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Abstract. This is an exposition of homotopical results on the geometric realization of semi-

simplicial spaces. We then use these to derive basic foundational results about classifying spaces

of topological categories, possibly without units. The topics considered include: fibrancy con-
ditions on topological categories; the effect on classifying spaces of freely adjoining units; ap-

proximate notions of units; Quillen’s Theorems A and B for non-unital topological categories;

the effect on classifying spaces of changing the topology on the space of objects; the Group-
Completion Theorem.
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Semi-simplicial spaces play an important role in the theory of moduli spaces of manifolds,
beginning with [6] and [26], and continuing in [7], [9], [10]. In those papers, a number of key
properties of semi-simplicial spaces are used. While such results are mostly well-known to experts,
a consistent exposition seems to be missing. The first goal of the present note is to give such an
exposition; we hope that it helps to make the basic technology of those papers more understandable
to the non-expert. Results which are repeatedly used in [6], [7], [9] and [10] are stated in this paper
as Theorem 2.2, Theorem 2.12 and Lemma 2.4. (One piece of semi-simplicial technology from
those papers is not explained here, namely [7, Theorem 6.2] and its elaboration [8] which has been
abstracted in [2, Theorem 6.4]. But these are explained in full detail in the cited papers.)

The second goal of this note is to establish basic foundational results about classifying spaces
of topological categories, possibly without units (we define these in Section 3). The topics we
will consider are: fibrancy conditions on topological categories; the effect on classifying spaces of
freely adjoining units to a non-unital topological category; approximate notions of units; Quillen’s
Theorems A and B; the effect on classifying spaces of changing the topology on the space of objects
of a topological category. In order to prove Quillen’s Theorems A and B in this setting, in Section
4 we describe a bi-semi-simplicial resolution of a semi-simplicial map induced by a functor between
topological categories. We shall use our version of Quillen’s Theorem B (whose formulation is a mild
generalisation, due to Blumberg–Mandell [1], of the usual one) in a crucial way in our forthcoming
paper [4]: clarifying the details of this foundational result has been our main motivation for writing
this note.

The third goal of this note is to give a proof of the Group-Completion Theorem, which plays
a crucial role in [11], [6], and [7]. The formulation of this theorem which is most convenient for
geometric applications is due to McDuff–Segal [20], but their paper elides many details. A detailed
exposition of McDuff and Segal’s proof has been given by Miller–Palmer [21], which in combination
with [25] proves a stronger result than the classical formulation. There are several other proofs
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of the group-completion theorem, due to Jardine [13, 15], Moerdijk [22], and Pitsch–Scherer [23].
Our proof avoids the point-set topological subtleties of [20], and the model categorical subtleties
of [13,15,22,23]; we think it is as elementary as possible.

Finally, we give an elementary proof that for two simplicial spaces there is a natural weak
equivalence ‖(X × Y )•‖ ' ‖X•‖ × ‖Y•‖ (this can be extracted from Segal’s paper [29]). This fact
has been implicitly used at some places in the literature.

We have attempted to make this note as self-contained as possible, and a large portion can be
read with relatively little background knowledge. We assume that the reader is familiar with the
language of homotopy theory and with the definition of a simplicial object and the basic examples,
though we repeat the definitions. Some key results on simplicial sets, namely Lemma 1.7 and 1.11
are used without proof, but in both cases there are easily accessible references. For the results of
Section 2, we use a fairly simple but powerful local-to-global principle for highly connected maps
[32, Theorem 6.7.9], and either Mather’s first cube theorem [18] or the Dold–Thom criterion for
quasifibrations [3]. In two proofs (of Theorem 2.16 and Lemma 6.8) we use spectral sequences.
Section 7 is almost elementary.

Acknowledgements. J. Ebert was partially supported by the SFB 878. O. Randal-Williams was
supported by EPSRC grant number EP/M027783/1.

1. Semi-simplicial spaces

1.1. (Semi-)simplicial objects. For n ∈ N0, let us write [n] for the linearly ordered set {0 <
1 < . . . < n}. Let ∆ denote the category with objects the linearly ordered sets [n] with n ∈ N0,
and with morphisms [n] → [m] the monotone functions, with composition given by composition
of functions. Let ∆inj ⊂ ∆ denote the subcategory contains all objects, but only the injective
monotone maps.

Definition 1.1. A simplicial object in a category C is a functor ∆op → C. A semi-simplicial
object in C is a functor ∆op

inj → C. We denote such a (semi-)simplicial object by X•, and write

Xp = X•([p]).
A morphism of (semi-)simplicial objects is a natural transformation of functors. In this way

the simplicial objects in a category C form a category sC, and the semi-simplicial objects form a
category ssC. There is a functor F : sC → ssC, defined by restricting functors along ∆op

inj ⊂ ∆op.

While the description of (semi-)simplicial objects given above is convenient for certain ma-
nipulations, it is often convenient to also have a more hands-on description. The datum of a
semi-simplicial object in C is equivalent to giving a collection of objects Xp ∈ Ob(C), p ≥ 0,
together with morphisms di : Xp → Xp−1 (0 ≤ i ≤ p), called face maps which satisfy

didj = dj−1di if i < j.

The morphism di is associated to the unique injective monotone map [p− 1]→ [p] which does not
hit i: any monotone injective map can be written as a composition of such maps, uniquely up to
the identity above.

Similarly, a simplicial object in C is given by objects Xp ∈ Ob(C), together with face maps
di : Xp → Xp−1 (0 ≤ i ≤ p) and degeneracy maps si : Xp → Xp+1 (0 ≤ i ≤ p) which satisfy the
simplicial identities

didj = dj−1di if i < j,

sisj = sj+1sj if i ≤ j,
disj = sj−1di if i < j,

djsj = dj+1sj = Id,

disj = sjdi−1 if i > j + 1.

In this paper, we usually think of simplicial objects as semi-simplicial objects which are equipped
with additional structure, namely the degeneracy maps.
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Example 1.2. The simplicial p-simplex ∆p
• is the simplicial set ∆p

q := ∆([q], [p]). For p = 0, one

obtains ∆0
q = ∗, which is a terminal object in the category sSet.

The semi-simplicial p-simplex ∇p• is the semi-simplicial set ∇pq := ∆inj([q], [p]). It only has

simplices in degrees ≤ p. Note that ∇0
q is a point when q = 0 and empty when q > 0.

Definition 1.3. An augmented semi-simplicial object in C is a triple (X•, X−1, ε•), with X−1 ∈
Ob(C), X• ∈ Ob(ssC) a semi-simplicial object and morphisms εp : Xp → X−1 such that εp ◦ di =
εp−1 for all p ≥ 1 and all 0 ≤ i ≤ p.

Equivalently, it is a semi-simplicial object in the over-category C/X−1 (see Section 3.3 for a
reminder of this notion).

Bi-(semi-)simplicial objects. As the (semi-)simplicial objects in C form a category in their own
right, we may consider (semi-)simplicial objects in this category. By adjunction, this leads to the
following definition.

Definition 1.4. A bi-simplicial object in C is a functor X•,• : (∆ × ∆)op → C and a bi-semi-
simplicial object in C is a functor X•,• : (∆inj × ∆inj)

op → C. In either case we write Xp,q =
X•,•([p], [q]).

One can think of a bi-simplicial object in C as a simplicial object in sC in two ways: namely as

[p] 7→ ([q] 7→ Xp,q) and [q] 7→ ([p] 7→ Xp,q),

and similarly for bi-semi-simplicial objects. The diagonal simplicial object δX• is the composition
of X•,• with the diagonal functor ∆ → ∆ × ∆; similarly for bi-semi-simplicial objects. Hence
δXp = Xp,p.

If the category C has finite products, we can form the exterior product X•⊗Y• of two simplicial
objects X•, Y• ∈ sC; it is

(X• ⊗ Y•)([p], [q]) := X([p])× Y ([q]).

The interior product of two simplicial objects is then X• × Y• := δ(X• ⊗ Y•), concretely

(X• × Y•)([p]) := X([p])× Y ([p]).

Parallel notions can be defined for semi-simplicial objects, but are not very useful.

Freely adding degeneracies. If the category C has finite coproducts, then the forgetful functor
F : sC → ssC has a left adjoint E, which has the following explicit description. For a semi-
simplicial object X• ∈ ssC, define

EXp :=
∐

α:[p]�[q]

Xq.

Let β : [r] → [p] be a morphism in ∆. For a surjection α : [p] → [q], we factor α ◦ β : [r] → [q]

as [r]
α′

� [s]
β′

� [q], and define β : EXp → EXr on the summand indexed by α as the map
β′∗ : Xq → Xs ⊂ EXr.

From this adjunction, we obtain the counit c : EFY• → Y• for each Y• ∈ sC, and the unit
u : X• → FEX• for each X• ∈ ssC. Concretely, the counit is the map

EFYp =
∐

α:[p]�[q]

Yq −→ Yp

which on the summand indexed by α is given by α∗. Similarly, the unit is the map

Xp −→ FEXp =
∐

α:[p]�[q]

Xq

which sends Xp identically to the component indexed by Id : [p] → [p]. Further details may be
found in [5, p. 166].
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1.2. Semi-simplicial spaces and their geometric realisation.

Convention 1.5. Throughout this paper, we work in the category of compactly generated spaces
as defined in [31] (the difference to the category considered by Steenrod in [30] is that we do
not require the Hausdorff condition). All products of spaces are understood to be taken in the
category of compactly generated spaces. One key advantage of compactly generated spaces is that
taking quotients commutes with taking products in full generality, by [31, Proposition 2.1 and
2.20]. Slightly abusing notation, we shall denote this category by Top call its objects topological
spaces.

We think of the category Set of sets as a full subcategory of Top, namely that of spaces with
the discrete topology. A similar convention applies to (semi-)simplicial sets.

Recall that the standard p-simplex is the space

∆p =

{
(t0, t1, . . . , tp) ∈ Rp+1

∣∣∣ p∑
i=0

ti = 1 and ti ≥ 0 for each i

}
.

To a morphism ϕ : [p] → [q] in ∆ there is an associated continuous map ϕ∗ : ∆p → ∆q given
by ϕ∗(t0, t1, . . . , tp) = (s0, s1, . . . , sq) where sj =

∑
i∈ϕ−1(j) ti. In particular, let di : ∆p−1 →

∆p be given by (t0, t1, . . . , tp) 7→ (t0, t1, . . . , ti−1, 0, ti, . . . , tp), and si : ∆p → ∆p−1 be given by
(t0, t1, . . . , tp) 7→ (t0, t1, . . . , ti−1, ti + ti+1, ti+2, . . . , tp).

The geometric realisation of a semi-simplicial space X• is the quotient space

‖X•‖ =

(∐
p

Xp ×∆p

)
/ ∼

by the equivalence relation (x, ϕ∗t) ∼ (ϕ∗x, t) where ϕ is a morphism in ∆inj. This equivalence

relation is generated by the requirement that (x, dit) ∼ (dix, t). The n-skeleton ‖X•‖(n) of ‖X•‖
is the image of

∐n
p=0Xp ×∆p under the quotient map. The natural map

colim
n→∞

‖X•‖(n) −→ ‖X•‖

is a homeomorphism.

Example 1.6. The geometric realisation of the semi-simplicial p-simplex ∇p• is the topological p-
simplex, ‖∇p•‖ ∼= ∆p.

The (thin) geometric realisation of a simplicial space X• is the quotient space

|X•| =

(∐
p

Xp ×∆p

)
/ ≈,

with the equivalence relation (x, ϕ∗t) ≈ (ϕ∗x, t) where ϕ is a morphism in ∆. In addition to
imposing the relation ∼ above, the relation ≈ imposes (x, sit) ≈ (six, t). The fat geometric
realisation of a simplicial space X• is by definition ‖X•‖ := ‖F (X•)‖, and it has a canonical map
to |X•|. Skeleta of |X•| are defined as above, and |X•| is again the colimit of its skeleta.

Lemma 1.7. For each simplicial set Y•, the quotient map ‖Y•‖ → |Y•| is a homotopy equivalence.

The proof can be found in [27, Proposition 2.1]. The following lemma allows us to compare
the geometric realisation of a semi-simplicial set with the geometric realisation of the simplicial
set obtained by freely adding degeneracies. Later, in Lemma 2.6, we will prove the analogue for
semi-simplicial spaces.

Lemma 1.8. For each semi-simplicial set X•, the map ‖X•‖ → ‖EX•‖ is a homotopy equivalence.

Proof. We will show that the composition

‖X•‖ −→ ‖EX•‖ −→ |EX•|
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is a homeomorphism, whence the claim follows from Lemma 1.7. For any simplicial set Y•, each
point in |Y•|(n) \ |Y•|(n−1) may be uniquely represented by a (σ; t0, . . . , tn) with σ ∈ Yn a non-
degenerate simplex. As the non-degenerate simplices of EXn are precisely given by Xn ⊂ EXn,
we may describe |EX•|(n) as the push-out

Xn × ∂∆n //

��

Xn ×∆n

��
|EX•|(n−1) // |EX•|(n).

Now ‖X•‖(n) is obtained from ‖X•‖(n−1) by precisely the same push-out description, which proves
by induction that ‖X•‖(n) → |EX•|(n) is a homeomorphism. Taking colimits over n gives the
required result. �

If X•,• is a bi-semi-simplicial space, we define its geometric realisation as the quotient space

‖X•,•‖ :=
∐
p,q

Xp,q ×∆p ×∆q/ ∼

by the equivalence relation ((ϕ × ψ)∗x, t, s) ∼ (x, ϕ∗t, ψ∗s) for morphisms ϕ × ψ in ∆inj × ∆inj.
There are homeomorphisms

(1.9) ‖X•,•‖ ∼= ‖[p] 7→ ‖[q] 7→ Xp,q‖‖ ∼= ‖[q] 7→ ‖[p] 7→ Xp,q‖‖
and

(1.10) ‖X• ⊗ Y•‖ ∼= ‖X•‖ × ‖Y•‖,
which use that we are working in the category of compactly generated spaces.

The singular simplicial set. The singular simplicial set of a topological space X is the simplicial set
with p-simplices SingpX := Top(∆p, X), the set of continuous maps from the standard p-simplex
to X, where ϕ : [p]→ [q] acts via Top(ϕ∗, X). The evaluation maps

(σ, t) 7→ σ(t) : Top(∆p, X)×∆p −→ X

assemble to a map |Sing•X| → X.

Lemma 1.11. The maps

‖Sing•X‖
∼−→ |Sing•X|

∼−→ X.

are weak homotopy equivalences.

Proof. The first map is a weak homotopy equivalence by Lemma 1.7. The second map is shown to
be a weak equivalence in e.g. [19, Theorem 16.6] or [5, Theorem 4.5.30]. �

1.3. Extra degeneracies and semi-simplicial (null)homotopies. If (Y•, Y−1, ε) is an aug-
mented semi-simplicial space, then there is an induced map ‖ε•‖ : ‖Y•‖ → Y−1. There is a stan-
dard technique for easily showing that such maps are homotopy equivalences, which goes under
the name of “having an extra degeneracy”.

Lemma 1.12. Let (Y•, Y−1, ε) be an augmented semi-simplicial space, and suppose there are maps
hp+1 : Yp → Yp+1 for p ≥ −1 such that

dp+1hp+1 = IdYp
,

dihp+1 = hpdi for 0 ≤ i < p+ 1,

ε0h0 = IdY−1

then ‖ε•‖ : ‖Y•‖ → Y−1 is a homotopy equivalence.
Dually, if there are maps gp+1 : Yp → Yp+1 for p ≥ −1 such that

d0gp+1 = IdYp
,

digp+1 = gpdi−1 for 0 < i ≤ p+ 1,

ε0g0 = IdY−1

then the same conclusion holds.
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In the first case the conditions on the maps hp+1 are formally identical to the conditions relating
face maps di to degeneracy maps si, except that hp+1 behaves like a hypothetical degeneracy map
sp+1, whereas in the definition of a simplicial object there are only degeneracy maps s0, s1, . . . , sp :
Yp → Yp+1. For this reason such a collection of maps hp+1 is often called an extra degeneracy.
(Similarly, gp+1 behaves like a hypothetical degeneracy map s−1 : Yp → Yp+1.)

Proof. Let us just consider the first case. We have h0 : Y−1 → Y0 ⊂ ‖Y•‖ and ‖ε•‖ ◦ h0 = IdY−1
.

The maps [0, 1]× Yp ×∆p → Yp+1 ×∆p+1 → ‖Y•‖, defined by

(s;x; t0, . . . , tp) 7→ (hp+1(x); (1− s)t0, . . . , (1− s)tp, s),
respect the equivalence relation used in the definition of the geometric realisation. Since taking
products and taking quotients commutes in compactly generated spaces, this yields a homotopy
H : [0, 1]×‖Y•‖ → ‖Y•‖, and one verifies that H(0,−) = Id‖Y•‖ and that H(1,−) = h0 ◦ ‖ε•‖. �

Any semi-simplicial space Y• is augmented over a point ∗ in a unique way. The data of an extra
degeneracy in this case gives in particular a point y0 : ∗ → Y0, and the homotopy in the proof
gives a contraction of ‖Y•‖ to the point {y0} ⊂ Y0 ⊂ ‖Y•‖. This can be generalised to maps of
semi-simplicial spaces, as follows.

Lemma 1.13. Let f• : X• → Y• be a map of semi-simplicial spaces and y0 ∈ Y0. A semi-simplicial
nullhomotopy from f• to y0 is a collection of continuous maps hp+1 : Xp → Yp+1 such that

dp+1hp+1 = fp,

dihp+1 = hpdi for 0 ≤ i ≤ p and p ≥ 1,

d0h1 ≡ y0.

Such a semi-simplicial nullhomotopy induces a homotopy from ‖f•‖ to the constant map ‖X•‖ →
{y0} ⊂ Y0 ⊂ ‖Y•‖.

Proof. Use the same formula as in the proof of Lemma 1.12 to obtain a homotopy H : [0, 1] ×
‖X•‖ → ‖Y•‖ with H(0,−) = ‖f•‖ and H(1,−) the constant map with value y0. �

Example 1.14. The fat geometric realisation of the simplicial n-simplex ∆n
• is contractible (it is

not homeomorphic to ∆n). Recall that ∆n
p = ∆([p], [n]) and let hp+1 : ∆([p], [n])→ ∆([p+ 1], [n])

be the map that sends η : [p] → [n] to the map η′ : [p + 1] → [n] which is defined by η′(i) = η(i)
for i ≤ p and η′(p + 1) := n. This is a simplicial nullhomotopy from Id∆n

•
to the vertex n ∈ ∆n

0 ,
and hence the claim follows from Lemma 1.13.

More generally, we have the notion of a semi-simplicial homotopy between semi-simplicial maps.

Lemma 1.15. Let f•, g• : X• → Y• be maps of semi-simplicial spaces. A semi-simplicial homotopy
from f• to g• is a collection of continuous maps hp+1,i : Xp → Yp+1 for i = 0, 1, . . . , p such that

dihp+1,i = dihp+1,i−1 for 0 < i ≤ p,
dihp+1,j = hp,j−1di for 0 ≤ i < j,

dihp+1,j = hp,jdi for j + 1 < i ≤ p,
d0hp+1,0 = fp,

dp+1hp+1,p = gp.

Such a semi-simplicial homotopy induces a homotopy from ‖f•‖ to ‖g•‖.

Proof. Consider the maps

ψp+1,i : ∆p+1 −→ ∆1 ×∆p

p+1∑
j=0

tjej 7−→
i∑

j=0

tj(0, ej) +

p∑
j=i

tj+1(1, ej)

for i = 0, 1, . . . , p, giving the standard decomposition of the prism into simplices. The maps

ψp+1,i(∆
p+1)×Xp −→ ∆p+1 × Yp+1 ⊂ ‖Y•‖

(ψp+1,i(t), x) 7−→ (t, hp+1,i(x))
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glue to maps φp : [0, 1]×∆p ×Xp → ‖Y•‖ (using the first set of identities) which in turn glue to a
map φ : [0, 1]×‖X•‖ → ‖Y•‖ (using the second and third set of identities). This gives the required
homotopy (using the fourth and fifth set of identities). �

1.4. Spectral sequences. The space ‖X•‖ is filtered by its skeleta ‖X•‖(n), where ‖X•‖(0) = X0,
and

(1.16) ‖X•‖(n) = ‖X•‖(n−1) ∪Xn×∂∆n Xn ×∆n.

This filtration has the property that each map K → ‖X•‖ from a compact Hausdorff space K
factors through some finite stage; see e.g. [14, Proposition A.1] for a related argument, or [31,
Lemma 3.6] for a general argument.

Recall that a local coefficient system on a space Y is a functor L from the fundamental groupoid
Π1(Y ) to the category ofR-modules for a commutative ringR. If Y is semi-locally simply-connected
then we may also consider a local coefficient system on Y to be a bundle L → Y of R-modules.

For any system of local coefficients L on ‖X•‖, the skeletal filtration yields a spectral sequence

E1
p,q = Hp+q(‖X•‖(q), ‖X•‖(q−1);L) =⇒ Hp+q(‖X•‖;L),

which is strongly convergent as each map from a simplex to ‖X•‖ lands in some finite skeleton.
Let L|Xq×∆q be the pullback of L along Xq ×∆q → ‖X•‖, and Lq be the restriction of L|Xq×∆q

to Xq
∼= Xq × bq where bq ∈ ∆q is the barycentre. The natural map

Hp+q(Xq ×∆q, Xq × ∂∆q;L|Xq×∆q ) −→ Hp+q(‖X•‖(q), ‖X•‖(q−1);L)

is an isomorphism, using the description (1.16) and excision. The contraction of ∆q to bq ∈ ∆q

determines an isomorphism L|Xq×∆q ∼= π∗1Lq, and the Künneth map

Hp(Xq;Lq) ∼= Hp(Xq;Lq)⊗Hq(∆
q, ∂∆q;Z) −→ Hp+q(Xq ×∆q, Xq × ∂∆q;π∗1Lq)

is an isomorphism (as the homology of (∆q, ∂∆q) is free). Thus we obtain the description

E1
p,q
∼= Hp(Xq;Lq) =⇒ Hp+q(‖X•‖;L)

for this spectral sequence. To each face map di : Xq → Xq−1 there is a unique homotopy class of
path in ∆q from di(bq−1) to bq, monodromy along which gives a preferred map of local coefficient
systems φi : Lq → Lq−1 covering di. One may show (see [28, §5]) that the d1-differential is

d1 =

q∑
i=0

(−1)i(di, φi)∗ : Hp(Xq;Lq) −→ Hp(Xq−1;Lq−1)

the alternating sum of the maps induced on homology by the face maps.
More generally, if (X•, X−1, ε) is an augmented semi-simplicial space then (replacing X−1 by the

mapping cylinder of ‖ε•‖ : ‖X•‖ → X−1 and) setting F−1 = (X−1, X−1) and Fq = (X−1, ‖X•‖(q))
for q ≥ 0 gives a filtration of pairs, and hence for each local coefficient system L on X−1 a spectral
sequence with E1

p,q
∼= Hp(Xq;Lq) for p ≥ 0 and q ≥ −1, which converges to Hp+q+1(X−1, ‖X•‖;L).

2. Results on the homotopy type of the geometric realisation

In this section we shall collect results which allow one to deduce homotopical statements about
geometric realisation of a map f• : X• → Y• of semi-simplicial spaces from homotopical statements
about the maps fp : Xp → Yp. One says that a semi-simplicial map f• has a certain property
levelwise if each map fp has that property. As a basic technical tool for gluing together k-connected
maps, we will take Theorem 6.7.9 of tom Dieck’s book [32].

Lemma 2.1. For m ≥ n the inclusion ‖X•‖(n) → ‖X•‖(m) is n-connected, and the inclusion
‖X•‖(n) → ‖X•‖ is n-connected.

Proof. For the first claim, it is enough to prove that the inclusion ‖X•‖(n) → ‖X•‖(n+1) is n-
connected. To see this, let b ∈ ∆n+1 be the barycentre and consider the covering of ‖X•‖(n+1) by
the open sets

UX0 = ‖X•‖(n+1) \ (Xn+1 × {b}) ' ‖X•‖(n)

UX1 = Xn+1 × int(∆n+1) ' Xn+1



8 JOHANNES EBERT AND OSCAR RANDAL-WILLIAMS

with intersection UX0 ∩ UX1 ' Xn+1 × ∂∆n+1. Applying [32, Theorem 6.7.9] to the map

(UX0 , U
X
0 , U

X
1 ∩ UX0 ) −→ (‖X•‖(n+1), UX0 , U

X
1 )

shows that ‖X•‖(n) ∼→ UX0 → ‖X•‖(n+1) is n-connected, as required. The second claim follows
from the first one and the fact that a map from a compact Hausdorff space to ‖X•‖ factors through
a skeleton. �

Theorem 2.2. Let f• : X• → Y• be a map of semi-simplicial spaces which is a levelwise weak
homotopy equivalence. Then ‖f•‖ : ‖X•‖ → ‖Y•‖ is a weak homotopy equivalence.

Proof. By Lemma 2.1, it is enough to show that ‖f•‖ : ‖X•‖(n) → ‖Y•‖(n) is a weak equivalence
for each n, and this may be shown by induction on n. The case n = 0 is trivial. For the induction
step, consider the open sets UX0 , U

X
1 ⊂ ‖X•‖(n+1) from the proof of Lemma 2.1 and the analogous

UY0 , U
Y
1 ⊂ ‖Y•‖(n+1). By induction hypothesis, the restriction of ‖f•‖ to UX0 → UY0 is a weak

equivalence, and so is the restriction UX1 → UY1 and UX0 ∩ UX1 → UY0 ∩ UY1 . The inductive step
then follows using [32, Theorem 6.7.9]. �

Remark 2.3. Theorem 2.2 is false in general for the thin geometric realisation of simplicial spaces.
This is the main reason why—even for simplicial spaces—it is often preferable to consider the fat
geometric realisation. A concrete counterexample was given by Lawson in response to a question
on MathOverflow [17].

Theorem 2.2 has the following useful generalisation.

Lemma 2.4. Let f• : X• → Y• be a map of semi-simplicial spaces. If fp : Xp → Yp is (k − p)-
connected for all p, then ‖f•‖ is k-connected.

Proof. By Lemma 2.1 it is enough to show that ‖f•‖(n) : ‖X•‖(n) → ‖Y•‖(n) is k-connected for
each n. The case n = 0 is trivial. For the induction step, we may as well suppose that Xi = Yi = ∅
for i > n and that ‖f•‖(n−1) is k-connected. We factorise f• as

(2.5) X•
j•−→W•

g•−→ Z•
h•−→ Y•

as follows. The semi-simplicial space W• has Wi = Yi for i < n, Wn = Xn and Wi = ∅ for i > n.
The face maps Wn →Wn−1 are the compositions fn−1 ◦ di = di ◦ fn, and the other face maps are
the same as those for X•. The map jn is the identity, and ji = fi for i < n.

Then factorise fn as

fn : Xn
gn−→ Zn

hn−→ Yn

where hn is a weak homotopy equivalence, and Zn is obtained from Xn by attaching cells of
dimension at least (k − n+ 1). For i < n let Zi = Yi, and for i > n let Zi = ∅. The map gi is the
identity for i < n, and hi : Zi → Yi is the identity as well. This yields the factorisation (2.5).

The map h• is a levelwise weak equivalence, and so ‖h•‖ is a weak equivalence by Theorem 2.2.
Moreover, ‖W•‖(n−1) = ‖Z•‖(n−1) and the pair (Zn × ∆n, Zn × ∂∆n) is obtained from the pair
(Wn×∆n,Wn× ∂∆n) by attaching cells of dimension at least (k+ 1), so ‖Z•‖(n) is obtained from
‖W•‖(n) by attaching cells of dimension at least (k + 1): in particular, ‖g•‖ : ‖W•‖(n) → ‖Z•‖(n)

is k-connected. By the inductive hypothesis, ‖j•‖(n−1) : ‖X•‖(n−1) → ‖W•‖(n−1) is k-connected
and jn is the identity. Using the notation introduced in the proof of Theorem 2.2, we get that
UX0 → UW0 is k-connected, while UX1 → UW1 and UX0 ∩ UX1 → UW0 ∩ UW1 are weak equivalences.
From [32, Theorem 6.7.9], it follows that ‖j•‖ is k-connected. �

Using this we can now prove the analogue of Lemma 1.8 for semi-simplicial spaces, rather than
semi-simplicial sets.

Lemma 2.6. For each semi-simplicial space X•, the map ‖X•‖ → ‖EX•‖ is a weak homotopy
equivalence.
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Proof. Consider the bi-semi-simplicial set Singp(Xq), with Singp(EX•) = E(SingpX•) so giving a
commutative square

‖Sing•X•‖

��

// ‖E(Sing•X•)‖ ‖Sing•(EX•)‖

��
‖X•‖ // ‖EX•‖.

The vertical maps are weak equivalences by Lemma 1.11 and Theorem 2.2, and the top map is a
weak equivalence by Lemma 1.8 and Theorem 2.2; hence the bottom map is a weak equivalence. �

Definition 2.7. A commutative square

X1

f

��

k1 // Y1

g

��
X0

k0 // Y0

is called homotopy cartesian if for each basepoint x ∈ X0, the map hofibx(f) → hofibk0(x)(g),
induced by k0 and k1, is a weak homotopy equivalence.

Remark 2.8. Equivalently, one can express this condition by saying that for all y ∈ Y1, the induced
map hofiby(k1)→ hofibg(y)(k0) is a weak homotopy equivalence.

More symmetrically, one can express this condition by saying that the canonical map from X1

to the homotopy fibre product

X0 ×hY0
Y1 := {(x0, y1, γ) ∈ X0 × Y1 ×map([0, 1], Y0) | γ(0) = k0(x0), γ(1) = g(y1)}

is a weak homotopy equivalence.

Let us record the 2-out-of-3 properties enjoyed by homotopy cartesian squares. Given adjacent
commutative squares

X1
k1 //

f

��

Y1
l1 //

g

��

Z1

h

��
X0

k0 // Y0
l0 // Z0

then

(i) if the left and right squares are homotopy cartesian, the outer square is homotopy cartesian;
(ii) is the right and outer squares are homotopy cartesian, the left square is homotopy cartesian;
(iii) if the left and outer squares are homotopy cartesian, and k0 is 0-connected, the right square

is homotopy cartesian.

Definition 2.9. A map f• : X• → Y• of semi-simplicial spaces is called homotopy cartesian if for
each p ≥ 1 and each 0 ≤ i ≤ p, the square

(2.10)

Xp

fp

��

di // Xp−1

fp−1

��
Yp //di // Yp−1

is homotopy cartesian.

For each p there are p+ 1 conditions to be checked. The next lemma shows that the number of
conditions to be checked can be drastically reduced.

Lemma 2.11. To prove that f• : X• → Y• is homotopy cartesian, it is enough to verify that (2.10)
is homotopy cartesian for those (p, i) with i = 0 and for (p, i) = (1, 1). Dually, it is enough to
verify that (2.10) is homotopy cartesian for those (p, i) with i = p and for (p, i) = (1, 0).
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Proof. We treat only the first case. Consider the commutative cube

Xk

fk

��

dk

||

dk−1
0 // X1

f1

��

d1}}
Xk−1

fk−1

��

dk−1
0

// X0

f0

��

Yk
dk

||

dk−1
0 // Y1

d1}}
Yk−1

dk−1
0 // Y0.

By hypothesis the front, back, and right faces are homotopy cartesian, so the left face is too. But
each structure map Xp → X0 can be written as the composition of maps of the form d0 and
dk : Xk → Xk−1. Therefore, for each η : [0]→ [p], the square

Xp

fp

��

η∗ // X0

f0

��
Yp //η∗ // Y0

is homotopy cartesian. The result then follows easily. �

The following is due to Segal [29, Proposition 1.6].

Theorem 2.12. Let f : X• → Y• be a homotopy cartesian map of semi-simplicial spaces. Then
the square

X0

f0

��

// ‖X•‖

‖f•‖
��

Y0
// ‖Y•‖

is also homotopy cartesian.

First proof. We prove the result by induction on skeleta. There are commutative cubes

Xp × {v0}

fp×{v0}

��

xx

dp0 // X0

zz

f0

��

Xp × ∂∆p

xx

//

fp×∂∆p

��

‖X•‖(p−1)

‖f•‖(p−1)

��

yy
Xp ×∆p //

fp×∆p

��

‖X•‖(p)

‖f•‖(p)

��

Yp × {v0}

xx

dp0 // Y0

zz
Yp × ∂∆p

xx

// ‖Y•‖(p−1)

yy
Yp ×∆p // ‖Y•‖(p).
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Consider first the back cube. If p = 1 then the front face is homotopy cartesian by hypothesis. If
p > 1 then the right-hand face is homotopy cartesian by inductive assumption, the left-hand face is
homotopy cartesian, the back face is homotopy cartesian by hypothesis, and Yp×{v0} → Yp×∂∆p

is 0-connected: thus by the 2-out-of-3 property of homotopy cartesian squares the front face of the
back cube is homotopy cartesian.

Consider now the front cube. The left-hand face is homotopy cartesian and by the above the
back face is too. The top and bottom faces are homotopy co-cartesian, so this cube satisfies the
hypotheses of Mather’s first cube theorem [18]. Thus the right-hand face of the front cube is
homotopy cartesian, and hence the right-hand face of the outer cube is also homotopy cartesian,
as required. �

Second proof. First consider the case where each fp is a fibration. In this case, the lemma follows
from the fact that the geometric realisation ‖f•‖ : ‖X•‖ → ‖Y•‖ is a quasifibration, which in
turn follows from applying the Dold–Thom criterion [3, Satz 2.2, Hilfssatz 2.10 and Satz 2.12] (a
convenient reference is [14, Lemma 4.K.3]).

In the general case, we factor fp functorially as a composition Xp
hp→ Zp

gp→ Yp with a weak
equivalence hp and a fibration gp. Then Z• is a semi-simplicial space, and h•, g• are semi-simplicial
maps. In the diagram

Xp

di

��

hp // Zp

di

��

gp // Yp

di

��
Xp−1

hp−1 // Zp−1

gp−1 // Yp−1,

the maps hp and hp−1 are weak homotopy equivalences, and it follows that the right square is
homotopy cartesian. The lower square in

X0
//

h0

��

‖X•‖

‖h•‖
��

Z0
//

g0

��

‖Z•‖

‖g•‖
��

Y0
// ‖Y•‖

is homotopy cartesian by the first part of the proof, and the upper square is homotopy cartesian
as h0 and ‖h•‖ are both weak equivalences, by Theorem 2.2. �

Lemma 2.13. Let ε : X• → X−1 and ε : Y• → Y−1 be augmented semi-simplicial spaces and let
(f•, f) : (X•, X−1) → (Y•, Y−1) be a map of augmented semi-simplicial spaces. If for each p ≥ 0
the square

Xp

fp //

εp

��

Yp

εp

��
X−1

f // Y−1

is homotopy cartesian, then so is the square

‖X•‖
‖f•‖ //

‖ε•‖
��

‖Y•‖

‖ε•‖
��

X−1
f // Y−1.
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Proof. The diagram

Xp

fp

��

di // Xp−1

fp−1

��

εp−1 // X−1

f

��
Yp

di // Yp−1

εp−1 // Y−1

has right-hand and outer squares homotopy cartesian by hypothesis, so the left-hand square is also
homotopy cartesian. Thus the map f• is homotopy cartesian and we can apply Theorem 2.12,
which shows that the left-hand square in

X0
ι //

f0

��

‖X•‖

‖f•‖
��

‖ε•‖ // X−1

f

��
Y0

ι // ‖Y•‖
‖ε•‖ // Y−1

is homotopy cartesian. As ‖ε•‖ ◦ ι = ε0 the outer square is homotopy cartesian by hypothesis, and
ι : Y0 → ‖Y•‖ is 0-connected, so the right-hand square is also homotopy cartesian as required. �

Lemma 2.14. Let ε• : X• → X−1 be an augmented semi-simplicial space such that each εp : Xp →
X−1 is a quasifibration. Then for each x ∈ X−1, the natural map

‖ε−1
• (x)‖ −→ hofibx ‖ε•‖

is a weak homotopy equivalence.

Proof. The diagrams

ε−1
p (x)

��

// Xp

εp

��
{x} // X−1

form a map of augmented semi-simplicial spaces, and by assumption this map is homotopy carte-
sian. The statement then follows from Lemma 2.13. �

Corollary 2.15. Let X be a topological space and consider the constant semi-simplicial space X•
(Xp := X and all face maps are the identity). Then the inclusion ι : X = ‖X•‖(0) → ‖X•‖ is a
weak equivalence.

Proof. The identity map(s) Xp → X form an augmentation ε• : X• → X and the composition
‖ε•‖ ◦ ι is the identity. The semi-simplicial space ε−1

• (x) is the terminal semi-simplicial space and
hence has contractible geometric realisation. It then follows from Lemma 2.14 that ‖ε•‖ is a weak
homotopy equivalence, whence the claim follows. �

The following result is due to Segal [29, Proposition 1.5], though we have generalised the for-
mulation a little. It plays a key role in his theory of Γ-spaces (which will be used in e.g. [4]), and
is also a key ingredient in [6].

Theorem 2.16. Let X• be a semi-simplicial space and assume that

(i) X0 ' ∗.
(ii) The map κp : Xp → (X1)p given by (ι∗1, . . . , ι

∗
p), where ιj : [1] → [p] is the map 0 7→ j − 1,

1 7→ j, is a weak homotopy equivalence.

Then

(iii) If X1 is k-connected, then ‖X•‖ is (k + 1)-connected.
(iv) If the squares

X2
d1 //

d2

��

X1

d1

��
and

X2
d1 //

d0

��

X1

d0

��
X1

d1 // X0 X1
d1 // X0
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are homotopy cartesian and X1 6= ∅, then the tautological map

X1 → Ω̃‖X•‖

(the target is the space of paths that begin and end in the contractible subspace X0 ⊂ ‖X•‖)
is a weak homotopy equivalence.

If X• is simplicial, and not just semi-simplicial, then the statement of this theorem and its proof
can be simplified, which we shall explain in Remark 2.17 below.

Under assumption (ii) we can form the morphism

µ : X1 ×X1
d0×d2←−
'

X2
d1−→ X1

in the homotopy category, which makes X1 into a non-unital homotopy associative H-space. As-
sumptions (i) and (ii) should be thought of as saying that X• is a model for the nerve of this
H-space.

The assumption in (iv) can be expressed, by taking vertical homotopy fibres, as asking that
for each x ∈ X1 the maps µ(x,−), µ(−, x) : X1 → X1 be weak homotopy equivalences. That
is, it models the H-space X1 being grouplike. In particular, µ induces an associative product
− ·− : π0(X1)× π0(X1)→ π0(X1) for which [x] · −,− · [x] : π0(X1)→ π0(X1) are bijections for all
[x]. As X1 6= ∅ we may choose an [x] ∈ π0(X1), for which there is a unique [e] ∈ π0(X1) such that
[x] · [e] = [x]. But then for any y we have

[x] · [y] = ([x] · [e]) · [y] = [x] · ([e] · [y]),

so [e] · [y] = [y] for any [y] as [x] · − is injective. But then

([y] · [e]) · [y] = [y] · ([e] · [y]) = [y] · [y]

and so [y] · [e] = [y] as − · [y] is injective. Hence [e] is an two-sided identity element for − · −,
making (π0(X1), ·, [e]) an associative unital monoid. As each [y] · − is a bijection, it is easy
to see that this is in fact a group. One consequence is that the map µ(e,−) : X1 → X1 satisfies
µ(e, µ(e,−)) ' µ(µ(e, e),−) ' µ(e,−) so is homotopy-idempotent, but it is also a weak equivalence,
so is weakly homotopic to the identity.

Proof. The first part is an immediate consequence of Lemma 2.4: the map Xp → ∗ is (k + 2− p)-
connected for each p, and hence ‖X•‖ → ‖ ∗• ‖ is (k+ 2)-connected. But the geometric realisation
of the terminal semi-simplicial space is contractible, and so ‖X•‖ is (k + 1)-connected.

For the second part, we use the semi-simplicial path space PX•. This is the semi-simplicial
space PXp := Xp+1, with face maps di : PXp → PXp−1 given by those of X• having the same
names. The maps dp+1 : PXp → Xp define a simplicial map PX• → X• and we will prove that it
is homotopy-cartesian. To verify this, we use Lemma 2.11. The condition for (p, i) = (1, 1) holds
by hypothesis, so it remains to prove that the diagrams

Xp+1
d0 //

dp+1

��

Xp

dp

��
Xp

d0 // Xp−1

are homotopy cartesian. Under the weak equivalences κi (for p − 1 ≤ i ≤ p + 1), this diagram
becomes

Xp+1
1

pr{2,...,p+1} //

pr{1,...,p}

��

Xp
1

pr{1,...,p−1}

��
Xp

1

pr{2,...,p} // Xp−1
1 ,
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which is obviously homotopy cartesian. Therefore

X1
//

d1

��

‖PX•‖

��
X0

// ‖X•‖

is homotopy cartesian, by Theorem 2.12.
We will now show that ‖PX•‖ is weakly contractible. Using the simplicial identities, one quickly

checks that the maps εp = dp+1
0 : PXp = Xp+1 → X0 form an augmentation PX• → PX−1 := X0.

We shall show this is a weak equivalence by showing that H∗(PX−1, ‖PX•‖;Z) = 0 and then
showing that ‖PX•‖ is simply-connected: the claim then follows from Whitehead’s Theorem.

To see that the homology of the pair (PX−1, ‖PX•‖) vanishes, consider the morphism

gq+1 : Xq
κq−→ Xq

1
e×Id−→ Xq+1

1

κq+1←−
'

Xq+1

in the homotopy category, where e ∈ X1 represents the identity element of π0(X1) as discussed
above. This satisfies the identities of Lemma 1.12 up to weak homotopy. Thus in the spectral
sequence

E1
p,q = Hp(PXq;Z) =⇒ Hp+q(PX−1, ‖PX•‖;Z)

the maps gq+1 give a chain contraction of (E1
p,∗, d

1), as we have

(gq)∗d
1 + d1(gq+1)∗ =

(
q∑
i=0

(−1)i(gq)∗(di)∗

)
+

q+1∑
j=0

(−1)j(dj)∗(gq+1)∗


= (d0)∗(gq+1)∗ +

q∑
i=0

(−1)i ((gq)∗(di)∗ − (di+1)∗(gq+1)∗)

= Id

Thus E2
∗,∗ = 0 and hence H∗(PX−1, ‖PX•‖;Z) = 0 as claimed.

To show that ‖PX•‖ is simply-connected, let PX ′• be obtained by collapsing down the 0-
simplices of PX• to a point. Consider the map of homotopy cofibre sequences

X1

��

// ‖PX•‖

��

// ‖PX ′•‖

��
π0X1

// ‖π0PX•‖ // ‖π0PX
′
•‖

The map X1 → π0X1 is 1-connected. The map PX ′p → π0(PX ′p) is (2 − p)-connected, so
‖PX ′•‖ → ‖π0PX

′
•‖ is 2-connected by Lemma 2.4. The semi-simplicial set π0PX• is in bijec-

tion with π0(X1)p+1 in degree p, and can be identified with E•π0(X1) for the group π0(X1), so
‖π0PX•‖ ' ∗. Now the map X1 → ‖PX•‖ is nullhomotopic (it is homotopic to x 7→ µ(x, e) ∈
X1 ⊂ ‖PX•‖ which in turn is homotopic to x 7→ π2(x, e) = e ∈ X1 ⊂ ‖PX•‖), so the middle map
is a retract of the right-hand map, so is also an isomorphism on fundamental groups. Thus ‖PX•‖
is simply-connected. �

Remark 2.17. If X• is a simplicial space satisfying (i) and (ii) of Theorem 2.16, then instead of
the hypothesis of (iv) it is enough to just ask for the square

X2
d1 //

d2

��

X1

d1

��
X1

d1 // X0

to be homotopy cartesian, for the same conclusion to hold. This is because the maps hp+1 = sp+1 :
PXp = Xp+1 → PXp+1 = Xp+2 form a system of extra degeneracies, so Lemma 1.12 shows that
the augmentation map ‖PX•‖ → X0 is a weak homotopy equivalence, and we have assumed that
X0 ' ∗.
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3. (Non-unital) topological categories

Definition 3.1. A non-unital topological category C consists of an object space C0 = Ob(C), a
morphism space C1 = Mor(C) and three maps

s, t : C1 −→ C0 and m : C1 ×C0 C1 := {(f, g) ∈ C1 × C1 | t(f) = s(g) −→ C1,

such that

m(m(f, g), h) = m(f,m(g, h)); t(m(f, g)) = t(g); s(m(f, g)) = s(f)

for all f, g, h for which these expressions are defined.

One thinks of s as the map associating to a morphism its source, t as the map associating to a
morphism its target, and m as the composition of morphisms, whence we write g ◦ f := m(f, g).
We write C(b0, b1) := (s, t)−1(b0, b1) for the space of morphisms from b0 to b1. A functor F : C → D
between non-unital topological categories is a pair of continuous maps Fi : Ci → Di, i = 0, 1 such
that sF1 = F0s, tF1 = F0t, and m ◦ (F1 × F1) = F1 ◦m. The set Fun(C,D) of functors is endowed
with a topology as a subspace of map(C0,D0)×map(C1,D1).

Definition 3.2. A unital topological category is a non-unital topological category C together with a
map u : Ob(C)→ Mor(C) such that t◦u = s◦u = Id and m(f, u(t(f))) = f and m(u(s(f)), f) = f
for all f ∈ Mor(C).

We shall say, slightly informally, that C has units if there is the structure of a unital topological
category on it.

Definition 3.3. Let C be a non-unital topological category. The (semi-simplicial) nerve N•C = C•
of C is the semi-simplicial space whose space of p-simplices is the space Fun([p], C). For a morphism
α : [q]→ [p], the map α∗ : NpC → NqC is given by precomposition with α.

The classifying space BC of C is by definition the geometric realisation of its nerve, BC := ‖C•‖.
A functor F : C → D induces a semi-simplicial map F• : C• → D• of semi-simplicial spaces and
hence a map BF : BC → BD of classifying spaces.

More explicitly, N0C = C0, N1C = C1, d1 = s, d0 = t : C1 → C0. For higher values of p, NpC is
the space Cp := C1×C0 C1×C0 · · · ×C0 C1 (p factors) with face maps given by composition, and even
more explicitly, the points of NpC are the sequences

c0
f1−→ c1 −→ · · · −→ cp−1

fp−→ cp

of composable morphisms in C, and the face maps are given by

di(f1, . . . , fp) :=


(f2, . . . , fp) i = 0

(f1, . . . , fi+1 ◦ fi, fp) 0 < i < p

(f1, . . . , fp−1) i = p.

From this point of view, the data of a non-unital topological category is captured precisely by
spaces of 0-, 1-, and 2-simplices of C• and the face maps between them: the source and target
maps are given by d1 : C1 → C0 and d0 : C1 → C0 respectively, and composition of morphisms is
given by d1 : C2 → C1. For this reason we shall freely confuse the target and source maps with
d0, d1 : C1 → C0.

Lemma 3.4. If η : F ⇒ G : C → D is a natural transformation, then there is an induced homotopy
BF ' BG : BC → BD of maps on classifying spaces.

Proof. We apply Lemma 1.15 with

hp+1,i(f1, f2, . . . , fp) = (F (f1), F (f2), . . . , F (fi), ηci , G(fi+1), . . . , G(fp))

where the hypotheses are immediately verified. �
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3.1. Fibrancy conditions. We shall only be able to make homotopical statements about the
classifying spaces of (non-unital) topological categories when some of the structure maps involved
are fibrations (see Remark 4.12 for a discussion of what “fibration” can be taken to mean).

Definition 3.5. A non-unital topological category C is called left fibrant if the source map d1 :
C1 → C0 is a fibration. It is called right fibrant if the target map d0 : C1 → C0 is a fibration.

Moreover, C is called fibrant if (d0, d1) : C1 → C0 × C0 is a fibration.

If C is fibrant then it is both left and right fibrant, but the converse need not hold: consider the
topological category with objects and morphisms a space X, and all structure maps the identity;
this is always left and right fibrant, but is fibrant only if there are no non-constant paths in X.

Lemma 3.6. If C is left fibrant, then dp : Cp → Cp−1 is a fibration. If C is right fibrant, then
d0 : Cp → Cp−1 is a fibration.

Proof. The follows because the squares

Cp

dp

��

d0···d0 // C1

d1

��

Cp

d0

��

d2···dp // C1

d0

��
Cp−1

d0···d0 // C0 Cp−1

d1···dp−1// C0

are cartesian. �

3.2. The unitalisation. If C has units, then the semi-simplicial space N•C has the structure of a
simplicial space [28]. Just as we can freely add degeneracies to a semi-simplicial object to form a
simplicial one, we can freely add units to a non-unital topological category to form a unital one.

Definition 3.7. The unitalisation of a non-unital topological category C is the topological category
C+ with object space Ob(C+) = Ob(C) and morphism space Mor(C+) = Mor(C) t Ob(C). The
source and target maps are extended by the identity on Ob(C). The composition map m+ for C+

is defined so that c ∈ Ob(C) ⊂ Mor(C+) behaves as the identity morphism at c.

The category C+ is never fibrant unless the object space Ob(C) has no non-constant paths.
However, C+ is left (or right) fibrant if C is left (or right) fibrant. This limits the use of the
unitalisation. But unitalisation has one very pleasant property, which we learnt from M. Krannich
[16, Lemma 1.3.11].

Proposition 3.8. Let C be a non-unital topological category. Then the natural map BC → BC+

is a weak homotopy equivalence.

Proof. There is an isomorphism N•C+ ∼= E(N•C) of simplicial spaces, such that the inclusion
N•C → N•C+ corresponds to the unit map N•C → EN•C. Apply Lemma 2.6. �

3.3. Soft units. From the point of view of the homotopy theory of classifying spaces of (unital,
discrete) categories, such as Quillen’s Theorems A and B, an important role is played by over-
categories C/c (and dually under-categories c\C).

Recall that for an object c ∈ Ob(C), the over-category C/c has objects the arrows f : b → c,
and morphisms (g : a → c) → (f : b → c) given by a morphism h : a → b such that f ◦ h = g.
This definition can be made equally well for non-unital topological categories, by topologising
both objects and morphisms as subspaces of C1. Dually (by reversing arrows), one defines the
under-category c\C.

If C is a unital topological category then C/c has an object Idc : c→ c which is terminal: there
is a natural transformation from IdC/c to the constant functor to Idc. By Lemma 3.4 this gives a
contraction of B(C/c). Similarly, B(c\C) is contractible if C is unital.

If C is a non-unital topological category then B(C/c) need not be contractible: for example, it
can be empty. Instead, we axiomatise this property as follows.

Definition 3.9. A non-unital topological category C has soft left units if for each c ∈ C0 we have
B(C/c) ' ∗. It has soft right units if for each c ∈ C0 we have B(c\C) ' ∗.
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We will describe a convenient property, more general than having units, which implies that
a non-unital topological category has soft left or right units. This property arises naturally for
non-unital topological categories such as cobordism categories.

Lemma 3.10. Let C be a non-unital topological category and let f ∈ C(c, c′) be a morphism in C.
Then the induced functor f∗ : C/c→ C/c′ given by postcomposition with f induces a nullhomotopic
map on classifying spaces.

Therefore if an object c ∈ C0 is either the source or target of a morphism f which induces a
weak equivalence on over-categories, it follows that B(C/c) ' ∗. The analogous statement holds
for under-categories.

Proof. We consider the case of the over-categories. There are maps hp : Np(C/c) → Np+1(C/c′),
given by sending a p-tuple of composable morphisms c0 → c1 → · · · → cp → c in C/c to the

(p + 1)-tuple of composable morphisms c0 → c1 → · · · → cp → c
f→ c′ in C/c′. These form a

semi-simplicial nullhomotopy from N•f∗ to the constant map to (c
f→ c′). Then apply Lemma

1.13. �

This observation may be applied to many non-unital topological categories arising in practice,
because while they do not have units they do have many morphisms composition with which which
induce weak equivalences on morphism spaces, as follows.

Definition 3.11. Let C be a topological category. We say that C has weak left units if for each
object b ∈ C0, there is a morphism u : b→ b′ in C so that the map

C(−, b) := d−1
0 (b)

u◦−−→ C(−, b′)
is a weak homotopy equivalence. Dually, C has weak right units if for each object b ∈ C0, there is
a morphism u : b′ → b in C such that

C(b,−) := d−1
1 (b)

−◦u−→ C(b′,−)

is a weak homotopy equivalence.

Remark 3.12. If C is left fibrant, then u ◦ − : C(−, b)→ C(−, b′) is a weak equivalence if and only
if u ◦ − : C(a, b)→ C(a, b′) is a weak equivalence for each a ∈ C0.

Lemma 3.13. If C has weak left units and is right fibrant, then it has soft left units. Dually, if C
has weak right units and is left fibrant, then it has soft right units.

Proof. We only treat the first case. Let u ∈ C(c, c′) be a weak left unit. The squares

Np(C/c)
Np(u∗)//

dp0
��

Np(C/c′)

dp0
��

// Np(C)

dp0
��

N0(C/c)
N0(u∗)// N0(C/c′) // N0(C)

are both cartesian. By Lemma 3.6 the right-hand vertical map is a fibration, and so all the vertical
maps are fibrations and hence both squares are homotopy cartesian. We now consider the left-
hand square: since the bottom horizontal map is a weak equivalence by assumption, it follows that
the upper horizontal one is as well. Therefore, the functor u∗ : C/c → C/c′ induces a levelwise
equivalence on nerves. But the map Bu∗ : B(C/c) → B(C/c′) is also nullhomotopic by Lemma
3.10, so B(C/c) ' ∗. �

4. Quillen’s Theorems A and B and bi-semi-simplicial resolutions

Let F : C → D be a functor of discrete and unital categories. Quillen’s Theorem A [24] is a
classical and well-known criterion to show that BF : BC → BD is a weak equivalence. Similarly,
Quillen’s Theorem B [24] is a device to identify the homotopy fibre of BF . In this section, we prove
generalisations of Quillen’s Theorems for topological and nonunital categories. Those are stated
as Theorems 4.7, 4.8 and 4.9 below, but before we can state them precisely, we need to introduce
a construction that is used in the proofs.
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Definition 4.1. Let F : C → D be a continuous functor between non-unital topological categories.
Let (F/D)p,q be the space of all pairs in NpC ×Nq+1D of the form (a0 → · · · → ap, F (ap)→ b0 →
· · · → bq) (of course, the unnamed arrows are part of the data). The (F/D)p,q form, in an evident
way, a bi-semi-simplicial space. It has augmentation maps

εp,q : (F/D)p,q −→ Cp; (a0 → · · · → ap, F (ap)→ b0 → · · · → bq) 7−→ (a0 → · · · → ap)

and

ηp,q : (F/D)p,q −→ Dq; (a0 → · · · → ap, F (ap)→ b0 → · · · → bq) 7−→ (b0 → · · · → bq).

Dually, let (D/F )p,q be the space of all pairs in NpC ×Nq+1D of the form (a0 → · · · → ap, b0 →
· · · → bq → F (a0)). The (D/F )p,q form, in an obvious way, a bi-semi-simplicial space. It has
augmentation maps

ξp,q : (D/F )p,q −→ Cp; (a0 → · · · → ap, b0 → · · · → bq → F (a0)) 7−→ (a0 → · · · → ap)

and

ζp,q : (D/F )p,q −→ Dq; (a0 → · · · → ap, b0 → · · · → bq → F (a0)) 7−→ (b0 → · · · → bq).

For the rest of this section we shall makes statements about both constructions, but only prove
them in the first case: the second is dual.

Lemma 4.2. The diagrams

‖(F/D)•,•‖
‖ε•,•‖

yy

‖η•,•‖

%%
‖C•‖

‖F•‖ // ‖D•‖

and
‖(D/F )•,•‖

‖ξ•,•‖

yy

‖ζ•,•‖

%%
‖C•‖

‖F•‖ // ‖D•‖
are (naturally) homotopy commutative.

Proof. For p, q ≥ 0, we define a map

Hp,q : I × (F/D)p,q ×∆p ×∆q −→ ‖D•‖
by sending (t; a0 → · · · → ap, F (ap)→ b0 → · · · → bq; r, s) to

(F (a0)→ · · · → F (ap)→ b0 → · · · → bq; tr, (1− t)s) ∈ Dp+q+1 ×∆p+q+1.

This respects the simplicial relations and hence descends to a map H : I×‖(F/D)•,•‖ → ‖D•‖ (we
have used that taking products preserves quotient maps in the category of compactly generated
spaces). This satisfies H(0,−) = ‖η•,•‖ and H(1,−) = ‖F•‖ ◦ ‖ε•,•‖. �

Lemma 4.3. If D is unital, then ‖ε•,•‖ : ‖(F/D)•,•‖ → ‖C•‖ and ‖ξ•,•‖ : ‖(D/F )•,•‖ → ‖C•‖ are
weak homotopy equivalences.

Proof. By Theorem 2.2, it is enough to prove that ‖(F/D)p,•‖ → Cp is a weak homotopy equivalence
for all p. We we show that the augmented semi-simplicial space εp,• : (F/D)p,• → Cp has an extra
degeneracy of the second type described in Lemma 1.12. Define g0 : Cp → (F/D)p,0 by

(a0 → · · · → ap) 7−→ (a0 → · · · → ap, F (ap)
Id→ F (ap))

and gq+1 : (F/D)p,q → (F/D)p,q+1 by

(a0 → · · · → ap, F (ap)→ b0 → · · · → aq)

7−→ (a0 → · · · → ap, F (ap)
Id→ F (ap)→ b0 → · · · → aq).

These satisfy the conditions in Lemma 1.12, showing that ‖(F/D)p,•‖ → Cp is a homotopy equiv-
alence. �
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For non-unital categories, the conclusion of Lemma 4.3 does not hold without further hypotheses.
If we do not have units then, rather than the explicit homotopy coming from an extra degeneracy
used in the proof of the last lemma, note that for a = (a0 → · · · → ap) ∈ Cp, we have

ε−1
p,•(a) = N•(F (ap)/D)

and

ξ−1
p,•(a) = N•(D/F (a0)),

the semi-simplicial nerves of over- and under-categories. We have axiomatised the contractibility
of these as soft left- or right-units, and we will show that under appropriate fibrancy conditions
this is enough to get the conclusion of Lemma 4.3.

Lemma 4.4. If D is left fibrant, then the augmentation map εp,q : (F/D)p,q → Cp is a fibration.
If D is right fibrant, then the augmentation map ξp,q : (D/F )p,q → Cp is a fibration.

Proof. Observe that both squares

(F/D)p,q

εp,q

��

dp0 // (F/D)0,q
γ //

ε0,q

��

Dq+1

d1···dq+1

��
Cp

dp0 // C0
F0 // D0,

where γ(a0, F (a0) → b0 → · · · → bq) := (F (a0) → b0 → · · · → bq), are cartesian, and use Lemma
3.6. �

Corollary 4.5. If D is left fibrant and has soft right units, then ‖ε•,•‖ : ‖(F/D)•,•‖ → BC is a weak
equivalence. Dually, if D is right fibrant and has soft left units, then ‖ξ•,•‖ : ‖(D/F )•,•‖ → BC is
a weak equivalence.

Proof. By Lemma 4.4 the maps εp,q : (F/D)p,q → Cp are fibrations, so Lemma 2.14 applies to
εp,• : (F/D)p,• → Cp and so for each a = (a0 → · · · → ap) ∈ Cp the map

B(F (ap)/D) = ‖ε−1
p,•(a)‖ −→ hofiba ‖εp,•‖

is a weak equivalence. But as D has soft right units the source of this map is contractible, and
hence ‖(F/D)p,•‖ → Cp is a weak equivalence. Then claim then follows by geometrically realising
in the p-direction and using Theorem 2.2. �

To make use of these resolutions, we shall also need to know that the maps ηp,q and ζp,q are
fibrations, and the final result of this section is a criterion for this to hold.

Lemma 4.6.

(i) If ηp,0 is a fibration, then so is ηp,q for all q ≥ 0.
(ii) If η0,0 is a fibration and C is right fibrant, then ηp,0 is a fibration, for all p ≥ 0.

(iii) If F0 : C0 → D0 is a fibration and D is right fibrant, then η0,0 is a fibration.

Dually,

(iv) If ζp,0 is a fibration, then so is ζp,q for all q ≥ 0.
(v) If ζ0,0 is a fibration and C is left fibrant, then ζp,0 is a fibration, for all p ≥ 0.

(vi) If F0 : C0 → D0 is a fibration and D is left fibrant, then ζ0,0 is a fibration.

Proof. The square

(F/D)p,q
d1···dq //

ηp,q

��

(F/D)p,0

ηp,0

��
Dq

d1···dq // D0
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is cartesian, which proves (i). For part (ii), use that

(F/D)p,0
εp,0 //

d0···d0

��

Cp

d0···d0

��
(F/D)0,0

ε0,0 // C0

is cartesian, Lemma 3.6, and that ηp,0 = η0,0 ◦ (d0)p. For part (iii), let γ : (F/D)0,0 → D1 be given
by γ(a, F (a)→ b) = (F (a)→ b). The diagram

(F/D)0,0
γ //

ε0,0

��

D1

d1

��
C0

F0 // D0

is cartesian, so γ is a fibration, hence so is d0 ◦ γ = η0,0. �

We can now state and prove our version of Quillen’s Theorems A and B for non-unital topological
categories.

Theorem 4.7 (Quillen’s Theorem A). Let F : C → D be a continuous functor. Assume that

(i) B(F/b) is contractible for each b ∈ D0,
(ii) ‖ε•,•‖ : ‖(F/D)•,•‖ → BC is a weak equivalence,

(iii) ηp,0 : (F/D)p,q → NqD is a fibration for each p ≥ 0.

Then BF : BC → BD is a weak homotopy equivalence.
Conditions (ii) and (iii) are satisfied if either

(iv) C is right fibrant, D is left fibrant and has soft right units and η0,0 is a fibration or
(v) C is right fibrant, D has units and η0,0 is a fibration.

There is a dual version, with a parallel proof.

Theorem 4.8 (Quillen’s Theorem A, dual version). Let F : C → D be a continuous functor.
Assume that

(i) B(b/F ) is contractible for each b ∈ D0,
(ii) ‖ξ•,•‖ : ‖(D/F )•,•‖ → BC is a weak equivalence,

(iii) ζp,q : (D/F )p,q → NqD is a fibration for each p, q ≥ 0.

Then BF : BC → BD is a weak homotopy equivalence.
Conditions (ii) and (iii) are satisfied if either

(iv) C is left fibrant, D is right fibrant and has soft left units and ζ0,0 is a fibration or
(v) C is left fibrant, D has units and ζ0,0 is a fibration.

In the case of discrete (unital) categories, this is a classical result of Quillen [24]. A version for
(unital) simplicial categories was proven by Waldhausen [33, §4].

Proof of Theorem 4.7. That conditions (iv) or (v) imply conditions (ii) and (iii) follows from Lem-
mas 4.3, Lemma 4.6 and Corollary 4.5.

By Lemma 4.2, it is enough to prove that ‖η•,•‖ : ‖(F/D)•,•‖ → ‖D•‖ is a weak equivalence.
Since each ηp,0 is a fibration, it follows by Lemma 4.6 that ηp,q is a fibration for all p, q ≥ 0, so by
Lemma 2.14 for each b = (b0 → · · · → bq) ∈ Dq the natural map

B(F/b) = ‖η−1
•,q(b)‖ −→ hofibb ‖η•,q‖

is a weak equivalence. The source is contractible by assumption, so ‖η•,q‖ is a weak equivalence. �

Quillen’s Theorem B [24] gives a criterion for identifying the homotopy fibre of a functor between
ordinary categories. We now state and prove a version of this for non-unital topological categories;
in fact we give a mild generalisation, due to Blumberg–Mandell [1, Theorem 4.5]. In this case we
only state one version: it has a dual version which we leave to the reader.
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Theorem 4.9 (Quillen’s Theorem B). Let

A J //

G
��

C

F
��

B H // D
be a commuting square of non-unital topological categories. Assume that

(i) B and D are left fibrant and have soft right units.
(ii) A and C are right fibrant, and the maps η0,0 : (G/B)0,0 → B0 and η0,0 : (F/D)0,0 → D0 are

fibrations.
(iii) For each morphism u : d → d′ in D, the functor u∗ : F/d → F/d′ induced by composition

with u induces a weak equivalence on classifying spaces.
(iv) For each object b ∈ B0, the functor G/b→ F/H(b) induced by J and H is a weak equivalence.

Then the square

BA BJ //

BG
��

BC

BF
��

BB BH // BD
is homotopy cartesian.

Proof. Using the resolutions of the functors F and G, by assumption (i) and Corollary 4.5 it is
enough to show that the square

‖(G/B)•,•‖ //

‖ηG•,•‖
��

‖(F/D)•,•‖

‖ηF•,•‖
��

BB BH // BD

is homotopy cartesian. Arguing as in the proof of Theorem 4.7, which requires assumption (ii), we
see that the maps

‖ηF•,q‖ : ‖(F/D)•,q‖ −→ Dq ‖ηG•,q‖ : ‖(G/B)•,q‖ −→ Bq
are quasifibrations. In the commutative square

(4.10)

‖(F/D)•,q‖
di //

‖ηF•,q‖
��

‖(F/D)•,q−1‖

‖ηF•,q−1‖
��

Dq
di // Dq−1

the fibre over x = (d0
u1→ · · · uq→ dq) ∈ Dq is B(F/d0), and the induced map on fibres is either the

identity (if i > 0) or it is the fibre transport map (u1)∗ : B(F/d0) → B(F/d1), which is a weak
equivalence by assumption (iii). Therefore by Theorem 2.12, the squares

(4.11)

B(F/d)

��

// ‖(F/D)•,0‖

��

// ‖(F/D)•,•‖

‖ηF•,•‖
��

{d} // D0
// BD

are both homotopy cartesian. For each morphism f : b→ b′ in B, the induced map f∗ : B(G/b)→
B(G/b′) is a weak equivalence, since it fits into a commutative diagram

B(G/b)
' //

f∗

��

B(F/Hb)

H(f)∗'
��

B(G/b′)
' // B(F/Hb′)
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in which all other maps are weak equivalences by assumption (iii) and (iv). Therefore, in the
analogue of the diagram (4.11) for the functor G both squares are also homotopy cartesian. For
b ∈ B0 the composition

B(G/b)
'−→ hofibb ‖ηG•,•‖

BJ−→ hofibHb ‖ηF•,•‖
is equal to the composition

B(G/b)
'−→ BF/(Hb)

'−→ hofibHb ‖ηF•,•‖.

Therefore, BJ : hofibb ‖ηG•,•‖ → hofibHb ‖ηF•,•‖ is a weak equivalence for each b ∈ B0; since the
inclusion ι : B0 → BB is 0-connected, this finishes the proof. �

Remark 4.12. We wish to record a technical point about the meaning of the term “fibration”
in Theorems 4.7 and 4.9 (which is also implicitly used in the term “fibrant”). While we have
in mind Serre fibrations, what is used in the argument is: Hurewicz fibrations are “fibrations”;
“fibrations” are preserved under pullback; composition of “fibrations” are “fibrations”; “fibrations”
are quasifibrations. For example, this allows one to take the class of Dold fibrations or, even more
generally, Dold–Serre fibrations (i.e. maps which have the weak covering homotopy property with
respect to discs).

5. Base changing spaces of objects

For a non-unital topological category C and a continuous map f : X → C0, we may form a new
non-unital topological category CX as follows. We let CX0 be X, and F0 : CX0 → C0 be f . Then we
define CX1 as the pullback

(5.1)

CX1
F1 //

��

C1

s×t
��

CX0 × CX0
F0×F0 // C0 × C0.

The left-hand maps define s, t : CX1 → CX0 , and the universal property of the pullback provides
a map c : CX1 ×CX0 C

X
1 → CX1 ; this defines a non-unital topological category, and the Fi define a

continuous functor F : CX → C. (If C had units, then CX does too.)

Theorem 5.2. If C is fibrant and has weak right (or left) units, and f is 0-connected, then
BF : BCX → BC is a weak equivalence.

Proof. We consider the resolution (F/C)•,• of the functor F . As C is left fibrant and has weak right
(say) units, it has soft right units by Lemma 3.13, and so Corollary 4.5 applies and shows that
‖ε•,•‖ : ‖(F/C)•,•‖ → BCX is a weak equivalence. It remains to show that ‖η•,•‖ : ‖(F/C)•,•‖ →
BC is a weak equivalence.

The space (F/C)0,0 fits in to a cartesian square

(F/C)0,0
//

ε0,0×η0,0

��

C1

s×t
��

CX0 × C0
F0×id // C0 × C0,

and as C is fibrant the right-hand vertical map is a fibration, and so η0,0 is a fibration too. Fur-
thermore, as C is fibrant, (5.1) shows that CX is too. Hence by applying Lemma 4.6 (ii) then (i),
each ηp,q is a fibration. Hence, by Lemma 2.14, for each b = (b0 → · · · → bq) ∈ Cq the map

B(CX/b0) = ‖η−1
•,q(b)‖ −→ hofibb ‖η•,q‖

is a weak equivalence, so it is enough that the over-categories B(CX/b0) be contractible for some
object b0 ∈ C0 in each path-component. As f : X → C1 is 0-connected, we may suppose that
b0 = F (x0), but in this case CX/F (x0) = CX/x0, by (5.1), so it is enough to show that CX has soft
right units. As C has weak right units so does CX (by Remark 3.12 and because both categories
are fibrant), so by Lemma 3.13 CX has soft right units as required. �
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A typical application of this result is to take X = Cδ0 to be the set of objects of C with the
discrete topology, and f : Cδ0 → C0 to be the identity function (which is 0-connected). This yields
a category Cδ with discrete space of objects but the same space of maps between any two objects,
which has a homotopy equivalent classifying spaces under the conditions given above.

6. The Group-Completion Theorem

We shall take care to formulate and prove the group-completion theorem, and the main tech-
nical result underlying it, for homology with local coefficients. We therefore make the following
definitions.

Definition 6.1. Let L be a local coefficient system of R-modules on a space X.

(i) The monodromy of L at x ∈ X if the homomorphism µx : π1(X,x) → AutR-Mod(L(x))
induced from L.

(ii) L is called constant if all monodromy homomorphisms are trivial.
(iii) L is called abelian if the images of all monodromy homomorphisms are abelian groups.

Assumptions 6.2. In the sequel, let A be either

(i) the class of constant local coefficient systems of R-modules, or
(ii) the class of abelian local coefficient systems of R-modules, or
(iii) the class of all local coefficient systems of R-modules.

We say a map f : X → Y is an A-equivalence if for every local coefficient system L on Y in the
class A, the map

f∗ : H∗(X; f∗L) −→ H∗(Y ;L)

is an isomorphism.

Definition 6.3. A commutative square of spaces

W //

g

��

X

f

��
Z

h // Y

is called A-cartesian if the induced map hofibz(g)→ hofibh(z)(f) is an A-equivalence, for all z ∈ Z.

Remark 6.4. Unlike for homotopy cartesian diagrams, the symmetry explained in Remark 2.8 does
not generally hold for A-cartesian diagrams (though it does in case (iii)). A counterexample in
case (i) is R = Z when W = Z = Y = ∗ and X = BG is the classifying space of an infinite acyclic
group.

The following homological analogue of Theorem 2.12 is the technical heart of the “group-
completion theorem” and is due to McDuff and Segal [20]. The notion of an A-cartesian map
f• : X• → Y• is defined in analogy to Definition 2.9.

Theorem 6.5. If f• : X• → Y• is a A-cartesian map of semi-simplicial spaces, then the diagram

(6.6)

X0
//

f0

��

‖X•‖

‖f•‖
��

Y0
// ‖Y•‖

is A-cartesian.

The presentation of McDuff–Segal omits many details, to say the least. A more detailed ex-
position of the proof, with some imprecisions fixed, can be found in [21]. These proofs involve
some fairly complicated point-set topology. There are proofs of an analogous result in the con-
text of bi-simplicial sets by Jardine [13, 15], Moerdijk [22], and Pitsch–Scherer [23]. These proofs
use heavy machinery from simplicial homotopy theory (either model structures on the category
of bi-simplicial sets, or (unpublished) results for manipulating homotopy colimits). The proof we
shall give is essentially that of McDuff–Segal, but our argument replaces the point-set topology
considerations with simplicial arguments.
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6.1. Proof of Theorem 6.5. The main portion of the proof of Theorem 6.5 will be to prove the
following version for simplicial spaces; the last step is the generalization to semi-simplicial spaces.
We shall say that a map f• : X• → Y• of simplicial spaces is A-cartesian if the underlying map of
semi-simplicial spaces has this property.

Proposition 6.7. Let f• : X• → Y• be an A-cartesian map of simplicial spaces. Then the diagram
(6.6) is A-cartesian.

The proof will be sequence of lemmas, each of which extends the class of base spaces Y• for which
the conclusion of Proposition 6.7 holds. To this end, let us say that a simplicial space Y• is basic
if for every A-cartesian map of simplicial spaces f• : X• → Y• the diagram (6.6) is A-cartesian.
Given this definition, the statement of Proposition 6.7 is that every simplicial space is basic.

Lemma 6.8. If Y• is a simplicial set with contractible geometric realisation then it is basic.

Proof. The proof only uses the semi-simplicial structure. Let y ∈ Y0 be a basepoint. Since ‖Y•‖ is
contractible, the natural map η : hofiby(‖f•‖)→ ‖X•‖ is a weak equivalence. Hence any coefficient
system L′ on hofiby(‖f•‖) is of the form η∗L for a coefficient system on ‖X•‖, and if L′ lies in the
class A, then so does L. Therefore, we have to prove that for each point y ∈ Y0, the inclusion map
j : f−1

0 (y)→ ‖X•‖ induces an isomorphism H∗(f
−1
0 (y); j∗L)→ H∗(‖X•‖;L).

The spectral sequence of the semi-simplicial space X• with coefficients in L discussed in Section
1.4 takes the form

E1
p,q = Hq(Xp;Lp)⇒ Hp+q(‖X•‖;L).

Since Yp is discrete, we can write the E1-term as

Hq(Xp;Lp) =
⊕
s∈Yp

Hq(f
−1(s);Lp|f−1(s)).

To simplify notation, we write Hq(f
−1(s);Lp) := Hq(f

−1(s);Lp|f−1(s)). Because the map f• is

A-cartesian, the map Hq(f
−1(s);Lp) → Hq(f

−1(dis);Lp−1) induced by the face map di is an
isomorphism. Hence s 7→ Hq(f

−1(s);Lp) is a locally constant coefficient system Hq(f ;L) on the
simplicial set Y•. Hence E2

p,q = Hp(‖Y•‖;Hq(f ;L)). Because ‖Y•‖ is contractible, it follows that

E2
p,q = 0 for p > 0. If y ∈ Y0 is a basepoint, the induced map ∆0

• → Y• of simplicial sets gives a
comparison diagram

f−1(s) //

��

X•

f•

��
∆0
•

y // Y•.

It induces an isomorphism on the E2-term of the spectral sequence, and therefore f−1(y)→ ‖X•‖
induces an isomorphism in homology with coefficients in L, as claimed. �

The next step is a discretisation argument. For a simplicial space Y•, we consider the bi-simplicial
set (p, q) 7→ SingqYp and the associated diagonal simplicial set δYp := SingpYp. By Theorem 7.1,
Lemma 1.11 and Theorem 2.2, the maps

‖δY•‖
D−→ ‖Sing•Y•‖ −→ ‖Y•‖

are weak equivalences.

Lemma 6.9. If Y• is a simplicial space such that δY• is basic, then Y• is basic.

Proof. The proof uses the simplicial structure in an essential way. As in the second proof of
Lemma 2.12 we may assume that fp : Xp → Yp is a fibration for each p. Let Yp,q := SingqYp,
giving a bi-simplicial set Y•,•, and define a bi-simplicial space X•,• and a map f•,• : X•,• → Y•,•
as follows. Let Xp,q :=

∐
σ∈Yp,q

Lift(σ, fp), where Lift(σ, fp) is the space of all maps h : ∆q → Xp

with fp ◦ h = σ, equipped with the compact-open topology. The simplicial structure in the p
direction is given by h 7→ di ◦ h and in the q-direction by h 7→ h ◦ dj (similarly for the degeneracy
maps). The evident maps fp,q : Xp,q → Yp,q are the components of a bi-simplicial map. Because

fp is a fibration, the map f−1
p,q (σ)→ f−1

p,q−1(diσ) is a weak equivalence, for each q and i. Hence the
simplicial map fp,• : Xp,• → Yp,• is homotopy cartesian.
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Analogous to the evaluation map ‖Yp,•‖ → Yp, let up : ‖Xp,•‖ → Xp be the map which sends
(h, t) ∈ Xp,q ×∆q to h(t) ∈ Xp. These are the components of a map of simplicial spaces, and the
diagram

Xp,0

fp,0

��

// ‖Xp,•‖
up //

‖fp,•‖
��

Xp

fp

��
Yp,0 // ‖Yp,•‖ // Yp

commutes. As fp,• is homotopy cartesian, it follows from Theorem 2.12 that the left-hand square

is homotopy cartesian. The space Yp,0 is Yp with the discrete topology, and f−1
p,0 (y) = f−1

p (y).

Therefore, the outer rectangle is homotopy cartesian. Moreover, Yp,0 → ‖Yp,•‖ is 0-connected, so
it follows that the right-hand square is homotopy cartesian as well. The bottom right-hand map
is a weak equivalence by Lemma 1.11, so the map up is also a weak equivalence.

So far, we set the stage for the following diagonal argument. Consider the commutative square

X0,0

f0,0

��

// ‖δX•‖

δf•

��

' // ‖X•,•‖

‖f•,•‖
��

‖u•‖
' // ‖X•‖

‖f•‖
��

Y0,0
// ‖δY•‖

' // ‖Y•,•‖
' // ‖Y•‖,

where the weak equivalences in the middle come from Theorem 7.1.
Since fp is a fibration, and the original map f• was A-cartesian, it follows that f•,• is A-cartesian

(in the obvious sense: we require that the diagrams in Definition 2.9 to be A-cartesian in both
simplicial directions), and hence that δf• is A-cartesian. By the hypothesis of the lemma, δY• is
basic and so the left square is A-cartesian. Since the other horizontal maps are weak equivalences,
it follows that the outer rectangle is A-cartesian, which concludes the proof. �

The next step is to show that the property of being basic descends along homotopy cartesian
maps.

Lemma 6.10. Let h• : Z• → Y• be a homotopy cartesian map of simplicial spaces and assume
that h0 is 0-connected. If Z• is basic then Y• is basic.

Proof. The proof only uses the semi-simplicial structure. Let f• : X• → Y• be a A-cartesian map
of simplicial spaces. As in the second proof of Lemma 2.12 we may assume that each fp is a
fibration. We form the levelwise pullback

(6.11) Wp

kp //

gp

��

Xp

fp

��
Zp

hp // Yp,

and this diagram is homotopy cartesian, because fp is a fibration. The map g• is A-cartesian. To
see this, let z ∈ Zp be a point and consider the commutative diagram

hofibz(gp)

'
��

// hofibdiz(gp−1)

'
��

hofibhp(z)(fp) // hofibdihp(z)(fp−1)

and use that A-equivalences satisfy the 2-out-of-3 property. A similar argument (using also Remark
2.8) shows that k• is homotopy cartesian. The square

‖W•‖
‖k•‖ //

‖g•‖
��

‖X•‖

‖f•‖
��

‖Z•‖
‖h•‖ // ‖Y•‖
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is homotopy cartesian. This follows by applying Theorem 2.12 to both h• and k•, using that
(6.11) is homotopy cartesian for p = 0 and using Remark 2.8. Since (6.11) for p = 0 is homotopy
cartesian, comparing homotopy fibres gives a commutative square

hofibz(g0)

��

' // hofibh0(z)(f0)

��
hofibι(z)(‖g•‖)

' // hofibι(z)(‖f•‖)

in which the horizontal maps are weak equivalences. Since g• : W• → Z• is A-cartesian, and
by assumption Z• is basic, it follows that the left vertical map is an A-equivalence. Therefore,
the right vertical map is also an A-equivalence. This holds for any z ∈ Z0, but the map h0 is
0-connected, which finishes the proof. �

The next lemma provides an appropriate resolution of a simplicial set by a contractible simplicial
space.

Lemma 6.12. Let Y• be a 0-connected simplicial set. Then there is a simplicial space QY• with
‖QY•‖ ' ∗ and a homotopy cartesian morphism f• : QY• → Y•, such that f0 is 0-connected.

The same statement is true for semi-simplicial sets, with the same proof.

Proof. Fix a vertex y ∈ Y0. For each simplex σ ∈ Yp, we let χσ : ∆p → ‖Y•‖ denote its character-
istic map. Furthermore, we view ∆p ⊂ ∆p+1 as the last face, i.e. the face opposite to ep+1. We
let

QYp :=
∐
σ∈Yp

{(σ, h)|h : ∆p+1 → ‖Y•‖; h|∆p = χσ; h(ep+1) = y},

topologised as a subspace of Yp × ‖Y•‖∆
p

. Define di : QYp → QYp−1 by di(σ, h) := (diσ, h ◦ di)
(and the degeneracy maps in an analogous way) and fp : QYp → Yp by fp(σ, h) := σ. Then
f• : QY• → Y• is a map of simplicial spaces.

This should be viewed as an analogue of the path fibration, and we now verify that indeed it has
the characteristic properties of that construction. The maps di : f−1

p (σ)→ f−1
p−1(σ) are homotopy

equivalences, so that f• is homotopy cartesian. It remains to be shown that ‖QY•‖ ' ∗.
First observe that the fibre f−1

0 (y) is the based loop space Ωy‖Y•‖. Let Py‖Y•‖ denote the path
space: the space of all paths in ‖Y•‖ with endpoint y. The map

g : ‖QY•‖ −→ Py‖Y•‖

(σ, h, t) 7−→
(
s 7→ h((1− s)t, s)

)
makes the diagram

Ωy‖Y•‖ //

��

‖QY•‖
g //

‖f•‖
��

Py‖Y•‖

ev0

��
{y} // ‖Y•‖ ‖Y•‖

commute, by inspection. Since f• is homotopy cartesian, the left-hand square is homotopy carte-
sian. The outer rectangle is also hompotopy cartesian, as it is cartesian and ev0 is a fibration. Thus
the map between vertical homotopy fibres over y of the right-hand square is an equivalence: this
holds for all y, so the right-hand square is homotopy cartesian, and hence g is a weak equivalence.
Thus ‖QY•‖ ' ∗ as desired. �

The deduction of Proposition 6.7 is fairly easy.

Proof of Proposition 6.7. We have to show that every simplicial space Y• is basic. It is no loss
of generality to assume that ‖Y•‖ is 0-connected. Using the construction from Lemma 6.12, we
consider the simplicial set δ(Q(δY ))•. This is contractible (by Lemma 6.12 and Theorem 7.1) so
by Lemma 6.8 δ(Q(δY ))• is basic. By Lemma 6.9, it follows that Q(δY )• is basic. As the map
f• : Q(δY )• → δY• provided by Lemma 6.12 is homotopy cartesian and f0 is 0-connected, it follows
from Lemma 6.10 that δY• is basic. Finally, using Lemma 6.9 again, it follows that Y• is basic. �
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Proof of Theorem 6.5. By Proposition 6.7, every simplicial space is basic. We will make use of the
functor E : ssTop → sTop which freely adds degeneracies. Let f• : X• → Y• be an A-cartesian
map of semi-simplicial spaces, giving a map Ef• : EX• → EY• of simplicial spaces. It follows from
the description of the simplices and face maps of EY• that Ef• is also A-cartesian. Consider the
commutative diagram

X0

f0

��

// ‖X•‖

‖f•‖
��

// ‖EX•‖

‖Ef•‖
��

Y0
// ‖Y•‖ // ‖EY•‖.

The simplicial space EY• is basic by Proposition 6.7, so as EX0 = X0 and EY0 = Y0 we have that
the outer rectangle is A-cartesian. As the two rightmost horizontal maps are weak equivalences,
by Lemma 2.6, it follows that the left-hand square is A-cartesian, as claimed. �

6.2. Group-completion. Let us describe the application of Theorem 6.5 to group-completion.
Let M be a (topological) monoid acting on the left on a space X and on the right on a space
Y . One may form the two-sided bar construction B•(Y,M,X), the semi-simplicial space having
p-simplices Y ×Mp ×X, with face maps

d0(y,m1, . . . ,mp, x) = (y ·m1,m2, . . . ,mp, x)

di(y,m1, . . . ,mp, x) = (y,m1, . . . ,mi−1,mi ·mi+1,mi+2, . . . ,mp, x) for 0 < i < p

dp(y,m1, . . . ,mp, x) = (y,m1,m2, . . . ,mp · x).

Now let Y = ∗ and suppose that M acts on X by A-equivalences. Then the projection map
B•(∗,M,X)→ B•(∗,M, ∗) is A-cartesian, and so by Theorem 6.5 the square

(6.13)

X //

f0

��

‖B•(∗,M,X)‖

‖f•‖
��

{∗} // ‖B•(∗,M, ∗)‖ BM

is A-cartesian.
We apply this as follows. Suppose that the set of path-components of M is countable and let

m1,m2,m3, . . . ∈ M be a sequence of points with infinitely-many in each path component. We
may form the homotopy colimit

M∞ = hocolim(M
−·m1→ M

−·m2→ M
−·m3→ · · · )

over right multiplication in the monoid M by the mi; this has a residual left M -action. If the
monoid M is homotopy commutative, then H∗(M ;Z) has the structure of a commutative ring,
and we can identify

H∗(M∞;Z) ∼= colim(H∗(M ;Z)
(−·m1)∗→ H∗(M ;Z)

(−·m2)∗→ H∗(M ;Z)
(−·m3)∗→ · · · )

with the localisation H∗(M ;Z)[π0(M)−1] of the ring H∗(M) at the multiplicative subset π0(M) ⊂
H0(M ;Z). In particular, the map m · − : M∞ →M∞ given by left multiplication by m induces an
isomorphism on homology. We may thus apply the above observation to the left action of M on
M∞. Now B•(∗,M,M) has an extra degeneracy (as in Lemma 1.12), so ‖B•(∗,M,M)‖ ' ∗ and
hence

‖B•(∗,M,M∞)‖ ' hocolim(‖B•(∗,M,M)‖ −·m1→ ‖B•(∗,M,M)‖ → · · · ) ' ∗.
The homology-cartesian square (6.13) therefore gives a map

(6.14) M∞ −→ hofib∗(‖B•(∗,M,X)‖ → ‖B•(∗,M, ∗)‖) ' ΩBM

which is an integral homology equivalence; in particular

H∗(M ;Z)[π0(M)−1] ∼= H∗(ΩBM ;Z).

Remark 6.15. In fact, the argument of [25] shows that in the situation above the monoid M acts on
M∞ by abelian homology equivalences, and so the map (6.14) is an abelian homology equivalence,
but the fundamental group of the target is abelian, so it follows that (6.14) is in fact an acylic
map.
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There is also a group-completion theorem for categories, rather than monoids: it can also be
deduced immediately from Theorem 6.5; we refer the reader to [11, Section 7] for a formulation.

7. Products of simplicial spaces

Let X•,• be a bi-simplicial space and let δ(X•,•) be the diagonal simplicial space. To define the
diagonal map D : ‖δ(X•,•)‖ → ‖X•,•‖, take the diagonal map d : ∆p → ∆p ×∆p and

(IdXp,p
× d) : Xp,p ×∆p −→ Xp,p ×∆p ×∆p.

This respects the equivalence relations used for the definition of the fat geometric realisation and
so induces a map D as indicated.

Theorem 7.1. The diagonal map D is a weak equivalence.

This is false if one considers bi-semi-simplicial spaces instead: if Y• is an arbitrary semi-simplicial
space and X•,• = ∇0

• ⊗ Y•, then ‖X•,•‖ = ‖Y•‖ and ‖δ(X)•‖ = Y0. Let us note an application of
Theorem 7.1.

Theorem 7.2. Let X• and Y• be simplicial spaces. Then the map

‖(X × Y )•‖ −→ ‖X•‖ × ‖Y•‖,
induced by the two projection maps (X × Y )• → X• and (X × Y )• → Y•, is a weak homotopy
equivalence.

Proof. The diagram

‖(X × Y )•‖ // ‖X•‖ × ‖Y•‖

‖δ(X ⊗ Y )•‖
' // ‖X• ⊗ Y•‖

∼=

OO

commutes, and the indicated homeomorphism and weak equivalence are true by Theorem 7.1 and
(1.10). �

Theorem 7.2 is important when one applies Segal’s theory of Γ-spaces to deloop spaces which
arise as geometric realisations of simplicial spaces. This will be done in [4] and has been done at
various places in the literature.

One could derive Theorem 7.1 from the classical result [12, Theorem I.3.7] that for a bi-simplicial
set, one has a homeomorphism |δ(X•,•)| ∼= |X•,•| and from [29, Proposition A.1]. However, it seems
to be easier to give an argument from scratch. The main bulk of work for the proof of Theorem 7.1
is the proof for bi-simplicial sets, and the proof of that case resembles in some sense the proof of
classical Eilenberg–Zilber theorem in singular homology, using the method of acyclic models. The
first step is to prove that the “models” are contractible.

Lemma 7.3. Let ∆n,m
•,• := ∆n

• ⊗ ∆m
• be the “bi-simplicial (n,m)-simplex”. The spaces ‖∆n,m

•,• ‖
and ‖δ(∆n,m)•‖ are contractible. In particular, Theorem 7.1 is true when X•,• = ∆n,m

•,• .

Proof. By (1.10) and Example 1.14, we have

‖∆n,m
•,• ‖ ∼= ‖∆n

•‖ × ‖∆m
• ‖ ' ∗.

To prove that ‖δ(∆n,m)•‖ ' ∗, consider the ordered set [n] as a (unital) category. Then ∆n
• is

the nerve of [n]. Moreover, δ(∆n,m)• is the nerve of the category [n] × [m]. This category has a
terminal object, namely (n,m), so a natural transformation from the identity functor to a constant
functor. It follows from Lemma 3.4 that ‖δ(∆[n,m])•‖ is contractible. �

It is in this step that the degeneracies are used. The analogous claim for bi-semi-simplicial sets
is false. The role of ∆n,m

•,• is then taken by ∇n,m•,• := ∇n• ⊗ ∇m• . While ‖∇n,m•,• ‖ is contractible,
‖δ(∇n,m)•‖ usually is not. This may be seen by calculating the Euler number of these finite
complexes.

The identity Id[n] defines an element ιn ∈ ∆n
n and its characteristic map ι̂n : ∆n → ‖∆n

•‖(n) ⊂
‖∆n
•‖. The restriction to the topological boundary ∂∆n goes into the (n− 1)-skeleton ‖∆n

•‖(n−1)

and is denoted ∂ι̂n. In a similar vein, the tautological element ιn,m = (ιn, ιm) ∈ ∆n,m
n,m induces
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a map ι̂n,m : ∆n × ∆m → ‖∆n,m
•,• ‖n+m with boundary ∂ι̂n,m : (∆n × ∂∆m ∪ ∂∆n × ∆m) =:

∂(∆n ×∆m)→ ‖∆n,m
•,• ‖n+m−1. Moreover, composition with the diagonal map d : ∆n → ∆n ×∆n

(whose restriction to ∂∆n goes into ∂(∆n × ∆n)) defines a map ι̂n,n ◦ d : ∆n → ‖δ(∆n,n)•‖(n),

with boundary map ∂(ι̂n,n ◦ d) : ∂∆n → ‖δ(∆n,n)•‖(n−1).
Note that X•,• 7→ ‖δ(X)•‖ and X•,• 7→ ‖X•,•‖ are functors from the category of bi-simplicial

sets to Top and the diagonal map D is a natural transformation. Moreover, both ‖δ(X)•‖ and
‖X•,•‖ are naturally filtered spaces, their 0-skeleta are equal:

‖δ(X)•‖(0) = ‖X•,•‖(0) = X0,0,

and D restricts to the identity between the 0-skeleta.

Lemma 7.4.

(i) There is a natural map F : ‖X•,•‖ → ‖δ(X)•‖ which is the identity on the 0-skeleton.
(ii) The map D ◦ F : ‖X•,•‖ → ‖X•,•‖ is naturally homotopic to the identity.

(iii) The map F ◦D : ‖δ(X)•‖ → ‖δ(X)•‖ is naturally homotopic to the identity.

In particular, D is a homotopy equivalence, for each bi-simplicial set.

One can add the statements that the maps F and D are unique up to natural homotopy among
those natural maps which are the identity on the 0-skeleton. These statements will not enter the
proof of Theorem 7.1 and so we do not prove them, but the method of proof can easily be adapted.

Proof. We shall construct the map F and the homotopies inductively on skeleta. More precisely,
we shall construct natural maps

Fn = FXn : ‖X•,•‖(n) −→ ‖δ(X)•‖
and natural homotopies

hn : F ◦Dn ; Id, kn : D ◦ Fn ; Id.

We begin with the construction of Fn. The map F0 is the identity, and we assume that F0, . . . , Fn−1

are already constructed. Let p + q = n, and we first construct a suitable map µp,q : ‖∆p,q
•,•‖(n) →

‖δ(∆p,q)•‖. The inclusion map ‖∆p,q
•,•‖(n−1) → ‖∆p,q

•,•‖(n) is a cellular inclusion. By Lemma 7.3,
the space ‖δ(∆p,q)•‖ is contractible. Hence there exists a solution µp,q to the extension problem

‖∆p,q
•,•‖(n−1)

F∆p,q

n−1 //

��

‖δ(∆p,q)•‖

‖∆p,q
•,•‖(n).

µp,q

77

Now we construct FXn for a bi-simplicial set X. Observe that

Xp,q = bisSet(∆p,q
•,•, X•,•),

the set of morphisms of bi-simplicial sets (this is an instance of the Yoneda lemma). For each
s ∈ Xp,q, we have the characteristic map ŝ : ∆p ×∆q → ‖X•,•‖p+q, and if we view s as a map of
bi-simplicial sets, we obtain ‖s‖ : ‖∆p,q

•,•‖ → ‖X•,•‖. The relation between these two maps is that
‖s‖ ◦ ι̂p,q = ŝ. The following diagram is a pushout diagram∐

p+q=n
s∈Xp,q

∂∆p,q ϕ //

inc

��

‖X•,•‖(n−1)

��∐
p+q=n
s∈Xp,q

∆p,q φ // ‖X•,•‖(n),

where the map φ is

φ =
∐

p+q=n
s∈Xp,q

ŝ =
∐

p+q=n
s∈Xp,q

‖s‖(n) ◦ ι̂p,q
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and similarly

ϕ =
∐

p+q=n
s∈Xp,q

‖s‖(n−1) ◦ ∂ι̂p,q.

We claim that the two maps

F
X•,•
n−1 ◦ ϕ,

∐
p+q=n
s∈Xp,q

‖δ(s)•‖ ◦ µp,q ◦ ι̂p,q ◦ inc :
∐

p+q=n
s∈Xp,q

‖∆p,q
•,•‖(n−1) −→ ‖δ(X)•‖

are equal, and so they induce a map from the pushout, i.e. FXn : ‖X•,•‖(n) → ‖δ(X)•‖, which
finishes the inductive construction of Fn (it is obvious that Fn becomes a natural map). To verify
this claim, it is enough to check that for each s ∈ Xp,q, the diagram

‖∆p,q
•,•‖(n−1)

‖s‖(n−1)

//

��

‖X•,•‖(n−1)

FX
n−1

&&
‖∆p,q
•,•‖(n)

µp,q // ‖δ(∆p,q)•‖
‖δ(s)‖ // ‖δ(X)•‖

commutes. But this is clear because Fn−1 is a natural transformation:

FXn−1 ◦ ‖s‖(n−1) = ‖δ(s)•‖ ◦ F∆p,q

n−1 ,

and we constructed µp,q so that µp,q ◦ inc = F∆p,q

n−1 . This finishes the construction of F .

Now we turn to the construction of natural homotopies hn : I × ‖δ(X)•‖(n) → ‖δ(X)•‖ from
F ◦ Dn to the “identity” (i.e. inclusion map). We can take h0 to be the constant homotopy.
Assume that h0, . . . , hn−1 are already constructed. As before, we first construct a certain map
λn : I × ‖δ(∆n,n)•‖(n) → ‖δ(∆n,n)•‖. The inclusion map

I × ‖δ(∆n,n)•‖(n−1) ∪ {0, 1} × ‖δ(∆n,n)•‖(n) −→ I × ‖δ(∆n,n)•‖(n)

is a cellular inclusion. We define a map

I × ‖δ(∆n,n)•‖(n−1) ∪ {0, 1} × ‖δ(∆n,n)•‖(n) −→ ‖δ(∆n,n)•‖
by taking the homotopy h∆n,n

n−1 on the first part, F ◦Dn on {0}× ‖δ(∆n,n)•‖(n) and the “identity”

on {1} × ‖δ(∆n,n)•‖(n). Those fit together by assumption and so define a continuous map. It can
be extended to a map

λn : I × ‖δ(∆n,n)•‖(n) −→ ‖δ(∆n,n)•‖,
because the target space is contractible by Lemma 7.3. There is a pushout diagram∐

s∈Xn,n

I × ∂∆n ϕ //

inc

��

I × ‖δ(X)•‖(n−1)

��∐
s∈Xn,n

I ×∆n φ // I × ‖δ(X)•‖(n)

whose horizontal maps are given by

ϕ = IdI ×

 ∐
s∈Xn,n

‖δ(s)‖(n−1) ◦ ∂ι̂n


and

φ = IdI ×

 ∐
s∈Xn,n

‖δ(s)‖(n) ◦ ι̂n

 .

Let ψ :
∐

s∈Xn,n

I ×∆n → ‖δ(X)•‖ be the map∐
s∈Xn,n

‖s‖ ◦ λn ◦ (IdI × ι̂n).
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Then ψ ◦ inc = hXn−1 ◦ ϕ by construction, and so these maps together induce a map hXn from the

pushout I × ‖δ(X)•‖(n) to ‖δ(X)•‖ which extends hXn−1 and is natural.
The construction of the homotopies kn is very similar and left to the reader. �

Proof of Theorem 7.1. Consider the trisimplicial set (p, q, r) 7→ SingrXp,q. The following diagram
commutes:

‖p 7→ Xp,p‖
D // ‖(p, q) 7→ Xp,q‖

‖p 7→ ‖r 7→ SingrXp,p‖‖
D //

OO

∼=
��

‖(p, q) 7→ ‖r 7→ SingrXp,q‖‖

OO

∼=
��

‖r 7→ ‖p 7→ SingrXp,p‖‖
D // ‖r 7→ ‖(p, q) 7→ SingrXp,q‖‖.

The upper vertical maps are weak equivalences, by Lemma 1.11 and Theorem 2.2. The lower
vertical maps are the homeomorphisms from (1.9). The bottom horizontal map is a weak equiva-
lence by Lemma 7.4 and by Theorem 2.2. Hence so is the upper horizontal map, which proves the
claim. �
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