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Torelli spaces of high-dimensional manifolds

Johannes Ebert and Oscar Randal-Williams

Abstract

The Torelli group of a manifold is the group of all diffeomorphisms which act as the identity on
the homology of the manifold. In this paper, we calculate the invariant part (invariant under the
action of the automorphisms of the homology) of the cohomology of the classifying space of the
Torelli group of certain high-dimensional, highly connected manifolds, with rational coefficients
and in a certain range of degrees. This is based on Galatius and Randal-Williams’ work on the
diffeomorphism groups of these manifolds, Borel’s classical results on arithmetic groups, and
methods from surgery theory and pseudoisotopy theory. As a corollary, we find that all Miller–
Morita–Mumford characteristic classes are non-trivial in the cohomology of the classifying space
of the Torelli group, except for those associated with the Hirzebruch class, whose vanishing is
forced by the family index theorem.
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1. Introduction

The high-dimensional manifolds of the title of this paper are the manifoldsW 2n
g := �g(Sn × Sn)

with n � 3 (though our main result only has content for much larger values of n). Let D2n ⊂
W 2n
g be a fixed embedded closed disc and let Diff(W 2n

g ,D2n) denote the topological group of
diffeomorphisms ofW 2n

g which restrict to the identity on a neighbourhood ofD2n. Alternatively,
let W 2n

g,1 := W 2n
g \ int(D2n) be the manifold with boundary obtained by removing the interior

of D2n, and Diff∂(W 2n
g,1) denote the group of diffeomorphisms of W 2n

g,1 which restrict to the
identity near the boundary. Extending diffeomorphisms over D2n by the identity map gives
an isomorphism Diff∂(W 2n

g,1) ∼= Diff(W 2n
g ,D2n) of topological groups, and we shall use them

interchangeably.
The Torelli group Tor2ng,1 ⊂ Diff∂(W 2n

g,1) is defined to be the subgroup of those diffeo-
morphisms which induce the identity automorphism of Hn(W 2n

g,1; Z) ∼= Z2g. There is a fibre
sequence

BTor2ng,1 −→ BDiff∂(W 2n
g,1) −→ BΓ(W 2n

g,1),

where Γ(W 2n
g,1) ⊂ GL(Hn(W 2n

g,1; Z)) is a certain arithmetic group, which we shall describe in
detail in Section 2.1. The rational cohomology of the base and the total space of this fibre
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sequence are completely known in a stable range, due to the work of Borel (on the cohomology
arithmetic groups) and the work of Galatius and Randal-Williams (on the cohomology of
diffeomorphism groups).

The aim of this paper is to compute the Γ(W 2n
g,1)-invariant part of the rational cohomology of

BTor2ng,1, for large g and n. The result is that the behaviour is in a sense as simple as possible.

Theorem A. The natural map

H∗(BDiff∂(W 2n
g,1); Q)/(ImH∗>0(BΓ(W 2n

g,1); Q)) −→ H∗(BTor2ng,1; Q)Γ(W 2n
g,1)

(the brackets mean ‘ideal generated by’) is an isomorphism in degrees ∗ � C2n
g , where C2n

g is
the largest integer with

(i) C2n
g � (g − 3)/2;

(ii) 2n � max{2C2n
g + 7, 3C2n

g + 4}.

Throughout the paper, we will hold g and 2n fixed, and a number q will be called ‘in the
stable range’ if q � C2n

g . The left-hand side of the expression in Theorem A can be explicitly
computed, using the results of [4, 13, 14], and the result of this calculation is most easily
expressed in terms of Miller–Morita–Mumford classes, which we now define. There is a bundle
of closed manifolds

π : (Wg × EDiff∂(W 2n
g,1))/Diff∂(W 2n

g,1) =: E −→ BDiff∂(W 2n
g,1),

and we write TvE for its vertical tangent bundle, an oriented real vector bundle of rank 2n
over E. For each rational characteristic class c ∈ Hk+2n(BSO(2n); Q) of such vector bundles,
we define

κc := π!(c(Tv)) ∈ Hk(BDiff∂(W 2n
g,1); Q),

the generalized Miller–Morita–Mumford class associated to c. We have, in particular, the
Hirzebruch L-classes Li ∈ H4i(BSO(2n); Q), and so classes

κLaLb
∈ H4a+4b−2n(BDiff∂(W 2n

g,1); Q).

These classes may be pulled back to BTor2ng,1, where they give Γ(W 2n
g,1)-invariant elements of

cohomology (precisely because they are pulled back from BDiff∂(W 2n
g,1)).

Theorem B. The map

Q

[
κLaLb

∣∣∣∣n+ 1
4
� a � b

]
−→ H∗(BTor2ng,1; Q)Γ(W 2n

g,1)

is an isomorphism in degrees ∗ � C2n
g .

Remark 1.1. The reader familiar with mapping class groups of surfaces will have noted
that the name ‘Torelli group’ is borrowed from that subject. If Γg is the mapping class group
of a closed oriented genus g surface, then the Torelli group Tg is the kernel of the surjective
map Γg → Sp2g(Z). The cohomology of the mapping class group is, in the stable range, known,
by the Madsen–Weiss theorem [22]. It is a long-standing question whether the even Mumford
classes κ2i ∈ H4i(Γg; Q) remain non-zero when restricted to Tg (the odd ones are easily seen
to vanish). Theorem A answers this question in (much) higher dimensions, and can perhaps be
considered as suggesting that it is likely that the κ2i ∈ H4i(Tg; Q) are also non-zero.
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1.1. Overview of the proof

The proof of Theorem A depends on a number of deep results.

(i) The computation of the cohomology of BDiff∂(W 2n
g,1) in the stable range, due to Galatius

and Randal-Williams.
(ii) The computation of the cohomology of arithmetic groups, due to Borel.
(iii) The Atiyah–Singer family index theorem.
(iv) The space version of the simply connected surgery exact sequence, due to Quinn, and

related computations by Berglund and Madsen.
(v) Morlet’s lemma of disjunction.

To make the overall structure of the argument clear, we present an overview. Our argument
is a calculation of the Leray–Serre spectral sequence of the fibre sequence

BTor2ng,1 −→ BDiff∂(W 2n
g,1) −→ BΓ(W 2n

g,1),

with rational coefficients, in the stable range. The group Γ(W 2n
g,1) is an arithmetic group, sitting

inside Sp2g(Z) (if n odd) or Og,g(Z) (if n even). Borel has calculated the cohomology of such
groups (originally with real coefficients, because he uses differential forms, but this implies the
rational statement), and his result may be stated by saying that a certain map,

β2n
g : BΓ(W 2n

g,1) −→ Ωkn
0 BO :=

{
BO if n is even,
Ω2

0BO if n is odd,

induces an isomorphism on rational cohomology in a range of degrees that depends linearly on g.
The stable homology of BDiff∂(W 2n

g,1) has been computed by Galatius and Randal-Williams,
as we have already mentioned. Their result is that a certain map

α2n
g : BDiff∂(W 2n

g,1) −→ Ω∞
0 MTθn

to the infinite loop space of a certain Thom spectrum is a homology equivalence (again, in a
range depending linearly on g). We will define an infinite loop map

symb : Ω∞
0 MTθn −→ Ωkn

0 BO

and we will construct, using the Atiyah–Singer family index theorem, a map of fibration
sequences (see Theorem 2.1 and the discussion in § 5)

BTor2ng,1
��

��

BDiff∂(W 2n
g,1)

ζ ��

α2n
g

��

BΓ(W 2n
g,1)

β2n
g

��
Ω∞F �� Ω∞

0 MTθnQ
symb �� (Ωkn

0 BO)Q

(1.1)

The Q-subscript denotes rationalization in the sense of homotopy theory. Considering the
rational cohomological Leray–Serre spectral sequences, we obtain a morphism of spectral
sequences, which converges to an isomorphism in the stable range (by Galatius and Randal-
Williams). The base term is an isomorphism in the stable range (by Borel). We can conclude,
by Zeeman’s comparison theorem, that the map H∗(Ω∞F ; Q)→ H∗(BTor2ng,1; Q)Γ(W 2n

g,1) is an
isomorphism in the stable range, provided that the E2-pages of the spectral sequences both
have a product structure. The lower fibration sequence is a sequence of infinite loop spaces
and infinite loop maps and thus its rational Leray–Serre spectral sequence has a product
structure. Its rational cohomology is easy to compute and H∗(Ω∞F ; Q) is isomorphic to the
algebra showing up in the left-hand side of Theorem A (in a stable range). In addition,
from this argument we may conclude that the rational Leray–Serre spectral sequence of
BDiff∂(W 2n

g,1)→ BΓ(W 2n
g,1) collapses in a stable range of degrees.
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What is missing is the product structure on the Leray–Serre spectral sequence for the top
fibration sequence, and this is where the other ingredients enter. We call a representation of
an arithmetic group Γ on a rational vector space U arithmetic if U is finite-dimensional and
if the representation extends to a holomorphic representation of G on U ⊗Q C, where G is the
ambient complex Lie group of the arithmetic group Γ. It is a theorem of Borel that for an
arithmetic representation U , there is an isomorphism

H∗(Γ;U) ∼= H∗(Γ; Q)⊗ UΓ

in a range of degrees. If we know that Hq(BTor2ng,1; Q) is an arithmetic Γ(W 2n
g,1)-representation,

then it follows that the Leray–Serre spectral sequence of the top fibration sequence has a
product structure.

How do we prove arithmeticity of this representation? This is done in two steps, the first of
which is essentially due to Berglund and Madsen [3]. In this step, the block diffeomorphism
group D̃iff∂(W 2n

g,1) is related to surgery theory. More specifically, there is a map

Γ(W 2n
g,1)//D̃iff∂(W 2n

g,1) −→ map(W 2n
g,1/∂W

2n
g,1,G/O),

which is injective on rational homotopy groups. We show that the induced map on cohomology
is one of Γ(W 2n

g,1)-modules, and as G/O is an infinite loop space with well-known rational
homotopy groups, we find that the cohomology groups Hq(Γ(W 2n

g,1)//D̃iff∂(W 2n
g,1); Q) are

subquotients of an arithmetic representation, hence arithmetic. (A closer analysis, as carried
out in [3], gives a lot more information, but for our purpose this is not necessary.) The main
tool for this step is the space version of the surgery exact sequence due to Quinn.

The relation between block diffeomorphisms and actual diffeomorphisms is via Morlet’s
lemma of disjunction. The result is that in the concordance stable range, the map

BTor2ng,1 � Γ(W 2n
g,1)//Diff∂(W 2n

g,1) −→ Γ(W 2n
g,1)//D̃iff∂(W 2n

g,1)

is a rational homology isomorphism.

Remark 1.2. Let us return briefly to mapping class groups of surfaces and the ordinary
Torelli group. One might ask whether a similar argument to that of this paper could potentially
work in that case as well. The argument outlined above shows that if one knows that H∗(Tg; Q)
is finite-dimensional and the action of the symplectic group on it is arithmetic, then the answer
to the question is positive. However, H∗(Tg; Q) is in general not finitely generated, as T2 is a
free group on infinitely many generators (Mess [23]). Moreover, for each sufficiently large g, the
dimension of H∗(Tg; Q) is known to be infinite (Akita [1]); though its homological dimension
is finite by Teichmüller theory. On the other hand, H1(Tg; Q) is known for g � 3 by work of
Johnson [19], and it is an arithmetic Sp2g(Z)-representation (of degree 3). It does not seem to
be unreasonable to conjecture that Hq(Tg; Q) is an arithmetic Sp2g(Z)-representation of degree
q in some range of degrees that grows with g.

1.2. Structure of the paper

In Section 2, the diagram (1.1) is developed, where the main role is played by the relation
between Madsen–Tillmann spectra and the Atiyah–Singer index theorem that has been
described in [10]. In that section, we also compute the cohomology of the bottom sequence
of diagram (1.1). Section 3 is a survey on several aspects of Borel’s work on cohomology of
arithmetic groups. The purpose here is twofold. Firstly, we show that the right vertical map in
the diagram (1.1) is a (rational) homology isomorphism. Secondly, we explain the statement
that the cohomology with coefficients in an arithmetic representation cuts down to the invariant
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part. This involves the (purely Lie-algebraic) computation of a constant that has not been made
explicit by Borel. In Section 4, we extract from [3] those results from surgery theory that are
necessary to deduce the arithmeticity of H∗(BTor2ng,1; Q) as a Γ(W 2n

g,1)-representation. We also
describe the relation between diffeomorphisms and block diffeomorphisms. In Section 5, we put
everything together and give the proof of Theorem A. Finally, in Section 6 we include a brief
discussion comparing two methods of computing the ranks of the (isomorphic) vector spaces
occurring in Theorem A, using the work of Galatius and Randal-Williams on the left-hand
side (which has been described in detail in Section 2.2), and using the work of Berglund and
Madsen as well as classical invariant theory on the right-hand side.

2. Diffeomorphism groups, Thom spectra, and index theory

One of the key results of this paper is the following theorem.

Theorem 2.1. There exists a homotopy-commutative diagram

BDiff(W 2n
g ,D)

α2n
g

��

ζ �� BΓ(W 2n
g )

β2n
g

��
Ω∞

0 MTθn
symb �� Ω∞+kn

0 KO.

(2.1)

The number kn equals 0 if n is even and 2 if n is odd. The left vertical map is an integral
homology equivalence in degrees ∗ � (g − 3)/2. The bottom horizontal map is injective in
rational cohomology and its image (in positive degrees) is the subalgebra generated by the
κLi

. The right vertical map is a rational homology equivalence in degrees ∗ � g − 2.

In this section, we will define all remaining spaces and maps and prove most of the theorem
(this is mostly a recollection of known results); in the next section, we will explain how to
derive from Borel’s work that the right vertical map is a rational homology equivalence in the
stated degrees.

2.1. The action on the middle homology

Let W 2n
g := �g(Sn × Sn) be the connected sum of g copies of Sn × Sn, D ⊂W 2n

g be a fixed
closed disc, and W 2n

g,1 := W 2n
g \ int(D). When the dimension 2n is understood, we write Wg,1 :=

W 2n
g,1. We assume throughout that n � 3.

Definition 2.2. The Torelli group Tor2ng,1 ⊂ Diff∂(W 2n
g,1) is the subgroup of all diffeomor-

phisms that act as the identity on Hn(W 2n
g,1; Z) ∼= Z2g.

The middle-dimensional homology Hn(Wg,1; Z) ∼= Hn(Wg; Z) ∼= Z2g carries a wealth of
algebraic structure. The homological intersection pairing is a (−1)n-symmetric bilinear form
I : Hn(Wg; Z)⊗Hn(Wg; Z)→ Z, which is non-degenerate by Poincaré duality. Let us define

Λn =

⎧⎪⎨⎪⎩
0 if n is even,
Z if n = 1, 3, or 7,
2Z otherwise.
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The quadratic refinement is a map q : Hn(Wg; Z)→ Z/Λn that satisfies q(x+ y) = q(x) +
q(y) + I(x, y)mod Λn and q(λ · x) = λ2 · q(x). It was introduced by Wall [29, p. 167f], and we
give a sketch of the definition. By a theorem of Haefliger [18], an element x ∈ Hn(W 2n

g ; Z) may
be represented by an embedded sphere as long as n � 3, and it is unique up to isotopy as long
as n � 4. The normal bundle of this embedding can be viewed as an element of πn(BO(n)),
and as W 2n

g is stably parallelizable this element lies in the kernel of the stabilization map
πn(BO(n))→ πn(BO), which is canonically identified with Z/Λn (generated by the tangent
bundle of Sn). Let q(x) ∈ Z/Λn be the corresponding element (note that the non-uniqueness
of an embedded representative of x when n = 3 does not matter, as q takes values in the trivial
group in that case).

Let Γ(Wg) be the group of Z-linear automorphisms of Hn(Wg; Z) which preserve the
intersection form and the quadratic refinement. There is a basis of Hn(Wg; Z), say
(x1, . . . , xg, y1, . . . , yg), such that I(xi, xj)= I(yi, yj) = 0, I(xi, yj)= δi,j , and q(xi)= q(yj) = 0.
When n is even the quadratic property implies that 2q(x) = I(x, x), so q contains no
information beyond I. When n is 1, 3, or 7 then q takes values in the trivial group so contains
no information, but for other odd n the form q contains information which cannot be recovered
from I. The automorphism groups of these data are thus

Γ(Wg) =

⎧⎪⎨⎪⎩
Og,g(Z) if n is even,
Sp2g(Z) if n = 1, 3, or 7,
Γg(1, 2) otherwise.

To explain the notation, let us write J±,g :=
( 0 Ig

±Ig 0

)
and then define, for each commutative

ring R,

Og,g(R) := {A ∈ GL2g(R) |ATJ+,gA = J+,g},
Sp2g(R) := {A ∈ GL2g(R) |ATJ−,gA = J−,g}.

Finally, Γg(1, 2) is the finite index subgroup of Sp2g(Z) of elements which preserves the
quadratic refinement q (this group is commonly considered in the theory of theta functions,
from which we borrow the notation Γg(1, 2)).

Each orientation-preserving diffeomorphism of Wg induces an automorphism of Hn(Wg; Z)
which preserves the intersection form and the quadratic refinement. Thus we obtain a group
homomorphism Diff+(Wg)→ Γ(Wg).

Proposition 2.3. The composition Diff(Wg,D)→ Diff+(Wg)→ Γ(Wg) is surjective.
Thus the classifying space BTor2ng,1 is weakly equivalent to the homotopy fibre of the induced
map BDiff(W 2n

g ,D)→ BΓ(W 2n
g ).

Proof. Kreck [20] has shown that π0(Diff+(Wg))→ Γ(Wg) is surjective, building on work of
Wall [30]. Therefore, in order to show the first part it is enough to show that π0(Diff(Wg,D))→
π0(Diff+(Wg)) is surjective. Let Emb+(D,Wg) be the space of orientation-preserving embed-
dings. By the ‘disc lemma’ [8, Lemma 10.3], Emb+(D,Wg) is connected; but the restriction
map Diff+(Wg)→ Emb+(D,Wg) is a principal bundle with group Diff(Wg,D), therefore the
result follows by the long exact homotopy sequence. The second part follows from the first by
standard bundle techniques.

2.2. Madsen–Tillmann–Weiss theory

Let E → B be a fibre bundle with structural group Diff(Wg,D) and fibre Wg, a structure which
we call a ‘smooth (Wg,D)-bundle’. Such a bundle comes with a bundle map d : B ×D2n → E,
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which is a fibrewise smooth embedding, and a vertical tangent bundle TvE with classifying
map τvE : E → BO(2n). The bundle d∗TvE is identified with the vertical tangent bundle of
B ×D2n → B, which is canonically trivialized (using the framing of D2n ⊂ R2n). We write E0

for the image of d, considered as a sub-bundle of E.
Let θn : BO(2n)〈n〉 → BO(2n) be the n-connective cover (by which we mean that

πi(BO(2n)〈n〉) = 0 for i � n and θn induces an isomorphism on homotopy groups of higher
degrees; alternatively the homotopy fibre of θn is n-co-connected). As TvE|E0 is canonically
trivialized, the restriction τvE|E0 has a canonical lift along the fibration θn. An easy application
of obstruction theory, using that Hi(E,E0; Z) = 0 for i � n− 1, proves that the given lift of
τvE|E0 through θn extends uniquely (up to homotopy) to E. In the language of [12], this
means that each smooth (Wg,D)-bundle has a canonical θn-structure. Let MTθn denote the
Madsen–Tillmann–Weiss spectrum for the tangential structure θn (this is the Thom spectrum
of −(θn)∗γ2n, where γ2n → BO(2n) is the universal vector bundle). There is a map (arising
from the Pontrjagin–Thom construction) αE : B → Ω∞

0 MTθn to the unit component of the
infinite loop space. In the universal case, we obtain a map

αg : BDiff(W 2n
g ,D) −→ Ω∞

0 MTθn. (2.2)

Theorem 2.4 (Galatius and Randal-Williams [13, 14]). The map (2.2) induces an
isomorphism in integral homology in degrees ∗ � (g − 3)/2.

The map αE has a close connection to the Miller–Morita–Mumford classes. If p : E → B
is an oriented smooth manifold bundle with fibre dimension 2n and c ∈ Hk+2n(BSO(2n)) a
characteristic class, then we obtain a class

κc(E) := p!(c(TvE)) ∈ Hk(B),

called the generalized Miller–Morita–Mumford class corresponding to c. There is a map of
graded vector spaces

H∗(BO(2n)〈n〉; Q)[−2n] ∼= H∗(MTθn; Q) σ−→ H∗(Ω∞
0 MTθn; Q),

where the first map is the Thom isomorphism and the second is the cohomology suspension, and
we denote the image of a class c ∈ Hk+2n(BO(2n)〈n〉; Q) by κc ∈ Hk(Ω∞

0 MTθn; Q). For any
smooth (Wg,D)-bundle p : E → B and class c of degree k + 2n > 2n we obtain the equation

α∗
E(κc) = κc(E) ∈ Hk(B; Q).

Let us now describe the rational cohomology of Ω∞
0 MTθn. Recall that the rational

cohomology ring of BSO(2n) has a presentation

H∗(BSO(2n); Q) = Q[p1, . . . , pn, e]/(e2 − pn),

where e ∈ H2n(BSO(2n); Q) is the Euler class and pi ∈ H4i(BSO(2n); Q) is the ith Pontrjagin
class. For our purposes, a different system of algebra generators is more convenient. Let Li ∈
H4i(BSO(2n); Q) be the ith component of the Hirzebruch L-class. Then each pi can be written
as a polynomial in the classes L1, . . . ,Li (this follows from the fact that the coefficient of pn
in Ln is non-zero, see [24, p. 230]), as pi = pi(L1, . . . ,Li). Hence we may equally well describe
the rational cohomology of BSO(2n) as

H∗(BSO(2n); Q) = Q[L1, . . . ,Ln, e]/(e2 − pn(L1, . . . ,Ln)).

The cohomology of the n-connected cover BSO(2n)〈n〉 of BSO(2n) may then be described as

H∗(BSO(2n)〈n〉; Q) = Q[L�(n+1)/4�, . . . ,Ln, e]/(e2 − pn(0, . . . , 0,L�(n+1)/4�, . . . ,Ln)).
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Let I := {�(n+ 1)/4�, . . . , n}, and for a multiindex i ∈ N0
I write |i| :=

∑
j∈I ij and w(i) :=

4
∑
j∈I ijj. Define elements λi and μi in H∗(Ω∞

0 MTθn; Q) by

λi := κ∏
j∈I Lij

j

∈ Hw(i)−2n(Ω∞
0 MTθn; Q)

and
μi := κ

e·∏j∈I Lij
j

∈ Hw(i)(Ω∞
0 MTθn; Q).

Then the natural map

Q[λi, μj | i, j ∈ NI0, w(i) > 2n,w(j) > 0] −→ H∗(Ω∞
0 MTθn; Q) (2.3)

is an isomorphism of algebras, by [14, § 2.5].

2.3. Some maps of classifying spaces

In this subsection, we will define the right vertical maps of diagram (2.1). These are only
defined up to homotopy, and they are the compositions

β2n
g : BOg,g(Z)

ψ−→ BOg,g(R)
μ−→ BO(g)×BO(g)

η−→ BO = Ω∞
0 KO

if n is even and

β2n
g : BΓ(W 4n+2

g )
ψ−→ BSp2g(R)

μ−→ BU(g)
η−→ SO/U = Ω∞+2

0 KO

if n is odd. The maps called ψ are induced by the inclusions of groups. Observe that
O(g)×O(g) ⊂ Og,g(R) and U(g) ⊂ Sp2g(R) are maximal compact subgroups and therefore the
inclusions induce homotopy equivalences on classifying spaces; the maps μ are by definition
homotopy inverses of these maps. For the last maps, let η : BO(g)×BO(g)→ BO be the
difference with respect to the Whitney sum. In the odd case, let W → BU(g) be the
universal bundle and consider the map Δ : BU(g)→ BU which classifies the virtual bundle
[W ]− [W̄ ]. There is a nullhomotopy of the composition BU(g)→ BU→ BSO, since [W ]− [W̄ ]
is canonically trivial as a real virtual vector bundle. So we obtain a map η : BU(g)→ SO/U
into the homotopy fibre of the realification map BU→ BSO.

Let us explain the map μ in a little more detail, starting with the orthogonal case. Let
V → BOg,g(R) be the universal vector bundle, which comes with a fibrewise symmetric non-
degenerate bilinear form J . The space BO(g)×BO(g) can be described as the total space of
the fibre bundle associated to EOg,g(R)→ BOg,g(R) with fibre the (contractible) homogeneous
space

Og,g(R)
O(g)×O(g)

∼= {σ ∈ GL2g(R) |σ2 = 1; σTJ+,g = J+,gσ; Jσ > 0}.

Thus we can describe the map μ concretely by the following procedure. Choose an involution σ
on the universal vector bundle V → BOg,g(R), such that J(v, σw) = J(σv,w) and J(v, σv) > 0
holds for all v, w. This is possible by the contractibility of the homogeneous space. Let V± be
the (±1)-eigenbundle of σ. The map μ is a classifying map for the pair (V+, V−) of vector
bundles on BOg,g(R) and η ◦ μ : BOg,g(R)→ BO represents the KO-theory class [V+]− [V−].

In the symplectic case, the contractible homogeneous space is
Sp2g(R)

U(g)
∼= {σ ∈ GL2g(R) |σ2 = −1; σTJ−,g = −J−,gσ; Jσ > 0}.

In symplectic linear algebra, this is known as the space of compatible complex structures to the
symplectic form J . On the universal bundle V → BSp2g(R), there is a skew-symmetric form
J . Pick a compatible complex structure σ on V (that is, σ2 = −1, J(σv,w) = −J(v, σw) and
J(v, σv) > 0). Then (V, σ) is a complex vector bundle (σ is multiplication by i). The classifying
map of this vector bundle gives the homotopy equivalence μ : BSp2g(R)→ BU(g).
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Remark 2.5. (i) The composition BU(g)
η→ SO/U→ BU of η with the classifying map

of the U-bundle SO→ SO/U is Δ.

(ii) It is useful to have a slightly different description of η ◦ μ in the symplectic case: pick
a compatible complex structure σ on the universal bundle V → BSp2g(R), and consider the
virtual complex bundle [Eig(σ ⊗ C, i)]− [Eig(σ ⊗ C,−i)], which is canonically trivial as a real
virtual bundle.

2.4. Connection to index theory

We will now describe the composition

BDiff(W 2n
g ,D) −→ BΓ(W 2n

g )
β2n

g−→ Ω∞+kn
0 KO

in index-theoretic terms. The Atiyah–Singer family index theorem will then prove the
homotopy-commutativity of the diagram (2.1) (and in particular, provide the last map). Let
us recall the signature operator, following [2, § 6].

Let M2n be a closed oriented Riemannian manifold. Let K be either R or C and Ap(M ; K) be
the space of K-valued p-forms. Let � : Ap(M ; R)→ A2n−p(M ; R) be the Hodge star operator,
which is an operator of order 0. An inner product on A∗(M ; R) is given by 〈ω, η〉 :=

∫
M
ω ∧ �η.

We extend the Hodge star to a C-linear operator on A∗(M ; C) and let κ : Ap(M ; C)→
Ap(M ; C) be the complex conjugation ω �→ ω̄. The inner product is extended in the standard
way toA∗(M ; C). ConsiderD = d+ d∗ : A∗(M ; K)→ A∗(M ; K), a formally self-adjoint elliptic
differential operator. On the Sobolev completion of A∗(M ; K), D induces a Fredholm operator,
also denoted D. The kernel of D is the space H∗(M ; K) =

⊕2n
p=0Hp(M ; K) of K-valued

harmonic forms on M , which by the Hodge theorem can be identified with H∗(M ; K). The
cohomological intersection pairing on H∗(M ; K) is given by J(ω, η) =

∫
M
ω ∧ η. Note the

relation (for R-valued forms)

〈ω, η〉 = J(ω, �η). (2.4)

Now define τ : Ap(M ; C)→ A2n−p(M ; C) by τ := ip(p−1)+n�. The operators D and τ are
C-linear, while κ is C-antilinear, and they satisfy the following relations:

τ2 = 1; κ2 = 1; κτ = (−1)nτκ; Dκ = κD; Dτ = −τD (2.5)

(the third equation says that τ is real if n is even and imaginary if n is odd, the fourth
equation says that D is real). Denote by A±(M ; C) the (±1)-eigenspace of τ (as τ is
tensorial, this is indeed the space of sections of a vector bundle). The operator D restricts to
D± : A∗(M ; C)± → A∗(M ; C)∓, and the operators D+ and D− are mutually adjoint Fredholm
operators. The kernel of D± is the (±1)-eigenspace of the action of τ on H∗(M ; C). We consider
the index ind(D) = [ker(D+)]− [ker(D−)] ∈ K0(∗) = Z. If n is odd, then κ gives a C-antilinear
isomorphism

ker(D+) −→ ker(D−),

and hence ind(D) = 0. If n is even, then ind(D) = sign(M) is the signature of M .
These structures admit a generalization to fibre bundles. Let π : E → B be a smooth oriented

M -bundle (on a paracompact base space). The fibres are denoted Eb = π−1(b). Pick a fibrewise
Riemannian metric on E: the operators Db on the manifolds Eb assemble to a family {Db}b
of elliptic operators, which gives a family of Fredholm operators (between suitable Hilbert
bundles over B). Because the dimension of the kernel of Db does not depend on b, the union
H∗(π; K) := ∪b∈BH∗(Eb; K)→ B is a finite-dimensional K-vector bundle (it is isomorphic to
the bundle over B whose fibre over b is the K-cohomology of Eb). The operators τb and κb
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on H∗(Eb; C) yield bundle maps τ and κ of H∗(π; C), satisfying the relations (2.5). The (±1)-
eigenbundles of τ are denoted H±(π; C), and D . The family index of the signature operator
D is the formal difference

indC(D) := [H+(π; C)]− [H−(π; C)] ∈ K0(B).

Depending on the parity of n, there is a refinement of this index to an index in real K-theory.
If n = 2m is even, then the operator τ is real and H±(π; C) = H±(π; R)⊗ C. Thus the index

ind(D) is the image of the element

indR(D) := [H+(π; R)]− [H−(π; R)] ∈ KO0(B)

under the complexification map KO0(B)→ K0(B). If M = W 4m
g , then we obtain a map

indR(D) : BDiff(W 4m
g ,D4m) −→ {0} ×BO ⊂ Z×BO, (2.6)

which lands in the zero component since the signature of W 4m
g is zero.

Proposition 2.6. The map indR(D) in (2.6) is homotopic to the composition

BDiff(W 4m
g )

ζ−→ BOg,g(Z)
β4m

g−→ BO.

Proof. Pick a fibrewise Riemannian metric on the universal W 4m
g -bundle π over

BDiff(W 4m
g ). The map ψ ◦ ζ : BDiff(W 4m

g ) −→ BOg,g(Z)→ BOg,g(R) is a classifying map
for the bundle H2m(π; R), equipped with the bilinear form J given by the cohomological
intersection pairing. Note that � is an involution, J(−, �−) is a scalar product by (2.4) and

J(�ω, η) = J(η, �ω) = 〈η, ω〉 = 〈ω, η〉 = J(ω, �η).

By the recipe given in the last section, the composition β4m
g ◦ ζ represents the KO-theory

class [Eig(�,+1)]− [Eig(�,−1)] = [H+,2m(π; R)]− [H−,2m(π; R)], the last equation holds since
in the middle dimension τ = �.

Since W 4m
g is (2m− 1)-connected, harmonic forms only exist in degrees 0, 2m, and 4m. The

contribution from 0- and 4m-forms to the index is zero, and this finishes the proof.

Now we turn to the case n = 2m+ 1. In that case, κ defines a C-antilinear isomorphism
ker(D+)→ ker(D−). Therefore, indC(D) maps to 0 under the realification map K0 → KO0.
Hence, we obtain a map

indR(D) : BDiff(W 4m
g ,D4m+2) −→ SO/U (2.7)

into (the connected component of) the homotopy fibre of BU→ BSO, and the composition of
indR(D) with SO/U→ BU gives ind(D)C.

Proposition 2.7. The map − indR(D) in (2.7) is homotopic to the composition

BDiff(W 4m+2
g )

ζ−→ BΓ(W 4m+2
g )

β4m
g−→ SO/U.

Proof. This is analogous to the previous proof. Pick a fibrewise Riemannian metric on the
universal W 4m+2

g -bundle π over BDiff(W 4m+2
g ). The map BDiff(W 4m+2

g )
ψ◦ζ−→ BSp2g(R) is a

classifying map for the bundle H2m+1(π; R), equipped with the bilinear form J given by the
cohomological intersection pairing. Note that �2 = −1 and τ = i� in the middle dimension,
J(−, �−) is a scalar product by (2.4) and J(ω, �η) = −J(�ω, η), and so � is a compatible
complex structure. So according to the recipe from Remark 2.5, we have to consider the virtual
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bundle [Eig(�,+i)]− [Eig(�,−i)] = [Eig(τ,−1)]− [Eig(τ,+1)], which gives − indR(D) (when
mapped to the homotopy fibre SO/U). Since W 4m+2

g is 2m-connected, harmonic forms only
exist in degrees 0, 2m+ 1, and 4m+ 2. The contribution from 0- and (4m+ 2)-forms to the
index is zero, and this finishes the proof.

Remark 2.8. The choice of the targets of the index maps looks a bit artificial. The
canonical expectation is that there is an index map BDiff+(M2n)→ Ω∞+2nKO for all n.
The problem is that the signature operator does not define a KO-orientation of any oriented
manifold. The whole problem is a 2-primary problem, since after inverting 2, the KO-spectrum
becomes 4-periodic. As the present paper is ultimately only about rational invariants, we have
decided to ignore this issue and stick to the artificial construction.

The signature operator is a universal operator on oriented manifolds in the sense of [10].
Thus an exercise with the Atiyah–Singer family index theorem (which has been solved in [10])
shows that the index of the signature operator factors through the Madsen–Tillmann–Weiss
spectrum. More precisely, write kn = 0 if n is even and kn = 2 if n is odd. Then there exists
an infinite loop map symb : Ω∞MTSO(2n)→ Ω∞+knKO, such that the composition

BDiff+(M) MTW−→ Ω∞MTSO(2n)
symb−→ Ω∞+knKO (2.8)

is homotopic to the index of the signature operator (the map in 2.8 is the topological
index). Abusing notation slightly, we denote the composition of symb with the natural map
Ω∞MTθn → Ω∞MTSO(2n) by symb too, and we obtain that

BDiff(Wg,D)
(2.2)−→ Ω∞

0 MTθn
symb−→ Ω∞+kn

0 KO

is homotopic to the index of the signature operator, that is, to ind(D). This finishes the
construction of the diagram (2.1).

The effect of the map ind(D) in rational cohomology is well-understood. Recall that there is
a slight incompatibility of Hirzebruch’s original classes with those showing up in index theory.
More specifically, Hirzebruch considered the class L which is associated with the formal power
series of x/tanh(x) through the formalism of multiplicative sequences. In index theory, one
uses the class L̂ associated with (x/2)/tanh(x/2). It is clear that Li = 22i · L̂i.

If n = 2m is even, then consider the complexification map Ω∞KO→ Ω∞KU. The image
of the Chern character class ch2i+1 ∈ H2i+2(BU) in H∗(BO; Q) is zero and (−1)ich2i maps
(by definition) to the Pontrjagin character phi. It is well known that the cohomology of
Ω∞

0 KO � BO is the polynomial algebra Q[ph1, . . .]. Moreover, ind(D)∗(phi) = (− 1
4 )iκLi+m

.
This computation can be found in [21, Corollary III.15.4] (see also [21, p. 232]). Thus in
positive degrees the map symb∗ : H∗(Ω∞

0 KO; Q)→ H∗(Ω∞
0 MTθn; Q) is injective and its image

is the subalgebra generated by the κLi
.

If n = 2m+ 1 is odd, then the composition BDiff+(Wg)→ SO/U→ BU is the complex
family index and the same computation yields that it pulls back ch2i to zero and ch2i−1 to
(1
2 )2i−1κLi+m

. On the other hand, let qhj ∈ H2j−2(SO/U) be the pullback of ch2j−1 under
SO/U→ BU. It is well known that Q[qh1, qh3, . . .] ∼= H∗(SO/U; Q). In other words, the map
symb∗ : H∗(Ω∞+2

0 KO; Q)→ H∗(Ω∞
0 MTθn; Q) is injective and (in positive degrees) its image

is the subalgebra generated by the κLi
.

3. Borel’s result on the cohomology of arithmetic groups

In this section, we discuss those aspects of A. Borel’s work on the cohomology of arithmetic
groups that are relevant for us. This serves a twofold purpose. The first purpose is to show that
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the right vertical map in Theorem 2.1 is a rational cohomology equivalence in a stable range.
This is accomplished by Theorem 3.1. The second goal is to discuss a less well-known result
stating that H∗(Γ(Wg);V ) = 0 in a range of degrees for certain rational Γ(Wg)-modules V .

Theorem 3.1 (Borel).
(i) The map (β4m

g )∗ : Hq(BO; Q)→ Hq(BOg,g(Z); Q) is an isomorphism for q � g − 2.

(ii) The map (β4m+2
g )∗ : Hq(SO/U; Q)→ Hq(BΓ(W 4m+2

g ); Q) is an isomorphism for q �
g − 1.

Theorem 3.1 is a reformulation of the main result of the classical paper [4]. Later, Borel
proved an improved range of degrees (as stated above) and an extension to non-trivial
coefficients which we will also use. The extended result is announced in [6] and proved in
[7]. We discuss how to derive Theorem 3.1 because we are not aware that it is published as
stated.

3.1. The Borel–Matsushima homomorphism

Let G be a real semisimple Lie group with finitely many components and finite centre, K ⊂ G
be a maximal compact subgroup, and Γ ⊂ G a discrete subgroup. Let GC be a complexification
of G and L ⊂ GC be a maximal compact subgroup that contains K. The cases relevant to us
will be as follows:

G K Γ GC L

Og,g(R) O(g)×O(g) Og,g(Z) Og,g(C) O(2g)
SOg,g(R) S(O(g)×O(g)) SOg,g(Z) SOg,g(C) SO(2g)
Sp2g(R) U(g) Sp2g(Z) Sp2g(C) USp(g)
Sp2g(R) U(g) Γg(1, 2) Sp2g(C) USp(g)

Here, we denote by USp(g) the group of H-linear isometries of Hg (this group is often denoted
Sp(g) in compact Lie group or topology texts). Let g, k, and l be the Lie algebras of G, K,
and L, respectively, and let G0 ⊂ G and K0 = K ∩G0 ⊂ K be the identity components. Let
X = G/K = G0/K0 be the symmetric space associated with G, which is contractible and has
a proper action of Γ, so the quotient Γ\X has the rational (or complex) cohomology of BΓ.
Let IG ⊂ A∗(X) be the subspace of complex-valued differential forms on X invariant under the
action of G0. It is a well-known result, see, for example, [26, Proposition 7.4.14], that invariant
forms on a symmetric space are closed, so all elements of IG are closed forms. The group G
(and hence Γ) acts on IG via its finite quotient G/G0, and there is a canonical homomorphism

j∗ : IΓ
G −→ H∗(Γ\X; R) ∼= H∗(BΓ; R). (3.1)

Borel [4] proved that j∗ is an isomorphism in small degrees when G is the group of real
points of a semisimple algebraic group defined over Z and Γ is an arithmetic subgroup. We will
state these results further below in more detail, but before, we would like to discuss another
description of j∗ which has a more homotopical flavour (and does not involve algebraic groups),
the goal is to prove Proposition 3.3.

Let C∗(g, k) ⊂ Λ∗g∗ be the subcomplex of the Chevalley–Eilenberg complex consisting of the
forms ω with ιxω = 0 and Lxω = 0 for all x ∈ k, where ιxis the insertion operator and Lx the
Lie algebra action, see [16, VI, § 8]. Restriction to the basepoint of X yields an isomorphism
IG ∼= C∗(g, k). By definition, the cohomology of C∗(g, k) is the relative Lie algebra cohomology
H∗

R(g, k; C) (the subscript indicates the ground field that the Lie algebra cohomology depends
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on), and because IG has trivial differential, we obtain an isomorphism

IG ∼= H∗(g, k; C). (3.2)

Remark 3.2. In the following, we assume that G acts trivially on IG. The group Sp2g(R) is
connected and so in this case there is no problem. In the caseG = Og,g(R), the index 2 subgroup
SOg,g(R) has two connected components, the unit component is denoted SOg,g(R)+. Since Og,g

is an algebraic group, the action on the (finite-dimensional) vector space IG is algebraic as well.
But the group SOg,g(R)+ acts trivially and so does its Zariski closure, which is SOg,g(R). The
whole group Og,g(R) does not act trivially, but we will circumvent this problem below by an
ad hoc argument.

By complexification, we obtain isomorphisms

H∗
R(g, k; C) ∼= H∗

C(g⊗ C, k⊗ C; C) ∼= H∗
C(l⊗ C, k⊗ C) ∼= H∗

R(l, k; C), (3.3)

where we have indicated the ground field in the notation for Lie algebra cohomology; the middle
isomorphism is given by an isomorphism g⊗ C ∼= l⊗ C extending the identity on k⊗ C. Let
H∗
sm(L; R) be the cohomology of the complex of smooth group cochains on L. The van Est

spectral sequence in this case is (cf. [17, § III.7.6])

Ep,q2 = Hq
dR(L/K; C)⊗Hp

sm(L; C) =⇒ Hp+q
R (l, k; C).

Since L is compact, Hp
sm(L) = 0 for p > 0 and we obtain an isomorphism

H∗
R(l, k; C) ∼= H∗

dR(L/K; C). (3.4)

Combining the isomorphisms (3.4), (3.3), and (3.2), we can rewrite the Borel–Matsushima
homomorphism as

j̃∗ : H∗(L/K; C) ∼= H∗
R(l; k; C) ∼= IG

j∗−→ H∗(BΓ; C). (3.5)

We can further reinterprete this. Let λ : L/K → BK be the classifying map of the K-principal
bundle L→ L/K and ψ : BΓ→ BG induced by the inclusion. Moreover, let μ : BG→ BK be
a homotopy inverse to the induced map BK → BG. Composing H∗(BK)→ H∗(L/K) with
(3.5), we obtain a diagram

H∗(BK; C)

∼=μ∗

��

λ∗
�� H∗(L/K; C)

j̃∗

��
H∗(BG; C)

ψ∗
�� H∗(BΓ; C).

(3.6)

Proposition 3.3. The diagram (3.6) is commutative.

This was shown by Borel, see [5, Proposition 7.2] (and [15, § 3.2] for more details). It is this
topological version that is most convenient for our purposes.

3.2. Borel’s main theorems

Now we discuss the ranges where Borel proved that j∗ (and hence j̃∗) is an isomorphism.
Let G be a connected semisimple algebraic group defined over Z (for example, G = SOg,g

or G = Sp2g). Let G = G(R), GC = G(C), and K and L be as in the previous subsection. Let
Γ ⊂ G be an arithmetic subgroup, that is, a subgroup such that Γ ∩G(Z) has finite index in
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both Γ and G(Z). Let r : G(C)→ GL(E) be a finite-dimensional holomorphic representation
(which is automatically algebraic). The Borel–Matsushima homomorphism can be extended to
a map

jq : Hq(g, k;E) −→ Hq(Γ;E).

Theorem 3.4 (Borel). There is a constant c(G, r) such that

(i) jq is injective for q � c(G, r) and surjective if in addition q � rankR(G);
(ii) if EG = 0, then Hq(Γ;E) = 0 for q � min(c(G; r), rankR(G)− 1).

In our cases of interest, these constants may be estimated as follows.

(i) If G = SOg,g, and if r is the kth tensor power of the defining representation V, then
c(G, r) � g − 2− k.

(ii) If G = Sp2g, and if r is the kth tensor power of the defining representation V, then
c(G, r) � g − 1− k.

Proof. What remains to be done is the computation of c(G, r), and there is a recipe for
that, see [6]. We discuss the symplectic case as the orthogonal case is very similar. The constant
c(G, r) can be read off from the root system of G. Pick a maximal Q-split torus. Pick a system
Φ+ of positive roots and let n be the Borel subalgebra. Let ρ be half the sum of positive roots.
For each character μ ∈ χ(S), let c(G;μ) be the maximum of all q such that for each weight
η of S in Λqn, we have ρ− μ− ν > 0, that is, it is a sum of positive roots. For a rational
representation r, let c(G, r) be the minimum of all c(G,μ), where μ is a weight of r with
respect to S.

To do this in a concrete example, consider Sp2n. It is of type Cg. The above data in this
concrete case are described in [27, p. 338]. A basis for the Cartan subalgebra is given by the
matrices ei,i − eg+i,g+i, i = 1, . . . , g, which identifies the Cartan subalgebra with Rn. Let αi
be the ith coordinate function. The roots are ±(αi + αj), i < j, αi − αj , i �= j and ±2αi, i =
1, . . . , g. The system of positive roots is given by αi + αj ;αi − αj (i < j) and 2αi, i = 1, . . . , g.
The simple roots are αi − αi+1, i = 1, . . . , g − 1 and 2αg. A linear form that distinguishes the
positive from the negative roots is given by L : αi �→ ai; a1 > · · · > ag > 0 and we may take
a1 = e10g, aj = e−10jg to ease the estimates that follow. The weight ρ is

ρ =
g∑
i=1

(g − i+ 1)αi.

The weights of n are precisely the positive roots; thus the weights of Λqn are the sums of
q different positive roots. The weights of the defining representation are ±αi, i = 1, . . . , g and
those of its kth tensor power are therefore the sums of k of those.

Claim 3.5. If r is the kth tensor power of the defining representation, then c(G, r) �
g − 1− k.

We have to prove that g − 1− k � c(G,μ) for all weights of r, in other words, if q � g −
1− k, μ is a weight of r and η a sum of q distinct positive roots, then ρ− μ− η > 0 or
L(ρ− μ− η) > 0. Owing to our choice of L, it is easy to see that

L(ρ− μ− η) � L(ρ− kα1 − η) � L

⎛⎝ρ− rα1 −
q∑
j=1

(α1 + αj)

⎞⎠ .
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According to the value of ρ, this is
g∑
i=1

(g − i+ 1)ai − ka1 −
q∑
j=1

(a1 + aj) = (g − k − q − 1)a1 +
g∑
i=2

(g − i+ 1)ai −
q∑
i=2

ai.

The second and third summand yield
g∑
i=2

(g − i+ 1)ai −
q∑
i=2

ai =
q∑
i=2

(g − i)ai +
g∑

i=q+1

(g − i+ 1)ai � (g − q)
q∑
i=2

ai +
g∑

i=q+1

ai > 0

if q < g. Thus, if g − k − 1 � q, then the whole sum is positive, as claimed.

3.3. Proof of Theorem 3.1: cohomology of Og,g(Z), Sp2g(Z), and Γg(1, 2)

We now show how Theorem 3.1 follows from the results surveyed in this section. By the
universal coefficient theorem, it is enough to prove this for cohomology with coefficients in C.
Consider first the group SOg,g(Z) instead of Og,g(Z). Then we take (with notation from the
beginning of this section) K = S(O(g)×O(g)), L = SO(2g). According to Proposition 3.3, the
diagram

H∗(BO; C)
η∗ ��

λ∗η∗ ���������������
H∗(BS(O(g)×O(g); C)

ψ∗μ∗
��

λ∗
��

H∗(BSOg,g(Z); C)

H∗
(

SO(2g)
S(O(g)×O(g))

; C
) j̃∗

����������������

is commutative, where j̃∗ is the Borel–Matsushima homomorphism or rather its version (3.5)
(which is, by Theorem 3.4, an isomorphism in the range of degrees under consideration) and
all other maps are induced by the maps of spaces introduced before. To prove that (β4m

g )∗ =
(η ◦ μ ◦ ψ)∗ is an isomorphism in the stable range, it is therefore enough to show that (η ◦ λ)∗

is an isomorphism in the stable range. But

SO(2g)
S(O(g)×O(g))

∼= O(2g)
O(g)×O(g)

and it is a classical fact that the map

O(2g)
O(g)×O(g)

λ−→ BO(g)×BO(g)
η−→ BO

is (g − 1)-connected. This proves that the composition

BSOg,g(Z) −→ BOg,g(Z) −→ BO

induces an isomorphism in cohomology with complex coefficients in degrees at most g − 2,
and so on cohomology with rational or real coefficients also. In particular, the map
H∗(BOg,g(Z); R)→ H∗(BSOg,g(Z); R) is surjective in this range of degrees. On the other hand,
p : BSOg,g(Z)→ BOg,g(Z) is up to homotopy a twofold covering and thus, by the classical
transfer argument, induces an injection in real cohomology in all degrees. This finishes the
proof of Theorem 3.1 in this case, and gives the following corollary.

Corollary 3.6. The action of the Galois group Z/2 of the cover acts trivially on
H∗(BSOg,g(Z); R) in degrees ∗ � g − 2.
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The proof in the case of Sp2g(Z) or Γg(1, 2) is similar; let us write Γ for either of these
groups. The relevant diagram in this case is

H∗(SO/U; C)
η∗ �� H∗(BU(g); C)

ψ∗◦μ∗
��

λ∗

��

H∗(BΓ; C)

H∗
(

USp(g)
U(g) ; C

)
.

j̃∗

�������������

Here, λ : USp(g)/U(g)→ BU(g) is the classifying map for the bundle USp(g)→ USp(g)/U(g),
and j̃∗ is the Borel–Matsushima homomorphism, which is an isomorphism in degrees ∗ � g − 1
by Theorem 3.4 (note that Γg(1, 2) � Sp2g(Z) = G(Z) has finite index, so is arithmetic, hence
satisfies the hypotheses of that theorem). The triangle commutes by Proposition 3.3.

It remains to prove that (η ◦ λ)∗ is an isomorphism in degrees ∗ � g − 1. The rational
homotopy groups of SO/U have rank 1 in degrees congruent to 2 modulo 4 and are trivial
otherwise, and the same is true for the rational homotopy groups of USp(g)/U(g) in degrees
< 2g. Look at the maps

π4k+2(USp(g)/U(g))⊗Q
λ∗−→ π4k+2(BU(g))⊗Q

η∗−→ π4k+2(SO/U)⊗Q −→ π4k+2(BU)⊗Q.

The first map is injective since π4k+2(USp(g))⊗Q = 0. The composition of the other two maps
is Δ∗. An easy calculation with Chern classes shows that

π4k+2(Δ) : π4k+2(BU(g)) −→ π4k+2(BU)

is multiplication by 2, so rationally injective (recall that we are in the stable range, as 4k +
2 � g − 1) and therefore η∗ ◦ λ∗ is rationally injective and hence, since source and target are
both one-dimensional, a rational isomorphism. Hence the induced map (η ◦ λ)∗ in rational
cohomology is an isomorphism in degrees ∗ � g − 1 (in fact, roughly up to degree 2g). The
same then holds for cohomology with complex coefficients too.

3.4. Arithmetic representations and cohomology

Definition 3.7. Let G be Sp2g or Og,g and Γ ⊂ G(R) be an arithmetic subgroup. A
finite-dimensional complex representation Γ→ GL(E) is called arithmetic if there exists a holo-
morphic representation G(C)→ GL(E) extending r. If there is moreover a G(C)-equivariant
injection E → (V ⊗k)m for some m ∈ N (where V denotes the defining representation of G(C)),
then we say that E is arithmetic of degree at most k.

Lemma 3.8. Let G be as in Definition 3.7, let Γ ⊂ G(R) be an arithmetic group and assume
that it is Zariski dense.

(i) Each arithmetic representation has finite degree.
(ii) Each arithmetic representation of Γ is a direct sum of irreducibles.
(iii) Any subrepresentation F ⊂ E of an arithmetic representation is arithmetic and the

degree of F is bounded by the degree of E.
(iv) If F ⊂ E is a subrepresentation of an arithmetic representation, then E/F is arithmetic

and the degree of E/F is bounded by the degree of E.

Proof. LetK ⊂ G(C) be a maximal compact subgroup. There is a bijection between unitary
representations of K and holomorphic representations of G(C) [27, Corollary 8.7.1]. By the
Peter–Weyl theorem for linear groups [27, Theorem 8.32], any unitary representation of K
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is contained in (V ⊗k)m for some integers k,m, and thus the same is true for a holomorphic
representation of G(C). This shows the first claim.

The assumption on Zariski density implies that Γ is Zariski dense in G(C). Let E be an
arithmetic representation and F ⊂ E be a Γ-invariant subspace. Let d be the dimension of F
and Grd(E) be the Grassmannian of d-dimensional subspaces, which is a projective variety.
The group G(C) acts algebraically on Grd(E) and Γ fixes the point F ∈ Grd(E). As Γ is
assumed to be Zariski dense, the group G(C) fixes F as well, which means that F is a G(C)-
subrepresentation. Clearly, the action of G(C) on F is still holomorphic. This proves the third
claim (the degree bound is obvious).

Because any holomorphic representation of G(C) decomposes into a sum of irreducibles,
the above argument shows that F ⊂ E has a G(C)-invariant, and so Γ-invariant, complement.
Therefore, the second claim holds. The fourth statement follows from the second one because
F has a Γ-invariant complement in E (which is isomorphic to E/F ).

Proposition 3.9. Assume that G = Sp2g, G = SOg,g, or G = Og,g, let G := G(R) and
Γ ⊂ G be arithmetic and Zariski dense. Let r : Γ→ GL(E) be an arithmetic representation of
degree at most k. Assume that q � g − 2− k (orthogonal case) or q � g − 1− k (symplectic
case). Then the inclusion EG → E induces isomorphisms

Hq(Γ; C)⊗ EΓ = Hq(Γ; C)⊗ EG ∼= Hq(Γ;EG) ∼= Hq(Γ;E).

Proof. The first equality holds by Zariski density, the second is clear. By Lemma 3.8, we
can decompose the representation E as a sum of irreducibles; thus, without loss of generality,
E is irreducible and by Lemma 3.8, we can assume that the degree of E is at most k as well.
If E carries the trivial G-action, then the claim is a tautology, so we can assume that EG = 0.
Theorem 3.4 finishes the proof when G = Sp2g or G = SOg,g.

If G = Og,g, put Γ0 := Γ ∩ SOg,g(R), which is an index 2 subgroup of Γ and is arithmetic
and Zariski dense as a subgroup of SOg,g(R). We have already shown above that H∗(Γ0;E) ∼=
H∗(Γ0; C)⊗ ESOg,g . Taking Z/2-invariants on both sides, we get isomorphisms

(H∗(Γ0; C)⊗ ESOg,g )Z/2 ∼= H∗(Γ0;E)Z/2 ∼= H∗(Γ;E),

but we have shown in Corollary 3.6 that the group Z/2 acts trivially on the (real, and hence
complex) cohomology of Γ0 in degrees at most g − 2, and so as (ESOg,g )Z/2 = EOg,g the claimed
result follows.

Lemma 3.10. The groups Γg(1, 2) and Sp2g(Z) are Zariski dense in Sp2g(C).

Proof. It is clear that Sp2g(Z) is Zariski dense in Sp2g(C). Let Γ ⊂ Sp2g(Z) be the
intersection of all conjugates of Γg(1, 2) under Sp2g(Z); this is a normal subgroup of finite index.
The Zariski closure Γ̄ ⊂ Sp2g(C) is a Zariski closed normal subgroup (and thus analytically
closed). Since Sp2g(C) is connected and simple, Γ̄ is either finite (and contained in the centre)
or all of Sp2g(C). Clearly, it is the second of these alternatives which is true.

4. Application of rational homotopy theory and surgery theory

The purpose of this and the next section is to prove the following result.
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Theorem 4.1. In the stable range, the Γ(W 2n
g )-representation Hq(BTor2ng,1; Q) is arith-

metic of degree at most q, for each q ∈ N0.

In this section, we follow the arguments by Berglund–Madsen [3]. We will be working
with semi-simplicial groups and semi-simplicial monoids, so let us first establish some basic
constructions for them.

Let M be a (possibly topological) monoid. Recall that there is a functorial construction
of a contractible free M -space EM such that BM := EM/M is a delooping of M (provided
that π0(M) is a group, which is always the case for the monoids we consider here). Let M•
be a semi-simplicial monoid, and EM• be the semi-simplicial space formed by applying the
construction M �→ EM levelwise. Let BM• be the semi-simplicial space obtained by forming
the construction M �→ BM levelwise, that is, BM• = EM•/M•, where the quotient is taken
levelwise. Write BM := |BM•|. If f• : M• → N• is a map of semi-simplicial monoids, then let
N//M denote the homotopy fibre of Bf : BM → BN . This has an action of the Moore loop
space ΛBN , and so an action of π1(BN) in the homotopy category, which gives an action of
π0(|N•|) onN//M in the homotopy category. If f• is an inclusion, then we let (N/M)• := N•/M•
be the levelwise quotient, and there is a natural map |(N/M)•| → N//M which is a weak
equivalence.

We introduce the following simplified notation. Let M be a compact smooth manifold with
boundary.

Definition 4.2.

(i) Let D̃iff∂(M)• be the semi-simplicial group of block diffeomorphisms of M . Its p-simplices
are the diffeomorphisms φ of M ×Δp which fix ∂M ×Δp and which preserve the face structure
of Δp, that is, for each σ ⊂ Δp, φ restricts to a diffeomorphism of M × σ; the ith face
map is given by restriction of a diffeomorphism to the ith face of Δp. There is an inclusion
Singsm• Diff∂(M) of the semi-simplicial set of smooth singular simplices of the topological group
Diff∂(M), and |Singsm• Diff∂(M)| � Diff∂(M).

(ii) Let Ãut∂(M)• be the semi-simplicial monoid of block homotopy equivalences: its p-
simplices are the self homotopy equivalences of M ×Δp which fix ∂M ×Δp pointwise and
which preserve the face structure of Δp as above. There is an inclusion D̃iff∂(M) ⊂ Ãut∂(M)
of semi-simplicial monoids.

(iii) Let D := Singsm• Diff∂(W 2n
g,1).

(iv) Let D̃ := D̃iff(W 2n
g,1)•.

(v) Let G̃ := Ãut∂(W 2n
g,1)•.

(vi) Let G̃′ ⊂ G̃ be the union of those path components which contain vertices of D.
(vii) Let Γ := Γ(W 2n

g,1), which we consider as a semi-simplicial group which only has simplices
in degree zero.

We have natural homomorphisms

D �� D̃ �� G̃′ ��

��

G̃

Γ

between these semi-simplicial groups and monoids, and BTor2ng,1 � Γ//D in this notation. In
this section, we will study the block analogue of this space, Γ//D̃, and prove the following
proposition analogous to Theorem 4.1 for it. In the following section, we will show how to
deduce Theorem 4.1 from this proposition.
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Proposition 4.3. For g � 2 and q � (n− 1), the Γ-representation Hq(Γ//D̃; Q) is
arithmetic of degree at most q.

There is a fibration sequence

G̃′//D̃ i−→ Γ//D̃
p−→ Γ//G̃′ (4.1)

and we claim the following lemma.

Lemma 4.4. For g � 2 and q � (n− 1), the map i∗ : Hq(Γ//D̃; Q)→ Hq(G̃′//D̃; Q) is an
injective map of π0(|D•|)-modules.

Proof. The map i is π0(|G̃′
•|)-equivariant in the homotopy category, so in particular

π0(|D•|)-equivariant in the homotopy category, and we deduce that i∗ is a map of π0(|D•|)-
modules. Next, we claim that Γ//G̃′ is path connected and has finite homotopy groups in degrees
∗ � (n− 1), which follows from computations by Berglund and Madsen. More precisely, the
fibre sequence Γ//G̃′ → BG̃′ → BΓ induces exact sequences

π2(BΓ) = 0 −→ π1(Γ//G̃′) −→ π0(G̃′) −→ Γ −→ π0(Γ//G̃′) −→ π0(BG̃′) = ∗.
By Proposition 2.3 and the definition of G̃′ the map π0(G̃′)→ Γ is surjective, and by [3,
Theorem 2.12] it has finite kernel, which proves the claim in degrees ∗ � 1. That the homotopy
groups π∗(Γ//G̃′) are finite for 2 � ∗ � (n− 1) follows from [3, Theorem 2.10] (as long as g � 2).
By the Leray–Serre spectral sequence for (4.1), we find that the map

H∗(Γ//D̃; Q) −→ H∗(G̃′//D̃; Q)π1(Γ//G̃
′)

is an isomorphism for ∗ � (n− 1), and in particular the map i∗ is injective in this range of
degrees.

Note that the natural map G̃′//D̃ → G̃//D̃ is simply the inclusion of the basepoint component,
so we also denote it by (G̃′//D̃)0. To study this space, we will use surgery theory in the form
of Quinn’s surgery fibration sequence, which we now briefly review.

Assume that M is simply connected and of dimension d � 5. The surgery fibration (see
[25, 28]) has the form

S̃(M,∂M)
η−→ N(M,∂M) σ−→ L(M). (4.2)

The L-theory space L(M) has homotopy groups given by Wall’s surgery obstruction groups,
which as we have supposed M is simply connected are

πk(L(M)) = Lk+d(Zπ1(M)) =

⎧⎪⎨⎪⎩
Z, k + d ≡ 0 (mod 4),
Z/2, k + d ≡ 2 (mod 4),
0, k + d ≡ 1 (mod 2).

The block structure space S̃(M,∂M) is a classifying space for smooth block bundles equipped
with a fibre homotopy equivalence to the trivialM -bundle. Precisely, let us write Rn+ = [0,∞)×
Rn−1 and define S̃ (M,∂M ;n)• to be the semi-simplicial set with p-simplices given by pairs

(i) A (d+ p)-dimensional smooth manifold with corners, E ⊂ Δp × Rn+, such that the
projection π : E → Δp is transverse to all faces. The boundary of E is decomposed into
π−1(∂Δp) and the closure of its complement, ∂vE which we require to be E ∩ (Δp × {0} ×
Rn−1). If σ ⊂ Δp is a face, then we write ∂σE := π−1(σ).

(ii) A map φ : E → Δp ×M such that φ|∂vE : ∂vE → Δp × ∂M is a diffeomorphism, and
which for every face σ ⊂ Δp restricts to a homotopy equivalence from ∂σE into σ ×M .
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We remark explicitly that the projection π : E → Δp and the first component of φ are
not required to coincide. The face maps are given by restricting the data to codimension 1
faces of Δp. There are semi-simplicial inclusions S̃ (M,∂M ;n)• → S̃ (M,∂M ;n+ 1)• given by
considering a submanifold E of Δp × Rn as lying in Δp × Rn+1, and we write S̃ (M,∂M)• for
the colimit. Then S̃(M,∂M) is defined to be the geometric realization |S̃ (M,∂M)•|. The block
structure space S̃(M,∂M) has a left action by the (discrete) group Diff(M)δ of diffeomorphisms
of M , where a diffeomorphism ρ acts on p-simplices by (E, φ) �→ (E, (IdΔp × ρ) ◦ φ).

Lemma 4.5. There is a map

c : S̃(M,∂M)0 −→ (Ãut(M)/D̃iff(M))0

between basepoint components which is a homotopy equivalence, and is Diff(M)δ-equivariant.

Proof. We define the map c simplicially as follows: for (E, φ) ∈ S̃ (M,∂M)p in the
component of the basepoint, it follows from the h-cobordism theorem that there exists a
diffeomorphism ψ : E ∼= Δp ×M (which for each face σ ⊂ Δp restricts to a diffeomorphism of
∂σE to σ ×M), and then φ ◦ ψ−1 : Δp ×M → Δp ×M is an element of Ãut(M)p. However,
it depends on our choice of ψ: making another choice changes the element we get by right
multiplication with a diffeomorphism Δp ×M ∼= Δp ×M (which for each face σ restricts to a
diffeomorphism of σ ×M), so an element of D̃iff(M)p. Thus we get a well-defined p-simplex
of Ãut(M)/D̃iff(M), and it is easy to see that this construction defines a simplicial map. The
map described lands in the basepoint component, and it is a further easy consequence of the h-
cobordism theorem that it is a homotopy equivalence to this path component. It is furthermore
clear from the definition that c is Diff(M)δ-equivariant.

The space of normal invariants N(M,∂M) is a classifying space for degree 1 normal maps
from a smooth manifold to M . Precisely, let N (M,∂M ;n)• be the semi-simplicial set with
p-simplices given by tuples consisting of a manifold E as in (i) above as well as

(i) a map φ : E → Δp ×M such that φ|∂vE : ∂vE → Δp × ∂M is a diffeomorphism, and
which for every face σ ⊂ Δp restricts to a map from ∂σE into σ ×M which has degree
1 (in homology relative to the boundary);

(ii) an (n− d)-dimensional vector bundle ξ → Δp ×M and a vector bundle map φ̂ : νE → ξ
covering φ, where νE → E is the normal bundle of E ⊂ Δp × Rn.

The face maps are given by restricting the data to codimension 1 faces of Δp. There are semi-
simplicial inclusions N (M,∂M ;n)• → N (M,∂M ;n+ 1)• given by (E, φ, ξ, φ̂) �→ (E, φ, ξ ⊕
ε1, φ̂⊕ ε1). We write N (M,∂M)• for the colimit, and N(M,∂M) is defined to be the geometric
realization |N (M,∂M)•|.

The space of normal invariants has a left action by the (discrete) group Diff(M)δ of
diffeomorphisms of M , where a diffeomorphism ρ acts on p-simplices by

(E, φ, ξ, φ̂) �−→ (E, (IdΔp × ρ) ◦ φ, (ρ−1)∗ξ, ρ̂ ◦ φ̂),

where ρ̂ : ξ → (ρ−1)∗ξ is the canonical bundle map covering ρ. In the models just described,
it does not seem to be possible to give a simplicial model of the map η which is Diff(M)δ-
equivariant (the construction of η in [25, 28] make choices which are not natural in this sense).
However, it is possible to construct an auxiliary space S̃(M,∂M)′ and maps

S̃(M,∂M) ∼←− S̃(M,∂M)′
η′−→ N(M,∂M),

which are Diff(M)δ-equivariant, and this is an adequate substitute. Briefly, a simplex in
S̃(M,∂M)′ should in addition have a choice of datum (ii), that is a vector bundle ξ → Δp ×M
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and bundle map φ̂ : νE → ξ covering φ. Up to homotopy this is no further data, because ξ must
be isomorphic to g∗(νE), where g is a homotopy inverse to φ, and φ̂ must be equivalent to the
bundle map induced from the map νE → φ∗g∗νE induced by a homotopy g ◦ φ� id. The map
η′ is then simply the inclusion of a subspace.

The space N(M,∂M) is homotopy equivalent to map∗(M/∂M,G/O), see, for example, [28].
Here G = colimk→∞ G(k) and G(k) denotes the group-like topological monoid of self homotopy
equivalences of Sk−1; there is a homomorphism O(k)→ G(k) by the action of the orthogonal
group on the unit sphere, and in the colimit this gives a homomorphism O→ G. The space
G/O is by definition the homotopy fibre of the induced map BO→ BG on classifying spaces.

Remark 4.6. We believe that there is a zig-zag of Diff(M)δ-equivariant homotopy
equivalences between N(M,∂M) and the mapping space map∗(M/∂M,G/O), on which ρ ∈
Diff(M)δ acts by − ◦ ρ−1, but giving a detailed proof of this would lead us too far afield.
Instead, in the following, we use a trick which is implicit in [3], though we try to explain it in
more detail.

We have a homotopy equivalence κ : N(M,∂M)→ map∗(M/∂M,G/O), and at the level
of homotopy groups there is a good description of what this map does: it takes a degree
1 normal map to Dk ×M relative boundary, and associates to it a vector bundle with a
fibre homotopy equivalence from its sphere bundle to the Spivak normal fibration of Dk ×M
(suitably trivialized over the boundary ofDk ×M). For a ρ ∈ Diff(M)δ, we obtain the following
diagram:

πk(N(M,∂M), IdM )

ρ

��

∼ �� πk(map∗(M/∂M,G/O), ∗)

−◦ρ−1

��

πk(N(M,∂M), ρ)

∼
��

πk(N(M,∂M), IdM ) ∼ �� πk(map∗(M/∂M,G/O), ∗).

In this diagram, the lower left-hand map is a change of basepoint isomorphism: the space
N(M,∂M) is simple and so this is well-defined. The simplicity of N(M,∂M) is because it
is homotopy equivalent to map∗(M/∂M,G/O) and because G/O is an infinite loop space.
Furthermore, this diagram can be shown to commute (the fundamental calculation is a formula
for the normal invariant of the composition of two homotopy equivalences, cf. [3, Lemma 3.3]).

Hence Diff(M)δ acts on πk(N(M,∂M), IdM ), via the geometric action on the space level
followed by translation of loops back to the basepoint IdM , and this Diff(M)δ-module is
identified with πk(map∗(M/∂M,G/O), ∗) with the left action whereby ρ acts by precomposition
with ρ−1.

Let us now return to the manifolds W 2n
g,1, and denote them by W for simplicity.

Lemma 4.7. The action of the group Dδ := Diff(W )δ on Hq(N(W,∂W ))0; Q) is through
the homomorphism Dδ → Γ, and as a Γ-module it is arithmetic of degree at most q.

Proof. Compare [3, § 3.3]. G/O is an infinite loop space, so map∗(W/∂W ; G/O)0 is too.
The rational cohomology of map∗(W/∂W ; G/O)0 is thus the symmetric algebra on the dual
of the rational homotopy, so it follows that the same is true of N(W,∂W ))0. Thus to
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know the representations Hq(N(W,∂W ))0; Q), we merely need to know the representations
πq(N(W,∂W ))0, IdW )⊗Q, which by the above discussion is isomorphic as a representation to
πq(map∗(W/∂W ; G/O)0, ∗)⊗Q, so it suffices to calculate these.

The space G/O is connected and has rational homotopy Q in positive degrees divisible by
4 and 0 otherwise. Therefore, map∗(W/∂W ; G/O)0 has rational homotopy in positive degrees
given by, with the abbreviations V := Hn(W ; Q) and Sk := πk(G/O)⊗Q,

πk(map∗(W/∂W ; G/O)0) ∼= (V ⊗ Sk+n)⊕ Sk+2n.

This isomorphism is Dδ-equivariant, which shows that the Dδ-action factors through Γ, and
the arithmeticity statement and the estimation of the degree follows from this.

Lemma 4.8. Let X be a connected space, Y a connected infinite loop space of finite type
and f : X → Y be a map such that f is injective on rational homotopy in degrees above 1 and
has finite kernel on π1. Then f∗ : H∗(Y,Q)→ H∗(X; Q) is surjective.

We will now give the proof of Proposition 4.3, and defer the proof of this (standard) lemma
for a moment.

Proof of Proposition 4.3. We restrict the surgery fibration (4.2) to the unit components
and obtain

S̃(W,∂W )0
η−→ N(W,∂W )0

σ−→ L(M)0

because L(M)0 is simply connected. By [3, Lemma 3.4], the map σ is surjective on rational
homotopy groups. Therefore, η is injective on rational homotopy groups in degrees � 2, and
has finite kernel on π1. The induced map on cohomology

η∗ : Hq(N(W,∂W )0; Q) −→ Hq(S̃(W,∂W )0; Q)

is Dδ-equivariant by our discussion, and we deduce from Lemma 4.8 that it is surjective. Thus
the Dδ-action on

Hq(S̃(W,∂W )0; Q)
Lemma 4.5∼= Hq((G̃//D̃)0; Q) ∼−→ Hq(G̃′//D̃; Q)

factors through Γ and as such is an arithmetic representation of degree at most q, by Lemma 4.7.
By Lemma 4.4, it follows that for q � (n− 1) the Γ-representation Hq(Γ//D̃; Q) is arithmetic
of degree at most q, which proves the proposition.

Proof of Lemma 4.8. As Y is an infinite loop space, it has a rationalization YQ which
is unambiguous. By composing f with the rationalization map Y → YQ, the conclusion of
the lemma is unchanged. Since Y has finite type, the map Y → YQ has finite kernel on all
homotopy groups, and so the hypotheses are also unchanged (except that Y is now of finite
rational type). We may therefore assume that Y is a rational infinite loop space, in particular,
a generalized Eilenberg–MacLane space K(W ), where W := π∗(Y )⊗Q. Let V ⊂W be the
subspace generated by the image of π∗(f) and pick a splitting W → V , which induces a map
q : K(W )→ K(V ). The composition,

X
f−→ K(W )

q−→ K(V )

satisfies the assumptions of the lemma, has the additional property that the image π∗f spans
the rational homotopy of the target, and if q ◦ f is surjective in cohomology, then so is f . Thus
we may in addition assume that the image of π∗(f) spans the rational homotopy of Y (and
π1(f) still has finite kernel).
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Consider the map of fibrations

X̃ ��

��

Ỹ

��
X

f ��

��

Y

��
Bπ1(X) �� Bπ1(Y ).

The map of universal covers is a rational homotopy equivalence, and so π1(X) acts on the higher
homotopy groups πi(X)⊗Q ∼= πi(Y )⊗Q through the homomorphism π1(X)→ π1(Y ). As Y
is an infinite loop space this action is trivial, so the space X is ‘rationally simple’ in the sense
that π1(X) acts trivially on the higher rational homotopy groups, as well as on H∗(X̃; Q). The
map of Leray–Serre spectral sequences for these two fibrations on E2-terms is thus

Hp(π1(X); Q)⊗Hq(X̃; Q) −→ Hp(π1(Y ); Q)⊗Hq(Ỹ ; Q),

and the map π1(X)→ π1(Y ) is a homomorphism with finite kernel whose target is a rational
vector space and whose image generates the target: thus it induces an isomorphism on rational
cohomology. Hence we have an isomorphism of E2-terms, and so get an isomorphism of E∞-
terms, proving the lemma.

Finally, we will complete the proof of Theorem 4.1. Consider the fibration sequence

D̃//D −→ Γ//D
p−→ Γ//D̃,

where the map p is Γ-equivariant. We will show that the fibre D̃//D has trivial rational
homology in the stable range (that is, degrees ∗ � C2n

g ). Since D̃//D is obviously connected,
the Leray–Serre spectral sequence shows that H∗(Γ//D̃; Q)→ H∗(Γ//D; Q) is an isomorphism
in this stable range and so Theorem 4.1 follows from Proposition 4.3.

Theorem 4.9.

(i) The natural map D̃iff(D2n)/Diff(D2n)→ D̃iff(W 2n
g,1)/Diff(W 2n

g,1) = D̃//D is (2n− 4)-
connected.

(ii) If 2n � max{2k + 7, 3k + 4}, then πk(D̃iff(D2n)/Diff(D2n)) is finite.

Proof. The first assertion is a consequence of Morlet’s lemma of disjunction, and is given
in [9, Corollary 3.2]. The second assertion follows from [11] or [31, § 6.1].

5. The final spectral sequence argument

Recall that in Theorem 2.1 we have constructed a homotopy-commutative square

BDiff(W 2n
g ,D)

α2n
g

��

ζ �� BΓ(W 2n
g )

β2n
g

��
Ω∞

0 MTθn
symb �� Ω∞+kn

0 KO

(5.1)
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where the vertical arrows are rational cohomology equivalences in the stable range. Next, we
take the rationalization of the lower row and obtain

BDiff(W 2n
g ,D)

α2n
g

��

ζ �� BΓ(W 2n
g )

β2n
g

��
Ω∞

0 MTθnQ
symbQ �� Ω∞+kn

0 KOQ

(5.2)

and both spaces in the lower row are connected and simply connected. We wish to compare
the Leray–Serre spectral sequences of the rows, so we replace the diagram with an equivalent
map which is a map of fibration sequences, by Lemma 5.1.

Lemma 5.1. Let

E
p ��

f

��

B

g

��
F

q �� A

be a homotopy-commutative diagram. Then we can replace it (in the homotopy category of
diagrams) by a strictly commutative diagram with p and q fibrations.

Proof. Let us write q̂ : F f := F ×A AI → A for the standard path-space replacement of
F → A by a Hurewicz fibration. Choose a homotopy H : q ◦ f � g ◦ p, which exhibits the
original square as commuting up to homotopy. Lifting the homotopy H starting at E

f→ F ↪→
F f gives a map f̂ |E : E → F f such that q̂ ◦ f̂ |E = g ◦ p. We have produced an equivalent
square which strictly commutes, but p is not necessarily a fibration. However, if we write
p̂ : Ef := E ×B BI → B for the standard path-space replacement of E → B, then f̂ |E : E →
F f extends to a map Ef → F f over g by sending a pair (e ∈ E, γ : p(e)� x) to the pair
(f̂ |E(e), g ◦ γ : g ◦ p(e)� g(x)).

This lemma yields a commutative diagram:

BTor2ng,1
��

��

BDiff(W 2n
g ,D)

α2n
g

��

ζ �� BΓ(W 2n
g )

β2n
g

��
Ω∞F �� Ω∞

0 MTθnQ
symbQ �� Ω∞+kn

0 KOQ

(5.3)

where the rows are fibration sequences, Ω∞F is by definition the homotopy fibre of symbQ

(which is an infinite loop map), and the left vertical map depends on the choice of the homotopy
making the square (5.2) commute.

Consider first the top row of (5.3). We have seen that Hq(BTorng,1; C) is an arithmetic
Γ(W 2n

g,1)-representation of degree at most q, in the stable range. By Proposition 3.9 and
Lemma 3.10, we have an isomorphism

Hp(Γ(W 2n
g,1);H

q(BTor2ng,1; C)) ∼= Hp(Γ(W 2n
g,1); C)⊗Hq(BTor2ng,1; C)Γ(W 2n

g,1),

as long as q is in the concordance stable range and p � g − 2− q.
As the lower row of (5.1) is a fibration of infinite loop spaces with simply connected base,

its spectral sequence collapses and the coefficient systems are constant. Thus the comparison
map is a map of spectral sequences of algebras that have a product structure (the first one
only in the concordance stable range). The E2

∗,0-map is an isomorphism by Theorem 3.4 and
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the target map is an isomorphism by Galatius and Randal-Williams’ theorem. By the Zeeman
comparison theorem [32, Theorem 2], the map on the E2

0,∗ line is also an isomorphism, and so
the natural map

Hq(Ω∞F ; C) −→ Hq(BTor2ng,1; C)Γ(W 2n
g,1)

is an isomorphism too, in the various stable ranges.
The computation of the map symb in rational cohomology (Theorem 2.1) shows that

H∗(Ω∞F ; Q) is equal to the source of the natural map in Theorem A, and this finishes the
proof of Theorem A. The quotient of the algebra (2.3) by the ideal generated by the elements
κLi

is then Q[λi, μj | i, j ∈ NI0, w(i) > 2n,w(j) > 0, |i| � 2], and Theorem A may be stated in
the following equivalent form.

Theorem 5.2. The natural map

Q[λi, μj | i, j ∈ NI0, w(i) > 2n,w(j) > 0, |i| � 2] −→ H∗(BTor2ng,1; Q)Γ(W 2n
g,1)

is an isomorphism in degrees ∗ � C2n
g .

We will now show how to deduce Theorem B from this form of Theorem A.

Proof of Theorem B. We are only interested in the stable range C2n
g � n− 3. The classes μj

have degree w(j) � n+ 1 so do not contribute to the stable range. The classes λi have degree
w(i)− 2n, so in Theorem 5.2 only those with |i| = 2 can possibly occur in the stable range.
These are exactly the classes κLaLb

with (n+ 1)/4 � a � b, as claimed in Theorem B.

6. Relation to classical invariant theory

The work of Berglund and Madsen [3] may be used to compute the rational cohomology of
BTor2ng,1 in the stable range as a Γ(W 2n

g,1)-module, and so the right-hand side of the map of
Theorem A may also be approached by the invariant theory of the groups Sp2g and Og,g. In
this short section, we briefly compare these approaches.

Proposition 6.1. Let P∗ be the graded vector space obtained from π∗(G/O)⊗Q by
shifting degrees down by n and then discarding all terms which do not have strictly positive
grading. There is an isomorphism of graded Γ(W 2n

g,1)-modules

H∗(BTor2ng,1; Q) ∼= S[V ⊗ P∗]

in degrees ∗ < n− 1, where V is the fundamental representation of Sp2g(Z) or Og,g(Z), and S
denotes the free graded-commutative algebra.

Proof. By [3, Theorem 3.5], the rational cohomology of G̃′//D̃ as a π0(G̃′)-module is
identified with the free algebra in the statement of the theorem, so in particular the π0(G̃′)-
action on H∗(G̃′//D̃; Q) factors through Γ. We now consider the fibration sequence (4.1), where
we have shown that we obtain an isomorphism

H∗(Γ//D̃; Q) −→ H∗(G̃′//D̃; Q)π1(Γ//G̃
′)

in degrees ∗ < n− 1. But the action of π1(Γ//G̃′) on H∗(G̃′//D̃; Q) is through π1(BG̃′) =
π0(G̃′), which we have seen acts through Γ, and hence the π1(Γ//G̃′)-action is trivial. Thus
H∗(Γ//D̃; Q) −→ H∗(G̃′//D̃; Q) is an isomorphism in degrees ∗ < n− 1.
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Let us consider Theorem B in the case n = 4k, with k � 0 and in degrees ∗ < n. Let us
rename the class κLk+aLk+b

, with a � b and both at least 1, by ρa,b, which has degree 4(a+ b).
Then Theorem 5.2 implies that the map

Q[ρa,b | a, b ∈ {1, . . . , 3k}] −→ Sym•[V ⊗ (Q[4]⊕Q[8]⊕Q[12]⊕ · · · )]Og,g

is an isomorphism in cohomological degrees ∗ � (g − 5)/2 (as we have supposed that k, and so
n, is very large). We obtain as a corollary the following weak form of the fundamental theorem
of invariant theory.

Corollary 6.2. In degrees • � (g − 3)/8, the ring of invariants Sym•[V ]Og,g is polynomial
generated by ω ∈ Sym2[V ], the element representing the (dual of the) pairing.

Proof. By the isomorphism obtained above, we see that Sym•[V ⊗ (Q[4]⊕Q[8]⊕Q[12]⊕
· · · )]Og,g is a polynomial ring concentrated in degrees divisible by 4, with generators in
cohomological degree 4i given by the ρa,b with a+ b = i. Thus the generators in degree 4i
are given by partitions of i into two parts of sizes {1, . . . , 3k}, so as we have supposed k � 0,
by partitions of i into two proper parts.

On the other hand, the canonical invariant ω ∈ Sym2[V ] gives many invariants in Sym2[V ⊗
(Q[4]⊕Q[8]⊕Q[12]⊕ · · · )]Og,g ; for each pair of integers x � y in {4, 8, 12, . . .} we have an
invariant ωx,y ∈ (V ⊗Q[x])⊗ (V ⊗Q[y]) of cohomological degree x+ y. Thus in cohomological
degree 4i we have as many ωx,y as the number of partitions of i into two proper parts.
It is clear that Sym1[V ⊗ (Q[4]⊕Q[8]⊕Q[12]⊕ · · · )] has no invariants, so the ωx,y are all
indecomposable, and they are also clearly linearly independent. Hence by counting dimensions

Q[ωx,y |x � y ∈ {4, 8, 12, . . .}] −→ Sym•[V ⊗ (Q[4]⊕Q[8]⊕Q[12]⊕ · · · )]Og,g

is an isomorphism in cohomological degrees ∗ � (g − 3)/2. By observation the intersection
with the subring Sym•[V ⊗Q[4]]Og,g is Q[ω4,4]; changing from cohomological degrees ∗ to
symmetric-power degrees • gives a factor of 4, so we obtain the statement in the corollary.

One may improve the range of degrees to • � (g − 3)/4 by considering n = 4k + 2 instead,
but the counting arguments are a little more complicated. One may also consider n = 4k + 1
to show that Λ•[V ]Sp2g is polynomial on the canonical class in Λ2[V ] dual to the pairing, for
• � (g − 3)/2.
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