xi .

As in example A.5, let J be the set of all finite nonempty subsets of I . For S ∈ J ,
we put YS = ⋂

i∈S Yi and VS = ⊕

i∈S Vi |YS . The YS cover Y and by construction,
these data form a crude vector bundle on Y. Next, let (λi )i∈I be a locally finite parti-
tion of unity on Y subordinate to the cover (Yi )i∈I and (μi )i∈I be a family of bump
functions, i.e., supp(μi ) ⊂ Yi and μiλi = λi . For x ∈ X, set

e(x) := (μi ( f (x))ẽi (x))i∈I ∈
⋃

S∈J

VS .

This is cleary a crude embedding e : X → ⋃

S∈J VS over f .
It remains to construct a crude tubular neighborhood for e. As usual, let eS = e|XS :

XS → VS . Let ES → XS be the normal bundle of eS . The collection of all ES is a
crude vector bundle on X; let q : ⋃

S∈J ES → X be the projection. For each S ∈ J,YS

is a global quotient stack YS//GS because it is an open substack of the global quotient
stack Yi whenever i ∈ S (c.f. Lemma A.2). The embedding eS : XS → VS arose from
a GS-equivariant embedding X S → YS ×VS . For S ∈ J , let FS denote the space of all
tubular neighborhoods of eS in VS ; as we remarked above, FS is contractible. We will
use this contractibility to find a compatible collection of tubular neighborhoods of the
embeddings eS which can be glued together to form a crude tubular neighborhood.

For S ⊂ T , let rS,T : FS → FT denote the map defined by sending the tubular
neighborhood ιS : ES → VS of eS to the tubular neighborhood of eT given by

ιS ⊕ Id : ES|XT ⊕ VT �S|YT → VS|YT ⊕ VT �S|YT
∼= VT .

Let �S ⊂ R
S denote the (|S| − 1)-dimensional simplex spanned by S. Because

the spaces FS are all contractible, by induction on |S| it is possible to choose maps
hS : �S → FS satisfying the compatibility conditions that whenever S ⊂ T then
hT |�S = rS,T ◦ hS . For x ∈ X, let S(x) := {i ∈ I | f (x) ∈ Yi }, and define

ι(e) := hS(q(e))

⎛

⎝

∑

i∈S(q(e))

λi ( f (q(e))) · {i}
⎞

⎠ (e) ∈
⋃

S∈J

VS .

By construction, this is a crude tubular neighborhood of e.

Now we pass to homotopy types. Choose an atlas Y → Y. Using Y , we get a
model ηY : Ho(Y) → Y for the homotopy type. We pull back all the data we have
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constructed so far by the map ηY. The result is a commuting diagram of spaces

Ho(E)
Ho(ι) �� Ho(V)

Ho(π)
��

Ho(X)

Ho(s)

��

Ho( f ) ��

Ho(e)
�����������

Ho(Y),

where Ho(E) → Ho(X) and Ho(V) → Ho(Y) are crude vector bundles, Ho( f ) is a
proper map, Ho(e) is an embedding and Ho(ι) is an open embedding. We would like to
embed the crude vector bundle Ho(V) into the trivial vector bundle Ho(Y)×R

∞, but
we have to do this with some care, because we wish to have an embedding Ho(V) →
Ho(Y) × R

∞ which locally (and not merely pointwise) goes into some finite stage
R

n ⊂ R
∞. The vector bundles Ho(VS) are of course not necessarily trivial, but the

real problem is that there might not exist an embedding Ho(VS) → R
nS . We must

work locally on the homotopy type rather than just locally on the stack.

Lemma A.7 Let Y be a paracompact space with (Yi )i∈I a countable locally finite
cover, for each i let πi : Vi → Yi be a finite-dimensional vector bundle, and let (VS →
YS)S∈J be the crude vector bundle constructed as in ExampleA.5 and V = ⋃

S VS.
Assume that there exist open neighborhoods ˜Yi of Y i and vector bundles ˜Vi → ˜Yi

with ˜Vi |Yi = Vi , such that (˜Yi )i∈I is a locally finite cover of Y . Then there exists a
monomorphism ε : V → Y × R

∞ such that any y ∈ Y has an open neighborhood
U ⊂ Y such that ε(V |U ) ⊂ U × R

nU .

Proof First suppose that I and hence J consists of a single element, i.e., π : V → Y
is a single vector bundle. According to Lemma 1.21 of [14], we can find a countable
cover (Yk)k∈K of Y and trivializations ϕk : V |Yk

∼= Yk ×R
n . Let (μk)k∈K be a partition

of unity subordinate to (Yk)k∈K . For v ∈ V , put

ε(v) := (μk(π(v)) · ϕk(v))k∈K ∈ (Rn)K ∼= R
∞,

where the last isomorphism is induced by a bijection n × K ∼= N. Clearly, ε has the
desired property.

In the general case, let εi : ˜Vi → Y ×R
∞, i ∈ I , be embeddings as just constructed.

Let (νi )i∈I be a family of cut-off functions, i.e., supp(νi ) ⊂ ˜Yi and νi |Yi ≡ 1. Now,
for v ∈ ⋃

S∈J
˜VS , we put

ε(v) = (νi (π(v)) · εi (v))i∈I ∈ (R∞)I ∼= R
∞,

where the last isomorphism is induced by a bijection N × I ∼= N. The restriction of ε
to V has the desired properties.

Now we apply Lemma A.7 to the space Ho(Y), the open cover (Ho(Yi ))i∈I and the
vector bundles Ho(Vi ) → Ho(Yi ). The additional property that the bundles Ho(Vi )

can be extended to neighborhoods of Ho(Yi ) can easily be satisfied by a minor adjust-
ment of the construction in the proof of Proposition A.6.

Let us summarize our progress so far.
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Proposition A.8 1. There is an open exhaustion Ho(Y)1 ⊂ Ho(Y)2 ⊂· · · of Ho(Y),
with the preimages giving an open exhaustion Ho(X)1 ⊂ Ho(X)2 ⊂ · · · of Ho(X),
and an embedding g : Ho(X) → Ho(Y) × R

∞ over Ho( f ) that sends Ho(X)n
into the subspace Ho(Y)n × R

n.
2. There exist vector bundles Wn → Ho(X)n and open embeddings Wn → Ho(Yn)×

R
n extending g|Ho(X)n . Moreover, there are isomorphisms Wn+1|Ho(X)n

∼= Wn ⊕R

which are compatible with these embeddings.
3. There is an isomorphism of the stable vector bundle W represented by the bundles

Wn with η∗
Xν( f ), the stable normal bundle of f .

Proof For part (1), let Ho(Y)n ⊂ Ho(Y) be the subspace of all points y such that
if y ∈ Ho(YS) for some S then there exists an open neighborhood Uy ⊂ Ho(YS)

with ε(Ho(VS)|Uy ) ⊂ Uy × R
n , where ε is the bundle monomorphism from A.7.

By construction, Ho(Y)n is open and Ho(X)n = Ho( f )−1(Ho(Y)n) is mapped by
g = ε ◦ Ho(e) into the subbundle Ho(Yn)× R

n .
For part (2), let Wn,S denote the vector bundle on Ho(X)n ∩ Ho(XS) given by

Ho(ES)⊕ Ho( f )∗ε(Ho(VS)|Ho(Y)n∩Ho(YS))
⊥,

where the orthogonal complement is taken in the ambient trivial R
n bundle. As S

varies these bundles Wn,S canonically glue together to define the desired bundle Wn .
An open embedding of Wn,S into Ho(Y)n ∩ Ho(YS)× R

n is given by Ho(ιS) ◦ ε on
the first summand and the identity on the second factor. These embeddings also glue
together as S varies.

For part (3), it is enough to construct locally on Ho(X) a canonical isomorphism,
which is a straighforward matter (the bundles ES in the proof of A.6 were introduced
as certain normal bundles of f ).

From Proposition A.8, it is now to entirely straightforward to construct a Pontrjagin–
Thom map �∞ Ho(Y)+ → Th(W ) � Th(ν( f )) by the usual collapse construction.

Appendix B: A quick review of homology of infinite loop spaces

We recall the description of the homology of the free infinite loop space Q X with
coefficients in a field F. In characteristic zero the description is easy and classical; in
finite characteristic the standard reference is [21].

If F is a field, V a graded F-vector space, then we denote by�(V ) the free graded-
commutative F-algebra generated by V .

Let X be a pointed space. There is a natural map X → Q(X), adjoint to the identity
on �∞ X and thus a homomorphism H∗(X) → H∗(Q X). Because Q X is a homoto-
py-commutative H -space, the Pontrjagin product endows the homology H∗(Q X; F)

with the structure of a graded-commutative F-algebra. Thus we obtain a ring homo-
morphism�(˜H∗(X; F)) → H∗(Q X; F). If char(F) = 0 then this is an isomorphism.
This is a standard result of algebraic topology, see [22, p. 262 f].

If char F = p > 0 then the homology H∗(Q X; F) is much richer. The homology
algebra H∗(Q X; F) is a module over an algebra of homology operations known as the
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Dyer–Lashof operations (they are also known as Araki–Kudo operations if p = 2).
These operations measure the failure of chain-level commutativity of the Pontrjagin
product.

For p �= 2, these operations are:

βεQs : Hn(Q X; F) → Hn+2s(p−1)−ε(Q X; F)

for ε ∈ {0, 1} and s ∈ Z≥ε . Given a sequence I = (ε1, s1, . . . , εn, sn), I is admissible
if si+1 ≤ psi − εi for i = 1, . . . , n − 1. One defines the excess

e(I ) = 2s1 − ε1 −
n

∑

i=2

(2si (p − 1)− εi )

and b(I ) = ε1. Such a sequence determines an iteration of operations which is written
QI .

When p = 2 the operations are of the form

Qs : Hn(Q X; F) → Hn+s(Q X; F)

for s ∈ Z≥0. A sequence I = (s1, . . . , sn) is admissible if si+1 ≤ 2si for each
i = 1, . . . , n − 1. The excess is defined to be e(I ) = s1 − ∑n

i=2 si , and for conve-
nience one puts b(I ) = 0.

Let V be a graded F-vector space and let B be a homogeneous basis of V . The free
unstable Dyer–Lashof module generated by V is the F-vector space DLF(V ) on the
basis

{QI x |x ∈ B, I admissible, e(I )+ b(I ) ≥ deg(x)}.

Because H∗(Q X; F) has Dyer–Lashof operations, there is a ring homomorphism,
compatible with the Dyer–Lashof operations

�(DLF(˜H∗(X; F))) → H∗(Q X; F),

and it is proven in [21] that this is an isomorphism. This calculation immediately
implies Lemma 5.4.
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