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What this course is about
The minimal definition of Functional Analysis is that it deals with (usually

infinite-dimensional) vector spaces over R or C, which are in addition equipped
with topology, and with continuous linear maps between them. A little more lively
(quoted from the introduction of [3]):

“Functional Analysis might be described as a part of mathematics where analysis,
topology, measure theory, linear algebra and algebra come together to create a rich
and fascinating theory. The applications of this theory are then equally spread
throughout mathmatics (and beyond)”.

Methods of functional analysis are used in partial differential equations, differ-
ential geometry, algebraic topology, number theory, group theory, ....

The books which were used in preparation to this course

(1) Hirzebruch–Scharlau [6]. This classic introduction which covers a lot of
material in a few pages is highly recommended.
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(2) Rudin, Real and Complex Analysis [8]. This contains only a little bit of
functional analysis proper, but a is very good introduction to some neces-
sary background material from measure theory, Fourier analysis and basic
complex analysis.

(3) Rudin, Functional analysis [9]. This well-known classic is in my opinion not
a good introduction, because it is not an introduction at all.

(4) Conway [2] is highly recommended.
(5) Werner, Funktionalanalysis [11] is also highly recommended.
(6) Einsiedler, Ward [3].
(7) Tao [10].

Standard notations

(1) K is one of the fields R or C. The real and imaginary part of z ∈ C are
denoted <(z),=(z), and the complex conjugate is z. At some places, there
are arguments from linear algebra which work for every field. Then we use
the letter k, to indicate that the argument is purely algebraic.

(2) For a k-vector space V and A,B ⊂ V , z ∈ k, we denote A+B = {a+ b|a ∈
A, b ∈ B} and zA = {za|a ∈ A} and A−B := A+ (−B).

(3) N = {1, 2, 3, . . .}, N0 := N ∪ {0}.
(4) n := {1, . . . , n}.
(5) P(X) is the set of all subsets of a set X (the power set).
(6) For a linear map F : V → W of vector space, we use the notation ker(F )

and im(F ) for kernel and image.
(7) For two k-vector spaces V,W , we denote Hom(V,W ) the vector space of all

linear maps V →W .

Prerequisites for this course

(1) Linear Algebra, as done in the introductory lectures. In particular, famil-
iarity with the theory of euclidean and unitary vector spaces and normal
endomorphisms of them will be of great help.

(2) Basic measure theory and Lebesgue integration, as covered in Analysis III,
will be used throughout the course, both to have interesting examples to
which the theory can be applied, as well as useful tools for the development
of the theory. I collected the relevant facts with proofs in the appendix §C.
This is intended as a reference.

(3) Basic point-set topology, as we have learnt it in the course “Analysis,
Topologie und Geometrie”. In the beginning, metric spaces suffice. We
will make occasional use of theorems about continuous functions on com-
pact Hausdorff spaces, such as Urysohn’s lemma and the Stone–Weierstrass
theorem. Later on, knowing the product topology (with infinitely many fac-
tors) and Tychonov’s theorem will be crucial. We make occasional use of
(ultra)filters and nets. The appendix B collects the material.

(4) There is no way around using some facts about holomorphic functions in one
complex variable when it comes to the discussion of spectra of operators.
The small amount of things which is needed in this course is collected in
the appendix D. Unfortunately, this has been kicked out of the curriculum.
Even though this is the case, I think that any serious student of mathematics
must know the Cauchy integral formula.



FUNCTIONAL ANALYSIS 5

(5) Some key theorems in this course depend crucially on the use of Zorn’s
lemma. This was introduced in the course “Analysis, Topologie und Ge-
ometrie”, before we proved Tychonov’s theorem. The appendix A contains
a proof of this fundamental result, together with some typical applications.

Remarks

(1) Some subsections are marked with an asterisk. These contain material
which is not so important, and in particular not examinable.
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1. Normed spaces and Banach spaces

1.1. Normed spaces. Throughout these notes, K is one of the fields R or C.

Definition 1.1. Let V be a K-vector space. A seminorm on V is a map

‖ ‖ : V → [0,∞),

such that

(1) for all v ∈ V and a ∈ K, we have ‖av‖ = |a|‖v‖,
(2) for all v, w ∈ V , we have ‖v + w‖ ≤ ‖v‖+ ‖w‖.

If in addition

‖v‖ = 0⇒ v = 0

holds, ‖ ‖ is a norm.
A normed vector space is a K-vector space V , together with a norm ‖ ‖ on V .

The absolute value on K is a norm. Other finite-dimensional examples are the
norms

‖x‖`1 :=
∑

j = 1n|xj |,

‖x‖`∞ := max
j=1,...,n

|xj |

and

‖x‖`2 :=
√∑

j = 1n|xj |2

on Kn.

Definition 1.2. Let (V, ‖ ‖) be a normed vector space. The distance function

d : V × V → V, d(v, w) := ‖v − w‖
makes V into a metric space, and the metric induces a topology on V .

We use the following notations for balls.

Notation 1.3. Let (V, ‖ ‖) be a (semi)normed space. We write

Br(v) := {w ∈ V ‖v − w‖ < r}
for the open r-ball around v, and

Br(v) := {w ∈ V ‖v − w‖ ≤ r}

for the closed ball. The closed ball Br(0) appears often enough to be denoted by a
special notation

Dr(V ) := {v ∈ V |‖v‖ ≤ r} ⊂ V.

The metric topology on V is of course Hausdorff if ‖ ‖ is a norm, and it is first
countable. Recall that continuity of maps between metric spaces can equivalently
expressed using open sets, the ε− δ-criterion and sequential continuity.

Lemma 1.4. Let (V, ‖ ‖) be a normed vector space. Then

(1) The norm ‖ ‖ : V → R is continuous.
(2) The addition α : V × V → V , α(v, w) := v + w, is continuous.
(3) The scalar multiplication µ : K× V → V , µ(a, v) := av, is continuous.

The proof is trivial, once one uses the characterization of continuity by sequences.
The lemma has an important consequence.



FUNCTIONAL ANALYSIS 7

Lemma 1.5. Let V and W be normed vector spaces, and let L(V,W ) be the set of
all linear continuous maps F : V →W . Then L(V,W ) is a vector space.

Proof. This amounts to proving that when F,G : V → W are continuous and
a ∈ K, the two linear maps

aF, F +G

are continuous, which is a straightforward consequence of the previous lemma. �

Continuous linear maps have a very important characterization.

Theorem 1.6. Let V and W be normed vector spaces and let F : V →W be linear.
The following are equivalent:

(1) F is continuous,
(2) F is continuous at 0,
(3) there is C ≥ 0 such that ‖Fv‖ ≤ C‖v‖ for all v ∈W .
(4) supv∈V,‖v‖≤1 ‖Fv‖ <∞.

Definition 1.7. Another name for a continuous linear map is bounded operator.
If the target space is the ground field K, we also say functional.

Proof of Theorem 1.6. The implications 1⇒ 2 and 3⇒ 4 are trivial, and 4⇒ 1 is
very easy. 2⇒ 3: there is δ > 0, so that ‖v‖ ≤ δ implies ‖Fv‖ ≤ 1. Then for each
v

‖Fv‖ = ‖‖v‖
δ
F (

δ

‖v‖
v)‖ ≤ 1

δ
‖v‖.

�

Definition 1.8. Let F : V →W be a continuous linear map between normed vector
spaces. We define the operator norm of F as the quantity

‖F‖ := sup
v∈V,‖v‖≤1

‖Fv‖.

Note that for all v 6= 0, we have

‖Fv‖ = ‖F (‖v‖ v

‖v‖
)‖ = ‖‖v‖F (

v

‖v‖
)‖ = ‖v‖‖F (

v

‖v‖
‖ ≤ ‖v‖‖F‖,

so that
‖Fv‖ ≤ ‖F‖‖v‖

for all v.

Lemma 1.9. Let V and W be normed vector spaces. Then the operator norm is a
norm on L(V,W ). If U is a third normed vector space, F : V → W , G : W → U
continuous linear maps, then

‖GF‖ ≤ ‖G‖‖F‖.

Proof. It is clear that ‖aF‖ = |a|‖F‖ when F ∈ L(V,W ) and a ∈ K. If ‖F‖ = 0,
then ‖Fv‖ = 0 for all v with ‖v‖ ≤ 1, but that implies Fv = 0 for all v. For the
triangle inequality, let F0, F1 ∈ L(V,W ) and v ∈ V with ‖v‖ ≤ 1. Then

‖F0v + F1v‖ ≤ ‖F0v‖+ ‖F1v‖ ≤ ‖F0‖+ ‖F1‖,
and pass to the supremum. Similarly

‖GFv‖ ≤ ‖G‖‖Fv‖ ≤ ‖G‖‖F‖‖v‖
implies ‖GF‖ ≤ ‖G‖‖F‖. �



8 JOHANNES EBERT

Definition 1.10. Let V and W be normed space and let F : V →W be a bounded
linear operator.

(1) F is an isometry if it preserves norms, i.e. if

‖Fv‖ = ‖v‖
for all v ∈ V .

(2) F is an isomorphism if F is bijective and if the inverse F−1 : W → V is
also bounded.

(3) F is an isometric isomorphism if F is both, an isometry and an isomor-
phism.

The notions of “isomorphism” and “isometric isomorphism” of two normed
spaces need to be distinguished. Both appear naturally. A special case is when
a vector space V is equipped with two norms ‖ ‖0 and ‖ ‖1. A special case of
Theorem 1.6 is the following:

Lemma 1.11. Let ‖ ‖0 and ‖ ‖1 be two norms on V . Then the following are
equivalent.

(1) ‖ ‖0 and ‖ ‖1 induce the same topology on V .
(2) id : (V, ‖ ‖0)→ (V, ‖ ‖1) and id : (V, ‖ ‖1)→ (V, ‖ ‖0) are continuous.
(3) There are constants 0 < c ≤ C such that c‖v‖0 ≤ ‖v‖1 ≤ C‖v‖0 for all

v ∈ V . �

If the two norms satisfy these conditions, they are called equivalent.

The following crucial result is known from last term’s course.

Theorem 1.12. All norms on a finite-dimensional K-vector space V are equivalent.
Hence each linear map F : V → W from a finite-dimensional normed space to an
arbitrary normed space is bounded.

The second claim follows from the first, since ‖v‖F := ‖v‖+ ‖Fv‖ is a norm on
V , and hence there is C with ‖v‖F ≤ C‖v‖. The Hahn-Banach Theorem, which
will be shown later in this course can be used to give a quick proof of Theorem
1.12. For sake of completeness:

Proof of Theorem 1.12. Without loss of generality, V = Rn. Let ‖ ‖ be a norm on
Rn. Then

‖v‖ = ‖
∑
j

vjej‖ ≤
∑
j

|vj |‖ej‖ ≤ ‖v‖`∞
∑
j

‖ej‖.

Hence there is C > 0 with

(1.13) ‖v‖ ≤ C‖v‖`∞ .
The norm ‖ ‖`∞ induces the product topology on Rn. The subset

S := {v ∈ Rn|‖v‖`∞ = 1} ⊂ Rn

is closed and bounded and hence compact. The function Rn → R, v 7→ ‖v‖ is
continuous by (1.13), and so it attains its minimum

0 < c := min
v∈S
‖v‖.

It follows that
c‖v‖`∞ ≤ ‖v‖ ≤ C‖v‖`∞

for all v ∈ S, and hence by homogeneity for all v ∈ Rn. �
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Exercise 1.14. Let F : V →W and G : W → V be bounded operators. Show:

(1) If F is an isometry, it is injective.
(2) If F is an isometry and bijective with inverse G, then G is an isometry.
(3) If GF = 1 and ‖F‖, ‖G‖ ≤ 1, then F is an isometry. Proof: ‖v‖ =
‖GFv‖ ≤ ‖G‖‖Fv‖ ≤ ‖Fv‖ ≤ ‖v‖.

1.2. Completeness.

Definition 1.15. A normed vector space is a Banach space if V is complete with
the metric induced by ‖ ‖. In other words, each Cauchy sequence in V converges.

Lemma 1.16. Let V be a normed vector space. The following are equivalent:

(1) V is complete.
(2) Whenever vn ∈ V is a sequence such that

∑∞
n=1 ‖vm‖ < ∞, the sequence∑n

k=1 vk of partial sums converges in V (”absolutely convergent series are
convergent”).

Proof. 1⇒ 2 is clear, by the argument form Analysis I which shows that absolutely
convergent series in R are actually convergent.

2 ⇒ 1: let vn be a Cauchy sequence in V . We can find a subsequence vnk such
that for k ≥ l, we have ‖vnk − vnl‖ ≤ 1

2l
. By hypothesis, the series

∞∑
m=1

(vnm+1 − vnm)

converges to some w ∈ V . But

k−1∑
m=1

= vnk − vn1

and so we have limkto∞ vnk = w + vn1
. Since limk→∞ ‖vk − vnk‖ = 0, this implies

that limk→∞ vk = w + vn1
. �

Lemma 1.17. Let U ⊂ V be a linear subspace of a normed space. Then

(1) if V is complete, and U is closed, then U is complete.
(2) if U is complete, then U is closed.

Proof. (1): a Cauchy sequence un in U converges to a limit u ∈ V , and as U is
closed, u ∈ U , so un has a limit in U . (2): let un be a sequence in U which converges
to a limit u ∈ V . As U is complete and un a sequence, it must converge to some
limit v ∈ U , and necessarily v = u. �

Lemma 1.18. Let F : V →W be a bounded linear operator and assume that there
is c > 0 such that c‖v‖ ≤ ‖Fv‖ for all v ∈ V (this is often expressed by saying that
F is bounded away from zero. Then if V is complete, the image im(F ) ⊂ W is
complete and hence closed (by Lemma 1.17).

Proof. Let vn ∈ V be a sequence such that Fvn is a Cauchy sequence. As ‖vn −
vm‖ ≤ 1

c‖F (vn − vm)‖, vn is Cauchy and converges to some v ∈ V . Because F is
continuous, Fv = limn Fvn ∈ im(F ), so that im(F ) is complete. �

Corollary 1.19. Let ‖ ‖0 and ‖ ‖1 be two equivalent norms on V . Then (V, ‖ ‖0)
is complete iff (V ; ‖ ‖1) is complete.
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Proof. Because equivalence of norms is an equivalence relation, it is enough to prove
one implication. When (V, ‖ ‖0) is complete, the identity (V, ‖ ‖0) → (V, ‖ ‖1)
satisfies the hypotheses of Lemma 1.18, and so (V, ‖ ‖1) is complete. �

Corollary 1.20. Each finite-dimensional normed space V is complete, and each
finite-dimensional linear subspace V ⊂ W of an arbitrary normed vector space is
closed.

Proof. V is isometrically isomorphic to (Rn, ‖ ‖) for some norm on Rn. But as
(Rn, ‖ ‖`∞) is complete by Analysis II, 1.19 shows that V is complete. The second
part follows from the first one and Lemma 1.17. �

A dramatic difference between finite-dimensional and infinite-dimensional normed
spaces is that infinite-dimensional normed spaces can contain dense subspaces.
These play an important role in many situations. The following Theorem describes
the standard method of constructing bounded operators, and is very important.

Theorem 1.21 (Extension of bounded operators). Let V be a normed space, let
W be a Banach space and let U ⊂ V be a dense linear subspace. Let F : U → W
be a continuous linear map. Then there is a unique extension of F to a continuous
linear map G : V →W , and ‖G‖ = ‖F‖.

Proof. Uniqueness: if v ∈ V , pick a sequence un ∈ U with limn un = v. By
continuity, we must have Gv = limnGun = limn Fun, in other words: F can have
at most continuous extension.

For the existence, let v ∈ V and pick a sequence un ∈ U with un → v. The
sequence Fun ∈W is a Cauchy sequence, since

‖F (un − um)‖ ≤ ‖F‖‖un − um‖,

and so

Gv := lim
n
Fun ∈W

exists. We have to verify the following:

(1) ‖Gv‖ ≤ ‖F‖‖v‖. Because ‖Fun‖ ≤ ‖F‖‖un‖ for all n, we have

‖Gv‖ = ‖ lim
n
Fun‖ = lim

n
‖Fun‖ ≤ ‖F‖ lim

n
‖um‖ = ‖F‖‖v‖.

(2) G is well-defined, that is, the above definition of Gv does not depend on the
choice of the sequence un which converges to v. But if un ∈ U is another
sequence with wn → v, then limn(un − u′n) = 0, and since F is continuous,
it follows that

lim
n
F (un − wn) = 0,

and therefore

lim
n
Fu′n = lim

n
Fun.

(3) G is linear and G|U = F . This is easy.

�

Theorem 1.22. Let W be a normed space and let V be a Banach space. Then
the vector space L(W,V ) of bounded operators W → V , equipped with the operator
norm, is a Banach space. In particular, the dual space W ′ := L(W,K) of any
normed vector space is complete.
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Proof. Let (Fn)n be a Cauchy sequence in L(V,W ). Then there is C so that
‖Fn‖ ≤ C for all n. For each v ∈ V , the sequence Fnv ∈ W is Cauchy because
‖Fnv − Fmv‖ ≤ ‖Fn − Fm‖‖v‖, and so has a limit

Fv := lim
n→∞

Fnv ∈W.

It is easy to verify that the so defined map F : V → W is linear. For v ∈ V , we
have

‖Fv‖ = lim
n→∞

‖Fnv‖ ≤ C‖v‖,

so that F is bounded. To check that ‖F − Fn‖ → 0, let ε > 0 and pick n0 so that
‖Fn − Fm‖ ≤ ε for all m,n ≥ n0. For v ∈ V and all such m,n, we have

‖(Fn − Fm)v‖ ≤ ‖Fn − Fm‖‖v‖ ≤ ε‖v‖.

Therefore

‖(Fn − F )v‖ = lim
m→∞

‖(Fn − Fm)v‖ ≤ ε‖v‖,

as required. �

Definition 1.23. Let V be a normed space. A completion of V is a Banach space
W , together with an isometry ι : V →W with dense image.

A completion has a universal property, which makes it unique up to isometric
isomorphism, once it exists.

Proposition 1.24. Let V be a normed space.

(1) Let ι : V → W be a completion of V , let U be a Banach space and let
F : V → U be bounded. Then there is a unique bounded G : W → U with
G ◦ ι = F , and ‖G‖ = ‖F‖.

(2) Let ιi : V → Wi, i = 0, 1, be two completions. Then there is a unique
isometric isomorphism F : W0 →W1 with F ◦ ι0 = ι1.

Proof. (1): Since ι is an isometry, the inverse map ι−1 : ι(V ) → V is an isometry.
The operator F ◦ ι−1 : ι(V ) → U is bounded, and so it has a unique extension to
G : W → U , by Theorem 1.21.

(2): part (1) gives two bounded operators F0 : W0 → W1 and F1 : W1 → W0

with F0 ◦ ι0 = ι1 and F1 ◦ ι1 = ι0. The operator F1F0 : W0 →W0 satisfies

F1 ◦ F0 ◦ ι0 = F1 ◦ ι1 = ι0,

and id : W0 →W0 has the same property. By the uniqueness statement of part (1),
it follows that F1 ◦ F0 = id. Similarly F0 ◦ F1 = id.

Furthermore ‖Fi‖ = ‖ιi‖ = 1, and so Exercise 1.14 implies that F0, F1 are
isometries. �

The proposition shows that a completion, if it exists, is unique. The following
theorem guarantees that completions always exist.

Theorem 1.25. Let V be a normed vector space. Then there exists a Banach space
W and a linear isometry ι : V →W such that ι(V ) is dense in W .

We will give two proofs later on. Many (but not all) important Banach spaces
arise as a completion of a normed spaces, and many important bounded operators
come from an application of Theorem 1.21.
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Let us now explain another drastic difference between finite-dimensional and
infinite-dimensional spaces: closed bounded subsets of Rn are compact (Heine-
Borel theorem), and this plays a key role in analysis. This is always false in infinite
dimensions.

Lemma 1.26 (Riesz Lemma). Let V be a normed vector space and let W ⊂ V be
a proper (W 6= V ) closed linear subspace. Then for each δ > 0, there is v ∈ V with
‖v‖ ≤ 1 and distW (v) ≥ 1− δ.

Proof. Choose u ∈ V \W . Then r := distW (u) > 0 because W is closed. For each
ε > 0, there is w ∈W with r ≤ ‖u−w‖ ≤ r+ ε. Then v := u−w

‖u−w‖ has norm 1 and

for each x ∈W , we have

‖v−u‖ =
1

‖u− w‖
(‖u−w−‖u−w‖x‖) =

1

‖u− w‖
(‖u−(w+‖u−w‖x)‖) ≥ r

r + ε
.

Pick ε small enough so that 1
r+ε ≥ 1− δ. �

Proposition 1.27. Let V be a normed vector space and assume that the closed
unit ball D1(V ) is compact. Then V is finite-dimensional.

Proof. We prove the following: if V is infinite-dimensional, there is a sequence
(vn)n in D1(V ) with ‖vn − vm‖ ≥ 1

2 whenever n 6= m. This sequence cannot have
a convergent subsequence, so that D1(V ) is not compact.

To construct the sequence, pick v1 ∈ D1(V ) arbitrarily. If v1, . . . , vn are already
constructed, let Vn := span{vj |j ≤ n} ⊂ V . This is a closed subspace because
Vn is finite-dimensional and a proper subspace because V is infinite-dimensional.
By Lemma 1.26, there is vn+1 ∈ D1(V ) with distVn(vn+1) ≥ 1

2 , in particular

‖vn+1 − vj‖ ≥ 1
2 for all j ≤ n. �

1.3. Linear-algebraic constructions I: quotients. From linear algebra, one re-
calls the notion of a quotient space: if V is a k-vector space and U ⊂ V is a linear
subspace, the quotient V/U is the set of all subsets of V of the form

v + U := {v + u|u ∈ U} ⊂ V.

The addition and scalar multiplication is defined by

(v + U) + (w + U) := (v + w) + U, a(v + U) := av + U,

and one checks that these are well-defined and give V/U the structure of a k-vector
space. The quotient map

q : V → V/U, q(v) := v + U

is linear, surjective, and has ker(q) = U . It is sometimes useful notation to write
[v] := v +W , if the subspace W is understood. The most important feature of the
quotient construction is its universal property : If F : V → W is a linear map to
some other vector space, and F |U = 0, then there is a unique linear G : V/U →W
such that G ◦ q = F . G is defined by the formula

G(v + U) := Fv.

Let us introduce (semi)norms into these constructions.



FUNCTIONAL ANALYSIS 13

Definition 1.28. Let V be a seminormed space and let W ⊂ V be a linear subspace.
Consider the quotient space V/W with the quotient map q : V → V/W . We define
a seminorm on V/W by

‖x‖ := inf
v∈V,q(v)=x

‖v‖.

Proof that this is a seminorm. The only point that requires thought is the triangle
inequality. Let x0, x1 ∈ V/W and let ε > 0 be arbitrary. Choose vi ∈ V with
q(vi) = xi and ‖vi‖ ≤ ‖xi‖+ ε. As q(v0 + v1) = x0 + x1, we have

‖x0 + x1‖ ≤ ‖v0 + v1‖ ≤ ‖v0‖+ ‖v1‖ ≤ ‖x0‖+ ‖x1‖+ 2ε.

This holds for all ε > 0, and the triangle inequality follows. �

Occasionally, an alternative description for the quotient seminorm is useful. If
x = q(v) = v+W , then any other v′ ∈ V with q(v′) = x can be written as v′ = v+w
with w ∈W . Hence we also have

(1.29) ‖q(v)‖ = inf
w∈W

‖v + w‖.

By definition, we have

‖qv‖ ≤ ‖v‖
for each v ∈ V , so that q is bounded with operator norm at most 1.

The seminorm on the quotient interacts nicely with the universal property:

Proposition 1.30. Let V be a seminormed space and let U ⊂ V be a linear sub-
space. Let W be a further seminormed space and let F : V → W be a bounded
linear operator with F |U = 0. Then the unique bounded linear map G : V/U → W
with G ◦ q = F is bounded, and ‖G‖ = ‖F‖.

Proof. Let x ∈ V/U and ε > 0, and pick v ∈ V with q(v) = x and ‖v‖ ≤ ‖x‖ + ε.
Then G(x) = G(q(v)) = Fv and so

‖Gx‖ ≤ ‖F‖‖v‖ ≤ ‖F‖‖x‖+ ‖F‖ε.

ε > 0 was arbitrary, and so ‖Gx‖ ≤ ‖F‖‖x‖. Therefore G is bounded, and ‖G‖ ≤
‖F‖. On the other hand

‖F‖ = ‖G ◦ q‖ ≤ ‖G‖‖q‖ ≤ ‖G‖.

�

The first thing we want to do with this construction is to replace seminorms by
norms.

Proposition 1.31. Let V be a seminormed space. The null space

N := {v ∈ V |‖v‖ = 0} ⊂ V

is a linear subspace, and the quotient seminorm on V/W is a norm, and ‖q(v)‖ =
‖v‖.

Proof. The triangle inequality shows that N is a linear subspace. Let x ∈ V/N be
a vector with ‖x‖ = 0 and write x = q(v). We have to prove that x = 0, or that
v ∈ N , or that ‖v‖ = 0.

For each ε > 0, we can find, by (1.29), w ∈ N with

‖v + w‖ ≤ ε.
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It follows that

‖v‖ = ‖(v + w)− w‖ ≤ ‖v + w‖+ ‖w‖ = ‖v + w‖ ≤ ε,

and hence ‖v‖ = 0. �

Here is a more substantial application of the quotient construction.

Proof of Theorem 1.25. (In the lecture, we give a short proof later on). Let CF(V )
be the vector space of all Cauchy sequences in V . If (vn)n ∈ CF(V ), then (‖vn‖)n
is a Cauchy sequence in R. Define

‖(vn)n‖CF := lim
n→∞

‖vn‖.

This is a seminorm, as it is easily checked.
The null space of ‖ ‖CF is the space NF(V ) ⊂ CF(V ) of all null sequences. We

define

W := CF(V )/NF(V )

with the induced quotient norm (see 1.31). Furthermore, we define ι : V → W as
the composition

V
i→ CF(V )

q→W

of the map which assigns to v the constant sequence with value v with the quotient
map. It is clear that ι is a linear isometry.

It remains to prove that ι(V ) is dense and that W is complete. To this end, we
make the following observation. Let x := (vn)n ∈ CF(V ), which defines a point
q(x) ∈W . Then

(1.32) q(x) = lim
n
ι(vn).

This is because

‖ι(vn)− q(x)‖W = ‖i(vn)− x‖CF = lim
m
‖vn − vm‖

implies

lim
n
‖ι(vn)− q(x)‖W = lim

n
lim
m
‖vn − vm‖ = 0

as (vn) is Cauchy. Since each point of W can be written as q(x) for some x ∈ CF(V ),
(1.32) immediately implies that ι(V ) ⊂W is dense.

To prove that W is complete, let xn be a Cauchy sequence in W . By density of
the image of ι, we can pick a sequence yn ∈ V such that ‖xn − ι(yn)‖ ≤ 1

n . Since

‖ι(yn − ym)‖ ≤ ‖xn − xm‖+
1

n
+

1

m
,

ι(yn) is a Cauchy sequence and because ι is an isometry, y := (yn)n is a Cauchy
sequence in V . By 1.32,

lim
n
‖ι(yn)− q(y)‖ = 0.

Therefore

‖xn − q(y)‖ ≤ ‖xn − ι(yn)‖+ ‖ι(yn)− q(y)‖ ≤ 1

n
+ ‖ι(yn)− q(y)‖

tends to 0 as well. �

Lemma 1.33. Let V be a normed space and let W ⊂ V be a linear subspace. Then
the quotient seminorm on V/W is a norm if and only if W is closed.
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Proof. Assume that the quotient seminorm is a norm, and let vn be a sequence in
W with v = limn→∞ vn ∈ V . But

‖(vn +W )− (v +W )‖ ≤ ‖vn − v‖ → 0

implies that ‖v +W‖ = 0, i.e. that v ∈W .
Vice versa, let W be closed, and assume that ‖v + W‖ = 0. For each n ∈ N,

there is wn ∈ W with ‖v + wn‖ ≤ 1
n . But then − limn→∞ wn = v proves that

v ∈W , i.e. v +W = 0. �

Lemma 1.34. Let V be a Banach space and let W ⊂ V be a closed linear subspace.
Then the normed space V/W is complete.

Proof. By Lemma 1.16, we have to show that if vn +W ∈ V/W is a sequence with∑∞
n=1 ‖vn +W‖ <∞, the series

∑∞
n=1 vn +W converges in V/W .

Pick wn ∈W with ‖vn + wn‖ ≤ 1
2n . Then

∞∑
n=1

‖vn + wn‖ ≤ 1 +

∞∑
n=1

‖vn +W‖ <∞,

and because V is complete, the sequence

um :=

m∑
n=1

vn + wn ∈ V

converges to some u ∈ V , again by Lemma 1.16. But um +W =
∑m
n=1(vn +W ) ∈

V/W , and so the latter series converges in V/W , to u+W . �

1.4. Examples I: spaces of continuous functions. We fill the abstract notions
with life and introduce the most important Banach spaces. We have essentially two
important classes: spaces of continuous functions on topological spaces, and spaces
of measurable functions on measure space.

Definition 1.35. Let X be a topological space. We denote by Cb(X;K) or just
Cb(X) the vector space of all bounded continuous functions f : X → K. The norm
of f is defined by

‖f‖C0 := sup
x∈X
|f(x)|.

It is easy to see that this defines a norm.

Lemma 1.36. Cb(X) is complete.

Proof. Let (fn)n be a Cauchy sequence in Cb(X). For each x ∈ X, the sequence
fn(x))n is Cauchy in K and hence convergent. Define

f(x) := lim
n→∞

fn(x).

We show that fn converges uniformly to f , so let ε > 0 and pick n0, such that for
all m,n ≥ n0, we have ‖fn − fm‖ ≤ ε. For each n ≥ n0 and x ∈ X, we have

|f(x)− fn(x)| = lim
m→∞

|fm(x)− fn(x)| ≤ lim sup
m→∞

‖fm − fn‖C0 ≤ ε.

With the argument known from Analysis I, f is continuous, and we also get ‖f‖C0 =
limn ‖fn‖C0 <∞. �
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The most important case is where X is compact and Hausdorff (the Hausdorff
condition is not needed here, but compact and non-Hausdorff spaces do usually
not amit many functions to K). In that case, each continuous function X → K is
bounded and attains its maximum value. It is usual to write

C(X;K) := Cb(X;K)

in that case.
An important variation occurs if X is locally compact and Hausdorff.

Definition 1.37. Let X be locally compact and Hausdorff. We denote by

C0(X) ⊂ Cb(X)

the subspace of all continuous bounded functions which vanish at infinity. That is,
for each ε > 0, the set {x||f(x)| ≥ ε} ⊂ X is compact.

This is a closed subspace and hence a Banach space on its own right. Why
is it closed? Let fn → f be a sequence in C0(X) which converges to a limit in
Cb(X). For ε > 0, choose n with ‖f − fn‖ ≤ ε and let K ⊂ X be compact so that
|fn(x)| ≤ ε if x 6∈ K. If x 6∈ K, we have |f(x)| ≤ 2ε. Altogether {x ∈ X||f(x)| ≥ 3ε}
is compact.

The simplest topological spaces are discrete sets (all sets are open). In that case,
we write

c0(S) := C0(S)

and

`∞(S) := Cb(S)

(we’ll learn soon where this notation comes from). When S = N, c0(N) is the space
of all null sequences in K, and `∞(N) is the space of all bounded sequences.

When dealing with Banach spaces, it is useful to know dense subspaces, in order
to apply Theorem 1.21. Here are some useful examples.

(1) The space Cc(X) of compactly supported continuous functions on a locally
compact Hausdorff space is a dense subspace of C0(X). When S is a discrete
set, one usually writes

(1.38) c00(S) := Cc(S).

For S = N, this is the space of all finite sequences (of arbitrary length).
Let us prove the density. In the discrete case, let f ∈ c0(S) and let ε > 0.
Then T := {s ∈ S||f(s)| ≥ ε} is compact, hence finite. Let χT be the
characteristic function of T , in other words

χT (s) :=

{
1 s ∈ T
0 s 6∈ T.

Then χT f ∈ c00(S), and ‖f − χT f‖ ≤ ε. For arbitrary locally compact
Hausdorff spaces, recall that if K ⊂ X is a compact subset and K ⊂ U ⊂ X,
U open, there exists a continuous function h : X → [0, 1], which is 1 on K,
0 outside U and has compact support. This is a consequence of Urysohn’s
lemma, see Proposition B.79. Now if f ∈ C0(X) and ε > 0, let K ⊂ X
be compact so that |f(x)| ≤ ε when x 6∈ K. Let h be as above. Then
hf ∈ Cc(X) and ‖f − hf‖ ≤ ε.
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(2) The Stone–Weierstrass theorem (Theorem B.72) plays a crucial role in the
study of C(X) when X is compact Hausdorff. It says that if A ⊂ C(X) is a
linear subspace, which contains 1, separates points, is closed under taking
products and conjugates, is dense in C(X).

(3) Important examples are the space of polynomials P ⊂ C([a, b]), and the
space of trigonometric polynomials T ⊂ C(S1).

(4) The space C∞c (Rn) ⊂ C0(Rn) of compactly supported, smooth functions is
dense.

1.5. Examples II: spaces of measurable functions. This is what we want to
say about spaces of continuous functions for the moment. The second source of
important Banach spaces comes from measure theory. For more details and proofs,
we refer to §C.

Let (X,B, µ) be a measure space. That is, X is a set, B is a σ-algebra on X and
µ : B → [0,∞] is a measure. A function f : X → K is measurable if for each open
U ⊂ K, f−1(U) ∈ B. For p ∈ [1,∞), we define the Lp-norm of f by

‖f‖Lp := (

∫
X

|f(x)|pdµ(x))1/p ∈ [0,∞]

and the L∞-norm by
‖f‖L∞ := sup

x∈X
|f(x)| ∈ [0,∞].

The most important cases are p = 1, 2,∞. The following two inequalities are
important. Let p, q ∈ [1,∞] be two numbers with 1

p + 1
q = 1, with the convention

that 1
∞ = 0. These are called conjugate exponents. The Hölder inequality (Theorem

C.37) states that when f, g : X → K are measurable, then

‖fg‖L1 ≤ ‖f‖Lp‖g‖Lq ,
and the Minkowski inequality (Theorem C.40) states that

‖f + g‖Lp ≤ ‖f‖Lp + ‖g‖Lp .
For p ∈ [1,∞), we define

L p(X,B, µ) := {f : x→ K|‖f‖Lp <∞}.
The Minkowski inequality proves that L p(X) is a vector space and that ‖ ‖Lp is a
seminorm. The kernel of the seminorm is

N (X,B, µ) =: {f : X → K|f measurable , µ({x|f(x) 6= 0}) = 0},
the space of all functions which vanish µ-almost everywhere. The quotient

Lp(X,B, µ) := L p(X,B, µ)/N (X,B, µ)

is a normed vector space by Proposition 1.31.
For p =∞, we define

L∞(X,B, µ)

as the space of all bounded measurable functions. ‖ ‖L∞ is a norm on L∞, and
not merely a seminorm. Nevertheless, we define

L∞(X,B, µ) := L∞(X,B, µ)/N (X,B, µ)

with the induced norm. Because a union of countably many null sets is a null
set, N (X,B, µ) ⊂ L∞(X,B, µ) is a closed linear subspace, and it follows that
L∞(X,B, µ) is a normed space.
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Usually, we write Lp(X,µ) := Lp(X,B, µ) or even Lp(X) or Lp(µ), depending
on the context. Sometimes, we need to specify the field K, in which case we use
notations such as Lp(X,K) or Lp(X,µ,K) or the like.

Remark 1.39. We note that the elements of Lp(X,µ) are not functions on X,
but equivalence classes of such functions, with f ≡ g if and only if they agree µ-
almost everywhere. We shall usually be sloppy about this distinction and refer to
elements of Lp(X,µ) as functions. When doing so, one must of course keep in
mind that not all concepts one is used to when dealing with functions make sense
for equivalence classes. For example, the expression “f(x)” does not at all make
sense when f ∈ Lp(X,µ).

Let fn ∈ Lp(X,µ) be a sequence and let g : X → K be a measurable function.
We say that fn converges pointwise almost everywhere to g, if for any choice of
representatives gn ∈ L p(X,µ) with [gn] = fn, there is a measurable set S ⊂ X
with µ(S) = 0 such that limn gn(x) = g(x) holds for all x ∈ X \ S. (this notion
does not depend on a specific chice of representatives gn: if hn is another choice
of representatives, the set Sn := {x|gn(x) 6= hn(x)} has measure zero, and so does⋃∞
n=1 Sn ∪ S, and outside this set, hn(x)→ g(x)).

Let us recall the fundamental result of integration theory.

Theorem 1.40 (Theorems C.42 and C.43). Let (X,B, µ) be a measure space and
p ∈ [1,∞]. Let fn be a sequence in Lp(X,µ).

(1) If fn is a Cauchy sequence, there is a subsequence fnm such that fnm con-
verges almost everywhere to a function f ∈ Lp(X,µ), and ‖fn− f‖Lp → 0.
In particular, Lp(X,µ) is a Banach space.

(2) Let p < ∞. If g : X → [0,∞] is a measurable function with
∫
X
g(x)pdµ <

∞, and if |fn| ≤ g for all n, and if fn converges pointwise to a function
f , then f ∈ Lp(X,µ), (fn)n is a Cauchy sequence, and ‖fn − f‖Lp → 0
(dominated convergence theorem).

Important dense linear subspaces of Lp(X,µ) are the spaces of step functions.
For S ⊂ X, the characteristic function χS of S is

χS(x) :=

{
1 x ∈ S
0 x 6∈ S.

Let St(X) be the space of all finite linear combinations of characteristic functions
χS , S ∈ B. Then St(X) ⊂ L∞(X,µ) is dense (Proposition C.48).

Moreover, let Stf (X) ⊂ St(X) be the subspace of all sums
∑n
j=1 ajχSj , where Sj

has finite measure. Then Stf (X) ⊂ Lp(X) is a dense linear subspace (Proposition
C.48).

The definition of Lp(X,µ) and the proof of Theorem 1.40 uses integration, but
only the integral of nonnegative functions. With the help of the dense linear sub-
space Stf (X), we can define the integral∫

X

: L1(X,µ)→ K

as follows. For a step function f =
∑n
j=1 ajχSj , we define∫

X

f(x)dµ(x) :=

n∑
j=1

ajµ(Sj).
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The map
∫
X

is linear. This is not completely obvious because a step function can
be written as linear combination of characteristic functions in many different ways,
but rather boring: one writes f as a characteristic function of pairwise disjoint sets.

Furthermore, if all Sj are disjoint, then

|
∫
X

f(x)dµ(x)| ≤
n∑
j=1

|aj |µ(Sj) =

∫
X

|f(x)|dµ(x) = ‖f‖L1 .

Therefore, by Theorem 1.21,
∫
X

extends to a bounded functional L1(X,µ) → K,

which we also denote by
∫
X

. There is usually no way to define
∫
X
f(x)dµ when

f ∈ Lp(X,µ), p > 1.

Example 1.41. The simplest measures are the counting measures. That is, let S
be a set. The whole power set P(S) is a σ-algebra and we define

µ : P(X)→ [0,∞], µ(T ) := |T |,
the number of elements of T . It is customary to write

`p(S) := Lp(S).

Note that every nonempty subset of S has positive measure, and so N (S, µ) = {0}.
Therefore, the elements of `p(S) are really functions f : S → K, not equivalence
classes.

The space `∞(S) is the same as the space Cb(S) of bounded continuous functions
on S.

The space Stf (S) ⊂ `p(S) is exactly the space of all functions S → K with finite
support, which is exactly the space c00(S) introduced in 1.38.

More interesting measures are hard to construct. The Lebesgue measure on Rn
is known from Analysis III, see also C.5. Let us put this example in a greater
context.

Definition 1.42. Let X be a topological space. The Borel-σ-algebra is the smallest
σ-algebra which contains all open subsets of X. A Borel measure on X is a measure
which is defined on the Borel σ-algebra.

Definition 1.43. Let X be a locally compact Hausdorff space. A Radon measure
is a Borel measure µ on X such that

(1) µ(K) <∞ for all compact K ⊂ X (µ is locally finite),
(2) for each Borel set S ⊂ X, we have

µ(S) = sup
K⊂S compact

µ(K) = inf
S⊂U open

µ(U)

(µ is inner and outer regular).

Under favorable circumstances, regularity holds automatically: if X is second
countable, then each locally finite Borel measure on X is a Radon measure, see
Proposition C.59.

Proposition 1.44 (Proposition C.58). Let X be a locally compact Hausdorff space
and let µ be a Radon measure on X. Then Cc(X) ⊂ Lp(X,µ) for each p, and if
p <∞, then this is a dense linear subspace.

Examples 1.45. (1) On every discrete space S, the counting measure is a
Radon measure.
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(2) The Lebesgue measure λ on Rn is a Radon measure. The Lebesgue measure
has the important feature that it is translation invariant, and it is (up to
multiplication by a constant factor) the only such measure on Rn.

(3) For each f ∈ L1(Rn, λ), the measure fλ defined by

fλ(S) :=

∫
S

fdλ

is a Radon measure.

Now let X be a locally compact Hausdorff space and let µ be a Radon measure
on X. Then since Cc(X) ⊂ L1(X,µ), we have the linear functional∫

X

dµ : Cc(X)→ K

which sends f to
∫
X
fdµ. This functional is positive, which means that∫

X

fdµ ≥ 0

whenever f ≥ 0.
The space Cc(X) has the supremum norm, but

∫
X
dµ is usually not bounded.

If, however, µ is finite, e.h. µ(X) <∞, then by Hölder’s inequality

|
∫
X

fdµ| = ‖f‖L1 ≤ ‖1‖L1‖f‖L∞ = µ(X)‖f‖C0 .

Since Cc(X) ⊂ C0(X) is dense, the integral extends to a bounded linear functional
on C0(X) in this case. We now state one of the main results of this course; the
proof is beyond our capabilities yet.

Theorem 1.46 (Riesz-Markov-Kakutani representation theorem). Let X be a lo-
cally compact Hausdorff space. Let F : Cc(X;K)→ K be a positive functional (not
necessarily bounded). Then there exists a unique Radon measure µ on X such that∫

X

f(x)dµ(x) = F (f)

for all f ∈ C0(X,K).

Example 1.47. The Riemann integral gives a positive functional F : Cc(R)→ K,
F (f) :=

∫∞
−∞ f(x)dx. Theorem 1.46 provides a Radon measure on R, which is

nothing else than the Lebesgue measure.

Example 1.48. The functional evx : Cc(X) → K, f 7→ f(x) is positive. The
corresponding measure is the Dirac measure at x, which takes a set S ⊂ X to 1 if
x ∈ S and to 0 otherwise.

The space Cc(X) has the supremum norm ‖f‖C0 ; Cc(X) is not complete with
respect to that norm unless X is compact. The space Cc(X) is a dense linear
subspace of C0(X). A positive functional on Cc(X) is usually not bounded, as the
example of the Lebesgue measure shows.

Lemma 1.49. Let X be a locally compact Hausdorff space and let µ be a Radon
measure on X and let Fµ : Cc(X) → K be the integration functional. Then Fµ is
bounded if and only if µ(X) <∞, and in that case

‖Fµ‖ = µ(X).
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Proof. It suffices to prove that

µ(X) = sup
K⊂Xcompact

µ(K) ≤ sup
0≤f≤1,f∈Cc(X)

∫
X

fdµ ≤ ‖Fµ‖ ≤ µ(X).

The first equality is immediate from the definition of a regular measure. If K ⊂ X
is compact, there is f ∈ Cc(X) with 0 ≤ f ≤ 1 and f |K = 1. Then µ(K) ≤

∫
X
fdµ,

from which the first inequality follows. If 0 ≤ f ≤ 1, then∫
T

fdµ = Fµ(f) = |Fµ(f)| ≤ ‖Fµ‖‖f‖ ≤ ‖Fµ‖.

This proves the second inequality, and the third holds because if f ∈ Cc(X) and
‖f‖ ≤ 1, then 0 ≤ |f | ≤ 1 and so

|Fµ(f)| = |
∫
X

fdµ| ≤
∫
X

|f |dµ ≤ µ(X)

where we used the first equation in the last step. �

Example 1.50. Consider X = S1 and the map p : R → S1, p(t) := e2πit. We
define a functional F : C(S1)→ K by

F (f) :=

∫ 1

0

f(e2πit)dt.

This is obviously positive. The Riesz-Markov-Kakutani theorem yields a Radon
measure µ on S1. Observe that µ(S1) = F (1) = 1. This measure has an important
property: it is translation-invariant.

To formulate this, let z ∈ S1 and define for f ∈ C(S1) the translated function

Tzf(y) := f(z−1y).

Then F (Tzf) = F (f) for all z and f . To see this, pick s ∈ [0, 1] with e2πis = z.
Then

F (Tzf) =

∫ 1

0

f(e2πi(t−s))dt =

∫ 1−s

−s
f(e2πiu)du =

∫ 0

−s
f(e2πit)dt+

∫ 1−s

0

f(e2πit)dt =

=

∫ 1

1−s
f(e2πit)dt+

∫ 1−s

0

f(e2πit)dt = F (f).

The measure µ is the normalized Haar measure on the circle.

Let us give some context for this construction.

Definition 1.51. A locally compact group G is a group which is equipped with a
topology such that

(1) the multiplication map G×G→ G is continuous,
(2) the map G→ G, g 7→ g−1 is continuous,
(3) G is locally compact and Hausdorff.

For a function f ∈ Cc(G) and g ∈ G, we define Tgf(x) := f(g−1x).

Definition 1.52. Let G be a locally compact group. A Haar measure µ on G is a
Radon measure which is not identically 0 and satisfies the following two equivalent
conditions:

(1) for each g ∈ G and each Borel set S ⊂ G, we have µ(gS) = µ(S),
(2) for each g ∈ G and each f ∈ Cc(G), we have

∫
G
f(x)dµ(x) =

∫
G
Tgf(x)dµ(x).
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Theorem 1.53 (Existence of Haar measure). Every locally compact group has a
Haar measure which is unique up to multiplication by a positive constant.

The proof of that result is beyond our scope (we develop enough theory to give
a proof for abelian G).

1.6. Duality relation between the sequence spaces. Let S be a set. For
1 ≤ p ≤ q <∞, we have the inclusions

c00(S) ⊂ `1(S) ⊂ `p(S) ⊂ `q(S) ⊂ c0(S) ⊂ `∞(S).

To see this, let p ≤ q. Then, if f ∈ c00(S), we have

‖f‖`q = (
∑
s

|f(s)|q)1/q = ‖f‖`p(
∑
s

(
|f(s)|
‖f‖`p

)q)1/q ≤

(this inequality follows, as 0 ≤ |f(s)|
‖f‖`p ≤ 1, and for x ∈ [0, 1], we have xq ≤ xp)

≤ ‖f‖`p(
∑
s

(
|f(s)|
‖f‖`p

)p)1/q =
‖f‖`p

‖f‖
p
q

`p

(
∑
s

|f(s)|p)1/q = ‖f‖`p .

Therefore, the identity (c00(S), ‖ ‖`p)→ (c00(S), ‖ ‖`q ) has operator norm ≤ 1 and
so extends to a bounded operator `p(S) → `q(S). It is easy to see that this is
injective.

Similarly, for f ∈ c00(S) and s ∈ S, we have

|f(s)| = (|f(s)|p)1/p ≤ (
∑
s

|f(s)|p)1/p = ‖f‖`p ,

so that ‖f‖c0 ≤ ‖f‖`p . Finally, the inclusion c0(S) ⊂ `∞(S) is clear (and it is an
isometry, unlike the other inclusions).

Exercise 1.54. Let p < q <∞ and let S be infinite. Prove that there is no c > 0
with ‖f‖`p ≤ c‖f‖`q for all f , and that there is no c > 0 with ‖f‖`p ≤ ‖f‖c0 for all
f .

The right way to think about the relation between these spaces is in terms of
duality. We will now prove the following three results.

Theorem 1.55. There is an isometric isomorphism

Φ : `1(S)→ c0(S)′

constructed explicitly in the course of the proof.

Theorem 1.56. There is an isometric isomorphism

Φ : `∞(S)→ `1(S)′

constructed explicitly in the course of the proof.

Theorem 1.57. Let 1 < p, q <∞ be conjugate exponents ( 1
p + 1

q = 1). Then there

is an isometric isomorphism

Φ : `q(S)→ `p(S)′

constructed explicitly in the course of the proof.

Let us introduce the notation

δs : S → K, δs(t) :=

{
1 t = s

0 t 6= s.
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Proof of Theorem 1.55. Let f ∈ `1(S) and g ∈ `∞(S). By the Hölder inequality,
we have ∑

s∈S
|f(s)g(s)| = ‖fg‖`1 ≤ ‖f‖`1‖g‖`∞ .

It follows that the sum
∑
s∈S f(s)g(s) is absolutely convergent. In particular, this

holds when g is an element of the closed linear subspace c0(S) ⊂ `∞(S). We define
Φ by the formula

Φ(f)(g) :=
∑
s∈S

f(s)g(s) ∈ K

Then |Φ(f)(g)| ≤ ‖f‖`1‖g‖c0 , and hence Φ(f) ∈ c0(S)′ with ‖Φ(f)‖ ≤ ‖f‖`1 . It
follows that

Φ : `1(S)→ c0(S)′

is a bounded operator of norm ‖Φ‖ ≤ 1.
We claim that Φ is an isometric isomorphism. This involves two things: ‖Φ(f)‖ =

‖f‖`1 , and that Φ is surjective.
Let us first show that ‖Φ(f)‖ = ‖f‖`1 . We have already proven that ‖Φ(f)‖ ≤

‖Φ‖‖f‖ ≤ ‖f‖`1 . For the reverse inequality, let ε > 0. Pick a finite subset T ⊂ S,
so that

‖f‖`1 ≥
∑
s∈T
|f(s)| ≥ ‖f‖`1 − ε.

Let as ∈ S1 be a complex number so that asf(s) ≥ 0. Define g ∈ c0(S) by the
formula

g(s) :=

{
as s ∈ T
0 s 6∈ T.

Then ‖g‖c0 ≤ 1, and

|Φ(f)(g)| = |
∑
s∈T

f(s)as| =
∑
s∈T

f(s)as =
∑
s∈T
|f(s)| ≥ ‖f‖`1 − ε.

This proves that ‖Φ(f)‖ ≥ ‖f‖`1 − ε, and since ε was arbitrary, that ‖Φ(f)‖ = ‖f‖.
For the surjectivity of Φ, let F ∈ c0(S)′ be a bounded functional. We define a

map f : S → K by
f(s) := F (δs),

and first claim that f ∈ `1(S). To prove this, let T ⊂ S be an arbitrary finite
subset. Pick bs ∈ S1 with f(s)bs ≥ 0. Then∑

s∈T
|f(s)| =

∑
s∈T

f(s)bs = F (
∑
s∈T

bsδs) = |F (
∑
s∈T

bsδs)| ≤ ‖F‖‖h‖c0 ,

where h ∈ c00(S) is the function h(s) := bs if s ∈ T and h(s) = 0 if s 6∈ T . Clearly
‖h‖c0 ≤ 1, so that ∑

s∈T
|f(s)| ≤ ‖F‖

for each finite T ⊂ S, so that ‖f‖`1 ≤ ‖F‖.
Now let g ∈ c00(S). Since

F (g) =
∑
s∈S

g(s)F (δs) =
∑
s∈S

g(s)f(s)

(only finitely many terms in the sum are finite!), we see that

Φ(f)(g) = F (g)
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for all g ∈ c00(S), and hence by continuity that Φ(f) = F . �

Remark 1.58. The formula for Φ in Theorem 1.55 really defines an isometry

Φ : `1(S)→ `∞(S)′.

However, this map is far from being surjective. To prove that this is the case, more
theory (and the axiom of choice) is needed.

We now turn to Theorems 1.56 and 1.57. These have analogues for measure
spaces, which are isometric isomorphisms

Lq(X,µ)→ Lp(X,µ)′

and
L∞(X,µ)→ L1(X,µ)′

(the latter only if µ is σ-finite). The first half of the proofs is the same for both,
the discrete and the general case. To get started, we need a converse to the Hölder
inequality (which is very useful in some other contexts, when Lp-norms need to be
estimated).

Proposition 1.59 (Reverse Hölder inequality). Let (X,µ) be a measure space and
let f : X → K be measurable, and let p, q be conjugate exponents. When p = ∞,
assume that X is locally finite. Then f ∈ Lp(X) if and only if

sup
‖g‖Lq≤1

|
∫
X

fgdµ| <∞

and in that case

‖f‖Lp = sup
‖g‖Lq≤1

|
∫
X

fgdµ| ∈ [0,∞].

Proof. Let Cf := sup‖g‖Lq≤1 |
∫
X
fgdµ|.

The Hölder inequality shows that Cf ≤ ‖f‖Lp , and we only have to prove that
‖f‖Lp ≤ Cf . We define a : X → K by

a(x) =

{
|f(x)|
f(x) f(x) 6= 0

1 f(x) = 0.

Then a ∈ L∞(X,µ), ‖a‖L∞ = 1 and af = |f | ≥ 0.
For p = 1, let g := a and observe that

Cf ≥ |
∫
X

fadµ| =
∫
X

fadµ =

∫
X

|f |dµ = ‖f‖L1 .

For p = ∞, let 0 < R < ‖f‖L∞ and consider S := {x ∈ X||f(x)| ≥ R}. By
definition of the L∞-norm, µ(S) > 0, and if µ is locally finite, we find T ⊂ S with
0 < µ(T ) <∞. Put g := 1

µ(T )aχT . Then

‖g‖L1 = 1

and

Cf ≥ |
∫
X

fdµ| = 1

µ(T )

∫
T

|f |dµ =
1

µ(T )
µ(T )R = R.

Therefore R ≤ Cf . This holds for each R < ‖f‖L∞ , and therefore ‖f‖Lp ≤ Cf .
It remains the case 1 < p <∞. Assume first ‖f‖Lp <∞. Set

h(x) := a(x)|f(x)|
p
q .
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Then

‖h‖qLq =

∫
X

|f |pdµ = ‖f‖pLp <∞,

and for

g(x) :=
h(x)

‖h‖Lq
=

h(x)

‖f‖
p
q

Lp

we have ‖g‖Lq = 1, fg ≥ 0 and so

Cf ≥ |
∫
X

fgdµ| =
∫
X

fgdµ =
1

‖f‖
p
q

Lp

∫
X

|f |1+ p
q dµ.

But 1 + p
q = p( 1

p + 1
q ) = p and p

q = p− 1 and so∫
X

fg =
1

‖f‖
p
q

Lp

∫
X

|f |pdµ = ‖f‖1−p+pLp = ‖f‖Lp ,

proving that ‖f‖Lp ≤ Cf provided that ‖f‖Lp <∞.
It remains to prove that

‖f‖Lp =∞⇒ Cf =∞.

Define

fn(x) :=

{
f(x) 1

n ≤ |f(x)| ≤ n
0 otherwise.

Then ‖fn‖Lp < ∞ and 0 ≤ |f1| ≤ |f2| ≤ . . . → |f |, and by the monotone conver-
gence theorem,

lim
n→∞

‖fn‖pLp = ‖f‖pLp =∞.

It hence suffices to prove that ‖fn‖Lp ≤ Cf for each n. By what we already proved,
there is g ∈ Lq(X) with ‖g‖Lq and |

∫
X
fngdµ| = ‖fn‖Lp . On the other hand

|
∫
X

fngdµ| ≤
∫
X

|fng|dµ =

∫
X

fna|g|dµ
!
≤
∫
X

fa|g|dµ ≤ Cf

(the second inequality holds because fna|g| = |fn||g| ≤ |f ||g| = fa|g|, and the third
because ‖a|g|‖Lq = ‖g‖Lq ). �

Corollary 1.60. Let 1 ≤ p, q ≤ ∞ be two conjugate exponents, and assume that µ
is locally finite when p = 1. Then the formula

(1.61) Φ : Lq(X,µ)→ Lp(X,µ)′, f 7→ (g 7→
∫
X

fgdµ)

defines an isometry.

Proof. It is by now clear that Φ is well-defined, linear, and bounded with ‖Φ(f)‖ ≤
‖f‖Lq . By the reverse Hölder inequality

‖Φ(f)‖ = sup ‖g‖Lp ≤ 1|
∫
X

fgdµ| = ‖f‖Lq ,

so that Φ is an isometry (if p = 1, we need that µ is locally finite). �
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Proof of Theorem 1.56. By Corollary 1.60, the formula

Φ(f)(g) :=
∑
s∈S

f(s)g(s)

defines an isometry

Φ : `∞(S)→ `1(S)′

(note that the counting measure on S is obviously locally finite). It remains to
prove that Φ is surjective, so let F ∈ `1(S)′ be a given linear bounded functional.
Define a function f : S → K by

f(s) := F (δs).

Since

|F (δs)| ≤ ‖F‖‖δs‖`1 = ‖F‖
for all s ∈ S, f is an element of `∞(S). For each g ∈ c00(S), we can write

g =
∑
s∈S

g(s)δs

(which is truely a finite sum), and so

F (g) =
∑
s∈S

g(s)F (δs) =
∑
s∈S

g(s)f(s) = Φ(f)(g).

Hence we have

Φ(f)(g) = F (g)

for all g in the dense subspace c00(S) ⊂ `1(S), and hence by continuity of Φ(f) and
F also for all g ∈ `1(S). �

Proof of Theorem 1.57. By Corollary 1.60, the formula

Φ(f)(g) :=
∑
s∈S

f(s)g(s)

defines an isometry

Φ : `q(S)→ `p(S)′.

We claim that Φ is surjective. To that end, let F ∈ `p(S)′ be a functional. Define
f : S → K by

f(s) := F (δs).

We claim that f ∈ `q(S). If that is proven, it follows as in the proof of Theorem
1.56 that Φ(f)(g) = F (g) for all g in the dense subspace c00(S) ⊂ `p(S), and hence
by continuity for all g ∈ `p(S).

To prove that ‖f‖`q <∞, note that

‖f‖`q = sup
T⊂Sfinite

‖χT f‖`q .

By the reverse Hölder inequality

‖χT f‖`q = sup
‖g‖`p≤1

|
∑
s∈T

f(s)g(s)|,

and since

|
∑
s∈T

f(s)g(s)| = |
∑
s∈T

F (δs)g(s)| = |F (
∑
s∈T

δsg(s))| ≤ ‖F‖‖
∑
s∈T

δsg(s)‖`p =
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= ‖F‖(
∑
s∈T
|g(s)|p)

1
p ≤ ‖F‖‖g‖`p ,

it holds that

‖χT f‖`q ≤ ‖F‖
and hence that

‖f‖`q ≤ ‖F‖,
as claimed. �

1.7. ∗-Absolute and unconditional convergence. We often have to deal with
infinite series whose terms are elements in a Banach space V . We begin with a
recapitulation from Analysis I. Let a : N→ R be a sequence. One defines

∞∑
n=1

a(n) := lim
m

m∑
n=1

a(n) ∈ V

if that limit exists. Sometimes, one has a better type of convergence: absolute
convergence, which means that

∞∑
n=1

|a(n)| <∞

(or, equivalently: there is C such that
∑m
n=1 |a(n)| ≤ C for all m). We have the

following basic result from Analysis I:

Theorem 1.62. Let a : N→ R be a sequence. Then

(1) if
∑
n∈N a(n) is absolutely convergent, then limm→∞

∑m
n=1 a(n) exists.

(2) More generally, if
∑
n∈N a(n) is absolutely convergent and F1 ⊂ F2 ⊂ . . . ⊂

N is a sequence of finite subsets which is exhausting (in other words N =⊕∞
m=1 Fm), then limm→∞

∑
n∈Fm a(n) exists, and is equal to limm→∞

∑m
n=1 a(n).

(3) Conversely, if the limit limm→∞
∑
n∈Fm a(n) exists for all exhausting se-

quences of finite subsets F1 ⊂ F2 ⊂ . . ., then the limit is the same for each
such sequence (Fm)m and

∑
n∈N a(n) converges absolutely.

Condition (2) expresses the rearrangement property: if ϕ : N → N is bijective
and

∑
n∈N a(n) is absolutely convergent, then

∑∞
n=1 a(ϕ(n)) converges, and the

limit does not depend on the choice of ϕ.

Proof. (1) is one of the main results of Analysis I. (2) is most conveniently shown
using the dominated convergence theorem: consider the measure space N; then
absolute convergence of a means the same as a ∈ `1(S), and the sequence χFma
converges pointwise to a and is dominated by a. (3): we show that if

∑
n∈N a(n)

does not converge absolutely, there is an exhausting sequence of finite subsets (Fm)
such that limm→∞

∑
n∈Fm a(n) does not converge. This will prove (3).

So suppose that
∑
n∈N a(n) does not converge absolutely. Without loss of gen-

erality a(n) 6= 0 for all n. Let I± = {n ∈ N| ± a(n) > 0. Then I+ and I− are
disjoint subsets. At least one of the sums

∑
n∈I± ±a(n) must be +∞; assume that∑

n∈I± a(n) = +∞. One can build a sequence of finite subsets F1 ⊂ F2 ⊂ . . . with⋃∞
m=1 Fm = N such that

∑
n∈Fm a(n) ≥ m. �

The proof of (3) very much depended on the order structure in R, and one should
expect this step to fail when R is replaced by a general Banach space.
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Definition 1.63. Let V be a Banach space, let S be a countable1 set and let a :
S → V be a map. We say that the series

∑
s∈S a(s) is

(1) absolutely convergent if
∑
s∈S ‖vs‖ <∞.

(2) unconditionally convergent if for each ε > 0, there is a finite F ⊂ S such
that for each finite F ⊂ G ⊂ S, ‖

∑
s∈G\F vs‖ ≤ ε.

(3) unconditionally convergent to v ∈ V if for each ε > 0, there is a finite
F ⊂ S such that for each finite F ⊂ G ⊂ S, ‖v −

∑
s∈G vs‖ ≤ ε.

Theorem 1.64. Let V be a Banach space, let S be a countable set and let a : S → V
be a map.

(1) If
∑
s∈S a(s) converges absolutely, it converges unconditionally.

(2) If
∑
s∈S a(s) converges unconditionally, it converges unconditionally to a

unique v ∈ V .

There is no parallel to the third part of Theorem 1.62 in general Banach space.
For example, let S = N, V = `2(N) and a(n) = 1

nδn.
∑
n∈N a(n) converges uncon-

ditionally to a ∈ `2(N), a(n) = 1
n , but not absolutely.

Proof. (1) Absolute convergence of
∑
s∈S a(s) can be expressed by saying that for

each ε > 0, there is a finite F ⊂ S such that for each finite F ⊂ G ⊂ S, we have∑
s∈G\F ‖a(s)‖ ≤ ε. The unconditional convergence thus simply follows from the

triangle inequality.
(2) Assume that

∑
s∈S a(s) converges unconditionally. Choose finite Fn ⊂ S so

that if Fn ⊂ G and G is finite, then ‖
∑
s∈G−Fn a(s)‖ ≤ 1

n . In particular ‖a(s)‖ ≤ 1
n

if s 6∈ Fn.
We can also assume that F1 ⊂ F2 ⊂ F3 ⊂ . . .. If s ∈ S \

⋃∞
n=1 Fn, then

‖a(s)‖ = 0, and we may discard the set S \
⋃∞
n=1 Fn entirely, and may well assume

that
⋃∞
n=1 Fn = S. The sequence

vn :=
∑
s∈Fn

a(s)

is a Cauchy sequence, which converges to some v ∈ V . The series
∑
s∈S a(s)

converges unconditionally to v, more or less by definition. A routine argument
shows that if

∑
s∈S a(s) converges unconditionally to v and w, then ‖v − w‖ ≤ 2ε

for each ε > 0, proving uniqueness of the unconditional limit. �

1.8. Notes. Most of the material in this chapter is standard material and can be
found in every textbook on functional analysis. The exception is the part about
absolute and unconditional convergence. I did work it out by myself.

1to make things a little simpler
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2. Hilbert spaces

2.1. Inner products.

Definition 2.1. Let V be a K-vector space. An inner product on V is a map

〈 , 〉 : V × V → K
such that

(1) 〈 , 〉 is R-bilinear
(2) 〈 , 〉 is K-linear in the second variable and K-antilinear in the first one,

(3) 〈 , 〉 is symmetric, i.e. 〈v, w〉 = 〈w, v〉 for all v, w ∈ V and
(4) 〈 , 〉 is positive, i.e. 〈v, v〉 ≥ 0 for all v ∈ V , and
(5) 〈 , 〉 is definite, i.e. 〈v, v〉 = 0 only holds for v = 0.

We put

‖v‖ :=
√
〈v, v〉 ∈ [0,∞).

Example 2.2. Let (X,µ) be a measure space. On L2(X,µ;K), we define

〈f, g〉 :=

∫
X

f(x)g(x)dµ(x).

This is an inner product, and the induced norm is just the L2-norm. If we would
have considered L 2(X;µ) instead, we would only have gotten a semi-inner product.

Then
√
〈f, f〉 = ‖f‖L2 .

If X = S is a set with the counting measure, this becomes the inner product

〈f, g〉 =
∑
s∈S

f(s)g(s)

on `2(S). If S = n, we get Kn, with the standard inner product familiar from linear
algebra II.

Let us first prove that ‖ ‖ is indeed a norm on V . Because

‖zv‖2 = 〈zv, zv〉 = zz〈v, v〉 = |z|2‖v‖2

and
‖v‖ = 0⇒ 〈v, v〉 = 0⇒ v = 0,

only the triangle inequality needs to be proven.

Theorem 2.3. Let 〈 , 〉 be an inner product on V .

(1) (Cauchy-Schwarz inequality) For all v, w ∈ V , we have

|〈v, w〉| ≤ ‖v‖‖w‖.
(2) If |〈v, w〉| = ‖v‖‖w‖ and ‖v‖ 6= 0, then w is a multiple of v.

(3) ‖v‖ :=
√
〈v, v〉 is a norm on V .

In the proof (and several of the following proofs) we make use of the following
elementary fact.

Lemma 2.4. Let
p(t) := at2 + bt+ c ∈ R[t]

be a quadratic polynomial with real coefficients such that p(t) ≥ 0 for all t ∈ R.
Then

b2 ≤ 4ac.
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Proof. If a = 0, then b = 0 and the claim is trivial. If a 6= 0, the zeroes of p(t) in
C are

− b

2a
±
√

b2

4a2
− c

a
.

If p(t) ≥ 0 for all t ∈ R, p cannot have two distinct real roots, which forces

b2

4a2
− 4ac

4a2
≤ 0.

�

Proof of Theorem 2.3. (1): For each t ∈ R, we have
(2.5)
0 ≤ 〈v+tw, v+tw〉 = 〈v, v〉+t(〈v, w〉+〈w, v〉)+〈w,w〉 = ‖v‖2+t2‖w‖2+2t<〈v, w〉 =: p(t).

Lemma 2.4 shows that
<〈v, w〉2 ≤ ‖v‖2‖w‖2.

Taking square roots yields
|<〈v, w〉| ≤ ‖v‖‖w‖.

There is z ∈ S1 such that 〈v, zw〉 = z〈v, w〉 > 0. It follows that

|〈v, w〉| = 〈v, zw〉 = |<〈v, zw〉| ≤ ‖v‖‖zw‖ = ‖v‖|z|‖w‖ = ‖v‖‖w‖.
(2): As above, we find z ∈ S1 such that 〈v, zw〉 = ‖v‖‖zw‖, so that we may assume
0 ≤ 〈v, w〉 = |〈v, w〉| = ‖v‖‖w‖. We can also assume by scaling v that ‖v‖ = 1.
Then

‖w−〈v, w〉v‖2 = ‖w‖2−2〈v, w〉〈v, w〉+〈v, w〉‖v‖2 = ‖w‖2−〈v, w〉2 = ‖w‖2−‖w‖2‖v‖2 = 0

or
w = 〈v, w〉v.

(3): For the triangle inequality, note that

‖v + w‖2 = ‖v‖2 + ‖w‖2 + 2<〈v, w〉 ≤ ‖v‖2 + ‖w‖2 + 2‖v‖‖w‖ = (‖v‖+ ‖w‖)2

and take square roots. �

Remark 2.6. Occasionally, it is useful to consider semi-inner products, which are
maps V × V → K, (v, w) 7→ 〈v, w〉, which satisfy all axioms for inner products,

except definiteness. In that case, the formula ‖v‖ :=
√
〈v, v〉 defines a seminorm

on V , and the Cauchy-Schwarz inequality continues to hold.

Definition 2.7. A Pre-Hilbert space is a K-vector space V , together with an inner
product. A Pre-Hilbert space is a Hilbert space if V , with the norm induced by 〈 , 〉
is complete.

There are a couple of simple identities for inner products, which will be used
very often. We begin with a definition.

Definition 2.8. Let V be a Pre-Hilbert space and v, w ∈ V . We say that v and w
are orthogonal and write v⊥w, provided that 〈v, w〉 = 0. If S ⊂ V is a subset, we
write

S⊥ := {w ∈ V |w⊥v∀v ∈ S}.

Proposition 2.9. Let V be a Hilbert space.

(1) For each w ∈ V , the functional Lw : V → K, Lw(v) := 〈w, v〉 is bounded
and ‖Lw‖ = ‖w‖.
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(2) If S ⊂ V is a subset, then S⊥ is a closed linear subspace.
(3) If W ⊂ V is a linear subspace, then W ∩W⊥ = {0}.

Proof. (1): |Lw(v)| ≤ ‖w‖‖v‖ holds by Cauchy-Schwarz, and |Lw(w)| = ‖w‖2 by
definition.

(2): We can write

S⊥ =
⋂
s∈S

ker(Ls),

i.e. as the intersection of closed linear subspaces.
(3): if v ∈W ∩W⊥, we must have 〈v, v〉 = 0, so v = 0. �

Proposition 2.10. Let V be a Pre-Hilbert space and v, w ∈ V . Then

(1) ‖v + w‖2 = ‖v‖2 + ‖w‖2 + 2<〈v, w〉.
(2) (Pythagoras theorem) If v⊥w, then

‖v + w‖2 = ‖v‖2 + ‖w‖2.
(3) (Parallelogram identity) ‖v + w‖2 + ‖v − w‖2 = 2(‖v‖2 + ‖w‖2).
(4) (Polarization identity in the real case). If K = R, then

〈v, w〉 =
1

4
(‖v + w‖2 − ‖v − w‖2).

(5) (Polarization identity in the complex case). If K = C, then

〈v, w〉 =
1

4

∑
k∈Z/4

(−i)k‖v + ikw‖2.

Proof. The identities (1)-(4) are obvious. For (5), note that

‖x+ y‖2 − ‖x− y‖2 = 4<〈x, y〉
and that

<(−iz) = =(z)

for x, y ∈ V and z ∈ C. Therefore∑
k∈Z/4

(−i)k‖v + ikw‖2 = (‖v + w‖2 − ‖v − w‖2) + i(‖v − iw‖2 − ‖v + iw‖2) =

= 4<〈v, w〉+4i(<〈v,−iw〉) = 4<〈v, w〉+4i(<−i〈v, w〉) = 4(<〈v, w〉+i=〈v, w〉) = 4〈v, w〉.
�

Just as most Banach spaces arise as completions of normed spaces, most Hilbert
spaces arise through a completion process.

Lemma 2.11. The Banach space completion of a Pre-Hilbert space is a Hilbert
space.

Proof. Let (W, 〈 , 〉W ) be a Pre-Hilbert space and let V be its Banach space com-
pletion. We have to prove that the inner product on W extends to an inner product
on V which induces the norm. To that end, we note that

|〈v, w〉 − 〈v′, w′〉| = |〈v, w − w′〉+ 〈v − v′, w′〉| ≤ ‖v‖‖w − w′‖+ ‖v − v′‖‖w‖.
For v, w ∈ V , let vn → v and wn → w be sequences in W which converge to these
vectors. The above estimate shows that the limit

〈v, w〉 := lim
n→∞

〈vn, wn〉
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exists, does not depend on the choice of the sequences vn and wn and yields an
inner product on V . Furthermore, the continuity of the norm proves that

‖v‖ = lim
n→∞

‖vn‖ = lim
n→∞

√
〈vn, vn〉 =

√
〈v, v〉

holds. �

2.2. The projection theorem. We recall that a subset U ⊂ V of an R-vector
space is convex if for x, y ∈ U and t ∈ [0, 1], the point tx+ (1− t)y also lies in U .

Theorem 2.12 (Projection theorem). Let V be a Hilbert space and let K ⊂ V be
a nonempty closed convex subset. Then there is a unique v ∈ K of smallest norm.
For all w ∈ K, we have <〈v − w, v〉 ≤ 0.

Proof. Let d := infx∈K ‖x‖. Let t ≥ 0 and let x, y ∈ K with ‖x‖2, ‖y‖2 ≤ d2 + 1
4 t

2.

Since K is convex, 1
2 (x+ y) ∈ K and so

d2 +
1

4
‖x− y‖2 ≤ ‖1

2
(x+ y)‖2 + ‖1

2
(x− y)‖2 =

1

2
(‖x‖2 + ‖y‖2) ≤ d2 +

1

4
t2

by the parallelogram identity and therefore

‖x− y‖ ≤ t.

Uniqueness of v follows immediately.
To prove existence of v, let xn ∈ K with ‖xn‖ → d. Then for large m, ‖xm‖ ≤

‖xn‖ and therefore

lim sup
m→∞

‖xn − xm‖ ≤ ‖xn‖ − d

which implies

lim
n→∞

lim sup
m→∞

‖xn − xm‖ = 0

as ‖xn‖ → d. Hence (xn)n is a Cauchy sequence, which converges to some v ∈ V ,
and as K was assumed to be closed, we have v ∈ K, and furthermore

‖v‖ = lim
n
‖xn‖ = d.

�

Lemma 2.13. Let V be a Hilbert space and let W ⊂ V be a closed linear subspace.
Then

(1) each x ∈ V can be written uniquely as a sum

x = P (x) +Q(x)

with P (x) ∈W and Q(x) ∈W⊥,
(2) for all x, y ∈ V , we have

‖P (x)‖2 + ‖Q(x)‖2 = ‖x‖2,

(3) and the maps P,Q : V → V defined in this way are linear bounded operators
of norm at most 1.

Proof. (1) The uniqueness is easy: W and W⊥ are linear subspaces, and W ∩W⊥ =
{0}, so if w,w′ ∈W and v, v′ ∈W⊥ are given with

w + v = w′ + v′,
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then w = w′ and v = v′. For the existence, note that x+W is a nonempty closed
convex subset of V . Let y ∈ x+W be the element of smallest norm whose existence
is guaranteed by 2.12. Then obviously

P (x) := x− y ∈W,
and we put

Q(x) := x− P (x) = y.

To verify that y ∈W⊥, let w ∈W and t ∈ R be arbitrary. We have

‖y‖2 ≤ ‖y + tw‖2 = ‖y‖2 + 2t<〈y, w〉+ t2‖w‖2

or
t2‖w‖2 + 2t<〈y, w〉 ≥ 0.

From Lemma 2.4, we conclude that

(<〈y, w〉)2 = 0

and hence
<〈y, w〉 = 0

for all w ∈W . Pick z ∈ S1 such that z〈y, w〉 ∈ R and we find that

z〈y, w〉 = 〈y, zw〉 = <〈y, zw〉 = 0

and therefore y ∈W⊥, as claimed.
(2): Since P (x) ∈W and Q(x) ∈W⊥, we have 〈P (x), Q(x)〉 = 0 and hence

‖x‖2 = ‖P (x)‖2 + ‖Q(x)‖2

by the Pythagoras identity.
(3): The statement that each v ∈ V can uniquely be written as a sum P (x)+Q(x)

with P (x) ∈W and Q(x) ∈W⊥ can be reformulated by saying that the linear map

W ⊕W⊥ → V, (x, y) 7→ x+ y

is bijective, with inverse map v 7→ (P (v), Q(v)). Because inverses of bijective linear
maps are linear (a fact proven in Linear Algebra I), it follows that P and Q are
linear. The equation ‖x‖2 = ‖P (x)‖2+‖Q(x)‖2 immediately implies ‖Px‖, ‖Qx‖ ≤
‖x‖, so that both are bounded of norm ≤ 1. �

Theorem 2.14 (Projection theorem for linear subspaces). Let W ⊂ V be a closed
linear subspace of a Hilbert space, and let P,Q ∈ L(V, V ) be the two maps con-
structed in Lemma 2.13. Then

(1) For all x, y ∈ V , we have

〈x, Py〉 = 〈Px, y〉, 〈x,Qy〉 = 〈Qx, y〉.
(2) W = ker(Q) = im(P ), W⊥ = ker(P ) = im(Q).
(3) P 2 = P , Q2 = Q, QP = PQ = 0, P +Q = 1.

Proof. (1): we compute

〈P (x), y〉 − 〈x, P (y)〉 = 〈P (x), P (y) +Q(y)〉 − 〈P (x) +Q(x), P (y)〉 =

= 〈P (x), P (y)〉+ 〈P (x), Q(y)〉 − 〈P (x), P (y)〉 − 〈Q(x), P (y)〉 =

= 〈P (x), P (y)〉 − 〈P (x), P (y)〉 = 0,

using that W and W⊥ are orthogonal. A similar computation shows the claim for
Q.
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(2): from x = Px+Qx, Px ∈W , Qx ∈W⊥ and W ∩W⊥ = {0}, we get

x ∈W ⇒ Qx = x− Px ∈W ∩W⊥ ⇒ Qx = 0⇒ x = Px⇒ x ∈W.
This means

W ⊂ ker(Q) ⊂ im(P ) ⊂W
and therefore W = ker(Q) = im(P ). Similarly

x ∈W⊥ ⇒ Px = x−Qx ∈W ∩W⊥ ⇒ Px = 0⇒ x = Qx⇒ x ∈W⊥

proves
W⊥ ⊂ ker(P ) ⊂ im(Q) ⊂W⊥,

so W⊥ = ker(P ) = im(Q).
(3): im(P ) = ker(Q) implies QP = 0, and similarly PQ = 0 follows from

im(Q) = ker(P ). It is obvious that P +Q = 1 and so

P = (P +Q)P = P 2 +QP = P 2

and
Q = (P +Q)Q = PQ+Q2 = Q2.

�

Definition 2.15. The map P = PW from Lemma 2.13 is called the orthogonal
projection onto W .

The result has a converse.

Definition 2.16. Let V be a Hilbert space. A projection in V is a bounded operator
P ∈ L(V, V ) such that

P 2 = P, ∀v, w ∈ V : 〈Pv,w〉 = 〈v, Pw〉.

Proposition 2.17. Let V be a Hilbert space and let R be a projection. Then

im(R) = ker(1−R)

is a closed subspace,
im(R)⊥ = ker(R),

and R = Pim(R) is the orthonormal projection onto im(R).

Similarly, im(1−R) = ker(R), ker(R)⊥, and 1−R = Pim(R)⊥ .

Proof. Since
(1−R)R = R−R2 = 0,

it follows that im(R) ⊂ ker(1−R). If v ∈ ker(1−R), then v −Rv = (1−R)v = 0,
so v = Rv ∈ im(R). Since (1−R) is continuous, ker(1−R) is a closed subspace.

If w⊥im(R), then 〈v,Rw〉 = 〈Rv,w〉 = 0 for all v, hence Rw = 0, so im(R)⊥ ⊂
ker(R). If Rv = 0, then for each w ∈ V , we have 0 = 〈w,Rv〉 = 〈Rw, v〉, so
v ∈ im(R)⊥.

To show that R = Pim(R), write P = Pim(R) and Q = 1−Pim(R) and W = im(R).
For x ∈W = im(R), write x = Rv and compute

Rx = R2v = Rv = x.

It follows that RP = P . If x ∈ W⊥, then 〈Rx, y〉 = 〈x,Ry〉 = 0 for all y ∈ V
because im(R) = W . Hence Rx = 0 when x ∈ W⊥, and it follows that RQ = 0.
Therefore

R = R(P +Q) = RP +RQ = P.
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�

Proposition 2.18. Let W ⊂ V be a linear subspace of a Hilbert space. Then

W⊥ = W
⊥

and

(W⊥)⊥ = W.

Proof. For two subsets S ⊂ T ⊂ V , we have T⊥ ⊂ S⊥. Applying this to W ⊂ W
shows

W
⊥ ⊂W⊥.

If v ∈ W⊥, then 〈v, w〉 = 0 for all w ∈ W , hence by continuity also for all w ∈ W ,

so v ∈W⊥, which proves W⊥ ⊂W⊥.
For the second part, we can assume without loss of generality that W is closed,

by the first part. By Theorem 2.14, we have

W = im(PW ), W⊥ = im(1− PW )

and 1− PW = PW⊥ . It follows that

(W⊥)⊥ = im(1− PW⊥) = im(1− (1− PW )) = im(PW ) = W.

�

Corollary 2.19. Let W ⊂ V be a proper closed linear subspace of a Hilbert space
(i.e. W 6= V ). Then there is v ∈W⊥ with ‖v‖ = 1.

Proof. We must have W⊥ = ker(PW ) 6= {0}. �

In the finite-dimensional case, the statements of Theorem 2.14 and Proposition
2.18 are easily shown by methods of linear algebra. What we achieved so far was to
prove that the geometric intuition derived from the finite-dimensional case is largely
correct for Hilbert spaces. Completeness of both V and the linear subspace W was
used in an essential way, in the proof of Theorem 2.12. We are no ready to harvest
the fruits of these results and turn to linear functionals and linear operators.

2.3. The Riesz representation theorem.

Theorem 2.20 (Riesz representation theorem for functionals on Hilbert spaces).
Let V be a Hilbert space and let F : V → K be a continuous linear functional. Then
there is a unique w ∈ V , such that

F (v) = 〈w, v〉
for all v ∈ V , and we have

‖F‖ = ‖w‖.

Proof. The uniqueness statement is clear: if w,w′ are two such vectors, then 〈w −
w′, v〉 = 0 for all v ∈ V , in particular ‖w − w′‖2 = 〈w − w′, w − w′〉 = 0. The
inequality ‖F‖ ≤ ‖w‖ follows from the Cauchy-Schwarz inequality, and as |F (w)| =
〈w,w〉 = ‖w‖2, we also see ‖w‖ ≤ ‖F‖.

For the existence statement, we can assume without loss of generality that F 6= 0.
As F is continuous, ker(F ) ⊂ V is a closed linear subspace, and it has codimension
1. We choose u ∈ V with F (u) = 1, and define

w0 := (u− Pker(F )u) ∈ ker(F )⊥.
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Because the codimension of ker(F ) is 1, the complement ker(F )⊥ is 1-dimensional,
and because w0 6= 0, ker(F )⊥ is spanned by w0. Hence any v ∈ V can be written
in the form v0 + tw0, v0 ∈ ker(F ), t ∈ K.

We claim that there is a ∈ K such that F (v) = 〈aw0, v〉 for all v ∈ V . But this
is now easily verified, writing v = v0 + tw0 as above:

F (v0 + tw0) = F (v0) + tF (w0) = tF (u− Pker(F )u) = tF (u) = t

and

〈w0, v0 + tw0〉 = t〈w0, w0〉
Hence w := 1

〈w0,w0〉w0 solves the problem.

�

It is crucial for the validity of Theorem 2.20 that V is complete. Despite its
simplicity, the result is very powerful. When applied to the Hilbert space L2(X,µ),
this result has an important consequence.

Corollary 2.21. Let (X,µ) be a measure space. Then the map

Φ : L2(X,µ)→ L2(X,µ)′, Φ(f)(g) :=

∫
X

fgdµ

is an isometric isomorphism.

Proof. We can write

Φ(f)(g) = 〈f, g〉,
and the claim is immediate from Theorem 2.20. �

To demonstrate the power of these methods, we identify the dual space of
L1(X,µ). Recall from Corollary 1.60 that the map

Φ : L∞(X,µ)→ L1(X,µ)′

defined by

Φ(f)(g) :=

∫
X

fgdµ

is an isometry if X is locally finite. We use Hilbert space methods to prove that Φ
is in fact surjective.

Theorem 2.22. Let (X,µ) be σ-finite. Then the map

Φ : L∞(X,µ)→ L1(X,µ)′

is an isometric isomorphism.

Proof. A σ-finite measure is locally finite, and so Corollary 1.60 proves that Φ is
an isometry. The only remaining issue is to prove that Φ is surjective.

We first consider the case where µ(X) < ∞. The (quite ingenious) trick is to
bring the Hilbert space L2(X,µ) into play. So consider F ∈ L1(X,µ)′.

Since µ(X) <∞, the function 1 belongs to L2(X,µ), and ‖1‖L2 =
√
µ(X). The

Cauchy-Schwarz inequality shows that for f ∈ L2(X,µ)

‖f‖L1 =

∫
X

|f |dµ =

∫
X

1|f |dµ = 〈1, |f |〉 ≤ ‖1‖L2‖|f |‖L2 =
√
µ(X)‖f‖L2 .

This proves that L2(X,µ) ⊂ L1(X,µ) and that the inclusion map I : L2(X,µ) →
L1(X,µ) has norm ‖I‖ ≤

√
µ(X).



FUNCTIONAL ANALYSIS 37

Therefore, G = F ◦I : L2(X,µ)→ K is a bounded linear functional. By the Riesz
representation theorem or rather its Corollary 2.21, there is a unique g ∈ L2(X,µ)
with

F ◦ I(f) =

∫
X

gfdµ

for all f ∈ L2(X,µ).
We claim that g is in L∞(X,µ) ⊂ L2(X,µ). For c > 0, let

Sc := {x ∈ X||g(x)| ≥ c} ⊂ X.

This is a measurable subset of finite measure. Let a : X → S1 be measurable such
that ag ≥ 0. Define

f(x) =

{
a(x) x ∈ Sc
0 x 6∈ Sc.

Then f is a bounded measurable function and hence f ∈ L2(X,µ). Observe that
‖f‖L1 = µ(Sc). We have constructed f so that

cµ(Sc) ≤
∫
X

gfdµ = F (f) = |F (f)| ≤ ‖F‖‖f‖L1 = µ(Sc)‖F‖.

If c > ‖F‖, the above inequality is impossible unless µ(Sc) = 0. It follows that

|g(x)| ≤ ‖F‖

for almost all x ∈ X. Hence g ∈ L∞(X,µ).
We have constructed an element g ∈ L∞(X,µ) such that F (f) =

∫
X
fgdµ for

all f ∈ L2(X,µ). Since L2(X,µ) ⊂ L1(X,µ) is dense, the claim follows.
This settles the case of finite µ(X). The general case can be reduced to the

finite case, using Lemma 2.23 below. Let w ∈ L1(X,µ) be as in that Lemma. The
measure ν = wµ is finite, and the map

T : L1(X, ν)→ L1(X,µ), T (f) := wf

is an isometric isomorphism as ∫
X

wfdµ =

∫
X

fdν

(the inverse is T−1(g) = 1
wg). Let F ∈ L1(X,µ) be a linear functional. By the

finite case of the theorem, there is a unique g ∈ L∞(X, ν) with

FT (f) =

∫
X

gfdν

for all f ∈ L1(X, ν). If h ∈ L1(X,µ), then

F (h) = FT (T−1h) =

∫
X

gT−1(f)dν =

∫
X

g
1

w
fwdµ =

∫
X

gfdµ.

Since 0 < w(x) < ∞ for all x ∈ X, L∞(X, ν) = L∞(X,µ), and the Theorem is
proven. �

Lemma 2.23. Let (X,µ) be a σ-finite measure space. Then there is a measurable
function 0 < w ≤ 1 with ‖w‖L1 <∞.
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Proof. Write X =
⋃∞
n=1Xn as the disjoint union of subsets of finite measure. The

function w will be of the form

w =

∞∑
n=1

anχXn

with certain 0 < an ≤ 1. Since

‖w‖L1 =

∞∑
n=1

anµ(Xn),

we only have to pick an so that anµ(Xn) < 1
2n , which is certainly possible. �

Remark 2.24. A similar method can be used to show that Lq(X,µ)→ Lp(X,µ)′ is
surjective for σ-finite µ and 1 < p < 2. The case 2 < p <∞ is more difficult because
L2(X,µ) 6⊂ Lp(X,µ) in that case. The proof given in [8] that Lp(X,µ)′ ∼= Lq(X,µ)
for p > 2 also uses the Riesz representation theorem, but through a longer detour
(via the Radon-Nikodym Theorem), and we omit it.

2.4. The adjoint operator.

Theorem 2.25. Let V and W be Hilbert spaces, and let F : V →W be a bounded
operator. Then there is a unique bounded operator F ∗ : W → V such that

〈w,Fv〉 = 〈F ∗w, v〉
for all v ∈ V , w ∈W .

Proof. Uniqueness is clear, since if F ′ : W → V is another such operator, then
〈F ∗w−F ′w, v〉 = 0 for all v and w, and so F ∗w = F ′w for all w. For the existence,
let w ∈W and consider the linear functional

Lw : V → K, Lw(v) := 〈w,Fv〉.
This is bounded because |Lw(v)| ≤ ‖w‖‖F‖‖v‖. By the Riesz representation theo-
rem, there is a unique u ∈ V with

Lw(v) = 〈u, v〉
for all v ∈ V . Define a map F ∗ : W → V by

F ∗w := u.

By construction, we have

〈w,Fv〉 = 〈F ∗w, v〉
for all v ∈ V , w ∈W . It follows that F ∗ is linear, since

〈F ∗(a0w0 + a1w1), v〉 = 〈a0w0 + a1w1, Fv〉 = a0〈w0, Fv〉+ a1〈w1, Fv〉 =

= a0〈F ∗w0, v〉+ a1〈F ∗w1, v〉 = 〈a0F
∗w0 + a1F

∗w1, v〉.
Finally

‖F ∗w‖ = sup
‖v‖≤1

〈F ∗w, v〉 = sup
‖v‖≤1

〈w,Fv〉 ≤ ‖w‖‖F‖‖v‖,

so that F ∗ is bounded with ‖F ∗‖ ≤ ‖F‖. �

Examples 2.26. (1) Let V = Kn and W = Km, both equipped with the stan-
dard inner product, and let A ∈ Matm,n(K) = HomK(Kn,Km). The adjoint

of A is A
t
, the conjugate transpose matrix.
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(2) If W ⊂ V is a closed linear subspace, then P ∗W = PW . Here, we view
PW : V → V .

(3) If we view PW as a map V →W , its adjoint is the inclusion map W → V .
(4) Let (X,µ) be a measure space and let f ∈ L∞(X,µ). This determines

a multiplication operator Mf : L2(X,µ) → L2(X,µ), Mf (g) := fg, with
adjoint (Mf )∗ = Mf .

Theorem 2.27. Let V,W,U be Hilbert spaces. Then for all F,H ∈ L(V,W ),
G ∈ L(W,U) and a ∈ K, we have

(1) (F +H)∗ = F ∗ +H∗,
(2) (aF )∗ = aF ∗,
(3) (GF )∗ = F ∗G∗,
(4) (F ∗)∗ = F ,
(5) ‖F ∗‖ = ‖F‖,
(6) (C∗-identity) ‖F ∗F‖ = ‖F‖2.

(7) ker(F ∗) = im(F )⊥, im(F ∗) = ker(F )⊥.

Proof. The first four identities are straightforward to prove. For example, (F ∗)∗ is
the unique operator V →W such that

〈(F ∗)∗v, w〉 = 〈v, F ∗w〉
for all v, w. But F also has this property, as

〈Fv,w〉 = 〈v, F ∗w〉.
It follows from the uniqueness statement of Theorem 2.25 that (F ∗)∗ = F .

At the very end of the proof of Theorem 2.25, we established that ‖F ∗‖ ≤ ‖F‖.
The reverse inequality follows from

‖F‖ = ‖(F ∗)∗‖ ≤ ‖F ∗‖.
For (6), first note that

‖F ∗F‖ ≤ ‖F ∗‖‖F‖ = ‖F‖2.
For the reverse inequality, let ε > 0 and pick v ∈ V with ‖v‖ ≤ 1 and ‖Fv‖2 ≥
‖F‖2 − ε. Then

‖F‖2 ≤ ‖Fv‖2 + ε = 〈Fv, Fv〉+ ε = 〈F ∗Fv, v〉+ ε ≤ ‖F ∗F‖‖v‖2 + ε ≤ ‖F ∗F‖2 + ε,

and the claim follows by letting ε→ 0.
For the last point, let u ∈ ker(F ∗) and w = Fv ∈ im(F ). Then 〈u, Fv〉 =

〈F ∗u, v〉 = 0 for all v ∈ V and hence u ∈ im(F )⊥. The argument can be read
backwards to show im(F )⊥ ⊂ ker(F ∗). Finally

im(F ∗) = (im(F ∗)⊥)⊥ = ker(F )⊥.

�

The innocent equation ‖F ∗F‖ = ‖F‖2 is fundamental for the theory of algebras
of operators on Hilbert spaces. We will only gradually see its impact.

Definition 2.28. A bounded operator T ∈ L(V, V ) is called selfadjoint if T ∗ = T .

For example, a projection as defined in 2.16 is the same as a self-adjoint P ∈
L(V, V ) with P 2 = P .

Lemma 2.29. Let V and W be Hilbert spaces and let T : V → W be a bounded
operator.
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(1) Then T is an isometry if and only if 〈Tx, Ty〉 = 〈x, y〉 for all x, y ∈ V , and
this if and only if T ∗T = 1.

(2) In that case, TT ∗ is the orthogonal projection onto the closed linear subspace
im(T ).

(3) T is an isometric isomorphism if and only if T ∗T = 1 and TT ∗ = 1.

Definition 2.30. A unitary operator on a Hilbert space V is an element T ∈
L(V, V ) with T ∗T = TT ∗ = 1; in other words, an isometric isomorphism V → V .

Proof. (1) If T ∗T = 1, then

‖Tv‖2 = 〈Tv, Tv〉 = 〈T ∗Tv, v〉 = 〈v, v〉 = ‖v‖2

for all v and hence T is an isometry. If T is an isometry, we have (in the case
K = C)

〈Tv, Tw〉 =
1

4

∑
k∈Z/4

(−i)k‖T (v + ikw)‖2 =
1

4

∑
k∈Z/4

(−i)k‖v + ikw‖2 = 〈v, w〉

for all v, w by the polarization identity. Similarly in the real case. If 〈Tv, Tw〉 =
〈v, w〉 holds for all v, w, then

〈v, w〉 = 〈Tv, Tw〉 = 〈T ∗Tv,w〉

for all v, w and so T ∗T = 1.
(2) If T ∗T = 1, then (TT ∗)2 = TT ∗TT ∗ = TT ∗, and (TT ∗)∗ = (T ∗)∗T ∗ = TT ∗.

Hence TT ∗ is a projection, and by Proposition 2.17, it is the projection onto the
(closed) subspace im(TT ∗). Finally im(TT ∗) = im(T ), because

im(TT ∗) ⊂ im(T ) = im(T (T ∗T )) = im((TT ∗)T ) ⊂ im(TT ∗).

(3) if T is an isometric isomorphism, then T is bijective, and since T ∗T = 1,
we must have2 T−1 = T ∗, which implies TT ∗ = TT−1 = 1. Vice versa, if T is an
isometry with TT ∗ = 1, then 1 is the orthogonal projection onto im(T ). Hence
im(T ) = W , or T is surjective. �

2.5. Orthogonal systems.

Definition 2.31. Let V be a Hilbert space. An orthonormal system in V is a map
S → V , s 7→ vs from a set S such that

〈vs, vt〉 =

{
1 s = t

0 s 6= t

for all s, t ∈ S.

Example 2.32. Let S be a set and define δs ∈ `2(S) by δs(t) = 0 if t 6= s and
δs(s) = 1. Then S → V , s 7→ δs is an orthonormal system.

Example 2.33. Let µ be the Haar measure on S1, normalized by µ(S1) = 1. Then
the functions zn, n ∈ Z, form an orthonormal system. This follows from

〈zn, zm〉 =

∫
S1

znzmdµ =

∫
S1

zm−ndµ =

∫ 1

0

e2πi(m−n)tdt.

2This is a general fact: if f : X → Y is a bijective map of sets and g : Y → X is a map with
g ◦ f = idX , then f ◦ g = idY .
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Construction 2.34. Let V be a Hilbert space, and let (vs)s∈S be an orthonormal
system in V . Denote

W0 := span{vs|s ∈ S}
and

W := W0.

Then

(2.35) T0 : c00(S)→ V, f 7→
∑
s∈S

f(s)vs

is a linear map (the sum is finite since f has finite support). Using that (vs)s is
orthonormal, compute

‖T0f‖2 =
∑
s,t∈S
〈f(s)vs, f(t)vt〉 =

∑
s∈S
|f(s)|2〈vs, vs〉 =

∑
s∈S
|f(s)|2 = ‖f‖2`2(S).

It follows that T0 is an isometry, and by continuity, it extends to a bounded operator

T : `2(S)→ V

which is also an isometry. By definition im(T0) = W0, and by continuity, it follows
that

W0 ⊂ T (`2(S)) = T (c00(S)) ⊂ T0(c00(S)) = W0 = W.

By Lemma 1.18, im(T ) is closed, and it follows that im(T ) = W .
The bounded operator T has an adjoint

T ∗ : V → `2(S).

We know that T ∗T = 1 and TT ∗ is the orthogonal projection onto im(T ) (Lemma
2.29).

Let us compute a formula for T ∗. For x ∈ V , T ∗x is a function on S. But

(T ∗x)(s) = 〈δs, T ∗x〉`2 = 〈Tδs, x〉 = 〈vs, x〉.
Therefore T ∗ sends x ∈ V to the function

(2.36) (T ∗x)(s) = 〈vs, x〉.
Lemma 2.29 shows that TT ∗ is the orthogonal projection PW onto W , and 1−TT ∗
is the orthogonal projection PW⊥ onto W⊥. For x ∈ V , we obtain

‖x‖2 = ‖PWx‖2 + ‖PW⊥x‖2 = ‖TT ∗x‖2 + ‖PW⊥x‖2,
and because T is an isometry, this leads to

‖TT ∗x‖2+‖PW⊥x‖2 = ‖T ∗x‖2+‖PW⊥x‖2 =
∑
s∈S
|T ∗x(s)|2+‖PW⊥x‖2 =

∑
s∈S
|〈vs, x〉|2+‖PW⊥x‖2.

We have shown

(2.37) ‖x‖2 =
∑
s∈S
|〈vs, x〉|2 + ‖PW⊥x‖2.

Remark 2.38. We can write at least formally

T ∗x =
∑
s∈S
〈vs, x〉δs

and

(2.39) TT ∗x =
∑
s∈S
〈vs, x〉vs.
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One might naively think that 2.39 converges absolutely, but this is false, as one
can see by the following example.

Consider V = `2(N), and the orthonormal system {δn|n ∈ N}. In this example,
the operator T is the identity, and so is T ∗ and hence TT ∗ as well. The function
x : N→ K, x(n) = 1

n , belongs to `2(N), because
∑∞
n=1

1
n2 <∞. Moreover 〈x, δn〉 =

1
n . In this example, the formula (2.39) becomes

x =

∞∑
n=1

1

n
δn.

The right hand side does not converge absolutely because
∑∞
n=1

1
n =∞. Instead, it

converges unconditionally. This notion has been explained in §1.7.

Lemma 2.40. The following conditions on an orthonormal system (vs)s∈S with
W0,W, T as above in a Hilbert space V are equivalent.

(1) For each v ∈ V , we have ‖v‖2 =
∑
s∈S |〈vs, v〉|2.

(2) W⊥ = 0.
(3) If 〈vs, v〉 = 0 for all s ∈ S, then v = 0.
(4) The subspace W0 := span{vs|s ∈ S} ⊂ V is dense.
(5) The maps T : `2(S)→ V and T ∗ : V → `2(S) are isometric isomorphisms.

Such orthonormal systems are called complete. In particular, if (vs)s∈S is a com-
plete orthonormal system, then V is isometrically isomorphic to `2(S).

Proof. Let W := W0. 1⇔ 2: by (2.37), (4) is equivalent to PW⊥ = 0, which is the
same as W⊥ = 0.

2 ⇔ 3: By linearity, (3) is equivalent to W⊥0 = 0, and W⊥0 = W⊥ holds as
W = W0.

2 ⇔ 4: since PW⊥ = 1 − TT ∗ (2) is equivalent to TT ∗ = 1, which is equivalent
to T and T ∗ being isometric isomorphisms. �

Theorem 2.41. Let V be a Hilbert space. Then V admits a complete orthonormal
system. Hence V is isometrically isomorphic to `2(S), for some set S.

Proof. This is an argument with Zorn’s Lemma. Let Z be the set of all orthonormal
subsets S ⊂ V . We give Z the partial ordering S ≤ T :⇔ S ⊂ T . Since ∅ ∈ Z,
Z is nonempty. Let C ⊂ Z be a chain. Then

⋃
S∈C S is an orthonormal system,

as one checks easily. Therefore, we can apply Zorn’s Lemma and find a maximal
orthonormal system S ⊂ V .

If W := span(S) 6= V , then W⊥ 6= {0} by Corollary 2.19. Pick a unit vector
v ∈W⊥. Then S ∪ {v} is an orthonormal system, contradicting the maximality of
S. Therefore span(S) ⊂ V is dense, and S is complete. The last sentence follows
immediately. �

Proposition 2.42. Let V be a Hilbert space. The following are equivalent:

(1) V is separable (i.e. it has a countable subset),
(2) V has a countable complete orthonormal system.

Proof. 2⇒ 1 is clear: the set of all finitely supported functions N→ Q is a count-
able dense subset of `2(N), and under hypothesis (2), V is isometrically isomorphic
to `2(N).
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1⇒ 2 is less easy. Let {vn|n ∈ N} ⊂ V be dense, and putWn := span{v1, . . . , vn}.
Then Wn has dimension at most n, and

⋃∞
n=1Wn ⊂ V is a dense subspace of count-

able dimension. Let V1, V2, . . . be a subsequence of the sequence W1,W2, . . . so that
dim(Vn) = n for all n. Put L1 := V1 and let Ln = V ⊥n−1 ∩ Vn. The space Ln is
1-dimensional (there must be a unit vector in Vn orthogonal to Vn−1), and Ln⊥Lm
when m 6= n. Pick wn ∈ Ln of norm 1. Then {wn|n ∈ N} is an orthonormal
system, and as (w1, . . . , wn) is a basis of Vn, it follows that span({wn|n ∈ N}) is
dense in V . �

2.6. Example: Fourier series. Let us look at an important example. Let µ be
the Haar measure on S1, normalized so that µ(S1) = 1. The functions χn(z) := zn

form an orthonormal system (χn)n∈Z inL2(S1;C). For f ∈ L2(S1), the scalar
product 〈χn, f〉 is

f̂(n) := 〈χn, f〉 =

∫
S1

χnfdµ =

∫
S1

χ−nfdµ =

∫ 1

0

e−2πintf(e2πit)dt,

which is also known as the Fourier coefficient of f . The series∑
n∈N

f̂(n)χn

is the Fourier series of f .

Theorem 2.43. The orthonormal system (χn)n∈Z in L2(S1) is complete.

Proof. Since the Haar measure µ is regular, C(S1) ⊂ L2(S1) is dense. It follows
from the Stone-Weierstrass theorem B.72 that

W0 = span{χn|n ∈ Z} ⊂ C(S1)

is dense (in the C0-norm). Because for f ∈ C(S1), we have ‖f‖2L2 ≤ ‖f‖C0 , it
follows that W0 ⊂ L2(S1) is dense. �

Remark 2.44. The density of W0 in C(S1) can be shown by more direct means,
without recourse to the general Stone-Weierstrass theorem. To this end, let

Snf :=

n∑
k=−n

f̂(n)χn

be the nth partial sum of its Fourier series. It is not true that the Fourier series of
a continuous function f converges to f . It is a theorem by Fejer, however, that the
sequence of arithmetic means

Tnf :=
1

n+ 1

n∑
k=0

Snf

converges uniformly to f , for each continuous function f . It follows that W0 ⊂
C(S1) is dense (and this can be used to prove the general Stone–Weierstrass theo-
rem.

Corollary 2.45. For f ∈ L2(S1), the partial sums
n∑

k=−n

f̂(k)zk

of the Fourier series of f converge in the L2-norm to f .
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2.7. Notes. Everything in this chapter is standard material. I recommend [8] for
its elegance. The details of the treatment of orthonormal systems are as in [10].
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3. Baire’s category theorem and its consequences

The main result of this section is the open mapping theorem. For the time being,
let us only state a special case, which is easily digested.

Theorem 3.1. Let V,W be Banach spaces, and let F : V →W be a bounded linear
operator which is bijective. Then the inverse F−1 : W → V is bounded.

Some remarks are in order. It is clear that F−1 is a linear map. The important
part is the continuity of F−1, and as we shall see, the completeness of both, V and
W , is an essential hypothesis.

One can compare this to an analogous result in general topology. A continuous
bijection f : X → Y of topological spaces is usually not a homeomorphism. On
the other hand, if X and Y are compact Hausdorff spaces, then any continuous
bijection f : X → Y is automatically a homeomorphism, which is a tremendously
useful result.

3.1. Baire’s Theorem. The proof of Theorem 3.1 relies on a fundamental prop-
erty of complete metric spaces, which is captured by the following result.

Theorem 3.2 (Baire category theorem). Let X be a complete metric space and let
Un ⊂ X, n ∈ N, be open and dense. Then

⋂∞
n=1 Un ⊂ X is dense.

Let us not dwell on the question why this result is called the Baire category
theorem. It is essential that X is required to be complete: Q is countable, and
for each q ∈ Q, Q \ {q} ⊂ Q is open and dense, but the countable intersection⋂
q∈Q Q \ {q} is empty.

Proof. A subset S ⊂ X is dense iff for each open and nonempty U0 ⊂ X, the
intersection S ∩ U0 is nonempty.

So let U0 ⊂ X be open and not empty. The goal is to prove that U0∩
⋂∞
n=1 Un 6=

∅.
Since U1 is dense, U0 ∩ U1 is not empty, and we pick x1 ∈ U0 ∩ U1. As U0 ∩ U1

is open, there is r1 > 0 such that B̄r1(x1) ⊂ U0 ∩ U1.
Since U2 is dense, Br1(x1)∩U2 is not empty, and we may pick x2 ∈ Br1(x1)∩U2,

and by openness a number 0 < r2 ≤ 1
2r1 such that B̄r2(x2) ⊂ Br1(x1) ∩ U2.

Continuing in this fashion, we obtain a sequence xn ∈ X and a sequence rn → 0
of positive numbers such that

B̄rn(xn) ⊂ B̄rn−1(xn−1) ∩ Un
for all n ≥ 0. For m ≥ n, we have d(xm, xn) ≤ rn, so that xn is a Cauchy sequence.
As X is complete, the sequence converges to some x ∈ X.

For each n and m ≥ n, we have xm ∈ B̄rn(xn), and so x = limm→∞ ∈ B̄rn(xn)
for all n ≥ 1. Therefore x ∈ Un for all n ≥ 0, and hence x ∈ U0 ∩

⋂∞
n=1 Un, so in

particular U0 ∩
⋂∞
n=1 Un 6= ∅. �

Corollary 3.3. Let X 6= ∅ be a complete metric space, and let An ⊂ X, n ≥ 1,
be closed subsets such that

⋃∞
n=1An = X. Then at least one An has nonempty

interior.

Proof. If the interior of each An is empty, the open sets Un := Acn are all dense and
hence ∅ 6=

⋂∞
n=1 Un = (

⋃∞
n=1An)c, a contradiction. �
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3.2. The open mapping theorem.

Definition 3.4. Let X and Y be topological spaces. A map f : X → Y is open if
f(U) ⊂ Y is open whenever U ⊂ X is open.

It is clear that a continuous and open bijective map is a homeomorphism. Hence
Theorem 3.1 is a special case of the following result.

Theorem 3.5 (Open mapping theorem). Let V,W be Banach spaces and let F :
V →W be a bounded linear operator. The following are equivalent:

(1) F is surjective.
(2) There is C ≥ 0 such that for each w ∈W , there is v ∈ V with ‖v‖ ≤ C‖w‖

and F (v) = w.
(3) F is an open map, i.e. if U ⊂ V is open, then so is F (U).

The implication 2⇒ 1 is completely trivial, but we shall show 1⇒ 2⇒ 3⇒ 1.
The difficult and interesting implication is 1⇒ 2.

Proof of the easy implications. 2⇒ 3: the hypothesis (2) means that

B̄W (0, r) ⊂ F (B̄V (0, Cr))

for each r > 0. Let U ⊂ V be open and w ∈ F (U). Pick v ∈ U with F (v) = w and
ε > 0 such that B̄V (v, ε) ⊂ U . It follows that

B̄W (w,
ε

C
) = w + B̄W (0,

ε

C
) ⊂ w + F (B̄V (0, ε)) = F (B̄V (v, ε)) ⊂ F (U).

So F (U) is a neighborhood of w, and hence F (U) is open.
3⇒ 1: Since F (V ) ⊂ W is an open neighborhood of 0, there is r > 0 such that

B̄W (0, r) ⊂ F (V ). For w ∈W , it follows that there is v ∈ V with

rw

‖w‖
= F (v)

and so

w =
‖w‖
r

rw

‖w‖
= F (

‖w‖
r
v).

�

For the implication 1 ⇒ 2, we have to use the completeness of both V and W .
The first step uses the completeness of W through the Baire category theorem.

Lemma 3.6. Let F : V →W be a surjective bounded linear operator from a normed
space to a Banach space and q ∈ (0, 1). Then there is a > 0 such that for each
w ∈W , there is v ∈ V with

‖v‖ ≤ a‖w‖
and

‖w − F (v)‖ ≤ q‖w‖.

Proof. For n ∈ N, the set

An := F (B̄V (0, n)) ⊂W
is closed and since F is surjective, we have

∞⋃
n=1

An = W.
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By the Baire category theorem, there is n ∈ N such that An contains a ball, say

B̄W (v, r) ⊂ An.

Then B̄W (−v, r) ⊂ An and since An is convex (why?), we conclude that

B̄W (0, r) ⊂ An.

Let a := n
r . For R > 0 arbitrary, it follows that

B̄W (0, R) =
R

r
B̄W (0, r) ⊂ F (B̄V (0, aR)),

which implies that for w ∈W , we have

w ∈ F (B̄V (0, a‖w‖)).

This is what we had to prove. �

Together with the next lemma, Lemma 3.6 implies the implication 1⇒ 2 of the
open mapping theorem. The following Lemma appeared in the course of the proof
of the Tietze extension theorem.

Lemma 3.7. Let F : V → W be a bounded linear operator from a Banach space
to a normed space. Assume that there is q ∈ (0, 1) and a > 0 such that for each
w ∈W , there is v ∈ V with

‖v‖ ≤ a‖w‖
and

‖F (v)− w‖ ≤ q‖w‖.
Then for each w ∈W , there is v ∈ V with F (v) = w and

‖v‖ ≤ a

1− q
‖w‖.

Proof. We construct elements vn ∈ V , n ∈ N0, such that

‖vn‖ ≤ aqn‖w‖

and

‖w − F (v0 + . . .+ vn)‖ ≤ qn+1‖w‖.
The existence of v0 is required in the hypothesis of the Lemma. Suppose that
v0, . . . , vn−1 with the above two properties have been constructed. Let wn :=
w − F (v0 + . . .+ vn−1); we have

‖wn‖ ≤ qn‖w‖.

By hypothesis, there is vn ∈ V with

‖vn‖ ≤ a‖wn‖ = aqn‖w‖

and

‖F (vn)− wn‖ ≤ q‖wn‖ ≤ qn+1‖w‖.
Then

‖w−F (v0+. . .+vn)‖ = ‖w−F (v0+. . .+vn−1)−F (vn)‖ = ‖wn−F (vn)‖ ≤ qn+1‖w‖.

The series
∑∞
n=0 vn converges in V to, say v, and since F is continuous, we have

Fv = w. (It is in the last sentence of the proof that we are using that F is
continuous). �
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3.3. Consequences of the open mapping theorem. We want to discuss the
most important consequences of the open mapping theorem by analogy with general
topology. We already alluded to the first of those analogies:

Theorem 3.8. (1) Let f : X → Y be a continuous bijective map between
compact Hausdorff spaces. Then the inverse f−1 is continuous.

(2) Let F : V →W be a bijective continuous linear map between Banach spaces.
Then the inverse F−1 is continuous.

The first part is well-known from general topology, and the second one is just
Theorem 3.1. The next analogy is the closed graph theorem.

If f : X → Y is a continuous map of topological spaces and Y is Hausdorff, then
the graph gra(f) := {(x, f(x)) ∈ X × Y |x ∈ X} ⊂ X × Y is a closed subset.

Proof: If (x, y) 6∈ gra(f), pick disjoint open neighborhoods y ∈ V1 ⊂ Y ; f(x) ∈
V0 ⊂ Y , and let x ∈ U ⊂ X an open neighborhood such that f(U) ⊂ V0. Then
U × V1 ⊂ X × Y is a neighborhood disjoint from gra(f).

The converse only true under some restrictions, as the following example shows:
X = [0, 1], Y = R, f(x) = 1

x for x > 0 and f(0) = 0 has closed graph, but is not
continuous.

Theorem 3.9 (Closed graph theorem). (1) Let f : X → Y be a map of com-
pact Hausdorff spaces. Then f is continuous if and only if the graph
gra(f) ⊂ X × Y is closed.

(2) Let F : V → W be a linear map of Banach spaces. Then F is continuous
if and only if the graph gra(F ) ⊂ V ×W is closed.

Proof. For both statements, the “only if” part is proven above.
(1): Let prX : gra(f)→ X and prY : gra(f)→ Y be the two projections. These

are both continuous, prX is bijective, and the composition

X
pr−1
X→ gra(f)

prY→ Y

is f . In order to prove the continuity, it suffices to show that the continuous
bijection prX : gra(f) → X is a homeomorphism. But gra(f) ⊂ X × Y is closed,
hence compact and Hausdorff, and so by Theorem 3.8 a homeomorphism.

(2): replace symbols X  V , Y  W , f  F , add the adjective “linear”
whereever it makes sense and replace “compact Hausdorff space” by “Banach space”
in the above argument. �

3.4. Limitations of the open mapping theorem. We show that the assumption
that both, V and W , are complete, is necessary for the open mapping theorem to
hold. One of these is easy:

Example 3.10 (Completeness of the target is necessary for the open mapping
theorem). On the vector space C1([0, 1]) of all C1-functions on [0, 1], we have the
two norms

‖f‖C0 := max
x
|f(x)|

and
‖f‖C1 := max

x
|f(x)|+ |f ′(x)|.

Let V = (C1([0, 1]), ‖ ‖C1) and W = (C1([0, 1]), ‖ ‖C0). Then id : V → W is
bounded, and id : W → V is not bounded, since ‖einx‖C0 = 1 and ‖einx‖C1

= n+1.
Here V is complete, while W is not complete.
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The completeness of the source is also necessary, but we have to dig a little
deeper to see that. We first show:

Proposition 3.11. Let V be an infinite-dimensional normed vector space. Then
there exists a discontinuous linear map F : V → K.

Proof. The vector space V has a basis B in the sense of linear algebra: each v ∈ V
is a unique finite linear combination of elements of B. For finite-dimensional vector
spaces, this is done in Linear Algebra I, for infinite-dimensional spaces, one needs
Zorn’s lemma (Theorem A.4).

Since V is infinite-dimensional, there is a countable subset {vn|n ∈ N} ⊂ B. We
define F : V → K by prescribing it on B. For w ∈ B, we define

F (w) :=

{
n‖vn‖ w = vn

0 w ∈ B \ {vn|n ∈ N}

and extend F linearly to all of V . Since |F (vn)| = n‖vn‖, F is not continuous. �

Example 3.12 (Completeness of the source is necessary for the open mapping
theorem). This is harder to come by. Let W be an infinite dimensional Banach
space. By Proposition 3.11, there is a discontinuous linear F : W → K.

Now consider V := gra(F ) ⊂ W ⊕ K. By the closed graph theorem, V is not
closed and hence V is not complete. The projection V →W is bounded with norm
at most 1 and it is bijective, but its inverse is not continuous, since otherwise F
would be continuous.

3.5. The Banach-Steinhaus Theorem. There is another important result on
Banach spaces which is proved by the Baire category theorem. I admit that it has
less appeal than the open mapping theorem.

Theorem 3.13 (Principle of uniform boundedness). Let V be a Banach space and
let (Wi, fi)i∈I be a family of normed vector spaces together with bounded linear maps
fi : V →Wi. Suppose that

sup
i∈I
‖fi(v)‖ <∞

for each v ∈ V . Then
sup
i∈I
‖fi‖ <∞.

Proof. The set
An := {v ∈ V |∀i ∈ I : ‖fi(v)‖ ≤ n} ⊂ V

is closed, and
∞⋃
n=1

An = V

by our assumption. Corollary 3.3 implies that there exists n, y ∈ V and r > 0 such
that

B̄r(y) ⊂ An.
In other words:

z ∈ V, ‖z − y‖ ≤ r ⇒ ∀i ∈ I : ‖fi(z)‖ ≤ n.
For v ∈ V with ‖v‖ ≤ 1 and i ∈ I, we therefore have

‖fi(v)‖ =
1

r
‖fi(rv)‖ =

1

r
(‖fi(rv+y)−fi(y)‖) ≤ 1

r
‖fi(rv+y)‖+1

r
‖fi(y)‖ ≤ n

r
+

1

r
sup
i∈I
‖fi(y)‖.
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It follows that

‖fi‖ ≤
n

r
+

1

r
sup
i∈I
‖fi(y)‖.

�

Theorem 3.14 (Banach-Steinhaus Theorem). Let V be a Banach space, let W be
a normed space, and let fn : V → W be a sequence of bounded operators. Assume
that the limit

f(v) := lim
n→∞

fn(v) ∈W
exists for all v ∈ V . Then f is linear, bounded, and

‖f‖ ≤ lim inf
n
‖fn‖ ≤ sup

n
‖fn‖ <∞.

Proof. It is clear that f is linear and that lim infn ‖fn‖ ≤ supn ‖fn‖, and it is
immediate from the principle of uniform boundedness that supn ‖fn‖ < ∞. For
each v with ‖v‖ ≤ 1, we have

‖f(v)‖ = lim
n
‖fn(v)‖ ≤ lim inf

n
‖fn‖,

and so the claim follows. �

Remark 3.15. It is very easy to give examples of discontinuous linear functionals
V → K when V is not complete (for example, equip c00(N) with the ‖ ‖c0-norm.
Then {δn} is a basis for c00(N), and the functional F (δn) := n is not continuous).
It is much more difficult to construct discontinuous linear functionals on Banach
spaces, and Theorem 3.14 partially explains why. It rules out the strategy to con-
struct a discontinuous F , namely as pointwise limit of continuous functionals.

3.6. Notes. Everything in this chapter is standard material which can be found
in any textbook on functional analysis. There is a slightly alternative proof of the
open mapping theorem which uses what is called Zabreiko’s lemma; in my opinion
this alternative is not very elegant.

The parallel between the proof of the open mapping theorem and the Tietze
extension theorem was noted by Grabiner [5].
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4. The Hahn-Banach theorem and some of its applications

4.1. The theorem. Let V be a normed space, which is not the zero vector space.
Is the dual space V ′ nontrivial? Equivalently, does there exist a nonzero bounded
linear functional F : V → K? This is not at all obvious to answer (if you think
this should be obvious, think about the quotient `∞(S)/c0(S)). The Hahn-Banach
theorem gives a positive answer. In fact, “Hahn-Banach Theorem” is a name for
a whole collection of results. All those results concern the existence of some linear
functional F : V → K on a K-vector space V . The first version we shall learn is as
follows:

Theorem 4.1 (Hahn-Banach Theorem for normed spaces). Let V be a normed
K-vector space, let W ⊂ V be a linear subspace, and let F : W → K be linear and
bounded. Then there exists a bounded linear functional G : V → K with ‖G‖ = ‖F‖
and G|W = F .

Before we study the (nontrivial) proof, let us record some important conse-
quences.

Corollary 4.2. Let V be a normed space and let v ∈ V be a vector. Then there is
a bounded linear functional F : V → K with F (v) = ‖v‖ and ‖F‖ ≤ 1 (if v 6= 0,
the latter can be improved to say ‖F‖ = 1).

Proof. Let W := span{v}. We define G : W → K by G(av) = a‖v‖. Then G is
bounded with norm ≤ 1 because |G(av)| = |a|‖v‖ = ‖av‖. By Theorem 4.1, we can
extend G to F : V → K with ‖F‖ = ‖G‖. �

By definition of the operator norm, we have for F ∈ V ′

‖F‖ = sup
v∈V,‖v‖≤1

|F (v)|.

The corollary shows that we also have

(4.3) ‖v‖ = sup
F∈V ′,‖F‖≤1

|F (v)|

(and the maximum is attained).
For each normed space V , we can form the double dual V ′′, the space of all

bounded linear functionals on V ′. There is a canonical map

ιV : V → V ′′, ι(v)(F ) := F (v).

Corollary 4.4. For each normed vector space V , the map ιV : V → V ′′ is an
isometry.

Proof. Let v ∈ V . Then

‖ι(v)‖ = sup
F∈V ′,‖F‖≤1

|ι(v)(F )| = sup
F∈V ′,‖F‖≤1

|F (v)| = ‖v‖.

In the last equation, we used the Hahn-Banach theorem through (4.3). �

Since the double dual is automatically complete, we obtain a different proof of
the existence of a completion.

Alternative proof of Theorem 1.25. Let W ⊂ V ′′ be the closure of the image of
ιV : V → V ′′. Since V ′′ is complete, so is W , and im(ιV ) ⊂ W is dense. Use
Corollary 4.4. �
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Another application of the Hahn-Banach Theorem is a proof that all norms on
finite-dimensional vector spaces are equivalent.

Lemma 4.5. Let V be a finite-dimensional Banach space. Then each linear func-
tional V → K is continuous.

Proof. First note that the topological dual space V ′ is a linear subspace of the
algebraic dual Hom(V ;R). Therefore

dim(V ′) ≤ dim(Hom(V ;R)) = dim(V ),

the latter equation follows from Linear Algebra I. On the other hand, Corollary 4.4
proves

dim(V ) ≤ dim(V ′′) ≤ dim(Hom(V ′;R)) = dim(V ′).

Hence dim(V ′) = dim(HomR(V ;R)), and therefore V ′ = Hom(V ;R), so every
element of Hom(V ;R) is bounded, as claimed. �

Proof of Theorem 1.12. Let V be a finite-dimensional normed space. Pick a basis
(v1, . . . , vn) of V , which gives a linear isomorphism

F : Rn → V, F (ei) := vi

with inverse

G : V → Rn.
Equip Rn with the norm ‖ ‖`∞ . The map F is continuous, since

‖F (
∑
i

aiei)‖ = ‖
∑
i

aiFei‖ ≤
∑
i

|ai|‖vi‖ ≤ (

n∑
j=1

‖vj‖) max
i
|ai| =: C max

i
|ai| = C‖

∑
i

aiei‖`∞ .

The map G can be written as G = (G1, . . . , Gn), where Gi : V → R is bounded by
Lemma 4.5. It follows that

‖G(v)‖`∞ = max
j
|Gj(v)| ≤ (max

j
‖Gj‖)‖v‖,

so that G is continuous. This proves that F and G are isomorphisms of normed
spaces, no matter what norm on V is chosen. The claim follows. �

Definition 4.6. If V,W are normed spaces and T : V →W is a bounded operator,
we define the dual operator by

T ′ : W ′ → V ′, T (F )(v) := F (Tv)

for F ∈W ′.

For example, let V,W be Hilbert spaces, and recall the antilinear isometries
ΛV : V → V ′ and ΛW : W →W ′. Then

F ∗ = Λ−1
V F ′ΛW

(in linear algebra, this formula is often taken as the definition of the adjoint).
We can also form the double dual T ′′ : V ′′ →W ′′.

Proposition 4.7. Let V,W,U be normed spaces and let G : U → V , F : V → W
be bounded. Then

(1) ‖F ′‖ = ‖F‖,
(2) (FG)′ = G′F ′,
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(3) the diagram

V
F //

ιV
��

W

ιW
��

V ′′
F ′′ // W ′′

commutes.
(4) If F is an isomorphism, then so is F ′. The converse holds when V,W are

complete.

Proof. For L ∈W ′, we have

‖F ′L‖ = sup
v∈V,‖v‖≤1

|F ′(L)(v)| = sup
v∈V,‖v‖≤1

|L(Fv)| ≤ ‖F‖‖L‖

and so ‖F ′‖ ≤ ‖F‖. For the reverse inequality, let ε > 0 and choose v ∈ V with
‖v‖ ≤ 1 and ‖Fv‖ ≥ ‖F‖− ε. By Corollary, 4.2, there is L ∈W ′ with ‖L‖ ≤ 1 and
|L(Fv)| = ‖Fv‖. Because

‖F‖ − ε ≤ ‖Fv‖ = |L(Fv)| = |(F ′L)(v)| ≤ ‖F ′L‖‖v‖ ≤ ‖F ′‖‖L‖‖v‖ ≤ ‖F ′‖,

we obtain ‖F‖ − ε ≤ ‖F ′‖ for each ε > 0 and hence ‖F‖ ≤ ‖F ′‖.
The equation (FG)′ = G′F ′ is trivial. The commutativity of the diagram is also

easy: for v ∈ V and L ∈W ′, we have

T ′′(ιV (v))(L) = (ιV (v))(T ′L) = (T ′L)(v) = L(Tv)

and

(ιW (Tv))(L) = L(Tv).

It is also clear that F ′ is an isomorphism if F is. If F ′ is an isomorphism, then so
is F ′′. There is c > 0 such that ‖F ′′ϕ‖ ≥ c‖ϕ‖ for each ϕ ∈ V ′′. Since ιV and ιW
are isometries, we get for each v ∈ V the estimate

‖Fv‖ = ‖ιWFv‖ = ‖F ′′ιV v‖ ≥ c‖ιV v‖ = c‖v‖.

Hence F is bounded away from 0 and is therefore injective with closed image. If
im(F ) 6= W , we get, by Lemma 4.8 below a linear functional L ∈W ′ with ‖L‖ = 1
and F ′(L) = L ◦ F = 0, which is impossible since F ′ is injective. Therefore F is explain why

bijective and an isomorphism by the open mapping theorem (the use of the open
mapping theorem was not essential). �

Lemma 4.8. Let V be a normed space and let W ⊂ V be a closed linear subspace,
W 6= V . Then there is L ∈ V ′ with ‖L‖ = 1 and L|W = 0.

Proof. Let π : V → V/W be the quotient map. The quotient V/W is a normed
space, and V/W 6= 0. Hence by the Hahn-Banach theorem or rather Corollary
4.2, there is F ∈ (V/W )′ with ‖F‖ = 1. Then L := F ◦ π is the desired linear
functional. �

4.2. The proof of the Hahn-Banach Theorem. We already said that Theorem
4.1 is just one of several results with the name “Hahn-Banach Theorem”. We prove
a more general version, which implies Theorem 4.1, as well as the other Hahn-
Banach Theorems.
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Definition 4.9. Let V be a R-vector space. A function p : V → R is sublinear if

p(av) = ap(v)

for all a > 0 and v ∈ V and

p(u+ v) ≤ p(u) + p(v)

for all u, v ∈ V .

For example, a seminorm is sublinear, and an R-linear map is also sublinear.

Theorem 4.10 (Hahn-Banach Theorem). Let V be an R-vector space and let p :
V → R be sublinear. Let W ⊂ V be a linear subspace and let f : W → R be linear
such that f(w) ≤ p(w) for all w ∈ W . Then there exists a linear g : V → R such
that g|W = f and such that g(v) ≤ p(v) for all v ∈ V .

Lemma 4.11. Theorem 4.10 holds when dim(V/W ) = 1.

Proof. Let v ∈ V \W . Then each element of V can be written uniquely as w + tv,
w ∈W and t ∈ R. For a ∈ R fixed, the map

g(w + tv) = f(w) + ta

is an extension of f to a linear map on V . We claim that we can pick a such that
g(x) ≤ p(x) for all x ∈ V . For x, y ∈W , we estimate

f(x) + f(y) = f(x+ y) ≤ p(x+ y) = p((x+ v) + (y − v)) ≤ p(x+ v) + p(y − v).

It follows that
f(y)− p(y − v) ≤ p(x+ v)− f(x)

for all x, y ∈W and hence that

A := sup
y∈W

(f(y)− p(y − v)) ≤ inf
x∈W

(p(x+ v)− f(x)) =: B,

and we pick a ∈ R such that
A ≤ a ≤ B.

For w ∈W and t > 0, we have

g(w + tv) = f(w) + ta ≤ f(w) + tB ≤ f(w) + t(p(
w

t
+ v)− f(

w

t
)) =

= tp(
w

t
+ v) = p(w + tv),

and

g(w − tv) = f(w)− ta ≤ f(w)− tA ≤ f(w)− t(f(
w

t
)− p(w

t
− v)) =

= tp(
w

t
− v) = p(w − tv). �

Proof of Theorem 4.10. Let X be the set of all pairs (U, g), where U ⊂ V is a linear
subspace containing W , and g : U → R is linear with g|W = f , and g(x) ≤ p(x) for
all x ∈ U . We give X the partial order

(U, g) ≤ (U ′, g′) :⇔ U ⊂ U ′, g′|U = g.

The set X is nonempty, since (W, f) ∈ X. If C ⊂ X is a chain, then X := ∪(U,g)∈CU
is a linear subspace of V , the map h = ∪(U,g)∈Cg : X → R is well-defined and linear,
and h(x) ≤ p(x) for all x ∈ X. Hence the hypotheses of Zorn’s lemma are satisfied,
and so there exists a maximal element (U, g) ∈ X. If U 6= V , pick v ∈ V \ U and
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let X := span(U ∪ {v}). By Lemma 4.11, there is h : X → R with h|U = g and
h ≤ p. This contradicts the maximality of (U, g), and so U = V , and the theorem
is proven. �

Proof of Theorem 4.1. There is not much left to be proven if K = R. The map
p(x) = ‖f‖‖x‖ is sublinear, and we have f(x) ≤ |f(x)| ≤ p(x) for x ∈ W . By the
Hahn-Banach Theorem, there is a linear map g : V → R with g(x) ≤ ‖f‖‖x‖ for
all x ∈ V . If g(x) ≥ 0, we get

|g(x)| = g(x) ≤ ‖f‖‖x‖,
and if g(x) ≤ 0, we get

|g(x)| = −g(x) = g(−x) ≤ ‖f‖‖ − x‖,
so that ‖g‖ ≤ ‖f‖.

If K = C, we have to do a little more work and need a Lemma. �

Lemma 4.12. Let V be a complex normed space and let VR denote the underlying
real normed space. Then the map

ψ : LC(V ;C)→ LR(VR;R); f 7→ <(f)

is bijective and norm-preserving.

Proof. For h ∈ LR(VR;R), we put

g(x) := h(x)− ih(ix) ∈ C.

The functional g is C-linear because

g(ix)− ig(x) = h(ix)− ih(i2x)− ih(x)− h(ix) = 0,

and clearly bounded. It is clear that <(g(x)) = h(x), and if h = <(f) for f ∈
LC(V ;C), we have

g(x) = <(f(x))− i<(f(ix)) = <(f(x)) + i<(−if(x)) = <(f(x)) + i=(f(x)) = f(x).

In other words,

ϕ : LR(VR;R)→ LC(V ;C); ϕ(h)(x) := h(x)− ih(ix)

is the inverse to ψ.
The map ψ is norm-preserving: it is clear that |<(f(x))| ≤ |f(x)| ≤ ‖f‖‖x‖, so

that ‖<(f)‖ ≤ ‖f‖. For the reverse inequality, let ε > 0 and pick x ∈ V , ‖x‖ ≤ 1
so that |f(x)| ≥ ‖f‖ − ε. There is z ∈ S1 so that f(zx) > 0. Hence

‖Re(f)‖ ≥ <(f(zx)) = f(zx) = |f(x)| ≥ ‖f‖ − ε,
and as ε was arbitrary, we have

‖Re(f)‖ ≥ ‖f‖.
�

Proof of Theorem 4.1, complex case. Let f : W → C be C-linear and bounded. By
the real version of the Theorem, there is a functional h : V → R with h|W = <(f)
and ‖h‖ = ‖<(f)‖ = ‖f‖ (here we used Lemma 4.12 for the first time). By Lemma
4.12 again, there is a (unique) g : V → C with <(g) = h, and ‖g‖ = ‖h‖ = ‖f‖.

By construction, we have

<(g|W ) = <(g)|W = h|W = <(f)
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and since f and g are both C-linear, Lemma 4.12 again implies g|W = f , as desired.
�

4.3. Generalized limits. Recall that

Φ : `1(S)→ `∞(S)′, Φ(f)(g) :=
∑
s∈S

f(s)g(s)

is an isometry. With the help of the Hahn-Banach theorem, we now show that Φ
is not surjective.

Definition 4.13. Let S be an infinite set. Let c(S) ⊂ `∞(S) be the subspace of all
f ∈ `∞(S) such that there is lim f ∈ K such that for all ε > 0, the set of all s with
|f(s)− lim f | ≤ ε is finite. It is easy to check that c(S) is a closed linear subspace,
that lim f is uniquely determined by f , that

lim : c(S)→ K
is a functional with ‖ lim ‖ = 1 and that c0(S) = ker(lim).

For example, c(N) is the space of all convergent sequences, and lim f = limn→∞ f(n)
is the ordinary limit.

Definition 4.14. Let S be an infinite set. A generalized limit is a linear functional
L : `∞(S)→ K such that ‖L‖ = 1 and L|c(S) = lim.

The Hahn-Banach theorem proves that generalized limit functionals exist.

Lemma 4.15. Let S be an infinite set and let L : `∞(S) → K be a generalized
limit. Then L does not lie in the image of Φ : `1(S) → `∞(S)′. Hence Φ is not
surjective.

Proof. Assume that g ∈ `1(S) is such that L = Φ(g) is a generalized limit. Since L
is a generalized limit, we have c0(S) = ker(lim) ⊂ ker(L). Hence for each f ∈ c0(S),
we must have

0 = L(f) = Φ(g)(f) =
∑
s∈S

g(s)f(s).

Inserting f = δs shows g(s) = 0, hence g = 0, hence L = 0, which is absurd, as
L(1) = 1. �

Let us now turn to the case S = N. The ordinary limit

lim : c(N)→ K
has two additional properties (besides lim(1) = 1 and ‖ lim ‖ = 1): It is an algebra
homomorphism:

(4.16) lim(fg) = lim(f) lim(g),

and it is translation-invariant. For the latter, let T : `∞(N)→ `∞(N) be the map

Tf(n) := f(n+ 1).

This is clearly a bounded operator which maps c(N) to itself. Then

(4.17) lim(Tf) = lim(f)

for each f ∈ c(N) (this boils down to a statement about convergence which so utterly
trivial that it is not even mentioned in introductory textbooks on Analysis). One
can prove that lim is the uniquely linear map c(N) → K which satisfies (4.16),
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(4.17) and lim(1) = 1. One might wish to have a generalized limit which is both,
an algebra homomorphism and translation-invariant. This, however, is impossible:

Lemma 4.18. There is no algebra homomorphism L : `∞(N) → K which is
translation-invariant.

Proof. Let f = χ2N ∈ `∞(N). Then f + Tf = 1 and f · Tf = 0. If L : `∞(N) were
a translation-invariant algebra homomorphism, then

0 = L(f · Tf) = L(f)L(Tf) = L(f)2

enforces L(f) = 0, and

1 = L(1) = L(f + Tf) = L(f) + L(Tf) = 2L(f)

enforces L(f) = 1
2 , a contradiction. �

It turns out that there are generalized limits which are translation-invariant,
and generalized limits which are algebra homomorphisms. Both concepts are useful
enough to get names.

Definition 4.19. A Banach limit is a generalized limit L : `∞(N) → K which is
translation invariant (LT = L). An ultralimit is a generalized limit L : `∞(S)→ K
which is an algebra homomorphism.

For the construction of ultralimits, we need more theory, but Banach limits can
be constructed now.

Proposition 4.20. There exists a Banach limit L : `∞(N)→ K.

Proof. Let M : `∞(N) → K be a generalized limit, as constructed by the Hahn-
Banach theorem. The idea is to average M appropriately to make it translation
invariant. We define S : `∞(N)→ `∞(N) by

Sf(n) :=
1

n

n∑
k=1

f(k) = (
1

n

n∑
k=1

T k−1f)(1)

and put Lf := MSf . It is clear that ‖Sf‖`∞ ≤ ‖f‖∞ and that S(1) = 1. Moreover
Sf ∈ c0(N) if f ∈ c0(N). To see this, let f ∈ c0(N) and ε > 0. There is n0 such that
|f(n)| ≤ ε for n ≥ n0. This can be rephrased by the statement that ‖Tnf‖`∞ ≤ ε
when n ≥ n0.

It follows that for n ≥ n0, we have

|Sf(n)| ≤ 1

n

m0∑
k=1

|T k−1f(1)|+ 1

n

n∑
k=m0+1

|T k−1f(1)| ≤ 1

n

m0∑
k=1

|T k−1f(1)|+n−m0

n
ε→ 0,

so that Sf ∈ c0(N). It follows that Lf = MSf = lim(f) when f ∈ c(N).
To prove that L is translation-invariant, let f ∈ `∞(N) and observe that

STf(n)− Sf(n) =
1

n

n∑
k=1

T kf(1)− 1

n

n∑
k=1

T k−1f(1) =

=
1

n

n∑
k=1

T kf(1)− 1

n

n−1∑
k=0

T kf(1) =
1

n
(Tnf(1)− f(1)) =

1

n
(f(n+ 1)− f(1)).

Therefore

|STf(n)− Sf(n)| ≤ 2

n
‖f‖`∞ .
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It follows that STf − Sf ∈ c0(N) for all f ∈ `∞(N). Therefore

M(STf − Sf) = 0

or

LTf − Lf = 0,

as claimed. �

4.4. Reflexivity.

Definition 4.21. A Banach space V is reflexive if the natural isometry ι : V → V ′′

is surjective.

Example 4.22. Finite-dimensional Banach spaces are reflexive. This has been
proven in the course of the proof of Lemma 4.5.

Example 4.23. Hilbert spaces are reflexive. We give the details of the proof in the
real case. Let Φ : V → V ′ be the isometric isomorphism v 7→ (w 7→ 〈v, w〉) (here we
use the Riesz representation theorem of course). The dual of Φ is an isomorphism
V ′′ → V ′. The composition

V
ι→ V ′′

Φ′→ V ′

is given by the formula

(Φ′(ι(v)))(w) = (ι(v))(Φ(w)) = (Φ(w))(v) = 〈w, v〉 = 〈v, w〉 = Φ(v)(w).

Therefore Φ′ ◦ ι = Φ. As Φ and Φ′ are bijective, so is ι.
In the complex case, one can apply the same argument, with a little more care

because Φ is antilinear in that case.

Example 4.24. Let (X,µ) be a measure space and let 1 < p, q < ∞ be conjugate
exponents. The formula

Φp(f)(g) :=

∫
X

fgdµ

defines an isometry

Φp : Lq(X,µ)→ Lp(X,µ)′,

as we saw in Corollary 1.60. Consider the composition

Lp(X,µ)
ιp→ Lp(X,µ)′′

Φ′p→ Lq(X,µ)′.

Very much as in the previous example, we compute

(Φ′p(ιp(f)))(g) = (ιp(f))(Φp(g)) = (Φp(g))(f) =

∫
X

gfdµ =

∫
X

fgdµ = Φq(f)(g),

so that

Φ′p ◦ ιp = Φq.

We have seen that Φp and Φq are isomorphisms when X is a set with the counting
measure. Therefore `p(S) is reflexive for all 1 < p < ∞. It is true that this holds
for arbitrary measure spaces, and so Lp(X,µ) is reflexive when 1 < p <∞.

Most other Banach spaces which appear “in nature” are not reflexive.
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Example 4.25. c0(S) is not reflexive unlike S is finite. Recall the isometric iso-
morphisms

Φ : `1(S)→ c0(S)′, f 7→ (g 7→
∑
s∈S

f(s)g(s))

and

Ψ : `∞(S)→ `1(S)′, f 7→ (g 7→
∑
s∈S

f(s)g(s)).

The two compositions

c0(S)
ι→ c0(S)′′

Φ′→ `1(S)′

and

c0(S) ⊂ `∞(S)
Ψ→ `1(S)′

are equal: for f ∈ c0(S) and g ∈ `1(S), compute

(Φ′(ι(f)))(g) = (ι(f))(Φ(g)) = Φ(g)(f) =
∑
s∈S

g(s)f(s) = Ψ(f)(g).

It follows that c0(S) is reflexive if and only if c0(S) = `∞(S), which happens if and
only if S is finite.

Neither `1(S) nor `∞(S) is reflexive. This follows from the previous example
and the following theorem.

Theorem 4.26. Let V be a Banach space. The following are equivalent:

(1) V is reflexive.
(2) V ′ is reflexive.

Proof. The map ιV : V → V ′′ has a dual map ι′V : V ′′′ → V ′. Look at the
composition

(4.27) V ′
ιV ′→ V ′′′

ι′V→ V ′.

For L ∈ V ′ and v ∈ V , we have by the definitions

ι′V (ιV ′(L))(v) = (ιV ′(L))(ιV v) = (ιV v)(L) = L(v).

Therefore, the composition (4.27) is the identity. Hence: ιV is an isomorphism
if and only if ι′V is an isomorphism (use Proposition 4.7). Since the composition
(4.27) is bijective, this is the case if and only if ιV ′ is an isomorphism. �

4.5. ∗-Complemented subspaces. We begin with a general definition from al-
gebra.

Definition 4.28. A sequence

V
F→W

G→ U

of linear maps between k-vector spaces is exact at W if ker(G) = im(G). A short
exact sequence of vector spaces is a sequence

0→ V
F→W

G→ U → 0

which is exact at V,W and U . (In other words, ker(G) = im(F ), F is injective and
G is surjective.
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For example, if W ⊂ V is a linear subspace, then

0→W → V → V/W → 0

is a short exact sequence.

Lemma 4.29. Let

0→W
J→ V

Q→ U → 0

be a short exact sequence of Banach spaces. Then im(J) is closed, and J : W →
im(J), as well as the the induced map V/im(J) → Uare isomorphism of Banach
spaces.

Proof. Since im(J) = ker(Q), it is closed. The induced map R : V/im(J) → U
is bounded and bijective. By Lemma 1.34, V/im(J) is complete, and so the open
mapping theorem proves that R is an isomorphism (of Banach spaces). Since im(J)
is a Banach space, and J : W → im(J) is bijective, the open mapping theorem
proves that it is an isomorphism. �

Lemma 4.30. Let

0→W
J→ V

Q→ U → 0

be a short exact sequence of Banach spaces. The the sequence

0→ U ′
Q′→ V ′

J′→W ′ → 0

is exact.

Proof. The following things are to be shown:

(1) Q′ is injective (this is general nonsense).
(2) J ′ ◦Q′ = 0, but this follows from J ′Q′ = (QJ)′ = 0.
(3) ker(J ′) ⊂ im(Q′). If F ∈ V ′ satisfies J ′(F ) = 0, then F ◦ J = 0, and by an

algebraic argument, there is a linear map G : U → K with G ◦ Q = F . G
is bounded by the open mapping theorem: there is C ≥ 0 such that for all
u ∈ U , there is v ∈ V with ‖v‖ ≤ C‖u‖ and Qv = u. It follows that

|Gu| = |GQv| = |Fv| ≤ ‖F‖‖v‖ ≤ ‖F‖C‖u‖,

as desired.
(4) J ′ is surjective: as J : W → im(J) is an isomorphism of Banach spaces,

each bounded linear functional F : W → K is of the form G ◦ J for a
bounded linear functional G : im(J)→ K, which can be extended to all of
V by the Hahn-Banach theorem.

�

Theorem 4.31. Let V be a reflexive Banach space and let W ⊂ V be a closed
subspace. Then W and V/W are reflexive.

Proof. We consider the commutative diagram

0 // W

ιW

��

// V

ιV

��

// V/W

ιV/W

��

// 0

0 // W ′′ // V ′′ // (V/W )′′ // 0.
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The rows are exact sequence. The hypothesis is that ιV is bijective, and ιW as
well as ιV/W are injective for general reasons. The 5-Lemma from elementary

homological algebra3 proves that ιW and ιV/W must be surjective as well. �

Proposition 4.32. Let

0→W
J→ V

Q→ U → 0

be a short exact sequence of Banach spaces and bounded operators. The following
are equivalent:

(1) There is a bounded operator S : U → V with QS = 1 (a “section”).
(2) There is a bounded operator R : V →W with RJ = 1 (a “retraction”).

If that is the case, the maps

Φ : W ⊕ U → V, (w, u) 7→ Jw + Su

and
Ψ : V →W ⊕ U, v 7→ (Rw,Qw)

are isomorphisms. Short exact sequences with this property are called split.

Proof. 1 ⇒ 2: if v ∈ V , then Q(v − SQv) = 0, and so by exactness v − SQv ∈
ker(Q) = im(J). Since J is injective, there is a unique w ∈W with Jw = v−SQv.
Define Rv := w. To show that RJ = 1, let x ∈W . Then Jx− SQJx = Jx, and so
RJx = x. Note moreover that

JR = 1− SQ.
It remains to prove that R is bounded. Since im(J) = ker(Q) is closed, im(J)

is complete, and J : V → im(J) is a bijective bounded operator of Banach spaces,
hence an isomorphism by the open mapping theorem, so that there is c > 0 with
‖Jw‖ ≥ c‖w‖ for all w ∈W . In the above construction of R, we therefore see that

‖Rv‖ ≤ 1

c
‖JRv‖ ≤ 1

c
(‖v‖+ ‖SQv‖) ≤ 1 + ‖SQ‖

c
‖v‖

and that R is bounded.
2 ⇒ 1: The operator 1 − JR : V → V is zero on the image im(J) because

(1 − JR)J = J − J(RJ) = J − J = 0. Hence there is a unique T : V/im(J) → V
with Tq = 1−JR, where q : V → V/im(J) is the quotient map, and T is bounded.
Using the isomorphism V/im(J) ∼= U , we construct S : U → V with SQ = 1− JR.
But then

QSQ = Q−QJR = Q

and since Q is surjective, QS = 1 follows.
It is easy to verify that Φ ◦Ψ and Ψ ◦ Φ are the identity maps. �

Corollary 4.33. Let W ⊂ V be a closed subspace of a Banach space. The following
are equivalent:

(1) There is a bounded operator P : V →W such that P |W = id.
(2) There is a closed linear subspace U ⊂ V such that U ⊕W = V . �

Such linear subspaces are called complemented. We have seen that each closed
subspace of a Hilbert space is complemented. Here is a non-example:

Theorem 4.34. The subspace c0(N) ⊂ `∞(N) is not complemented.

3Check out wikipedia for the very easy proof.
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Proof. LetQ : `∞(N)→ `∞(N)/c0(N) be the quotient map and let S : `∞(N)/c0(N)→
`∞(N) be a putative section to Q. The space `∞(N) has the property that there is
a countable set Fn ∈ `∞(N)′ which separates the points of `∞(N). In other words,
if f ∈ `∞(N) is such that Fn(f) = 0 for all n ∈ N, then f = 0. For example, one
can take the evaluation functionals Fn(f) := f(n).

If the section S exists, then the functionals Gn := Fn ◦S : `∞(N)/c0(N) separate
the points. We shall show that no such countable collection {Gn} of functionals on
`∞(N)/c0(N) can exist, which is a contradiction to the existence of S.

The first step is to prove that there is an uncountable set I and a family Ai
of subsets Ai ⊂ N such that Ai ∩ Aj is finite once i 6= j. This sounds utterly
unplausible at first but is easy to show: for each x ∈ R \Q, choose a sequence yx,n
of rational numbers with limn→∞ yx,n = x, and let Cx ⊂ Q be the set of all terms
of yx,n. If x0 6= x1, then the sequences yx0,n and yx1,n can have only finitely many
terms in common, so that Cx0 ∩ Cx1 is finite. Then I := R \Q is uncountable and
after choosing a bijection ϕ : Q ∼= N, this construction provides Ai := ϕ(Ci).

The collection {χAi |i ∈ I} ⊂ `∞(N) has the following property: ‖χAi‖ = 1, and
if J ⊂ I is a finite subset and aj ∈ K, |aj | = 1, j ∈ J , then

(4.35) ‖Q(
∑
j∈J

ajχAj )‖ ≤ 1

improving the generic estimate ‖Q(
∑
j∈J ajχAj )‖ ≤ |J | a lot (why exactly does

this hold?).
For n ∈ N, let In := {i|Gn(Q(χAi)) 6= 0} ⊂ I. Because the functionals Gn

separate the points,
⋃∞
n=1 In = I, and hence at least one In is uncountable.

Let In,k := {i ∈ In||Gn(Q(χAi))| ≥ 1
k . As

⋃∞
k=1 In,k = In, at least one In,k is

infinite (even uncountable).
Let J ⊂ In,k be a finite subset, and for j ∈ J , choose aj ∈ K with |aj | = 1 and

ajGn(Q(χAj )) ≥ 0. Then

Gn(
∑
j∈J

ajQ(χAj ) =
∑
j∈J

ajGn(Q(χAj )) =
∑
j∈J
|Gn(Q(χAj ))| ≥ |J |

1

k

and

Gn(
∑
j∈J

ajQ(χAj ) = |Gn(
∑
j∈J

ajQ(χAj )| ≤ ‖Gn‖‖Q(
∑
j∈J

ajχAj )‖ ≤ ‖Gn‖.

Together, we get

|J | ≤ k‖Gn‖
for each finite J ⊂ In,k. This is a contradiction to the ascertainment that In,k is
infinite. �

4.6. Notes. The Hahn-Banach theorem has essentially one proof, which can be
found in every textbook. Likewise, the applications are fairly standard. The con-
struction of Banach limits presented above is exactly the same as in [11], except
that in loc.cit., the argument is phrased differently.

The proof that V is reflexive if and only if V ′ is reflexive is usually given using
the Banach-Alaoglu theorem which we will cover later. I found the above argument
by myself, but I am sure that it is written down somewhere.

The extremely elegant algebraic proof that subspaces and quotients of reflexive
spaces are reflexive is taken from [12], but did not seem to have found its way
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into textbooks, where a much less memorable argument is being used. This is
probably because the language of exact sequences and the 5-lemma is foreign to
most anaylsts.
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5. The Riesz-Markov-Kakutani representation theorem

The capstone of this first part of the course is the proof of Theorem 1.46. We
will give the proof only in the special case when X is a compact metrizable space.
Let us recall the statement.

Theorem 5.1 (Riesz-Markov-Kakutani theorem). Let X be a second countable
locally compact Hausdorff space and let L : Cc(X) → K be a positive linear func-
tional (in other words, L(f) ≥ 0 whenever f ≥ 0). Then there exists a unique
Radon measure µ on X such that

L(f) =

∫
X

fdµ

for all f ∈ Cc(X).

Let us first explain first the significance of the condition that X is second count-
able.

(1) a second countable locally compact Hausdorff space is metrizable by The-
orem B.71.

(2) X is σ-compact. In other words, X admits an exhaustion X1 ⊂ X2 ⊂
X3 . . . ⊂ X, where X =

⋃
n=1∞Xn, Xn is compact and Xn ⊂ X◦n+1, by

Lemma B.81.
(3) Proposition C.59 says that any locally finite Borel measure on X is a Radon

measure. Therefore, regularity of µ is not an issue.

Proof of uniqueness. Let µ, ν be two Radon measures such that
∫
X
fdµ =

∫
X
fdν

for all f ∈ Cc(X). We have to prove that µ(S) = ν(S) for all measurable S ⊂ X.
Now letX1 ⊂ X2 ⊂ X3 . . . ⊂ X be an exaustion ofX. Since µ(S) = limn→∞ µ(S∩

Xn) and similarly for ν, we may assume that S is contained in a compact subset of
X, and hence that µ(S) and ν(S) are both finite.

Let ε > 0. Since µ is regular, there is a compact set K with K ⊂ S and
µ(S) ≤ µ(K) + ε, and since ν is regular, there is an open set U with S ⊂ U and
ν(U) ≤ ν(S) + ε. Let f ∈ C(X) be a function with χK ≤ f ≤ χU . Then

µ(S)− ε ≤ µ(K) ≤
∫
X

fdµ =

∫
X

fdν ≤ ν(U) ≤ ν(S) + ε.

This is true for all ε > 0, and so

µ(S) ≤ ν(S)

for all S. Exchanging the roles of µ and ν also shows ν(S) ≤ µ(S), i.e. µ(S) =
ν(S). �

We will prove the Theorem first for compact X, and generalize at the end to the
locally compact case. From now on, until further notification, we assume that X is
compact. Let us slowly work towards the core of the argument. The first step is a
characterization of positive functionals.

Lemma 5.2. Let X be a topological space and let L : Cb(X) → K be a linear
functional. The following are equivalent:

(1) L is positive.
(2) L is bounded and L(1) = ‖L‖.
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(We stated the lemma in a more general version as it is useful in other contexts,
for example when studying `∞(S) = Cb(S)).

Proof. We write down the proof in the case K = C, the real case is easier.
1 ⇒ 2: if f is real-valued, then −R ≤ f ≤ R for some R. Hence by positivity

we get −RL(1) ≤ L(f) ≤ RL(1), so L(f) ∈ R. For f ∈ Cb(X) arbitrary, we write
f = <(f) + i=(f) and see that

L(f) = L(<(f)− i=(f)) = L(<(f))− iL(=(f)) = L(f).

Consider the map

B : Cb(X)× Cb(X)→ K
defined by

B(f, g) := L(fg).

Then B is C-sesquilinear, and

B(g, f) = L(gf) = L(fg) = L(f, g) = B(f, g).

Since L is positive, we also have

B(f, f) = L(|f |2) ≥ 0.

Altogether, B is a semi-inner product. If f ≥ 0, we have, by the Cauchy-Schwarz
inequality,

0 ≤ L(f) = B(f, 1) ≤ B(f, f)1/2B(1, 1)1/2 = L(|f |2)1/2L(1)1/2 ≤ L(‖f‖21)1/2L(1)1/2 = ‖f‖L(1).

Since −|f | ≤ f ≤ |f |, this proves

|L(f)| ≤ ‖f‖L(1).

or ‖L‖ ≤ L(1). Equality holds by inserting f = 1.
2 ⇒ 1: We first show that L(f) ∈ R when f is real valued. Without loss of

generality, we assume L(1) = 1. For s ∈ R, we have

|L(f + is)|2 = |L(f) + is|2 = <(L(f))2 + (s+ =(L(f)))2 =

= <(L(f))2 + =(L(f))2 + s2 + 2s=(L(f)) = |L(f)|2 + s2 + 2s=(L(f)).

Since ‖f + is‖2 ≤ ‖f‖2 + s2 (picture!), we also see

|L(f + is)|2 ≤ ‖f + is‖2 ≤ ‖f‖2 + s2.

Together, we obtain

|L(f)|2 + 2s=(L(f)) ≤ ‖f‖2

for all s ∈ R, which is only possible if =(L(f)) = 0.
If f : X → R is bounded and continuous, we get L(f) ∈ R. The function

g := f − 1

2
‖f‖1

has norm ‖g‖ = 1
2‖f‖ (why?). Therefore

L(f) = L(g+
1

2
‖f‖1) = L(g)+

1

2
‖f‖L(1) ≥ −‖L‖‖g‖+1

2
‖f‖L(1) =

1

2
‖f‖(‖L‖−L(1)) = 0.

�

The idea behind the proof of Theorem 5.1 is to reduce the statement to the case
of a space X of particular type. The reduction step is as follows.
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Lemma 5.3. Let ϕ : X → Y be a surjective continuous map between compact
metrizable spaces. If the conclusion of Theorem 5.1 holds for X, then it holds for
Y .

Proof. The map ϕ∗ : C(Y ) → C(X), f 7→ f ◦ ϕ is an isometry because ϕ is
surjective. Let L : C(Y ) → K be a positive functional. By Lemma 5.2, L is
bounded and ‖L‖ = L(1). By the Hahn-Banach theorem, there is a functional
F : C(X) → K with ‖F‖ = ‖L‖ = L(1) and F ◦ ϕ∗ = L. Using Lemma 5.2 again,
we get that F is positive. Therefore, by the hypothesis of the Lemma, there is a
Radon measure µ on X such that

F (f) =

∫
X

f(x)dµ(x)

for all f ∈ C(X). For g ∈ C(Y ), we therefore have

L(g) = F (g ◦ ϕ) =

∫
X

g(ϕ(x))dµ(x).

We define a Borel measure ϕ∗µ on Y by

ϕ∗µ(S) = µ(ϕ−1)(S).

By construction, we have∫
Y

χSd(ϕ∗µ) = ϕ∗µ(S) = µ(ϕ−1(S)) =

∫
X

χS(ϕ(x))dµ(s)

for each measurable subset. This implies the identity∫
Y

g(y)d(ϕ∗µ)(y) =

∫
X

g(ϕ(x))dµ(x)

for each step function and hence for each integrable function, hence a fortiori for
all continuous functions. Therefore

L(g) =

∫
X

g(ϕ(x))dµ(x) =

∫
Y

g(y)d(ϕ∗µ)(y),

as desired. �

Lemma 5.4. Let X be a compact metric space. Then there is a closed subspace

Y ⊂
∞∏
n=1

{0, 1}

and a surjective continuous map Y → X.

Remark 5.5. The space
∏∞
n=1{0, 1} is homeomorphic to the Cantor set in R. Even

more is true: for each compact metric space X, there is a continuous surjective
map

∏∞
n=1{0, 1} → X (Hausdorff-Alexandroff theorem). For a proof of this fact

and some applications, see [1].

Proof. We first deal with the case X = [0, 1]. For m ∈ N, consider the function

gm :

∞∏
n=1

{0, 1} → [0, 1]

given by

gm((xn)n) :=

m∑
n=1

xn
2n
.
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Since gm can be written as the composition
∏∞
n=1{0, 1}

pm→
∏m
n=1{0, 1} → [0, 1]

of the projection pm onto the first m factors with some map from a discrete set
to [0, 1], ϕm is continuous. As |gm+1((xn)n) − gm((xn)n)| ≤ 1

2m , the sequence gm
converges uniformly to the function

g((xn)n) =

∞∑
n=1

xn
2n
,

which is therefore continuous. Because any t ∈ [0, 1] can be written in the form∑∞
n=1

xn
2n for xn = 0, 1 (Analysis I!), g is surjective, as claimed.

From that, we get a surjective continuous map

h : K :=

∞∏
n=1

{0, 1} ∼=
∞∏
m=1

∞∏
n=1

{0, 1} → L :=

∞∏
m=1

[0, 1].

Part of the proof of the Urysohn metrization theorem B.71 says that for each
compact metric space X, there is an injective map f : X →

∏∞
m=1[0, 1].

Now we let

Y := {(x, k) ∈ X ×K|f(x) = h(k)} ⊂ X ×K.
This is a closed subspace of X ×K, and X ×K is a compact space by Tychonov’s
theorem and metrizable as K is metrizable, so that Y is a compact metric space.
Moreover, the continuous map Y → K, (x, k) 7→ k, is injective, because f is
injective. Hence Y is homeomorphic to a closed subspace of K.

Finally, the map Y → X, (x, k) 7→ x is surjective because h is surjective, and
clearly continuous. �

What are the specific properties of closed subspaces of
∏∞
n=1{0, 1}?

Lemma 5.6. Let Y ⊂
∏∞
n=1{0, 1} be a closed subspace. Let CL ⊂ P(Y ) be the set

of all subsets which are simultaneously open and closed (“clopen”). Then

(1) CL contains a countable basis for the topology of Y .
(2) CL is a Boolean algebra (that means, complements, finite intersections and

finite unions of clopen subsets are clopen, and ∅ and Y are clopen.
(3) The σ-algebra 〈CL〉 generated by CL agrees with the Borel-σ-algebra.
(4) The set A := {

∑r
j=1 ajχUj |Uj ∈ CL, aj ∈ K} ⊂ C(Y ;K) of all linear

combinations of characteristic functions of elements of CL is a dense linear
subspace.

Proof. (1): Let qm :
∏∞
n=1{0, 1} → {0, 1} be the projection onto the mth factor.

By the definition of the product topology, the sets of the form

q−1
m1

(S1) ∩ . . . q−1
mr (Sr)

where r ∈ N, mi ∈ N, Si ⊂ {0, 1} open, form a basis for the topology of
∏∞
n=1{0, 1}.

All subsets of {0, 1} are open and closed, and hence q−1
mi (Si), as well as the intersec-

tion, are open and closed. Hence we found a basis B for the topology of
∏∞
n=1{0, 1}

which consists of clopen subsets and is moreover countable. By the definition of
the subspace topology, the intersections of the elements of B with Y are open and
closed and form a basis for the topology.

(2): is trivial.
(3): From the proof of (1), we conclude that CL contains a countable basis of

the topology. An open subset U ⊂ Y can be written as a union of elements of CL,
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and since CL contains a countable basis, countably many suffice. Hence U ∈ 〈CL〉,
and therefore, 〈CL〉 is the Borel-σ-algebra on Y .

(4): Clearly χU is continuous when U is clopen. Using that χUχV = χU∩V
and aχU + bχV = aχU\V + bχV \U + (a + b)χU∩V , one shows that A ⊂ C(Y ;K)

is a subalgebra. Of course 1 = χY ∈ A, and f ∈ A implies f ∈ A. For two
distinct points x, y ∈ Y , we find U, V ∈ CL with U ∩ V = ∅ and x ∈ U , y ∈ V
(otherwise, CL would not form a basis for the topology which is Hausdorff). For
the function f = χU , we have f(x) 6= f(y), and so A separates the points of Y . By
the Stone-Weierstrass Theorem B.72, it follows that A is dense in C(Y ;K). �

Lemma 5.7. Let Y ⊂
∏∞
n=1{0, 1} be a closed subspace. The conclusion of Theorem

5.1 holds for Y .

Proof. Let

L : C(Y )→ K

be a positive linear functional. It is bounded with operator norm ‖L‖ = L(1).
For U ∈ CL, the characteristic function χU is continuous, and we set

µ0(U) := L(χU ) ∈ [0, ‖L‖].

The set function

µ0 : CL → [0,∞)

is finitely additive. We use the Caratheory extension theorem C.22 to extend µ0 to
a measure on the σ-algebra 〈CL〉 generated by CL. For that, we have to verify the
following: if Un ∈ CL are countably many disjoint open and closed subsets, such
that U =

⋃∞
n=1 Un is again open and closed, then

(5.8) µ0(U) =

∞∑
n=1

µ0(Un).

But U is compact because it is closed and Y is compact, and so it can be covered
by finitely many of the sets Un. As these are disjoint, almost all Un’s are empty,
and so the right hand side of (5.8) is truely a finite sum and (5.8) holds as µ0 is
finitely additive. The Caratheodory extension theorem C.22 now proves that there
is a unique measure µ on the σ-algebra C = 〈CL〉 which extends µ0.

For each U ∈ CL, we have∫
X

χUdµ = µ(U) = µ0(U) = L(χU ),

and by linearity, it follows that the functionals
∫
X
dµ and L agree on A ⊂ C(Y ;K).

Since both functionals are continuous, it follows that L(f) =
∫
X
fdµ for each

f ∈ C(Y ;K). �

At this point, we have proven Theorem 5.1 for compact X.

End of the proof of Theorem 5.1. Let X be second countable and locally compact.
Let L : Cc(X) → K be positive, and let us first assume that L is bounded. Since
Cc(X) ⊂ C0(X) is dense, L extends to a continuous functional C0(X)→ K which
is also denoted by L and which is positive.
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The 1-point compactfication X+ of X is second countable and compact, and
C0(X) can be identified with the space {f ∈ C(X+)|f(∞) = 0}. If f ∈ C(X+),
then f − f(∞) ∈ C0(X). For a ∈ R, consider the bounded functional

F (f) := L(f − f(∞)) + af(∞).

Which conditions need to be put on a so that F is positive? If g ∈ Cc(X) satisfies
g ≥ −c, c ≥ 0, then there is h ∈ Cc(X) with 0 ≤ h ≤ c and g ≥ −h, so that

L(g) ≥ −L(h) ≥ −‖L‖c.
Let f ∈ C(X+) be positive. Then it follows that

F (f) = L(f − f(∞)) + af(∞) ≥ (a− ‖L‖)f(∞).

Hence F is positive provided that a ≥ ‖L‖. By the compact case of the theorem,
there is a Radon measure ν on X+ such that

F (f) =

∫
X+

fdν.

The formula µ(S) := ν(S) defines a Radon measure on X, and since F |C0(X) = L,
µ represents L, as claimed.

If L is not necessarily bounded, we pick a countable basis {Un} for the topology,
with each Un compact. Let (hn)n be a subordinate partition of unity (Theorem
B.82). Let an > 0 be chosen so that C :=

∑∞
n=1 anL(hn) <∞.

Define F : Cc(X)→ K by

F (f) :=

∞∑
n=1

anL(hnf)

(this is a finite sum). Then

|F (f)| ≤
∞∑
n=1

an‖f‖L(hn) ≤ C‖f‖,

so F is bounded. Let µ be the Radon measure which represents F , and let h :=∑∞
n=1 anhn, which is a positive continuous function.
We define a new Borel measure ν on X by

ν(S) =

∫
S

χS
1

h
dµ

(σ-additivity is easily checked using the monotone convergence theorem). For f ∈
Cc(X), we have∫

X

fdν =

∫
X

f

h
dµ = F (

f

h
) =

∞∑
n=1

anL(
hn
h
f) = L(

∞∑
n=1

an
hn
h
f) = L(f),

so that ν represents L. �

5.1. Notes. The standard proof of the Riesz-Markov-Kakutani theorem can be
found in [8, Chapter 2]. The proof given above is unusual; I learnt it from the book
[3]. A generalization of the idea works for arbitrary compact spaces X [4].
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6. Locally convex spaces

From the viewpoint of applications in analysis, the theory of Banach spaces has
several drawbacks. The first is that infinite-dimensional Banach spaces contain very
few compact subsets. Given how important compactness is for proving existence
theorems in analysis (it provides convergent subsequences of certain sequences, and
the limit of such a subsequence is often the objects one is interested in), this is a
serious problem, and we need compensation for it.

Secondly, the theory is designed to encode various notions of convergence, either
of (continuous or measurable) functions on a topological or measure space, or of
linear operators between spaces of such functions. There are several notions of
convergence which cannot be encoded by a norm. Let us give some examples.

(1) Let X be a (say locally compact Hausdorff) topological space and let C(X)
be the space of all continuous functions X → K, bounded or not. A useful
notion of convergence of such functions is uniform convergence on compacta:
we want to say that fn → f provided that for each compact K ⊂ X,
the restrictions fn|K converge uniformly to f |K . For example, the series∑∞
n=0

1
n!z

n converges uniformly on compacta to exp(z), but not uniformly.
(2) For a sequence fn ∈ C∞([0, 1]) of smooth functions, the appropriate notion

of convergence fn → f ∈ C∞([0, 1]) would be that all derivatives f
(k)
n

converge uniformly to f (k), for each k ∈ N0. Convergence of all f (k), up
to k = r, could be encoded by the Cr-norm

∑r
k=0 ‖f (k)‖C0 , but we cannot

encode convergence of all derivatives by a norm.
(3) We have seen examples of sequences Fn, F ∈ L(V,W ), where Fnv → Fv

for each v ∈ V , but ‖Fn − F‖ does not converge to 0. For example, let
V be a separable Hilbert spaces with orthonormal basis {vn|n ∈ N}. Let
Vn := span{vk|k ≤ n} and let Pn : V → V be the orthogonal projection
onto Vn. Then Pnv → v for all v ∈ V , but ‖1 − Pn‖ = 1. Or X could
be a compact Hausdorff space and xn → x be a convergent sequence in X.
Let Fn : C(X) → K, Fn(f) := xn. Then Fn(f) → F (f) for all f ∈ C(X),
but ‖Fn − F‖ does not tend to 0, unless xn is eventually constant. Such
examples are simply too common to be viewed as pathological!

All these notions of convergence can be captured by a more general concept
than a Banach space. We have to pass to locally convex vector spaces. We remark,
however, that not all sensible notions of convergence can be described by a topology.

6.1. Prelude: weak and weak∗-convergence. Before we develop the general
theory, we concentrate on the following two notions of convergence which are of
central importance in the theory of Banach spaces (and in many applications).

Definition 6.1. Let V be a Banach space. A sequence vn ∈ V is weakly convergent
to v ∈ V if for each L ∈ V ′, we have

lim
n→∞

L(vn) = L(v) ∈ K.

A sequence Ln ∈ V ′ is weak-∗-convergent to L ∈ V ′ if for each v ∈ V , we have

lim
n→∞

Ln(v) = L(v) ∈ K.

Similarly, we say that vn ∈ V is a weak Cauchy sequence if for each L ∈ V ′, the
sequence L(vn) ∈ K is a Cauchy sequence, and that Ln ∈ V ′ is a weak-∗-Cauchy
sequence if for each v ∈ V , the sequence Ln(v) ∈ K is a Cauchy sequence.
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In contrast to these notions, we say that vn is norm convergent to v if ‖vn−v‖ →
0 (and similarly for sequences in V ′). Before we give examples, let us develop a
little bit theory.

Lemma 6.2. If vn ∈ V converges in norm to v ∈ V , then vn is weakly convergent
to the same limit. The same is true for sequences in V ′. �

The converse is only true in finite-dimensional spaces. This will be demonstrated
by many examples below.

Lemma 6.3. A weakly convergent sequence is a weak Cauchy sequence, and a
weak-∗-convergent sequence is a weak∗-Cauchy sequence. �

Proposition 6.4. Let V be a Banach space and let Ln be a weak∗-Cauchy sequence.
Then Ln is bounded, and weakly∗-convergent to a uniquely determined L ∈ V ′.

Proof. This is a special case of the Banach-Steinhaus theorem 3.14. �

The analogue of Proposition 6.4 is not true for weak convergence. What is true
is the following.

Proposition 6.5. Let V be a Banach space and let vn be a weak Cauchy sequence
in V . Then vn is bounded, and if the weak limit exists, it is uniquely determined.

Proof. Let Fn : V ′ → K be the functional Fn(L) := L(vn). The hypothesis implies
that Fn(L) ∈ K is a Cauchy sequence and hence bounded. Therefore, there is CL
such that |Fn(L)| ≤ CL for all n. By the principle of uniform boundedness, there
is C ≥ 0 such that ‖Fn‖ ≤ C for all n. Note that Fn = ιV (vn), and so by the
Hahn-Banach theorem, ‖Fn‖ = ‖vn‖. Therefore ‖vn‖ is bounded.

If vn is weakly convergent to v and to v′ ∈ V , then for each L ∈ V ′, we have

L(v) = L(v′),

and the Hahn-Banach theorem implies that v = v′. �

Now we can discuss these two notions in the cases where we have determined
the dual spaces of Banach spaces explicitly.

Example 6.6. Let V = `p(N), 1 < p <∞, let q be the conjugate exponent and let
fn ∈ `p(N) be a sequence. The following are equivalent:

(1) fn is a weak Cauchy sequence.
(2) The sequence ‖fn‖ is bounded, and fn(m) is a Cauchy sequence for each

m ∈ N.

Each weak Cauchy sequence in `p(N) converges weakly to some limit in `p(N).

Proof. 1 ⇒ 2: Let fn be a weak Cauchy sequence. By Proposition 6.5, ‖fn‖ ≤ C
for some C and all n. For m ∈ N, the functional δm : `p(N) → K, f 7→ f(m) is
bounded. Therefore, by the definition of weak Cauchy sequences, the limit f(n) :=
limn→∞ fn(m) ∈ `p(N) exists. We claim that f ∈ `p(N) and that fn is weakly
convergent to f . For k ∈ N, we have

k∑
m=1

|f(m)|p = lim
n

k∑
m=1

|fn(m)|p ≤ Cp.
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Therefore f ∈ `p(N). To verify that fn is weakly convergent to f , recall that each
element of `p(N)′ is of the form f 7→

∑
m f(m)g(m) for some g ∈ `q(N). We have

to prove that

lim
n

∞∑
m=1

g(m)(fn(m)− f(m)) = 0

for each g ∈ `q(N). Let ε > 0 be arbitrary and fix k such that
∑∞
m=k+1 |g(m)|q ≤ ε.

Then

|
∞∑
m=1

g(m)(fn(m)−f(m))| = |
k∑

m=1

g(m)(fn(m)−f(m))|+|
∞∑

m=k+1

g(m)(fn(m)−f(m))| ≤

≤ |
k∑

m=1

g(m)(fn(m)− f(m))|+ (

∞∑
m=k+1

|g(m)|q)
1
q + (

∞∑
m=k+1

|fn(m)− f(m)|p)
1
p

by the Hölder inequality. The term |
∑k
m=1 g(m)(fn(m) − f(m))| converges to 0

because of pointwise convergence. The second one is bounded by

ε
1
q ‖f − fn‖ ≤ 2Cε

1
q .

2 ⇒ 1: let ‖fn‖ ≤ C and assume that fn(m) is a Cauchy sequence for each m.
Let g ∈ `q(N) and let ε > 0. There is h ∈ c00(N) with ‖h− g‖ ≤ ε. Then

|
∑
m

(fn(m)−fk(m))g(m)| ≤ |
∑
m

(fn(m)−fk(m))(g(m)−h(m))|+|
∑
m

(fn(m)−fk(m))h(m)|.

The second term converges to 0 as h has finite support and by pointwise conver-
gence. The first term is bounded by

|
∑
m

(fn(m)− fk(m))(g(m)− h(m))| ≤ ‖fn − fk‖`p‖g − h‖`q ≤ 2Cε

and therefore |
∑
m(fn(m)− fk(m))g(m)| ≤ 3Cε for sufficiently large n, k. �

Now `p(N) ∼= `q(N), and we can also speak about weak∗-convergence. It turns
out that the two notions agree, and not accidentally this is linked to the reflexivity
of `q(N).

Proposition 6.7. Let V be a Banach space, let W = V ′ and let Ln ∈ W be a
sequence. If Ln is weakly convergent, it is weak-∗-convergent. The converse is true
if V is reflexive.

In particular, in Hilbert spaces, the two notions agree.

Proof. If Ln is weakly convergent, then ϕ(Ln) ∈ K converges for each ϕ ∈ W ′ =
V ′′. In particular, ιV (v)(Ln) = Ln(v) converges for each v, and Ln is weakly∗-
convergent.

If V is reflexive, then each ϕ ∈ V ′′ is of the form ιV (v) for some v ∈ V , from
which we conclude the converse. �

Example 6.8. Recall that c0(N) ∼= `1(N). A sequence fn ∈ c0(N) is a weak Cauchy
sequence if and only if ‖fn‖ is bounded and if fn(m) converges for each m ∈ N.

The limit function f(m) := limn→∞ fn(m) does not need to be in c0(N). In
particular, weak Cauchy sequences in c0(N) do not need to converge.
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Example 6.9. The space `1(N) is the dual space of c0(N), so we can speak about
weak∗-convergence in `1(N). A sequence fn ∈ `1(N) is weakly∗-convergent if and
only if it is bounded and pointwise convergent. This is done using the same method
of Example 6.6.

For weak convergence in `1(N), we have the following surprising result by I.
Schur: if fn ∈ `1(N) is a weak Cauchy sequence, it converges in norm (!) to some
`1(N).

Example 6.10. A sequence fn ∈ `∞(N) ∼= `1(N)′ is weakly∗-convergent if and only
if it is bounded and pointwise convergent. I do not know a handy characterization
of weak convergence.

6.2. Locally convex spaces. Let us now define a framework in which the above
sorts of convergence can be discussed.

Definition 6.11. A topological vector space over K is a K-vector space V , equipped
with a topology, such that the addition

αV : V × V → V, (u, v) 7→ u+ v

and scalar multiplication

µV : K× V → V, (z, v) 7→ zv

are continuous.

For example, if V is a normed vector space, then V , together with the topology
induced by the norm, is a topological vector space. Topological vector spaces are
far to general to be useful as such. A useful class are the locally convex spaces.

Definition 6.12. Let V be a K-vector space. A subset U ⊂ V is balanced if v ∈ U
and z ∈ K, |z| = 1 implies zv ∈ U . A locally convex space is a topological vector
space V if 0 has a neighborhood basis which consists of convex balanced subsets.

For example each normed vector space V is a locally convex space. This is be-
cause the balls Br(0) ⊂ V are convex and balanced and form a form a neighborhood
basis of 0.

Before we begin the development of the general theory, let us introduce the
standard construction of locally convex spaces. The reader should recall the con-
struction of the induced topology which is explained in §B.5.

Definition 6.13. Let V be a K-vector space, let F := (Wi, Fi)i∈I be a family of
normed vector spaces Wi, together with linear maps Fi : V →Wi. We let TF be the
topology on V which is induced by this family of maps.

There are two aspects of the definition of the induced topology. Firstly, we have
described its open sets explicitly, and secondly, it has a universal property.

The explicit definition is that a subset U ⊂ V is open in TF if and only if for
each x ∈ U , there are i1, . . . , in ∈ I and ε1, . . . , εn > 0, such that

x+

n⋂
j=1

F−1
ij

(Bεj (0)) ⊂ U.

Phrased differently, the sets of the form
n⋂
j=1

F−1
ij

(Bεj (0)), n ∈ N, ij ∈ I, εj > 0
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form a neighborhood basis of 0. It is easily verified that such sets are convex and
balanced.

The universal property of the induced topology (Lemma B.32) immediately im-
plies the first two items of the next result.

Lemma 6.14. Let V and F = (Wi, Fi)i∈I be as in 6.13 and let V carry the topology
TF (and Wi the usual norm topology). Then

(1) the maps Fi : V →Wi are continuous,
(2) a map g : X → V from an arbitrary topological space is continuous if and

only if the compositions Fi ◦ g : X →Wi are all continuous,
(3) a sequence vn ∈ V converges to v if and only if all sequences Fi(vn) converge

to Fi(v).
(4) V , with the topology TF , is a locally convex space.
(5) TF is Hausdorff if and only if F separates the points of V , in other words,

if and only if for each 0 6= v ∈ V , there is i ∈ I such that Fi(v) 6= 0.
(6) In that case, the injective map φ : V →

∏
i∈IWi, v 7→ (Fi(v))i∈I , is a

topological embedding (and hence each subset Z ⊂ V is homeomorphic to
the subset φ(Z) ⊂

∏
i∈IWi.

Proof. (3) follows from (2) by considering the space X = {0, 1, 1
2 , . . .} ⊂ R. Con-

cerning (4), we already saw a neighborhood basis of 0 which consists of balanced
convex sets. It remains to prove that the addition maps αV and µV are continuous.
We know that all the αWi

and µWi
are continuous, since these are the addition and

scalar multiplication maps of normed spaces. The linearity of Fi is encoded in the
relations

Fi ◦ αV = αWi
◦ (Fi × Fi)

and

Fi ◦ µV = µWi
◦ (idK × Fi).

But this already solves the problem: the right hand sides are continuous by (1),
and (2) then proves that αV and µV are continuous.

(5): The map

φ : V →
∏
i∈I

Wi

is continuous. To see this, we have to show (by the universal property of the
product topology) that the composition pi ◦ φ : V → Wi is continuous, where pi is
the projection of the product onto the ith factor. But pi ◦ φ = Fi is continuous.

The map φ is injective if (and only if) the family F separates the points. The
product

∏
i∈IWi is Hausdorff, and so if φ is injective, V must be Hausdorff.

(6): φ : V → φ(V ) ⊂
∏
i∈IWi is continuous and bijective. To show that φ is a

homeomorphism, it is enough to show that for an arbitrary topological space X,
a map g : X → V is continuous if φ ◦ g : X →

∏
i∈IWi is continuous. If φ ◦ g is

continuous, then so is the composition with the projection map pj :
∏
i∈IWi →Wj ,

but pj ◦ φ = Fj , so Fj ◦ g is continuous for each j ∈ I, hence g is continuous. �

Examples 6.15. (1) Let X be a set and let V = KX , the set of all maps
X → K. Let I = X, Wx = K and let evx : KX → K be the linear map
f 7→ f(x), and write F = (K, evx)x∈X . The topology TF is called the
topology of pointwise convergence, because a sequence fn ∈ KX converges
in TF to f if and only if fn(x)→ f(x), for all x.
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(2) Let X be a locally compact Hausdorff space. Let C(X) be the vector space of
all continuous functions X → K. Let K be the set of all compact subsets of
X, and for K ∈ K, consider C(K) with the supremum norm and the linear
map rK : C(X) → C(K), f 7→ f |K . The family F := (C(K), rK)K∈K
induces the topology of uniform convergence on compact subsets of X.

(3) Let V = C∞([0, 1]), and for n ∈ N0 consider the map Fn : C∞([0, 1]) →
C([0, 1]) (the target has the supremum norm), Fn(f) := f (n). The topol-
ogy induced by the family (C([0, 1]), Fn)n∈N0

is the C∞-topology and is
Hausdorff.

(4) (very important example) Let V be a normed vector space. The family
(K, F )F∈V ′ induces the weak topology wk on V . More explicitly, we take
the collection of maps F : V → K, where F ranges through the whole dual
space of V . The weak topology is Hausdorff: if 0 6= v ∈ V , there is F ∈ V ′
with F (v) 6= 0, by the Hahn-Banach theorem. A sequence vn ∈ V converges
in the weak topology to v (“converges weakly”) if and only if F (vn)→ F (v)
for each F ∈ V ′. A norm-convergent sequence converges weakly (since each
F is continuous for the norm topology), but the opposite is not always true.
For example, the sequence δn ∈ `2(N) converges weakly to 0. The identity
map id : (V, ‖ ‖)→ (V,wk) is continuous, since each F ∈ V ′ is continuous
as a map (V, ‖ ‖) → K, by definition. This means that the weak topology
is coarser than the norm topology: the weak topology has fewer open and
closed sets than the norm topology. It has more compact subsets than the
norm topology, and more convergent sequences. There are more continuous
maps into (V,wk) are fewer continuous maps out of (V,wk). We shall learn
that the identity id : (V,wk) → (V, ‖ ‖) is continuous if and only if V is
finite-dimensional. In functional analysis, the usual wording is that the
weak topology is weaker than the norm topology.

(5) (another very important example) Let V be a normed space. For v ∈ V ,
we let ιv : V ′ → K be the map F 7→ F (v) (this is exactly ιV (v) ∈ V ′′, of
course). The family (K, ιv)v∈V induces the weak-∗-topology wk∗ on V ′.
The weak-∗-topology on V is Hausdorff by definition: if F ∈ V ′ is nonzero,
there is v ∈ V with F (v) 6= 0. The identity id : (V ′, ‖ ‖) → (V ′,wk∗) is
continuous (by construction again) and its inverse is continuous if and only
if dim(V ) <∞.

(6) The weak and weak-∗-topologies have many common features, and they can
indeed both be obtained from the same construction. Let V,W be K-vector
spaces and let β : V ×W → K be bilinear. Each w ∈ W defines a linear
map βw : V → K, v 7→ β(v, w). The topology on V induced by the family
(K, βw)w∈W is the σ(V,W )-topology. From

V × V ′ → K, (v, F ) 7→ F (v),

one obtains the weak topology on V as the σ(V, V ′)-topology, and from

V ′ × V → K (F, v) 7→ F (v)

the weak-∗-topology on V ′ as the σ(V ′, V )-topology.
It should be said at the very beginning that the behaviour of the weak and

the weak-∗-topology is very different in very important aspects.
(7) For two normed spaces V , W , the strong operator topology on L(V,W )

is the topology induced by the maps Ev : L(V,W ) → W , Ev(F ) = F (v),
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v ∈ V . It is coarser than the norm topology. There is also a weak operator
topology, which is induced from the maps ((v, L) ∈ V × V ′)

Ev,L : L(V,W )→ K; F 7→ L(Fv).

It is usually only considered when V,W are both Hilbert spaces, and not
very important in the beginning.

From this list of examples, one sees that construction 6.13 gives rise to a plethora
of examples, and promises to be a very useful tool to encode various notions of
convergence.

6.3. Locally convex spaces: some basic lemmas. We now develop the general
theory of locally convex spaces. This begins with some lemmas.

Lemma 6.16. Let V and W be topological vector spaces and let F : V → W be
linear. Then F is continuous if and only if F is continuous at 0.

Proof. Let v ∈ V , and assume that F is continuous at 0. Let Tv : V → V be the
translation map x 7→ x+ v. The translation map is a homeomorphism because the
addition in V is continuous. It follows from the linearity of F that

F = TF (v) ◦ F ◦ T−v.
Because F is continuous at 0 and because T−v and TF (v) are homeomorphisms,

TF (v) ◦ F ◦ T−v is continuous at v = T−1
−v (0), so F is continuous at v. �

Corollary 6.17. Let V be a topological vector space, W a normed vector space and
let F : V → W be linear. Then F is continuous if and only if F−1(B1(0)) is a
neighborhood of 0.

Proof. One direction is trivial. For the other, let r > 0; then F−1(Br(0)) =
rF−1(B1(0)) is a neighborhood of 0 (because the map Sr : V → V , v 7→ rv is
a homeomorphism). The sets Br(0) form a neighborhood basis of 0 ∈ W ; hence
this observation shows that F is continuous at 0, and by Lemma 6.16, F is contin-
uous. �

Next, we need to understand continuous seminorms on topological vector spaces.
We first introduce some notation. Let V be a vector space and let W be a normed
vector space. To a linear map F : V →W , we associate the seminorm

pF (v) := ‖Fv‖.
If p is a seminorm on V , we let

Np := {v ∈ V |p(v) = 0} ⊂ V
which is a linear subspace by 1.31. Let πp : V → V/Np be the quotient and let
‖ ‖p be the quotient norm on V/Np, see Proposition 1.31. It was shown there that
‖πp(v)‖ = p(v).

Lemma 6.18. Let V be a topological vector space and let W be a normed vector
space with norm ‖ ‖W . Then

(1) a linear map F : V → W is continuous if and only if the seminorm pF
defined by pF (v) := ‖Fv‖W is continuous,

(2) a seminorm p is continuous if and only if the quotient map πp : V → V/Np
is continuous,
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(3) a seminorm p is continuous if and only if p−1([0, 1)) is a neighborhood of
0.

Proof. (1) One direction is clear since pF = ‖ ‖W ◦ F and since the norm on
a normed vector space is continuous. If pF is continuous, then p−1

F ([0, 1)) =
F−1(B1(0)) is a neighborhood of 0, and continuity of F follows from Corollary
6.17.

(2): Note that pπp = p. Hence the claim follows from (1).

(3): if p is continuous, then p−1([0, 1)) is a neighborhood. Vice versa, if p−1([0, 1)) =
π−1
p (B1(0)) is a neighborhood of 0, Corollary 6.17 implies that πp is continuous,

and (2) implies that p is continuous. �

Next, we need to understand continuous linear maps maps from (V, TF ) to some
normed vector space. This is not supported by the universal property of the con-
struction, which concerns continuous maps to V .

Lemma 6.19. Let V be a K-vector space and let F = (Wi, Fi)i∈I be a family of
linear maps from V to normed spaces. Let X be a further normed vector space and
let G : V → X be linear. Then G : (V, TF ) → X is continuous if and only if there
are i1, . . . , in ∈ I and cj > 0 such that

‖G(v)‖ ≤
n∑
j=1

cj‖Fij (v)‖

for all v ∈ V .

Proof. The inequality

(6.20) ‖G(v)‖ ≤
n∑
j=1

‖cjFij (v)‖

for all v ∈ V implies

n⋂
j=1

F−1
ij

(B 1
ncj

(0)) ⊂ G−1(B1(0)).

From that, we see that the inequality (6.20) with continuous Fij implies that

G−1(B1(0)) is a neighborhood of 0 and hence by Corollary 6.17 the continuity
of G.

Vice versa, if G is continuous, then G−1(B1(0)) is a neighborhood of 0. By the
definition of the topology TF , we find i1, . . . , in ∈ I and εj > 0 such that

n⋂
j=1

F−1
ij

(Bεj (0)) ⊂ G−1(B1(0)).

In other words

‖Fijw‖ < εj , j = 1, . . . , n⇒ ‖Gw‖ < 1.

Put δ := minj εj > 0. Then

n∑
j=1

‖Fijw‖ < δ ⇒ ‖Gw‖ < 1.
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For v ∈ V with ‖Gv‖ 6= 0, put w := 1
‖Gv‖v. Then ‖Gw‖ = 1, so that

∑n
j=1 ‖Fijw‖ ≥

δ. Hence

1 ≤ 1

δ

n∑
j=1

‖Fijw‖ =
1

‖Gv‖
1

δ

n∑
j=1

‖Fijv‖

or

‖Gv‖ ≤ 1

δ

n∑
j=1

‖Fijv‖

for all v ∈ V , as desired. �

Furthermore, we need a general construction of sublinear maps on locally convex
spaces.

Lemma 6.21. Let V be a locally convex space and let U ⊂ V be a convex open
neighborhood of 0. Define the Minkowski functional of U by the formula

qU (v) := inf
t
{t > 0|1

t
v ∈ U} ∈ [0,∞).

Then qU is sublinear and q−1
U [0, 1) = U .

If U is balanced, qU is a continuous seminorm. If U is not balanced, we find at
least a continuous seminorm p : V → [0,∞) with qU ≤ p.

One can prove without too much effort that qU is continuous for all convex open
U , but that is not needed for our purposes.

Proof. Since U is an open neighborhood of 0, there is for each v ∈ V a t > 0 with
1
t v ∈ U , so that the infimum is taken over a nonempty set of positive real numbers,
hence well-defined.

It is clear that qU (0) = 0. Let s > 0. Then 1
t v ∈ U ⇔

1
stsv ∈ U . Therefore

qU (sv) = sqU (v).

Let v, w ∈ V and let s, t > 0 be such that v
t ∈ U and 1

sw ∈ U . Since U is convex,
we have

1

s+ t
(v + w) =

t

s+ t

v

t
+

s

s+ t

w

s
∈ U.

This shows

qU (v + w) ≤ s+ t

and by passing to the infimum, we obtain

qU (v + w) ≤ qU (v) + qU (w).

Hence qU is sublinear.
If v ∈ U , there is s < 1 with 1

sv ∈ U , because U is open and because R → U ,
s 7→ sv is continuous. That proves qU (v) < 1 when v ∈ U , or

U ⊂ q−1
U ([0, 1)).

For the reverse inclusion, assume qU (v) < 1. Then there exists t < 1 such that
1
t v ∈ U . Because U is convex and 0 ∈ U , this proves that

v = (1− t)0 + t
1

t
v ∈ U.

Altogether

q−1
U ([0, 1)) ⊂ U.
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It is clear that qU is a seminorm if U is balanced. In that case, the continuity of
qU follows from Lemma 6.18.

If U is not necessarily balanced, it contains a balanced convex neighborhood
0 ∈ O ⊂ U . The Minkowsi functional qO is a continuous seminorm, and from the
construction of the Minkowski functionals, it is clear that qU ≤ qO. �

6.4. Different constructions of locally convex spaces. Most (and probably
all) textbooks introduce the topology TF defined in 6.13 in a different way.

Definition 6.22. Let V be a K-vector space and let P be a family of seminorms
on V . We define a topology SP on V as follows: a set U ⊂ V is open, if for each
x ∈ V , there are p1, . . . , pr ∈ P and ε1, . . . , εr > 0 such that

x+

r⋂
j=1

p−1
j ([0, εj)) ⊂ U.

Lemma 6.23. Let V be a K-vector space.

(1) Let F = (Wi, Fi)i∈I be a family of normed spaces Wi, together with linear
maps Fi : V → Wi. For i ∈ I, let pi be the seminorm defined by pi(v) :=
‖Fi(v)‖Wi

, and let P := (pi)i∈I . Then SP = TF .
(2) Let P = (pi)i∈I be a family of seminorms. Let Fi : V → V/Npi be the

quotient map, and let F = (V/Npi , Fi). Then TF = SP .

Proof. Exercise. �

In most (but not all) examples, the construction with linear maps to normed
spaces is in my opinion more natural. One advantage is that the viewpoint above
makes the proof of the basic properties of the construction much more straightfor-
ward (consult a textbook and study the proof that (V,SP) is a topological vector
space if you do not believe me).

We will now prove that each locally convex space is isomorphic to one obtained
by this construction. This lets some authors define locally convex spaces as the
result of the construction. As a matter of taste, I dislike such definitions.

Proposition 6.24. Let (V, T ) be a locally convex space. Then there is a family
F = (Wi, Fi)i∈I of normed spaces and linear maps Fi : V →Wi such that T = TF .

Proof. Exercise �

6.5. The Hahn-Banach Theorem for locally convex spaces. The reason why
we proved the general version of the Hahn-Banach theorem for sublinear functions
(Theorem 4.10) is that this version can be applied in locally convex spaces.

Lemma 6.25. Let V be a locally convex space and let 0 ∈ U ⊂ V be open and
convex, and v ∈ V \U . Then there is a continuous linear map F : V → R such that

F (x) ≤ F (v) = 1

for all x ∈ U .

Proof. Let qU : V → [0,∞) be the Minkowski functional of U (see 6.21), which is
sublinear. Recall that U = q−1

U (−1, 1).
Let W := span{v} ⊂ V . We define a linear map G : W → R by G(v) = 1. Since

qU (v) ≥ 1 and qU ≥ 0, we have

G(tv) = tG(v) = t ≤ tqU (v) = qU (tv)
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for t ≥ 0 and

G(tv) < 0 ≤ qU (tv)

when t < 0. Hence G ≤ qU . By Theorem 4.10, there is a linear F : V → R with
F |W = G and F ≤ qU . By construction F (v) = 1. It remains to prove that F is
continuous.

The formula pU (v) := qU (v)+qU (−v) defines a seminorm on V , and since qU ≥ 0,
we have F ≤ pU . We claim that pU is continuous.

By Lemma 6.21, there is a continuous seminorm p on V with qU ≤ p. It follows
that |F (v)| ≤ p(v) for all v, and so

p−1([0, 1)) ⊂ F−1(−1, 1).

Therefore F is continuous by Lemma 6.17. �

Theorem 6.26. Let V be a locally convex Hausdorff space and let v ∈ V , v 6= 0.
Then there exists a continuous functional F : V → R with F (v) = 1.

Proof. Because V is Hausdorff and locally convex, there is a convex open neighbor-
hood U of v that does not contain 0. Apply Lemma 6.25. �

Theorem 6.27. Let A,B ⊂ V be two disjoint nonempty convex subsets, and as-
sume hat A is open. Then there is a continuous linear functional F : V → R such
that for all x ∈ A and y ∈ B, we have

F (x) < sup
x∈A

F (x) ≤ F (y).

Proof. The set B−A = ∪y∈B(y−A) is open, convex (why?) and does not contain
0 (because A ∩B = ∅). Pick v ∈ A and w ∈ B. Then

U := w − v − (B −A)

is a convex open neighborhood of 0, which does not contain w−v. By Lemma 6.25,
there is a nonzero continuous linear F : V → R such that

F (x) ≤ F (w − v)

whenever x ∈ U . If x ∈ A and y ∈ B are arbitrary, then w− v− y+ x ∈ U , so that

F (w − v − y + x) ≤ F (w − v)

or

F (x) ≤ F (y).

This is almost what we want, but what is missing is that F (x) < supz∈A F (z) when
x ∈ A. This follows from Lemma 6.28 below, because we constructed F to be
nonzero. �

Lemma 6.28. Let V be a locally convex space and let F : V → R be continuous
and linear, and F 6= 0. Then F is open.

Proof. Assume that F is not open; the goal is to show that F ≡ 0. If F is not an
open map, there must be a convex open set U so that F (U) ⊂ R is not open. But
F (U) is a convex subset of R, hence an interval. The only possibility for an interval
I ⊂ R to be not open is if there is a ∈ I such that a ≤ x for all x ∈ I or a ≥ x for
all x ∈ I. Assume that the former is the case, so that there is x0 ∈ U with

F (x0) ≤ F (x)
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for all x ∈ U . It follows that

F (x) ≥ 0

for all x in the neighborhood −x0 + U of 0. If v ∈ V is arbitrary, then for some
t > 0, we have tv ∈ −x0 + U and hence

F (v) =
1

t
F (tv) ≥ 0.

for all v ∈ V . But then also

F (v) = −F (−v) ≤ 0,

so that F ≡ 0. �

The most often used version of the Hahn-Banach theorem is as follows.

Theorem 6.29 (Hahn-Banach separation theorem). Let V be a locally convex
space, and let K,B ⊂ V be disjoint convex sets, where K is compact, and B is
closed. Then there is a continuous linear F : V → R such that

sup
x∈K

F (x) < inf
y∈B

F (y).

Proof. Let O := V \ B, which is an open neighborhood of K. We first prove that
there is a convex open neighborhood U of 0 such that K + U ⊂ O.

For each x ∈ K, pick a convex open neighborhood Ux of 0 such that x+Ux ⊂ O.
Then

K ⊂
⋃
x∈K

x+
1

2
Ux.

By compactness of K, there are x1, . . . , xr ∈ K with

K ⊂
r⋃
j=1

xj +
1

2
Uxj .

Put

U =

r⋂
j=1

1

2
Uxj ,

which is a convex open neighborhood of 0. When x ∈ K and h ∈ U , then there is
j with x ∈ xj + 1

2Uxj . As h ∈ U ⊂ 1
2Uxj , we have

x+ h ∈ xj + Uxj ⊂ O.

Thus K + U ⊂ O.
The set K + U =

⋃
x∈K x + U is open and convex and disjoint from B. So by

Theorem 6.27, there is a continuous linear F with

F (x) < sup
y∈K+U

F (y) ≤ inf
z∈B

F (z)

for all x ∈ K. Because K is compact and F is continuous, F attains its maximum
on K, and so

max
x∈K

F (x) < sup
y∈K+U

F (y) ≤ inf
z∈B

F (z),

as desired. �

Theorem 6.30. The only locally convex topology on Rn is the usual one.
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Proof. We show the following: if V is a finite-dimensional locally convex Hausdorff
space, then all linear maps Rn → V and V → Rn are continuous, where Rn is
equipped with its usual topology.

Any linear map f : Rn → V to a locally convex space is continuous; this is
because f is given by

f(x1, . . . , xn) :=

n∑
i=1

xivi

for some v1, . . . , vn ∈ V .
To prove that (if V is finite-dimensional and Hausdorff) any linear map V → Rn

is continuous, it suffices to prove that each linear form V → R is continuous.
For that purpose, let HomR(V ;R) be the algebraic dual space and let V ′ ⊂

HomR(V ;R) be the space of all continuous linear functionals. Now we consider the
linear map

η : V → HomR(V ′;R), v 7→ (L 7→ L(v)).

The map η is injective: if η(v) = 0, then L(v) = 0 for every L ∈ V ′, and this implies
v = 0 by Theorem 6.26. Therefore

dim(V ) ≤ dim(HomR(V ′;R)) = dim(V ′) ≤ dim(HomR(V ;R)).

Since dim(V ) = HomR(V ′;R), it follows that dim(V ′) = dim(HomR(V ;R)) and
V ′ = HomR(V ;R). In other words, each linear form on V is continuous. �
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7. Duality and weak topologies

7.1. Generalities. We now put aside the general theory of locally convex spaces
and focus on the example which is most central to what follows: the weak and the
weak-∗-topology on a Banach space and on its dual. These have been defined in
6.15, and we only recall that wk is induced from the family

(L : V → K)L∈V ′

where L runs through V ′, and wk∗ is induced from the family

(ι(v) : V ′ → K)v∈V ,

where ι(v) : V ′ → K is ι(v)(L) := L(v). The associated notion of convergence is
the weak convergence and the weak∗-convergence which we studied in some detail
already.

Lemma 7.1. Let V be a normed space. Then the weak-∗-topology on V ′ and the
weak topology on V are Hausdorff.

Proof. We have to prove that the defining families of linear maps separate the
points of V and V ′.

The case of the weak-∗-topology is almost trivial: if 0 ≤ L ∈ V ′, there is v ∈ V
with L(v) 6= 0. The case of the weak topology uses the Corollary 4.2 of the Hahn-
Banach theorem: if 0 6= v ∈ V , there is L ∈ V ′ with L(v) 6= 0. �

Not the statement of the Lemma, but its proof, is a harbinger for what comes.
The definition of the two topologies is very similar, but the behaviour of both is
fundamentally different. As we will see, each of the topologies has a distinguished
nice feature, and only for the class of reflexive Banach spaces, the nice features
both hold. Let us inspect this feature of reflexive spaces.

Let V be a Banach space. Through the natural map ι : V → V ′′, we can identify
V with the closed subspace ι(V ) ⊂ V ′′. Being a dual space, V ′′ has the wk∗-
topology (which should be denoted σ(V ′′, V ′)-topology to avoid confusion), and V
carries the wk-topology (better σ(V, V ′)-topology).

Lemma 7.2. Let V be a Banach space. Then the map

ιV : (V, σ(V, V ′))→ (V ′′, σ(V ′′, V ′))

(which is injective by Hahn-Banach) is a homeomorphism onto its image.

Proof. To show that ι is continuous, we have to verify that for all L ∈ V ′, the
composition

evL ◦ ι : (V, σ(V, V ′))→ K
is continuous for each L ∈ V ′. But this sends v to ι(v)(L) := L(v) and is hence
equal to L. The σ(V, V ′)-topology is designed so that each L ∈ V ′ is continuous.

To show that ι is an embedding, we have to verify that for an arbitrary topological
space X, a map g : X → (V, σ(V, V ′)) is continuous once ι◦g : X → (V ′′, σ(V ′′, V ′))
is continuous. But if ι ◦ g is continuous, then for each L ∈ V ′, evL ◦ ι ◦ g = L ◦ g
is continuous, and by the design of the σ(V, V ′)-topology, this means that g is
continuous. �

In particular, if V is reflexive, then ι : (V, σ(V, V ′)) → (V, σ(V ′′, V ′)) is an
isomorphism, and weak topologies share the nice features of both, wk and wk∗.
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Definition 7.3. Let V and W be vector spaces and let β : V ×W → K be bilinear.
The β-topology (also called σ(V,W )-topology) on V is the locally convex topology
induced by the seminorms

pw(v) := |β(v, w)|, w ∈W.

Dually, the β-topology (also called σ(W,V )-topology) on W is induced by the fam-
ily of seminorms

qv(w) := |β(v, w)|, v ∈ V.

For a normed vector space V , we consider the bilinear map

β : V × V ′ → K, (v, L) 7→ L(v).

The σ(V, V ′)-topology on V is the weak topology wk, and the σ(V ′, V )-topology
on V ′ is the weak-∗-topology wk∗.

The construction is symmetric in V and W : if β : V ×W → K is bilinear, let
βt : W × V → K be defined by βt(w, v) = β(v, w). Then the β-topology on V
agrees with the βt-topology (and the same for W ).

Hence for the development of the general theory, there is no need to consider the
σ(W,V )-topology.

The identity map

id : (V, ‖ ‖)→ (V,wk)

is continuous. This follows easily from the universal property of the induced topol-
ogy. This implies that each functional V → K which is weakly continuous is also
norm continuous. The opposite is also true: we have defined the weak topology so
that each norm continuous L : V → K is continuous in the weak topology.

Similarly

id : (V ′, ‖ ‖)→ (V ′,wk∗)

is continuous, and hence each wk∗-continuous L : V ′ → K is norm continuous.
The wk∗-topology was designed so that all evaluation functionals ιv(v) : V ′ → K
are continuous. However, if V is not reflexive, there are more norm-continuous
functionals on V ′ than the evaluation functionals. Are they also wk∗-continuous?
The answer is “no”: the wk∗-continuous functionals on V ′ are exactly the same as
the evaluation functionals. This follows from the next result.

Theorem 7.4. Let β : V × W → K be bilinear. Then each continuous linear
functional (V, σ(V,W ))→ K is of the form fw := β( , w).

Corollary 7.5. Let V be a normed space. Then the continuous functionals

(V,wk)→ K

are precisely the elements of V ′. The continuous functionals

(V ′,wk∗)→ K

are precisely the evaluation functionals L 7→ L(v), v ∈ V .

Proof. It is clear that fw is continuous. Vice versa, let F : V → K be continuous.
By Lemma 6.19, there are w1, . . . , wn ∈W and C ≥ 0, so that

|F (v)| ≤ C
n∑
j=1

|fwi(v)|.
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Therefore

K :=

n⋂
i=1

ker(fwi) ⊂ ker(F ).

The linear subspace K has finite codimension, say m, and

m = dim(V/K) ≤ n
by elementary linear algebra. Let π : V → V/K be the quotient map. There are
linear maps

h : V/K → K, h ◦ π = F

and

g1, . . . , gn : V/K → K, gi ◦ π = fwi
by the universal property of the quotient of vector spaces.

The map

g = (g1, . . . , gn) : V/K → Kn

is by construction injective. Hence by elementary linear algebra again, there is a
linear map k : Kn → K such that

k ◦ g = h.

There is (a1, . . . , an) ∈ Kn such that

k(x1, . . . , xn) =

n∑
i=1

aixi

for some all (x1, . . . , xn) ∈ Kn. Together, we get, for all v ∈ V , that

F (v) = h(π(v)) = k(g(π(v))) = k(g1(π(v)), . . . , gn(π(v))) =

n∑
i=1

aigi(π(v)) =

n∑
i=1

aifwi(v) = f∑n
i=1 aiwi

(v).

�

7.2. The Banach-Alaoglu theorem. Corollary 7.5 reflects the aspect in which
wk and wk∗ are very similar. Now we turn to the differences, and first discuss the
most distinguished feature of the wk∗-topology, which is one of the central theorem
of functional analysis.

Theorem 7.6 (Banach-Alaoglu theorem). Let V be a normed space. Then the
closed unit ball D1(V ′) of the dual space is compact (and Hausdorff) when equipped
with the weak-∗-topology.

Proof. We recall from Lemma 6.14 that the map

φ : (V ′,wk∗)→
∏
v∈V

K, φ(L) := (L(v))v∈V

is injective and identifies (V ′,wk∗) with the subspace φ(V ′) of the product. By
definition, φ restricts to a map

φ : D1(V ′)→
∏
v∈V

D‖v‖(K)

Since D‖v‖(K) is compact by the Heine-Borel theorem, the product is compact
by Tychonov’s theorem. It remains to be shown that the subspace φ(D1(V ′)) ⊂∏
v∈V K is closed.
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But this is the intersection of the sets

(pv + pw − pv+w)−1(0)

and
(apv − pav)−1(0),

where v, w runs through V and a through K, and pv :
∏
v∈V K → K denotes the

projection onto the vth factor. But the maps pv + pw − pv+w and apv − pav are
continuous, and so their preimages are closed, and so is the intersection, which is
Φ(D1(V ′)). �

The Banach-Alaoglu theorem is a powerful result, but many arguments in anal-
ysis are based on sequences. Therefore, it is desirable that the unit ball D1(V ′) is
sequentially compact.

Let us recall the connection between these two notions of compactness (for Haus-
dorff spaces):

(1) A first-countable and compact space is sequentially compact.
(2) A second-countable and sequentially compact space is compact.
(3) For metrizable spaces, compactness and sequential compactness are equiv-

alent.

This leaves the question: when is the unit ball D1(V ′) with the weak-∗-topology
first countable? There does not seem to be an easy general answer, but the following
result gives a satisfactory answer.

Proposition 7.7. (1) A compact Hausdorff space X is metrizable if and only
if C(X) is separable.

(2) The unit ball D1(V ′) with the weak-∗-topology is metrizable if and only if
V is separable.

Hence D1(V ′) is sequentially compact when V is separable.

Proof. Step 1: If X is metrizable, then by Lemma 5.4 C(X) is isometrically iso-
morphic to a subspace of C(Y ), where Y has a countable basis consisting of clopen
sets. By Lemma 5.6, the linear combinations of their characteristic functions span
a countably-dimensional dense subspace of C(Y ). Thus C(Y ) is separable, and so
is the subspace C(X).

Step 2: Let D1(V ′) be metrizable. Then it is a compact metric space, by the
Banach-Alaoglu theorem. The space C(D1(V ′)) of functions (with the usual supre-
mum norm) is then separable by the first step of the proof. If v ∈ V , then the
function R(v) : D1(V ′)→ K which sends L to L(v), is continuous when D1(V ′) has
the weak-′-topology. This defines a linear map

R : V → C(D1(V ′))

which is an isometry because ‖R(v)‖C0 = supL∈D1(V ′) |L(v)| = ‖v‖ (the last equa-

tion uses the Hahn-Banach theorem). Therefore, V is isometrically isomorphic to
a subspace of the separable space C(D1(V ′)) and therefore itself separable.

Step 3: Assume that V is separable and let {vn} ⊂ V be a dense countable
subset. The map

S : D1(V ′)→ Z :=

∞∏
n=1

D‖vn‖(K)

which sends L ∈ D1(V ′) to the family (L(vn))n is continuous by the definition
of the weak-∗-topology. It is furthermore injective: if L0 6= L1, there is n so that
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L0(vn) 6= L1(vn) because {vn} is dense. Both D1(V ′) and Z are compact Hausdorff
spaces, and so D1(V ′) is homeomorphic to the subspace S(D1(V ′)) ⊂ Z. But Z,
being a countable product of compact metric spaces is metrizable by Proposition
B.35, and hence so is S(D1(V ′), and so D1(V ′) as well.

Step 4: Assume that C(X) is separable. The map g : X → D1(C(X)′), x 7→
evx, is injective (Urysohn Lemma). It is continuous by the definition of the wk∗-
topology (when composed with L 7→ L(f), it becomes just f). Because X is
compact, g is a homeomorphism onto the closed subspace g(X) ⊂ D1(C(X)′).
Since C(X) is separable, D1(C(X)′) is metrizable by step 3, and it is follows that
X is metrizable. �

Remark 7.8. The following fact is slightly confusing. If V is an infinite-dimensional
Banach space, then neither (V,wk) nor (V ′,wk∗) are first countable, let alone
metrizable.

To see this, let β : V ×W → K be a pairing and assume that (V, σ(V,W )) is first
countable. We claim that W is at most countably-dimensional. Let (Un)n∈N be a
neighborhood basis of 0 ∈ V . For each n, there are wn,1, . . . , wn,rn ∈ W and ε > 0
such that

rn⋂
j=1

β−1
wn,j (Bε(0)) ⊂ Un.

The collection C := {wn,j |n ∈ N, 1 ≤ j ≤ rn} is countable. We claim that it spans
W . To that end, let w ∈ W . Then βw : (V, σ(V,W )) → K is continuous, hence
β−1
w (B1(0)) is open, hence there is n such that

rn⋂
j=1

β−1
wn,j (Bε(0)) ⊂ β−1

w (B1(0)).

In particular
rn⋂
j=1

ker(βwn,j ) ⊂ β−1
w (B1(0)),

but as the left hand side is a linear subspace, we get

rn⋂
j=1

ker(βwn,j ) ⊂ ker(βw).

Exactly as in the proof of Theorem 7.4, this proves

w ∈ span{wn,1, . . . , wn,rn}.

Corollary 7.9. Let V be a separable Banach space and let Ln ∈ V ′ be a bounded
sequence. Then there is a subsequence Lnk and L ∈ V ′ such that Lnk(v) → L(v)
for each v ∈ V .

Here are some examples.

Example 7.10. Let V be a separable Hilbert space and let vn ∈ V be a bounded
sequence. Then there is a subsequence vnk and v ∈ V such that 〈w, vnk〉 → 〈w, v〉
for all w ∈ V .
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Example 7.11. Let X be a compact metric space and let Prob(X) be the set of all
probability Radon measures on X. The map

ψ : Prob(X)→ C(X)′, µ 7→ (f 7→
∫
X

fdµ)

is injective, we identify Prob(X) with ψ(Prob(X)) and equip is with the wk∗-
topology. Clearly Prob(X) ⊂ D1(C(X)′). By the Riesz-Markov-Kakutani theorem,
Prob(X) is the space of all L ∈ C(X)′ with L(1) = 1 and with L(f) ≥ 0 for f ≥ 0.
Let If : C(X)′ → K be the map If (L) = L(f). Hence

Prob(X) = I1(1) ∩
⋂
f≥0

I−1
f ([0,∞))

and since each If is continuous, it follows that Prob(X) is closed in the wk∗-
topology. Being a subset of D1(C(X)′), it is compact. Because X is metrizable,
C(X) is separable, and so Prob(X) is sequentially compact. This argument proves:

Proposition 7.12. Let X be a compact metric space and let µn be a sequence of
probability Radon measures on X. Then there is a probability measure µ and a
subsequence µnk such that

lim
k→∞

∫
X

fdµnk =

∫
X

fdµ.

Note that we had to use the Markov-Kakutani theorem to construct the measure
µ.

7.3. Mazur’s Lemma. The identity map

(V, ‖ ‖)→ (V,wk)

is clearly continuous. It follows that a weakly closed set Z ⊂ V is also ‖ ‖-closed,
and that

Z
‖ ‖ ⊂ Zwk

for each subset Z ⊂ V . The converse is not true:

Lemma 7.13. Let V be an infinite-dimensional Banach space. Then the weak
closure of the unit sphere S(V ) := {v ∈ V |‖v‖ = 1} is D1(V ).

finish proof

Theorem 7.14. Let V be a Banach space and let K ⊂ V be convex. If K is norm
closed, then it is weakly closed.

Proof. The point is that the set of continuous functionals V → K is the same for
the weak and the norm topology.

If v ∈ V , v 6∈ K, we apply the Hahn-Banach separation theorem to the ‖ ‖-
closed set K and the ‖ ‖-compact set {v}. The result is a ‖ ‖-continuous functional
Lv : V → R with

av := max
x∈K

Lv(x) < L(v).

It follows that K is the intersection⋂
v∈V \K

L−1
v ((−∞, av]).

Since each Lv is continuous when V has the weak topology, it follows that K is
weakly closed. �



FUNCTIONAL ANALYSIS 89

Theorem 7.14 has a nice consequence. First some notation. Let V be an R-vector
space and Z ⊂ V a subset. The convex hull co(Z) ⊂ V is the smallest convex set
containing Z (this is well-defined: it is the intersection of all convex subsets which
contain Z). We denote

∆n := {(t0, . . . , tn) ∈ Rn+1|tj ≥ 0,

n∑
j=0

tj = 1}.

If v = (v0, . . . , vn) ∈ V n+1 is a tuple of n + 1 points and t ∈ ∆n, the convex
combination of those points is

t · v :=

n∑
j=0

tjvj .

One may alternatively describe co(Z) as the set

co(Z) = {t · v|n ∈ N0, t ∈ ∆n, v ∈ V n+1}.
Elementary exercise: prove this.

Now let vn ∈ V be a weakly convergent sequence in V , with limit v. The terms
of the sequence lie in the convex hull Z := co({vn|n ∈ N}), and the weak limit v
lies in the weak closure

v ∈ Zwk
.

Because id : (V, ‖ ‖)→ (V,wk) is continuous, we have

Z
‖ ‖ ⊂ Zwk

.

On the other hand, Z
wk

is norm closed by Theorem 7.14, and is therefore a norm-
closed set containing Z. This shows (by the definition of the closure in a topological
space) that

Z
wk ⊂ Z‖ ‖.

Therefore, the two closures agree. It follows that the weak limit v of the sequence
vn belongs to the norm closure of Z. Because

Z =

∞⋃
n=0

co(v0, . . . , vn)

is an ascending union, we find a sequence tn ∈ ∆n such that we have norm conver-
gence

lim
n→∞

tn · (v0, . . . , vn) = v.

This argument proves:

Theorem 7.15 (Mazur). Let vn ∈ V be a weakly convergent sequence in a Banach
space, with weak limit v. Then there exists a sequence wn ∈ V of vectors such that

‖wn − v‖ → 0

and such that each wn is a convex combination of the vectors v0, . . . , vn.

The remarkable point is that we upgraded weak convergence to norm conver-
gence, not of the sequence, not of a subsequence, but of a sequence of convex
combinations of the original sequence.

By itself, this is not a very powerful result. But when V is reflexive and separable,
we can combine it with the Banach-Alaoglu theorem and obtain a corollary which
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is very useful for PDE theory. The hypotheses are satisfied for Lp(X,µ) where X
is a second countable locally compact Hausdorff space, µ is a Radon measure and
1 < p <∞.

Theorem 7.16. Let V be a reflexive Banach space with separable dual and let
vn ∈ V be a bounded sequence. Then after passage to a subsequence, we find a
sequence of convex combinations of the sequence which converges in norm.

For Hilbert spaces, this result can be improved a little bit (with an easier proof).
In that case, we get that after passage to a subsequence, the sequence 1

n

∑n
k=1 vk

is norm-convergent.

Proof. Without loss of generality ‖vn‖ ≤ 1. We identify V = V ′′. Under this
identification, the weak topology on V and the wk∗-topology coincide. By the
Banach-Alaoglu theorem, the unit ball D1(V ) is wk∗- and hence wk-compact, and
because V ′ is separable, also sequentially compact. Therefore vn has a weakly
convergent subsequence, and applying Theorem 7.15 finishes the proof. �

Theorem 7.17 (Goldstine’s Theorem). Let V be a normed space, and let ι : V →
V ′′ be the isometric embedding into its bidual. Then

ι(V ) ⊂ (V ′′, σ(V ′′, V ′))

and

ι(D1(V )) ⊂ (D1(V ′′), σ(V ′′, V ′))

are dense.

Proof. The closure ι(V ) is convex. If it is not all of V ′′, we can find ϕ ∈ V ′′ \
ι(V ). Apply the Hahn-Banach separation theorem 6.29 to the compact set {ϕ}
and the closed set ι(V ): it follows that there is a continuous functional F :
(V ′′, σ(V ′′, V ′))→ K such that

F (ϕ) < inf
v∈V

F (ι(v)).

But F is an element of V ′ by Theorem 7.4, and so the above can be rewritten as

(7.18) ϕ(F ) < inf
v∈V

F (v) ∈ R.

But V is a linear subspace, and because the linear map F : V → R is bounded
below, we must have F = 0. This is a contradiction, because (7.18) also shows
ϕ(F ) < 0 .

The argument for the second claim is similar: ι(D1(V )) is convex, and if it not

all of D1(V ′′), there is ϕ ∈ D1(V ′′) \ ι(D1(V )) and F ∈ V ′ such that

ϕ(F ) < inf
v∈D1(V )

Fv.

Because ‖ϕ‖ ≤ 1, we also have

−‖F‖ = inf
v∈D1(V )

Fv < ϕ(F )

which is a contradiction. �
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7.4. Reflexivity.

Theorem 7.19. The following conditions for a Banach space V are equivalent:

(1) V is reflexive,
(2) The unit ball D1(V ) is compact in the σ(V, V ′)-topology.

Proof. If V is reflexive, the map ι : (V, σ(V, V ′))→ (V ′′, σ(V ′′, V ′)) is a homeomor-
phism. Since the unit ball D1(V ′′) is σ(V ′′, V ′)-compact by the Banach-Alaoglu
theorem, and therefore σ(V, V ′)-compact.

Vice versa, if the unit ball D1(V ) is σ(V, V ′)-compact, its image under ι :
(V, σ(V, V ′)) → (V ′′, σ(V ′′, V ′)) is compact as well. On the other hand, by Gold-
stine’s Theorem, ι(D1(V )) ⊂ D1(V ′′) is σ(V ′′, V ′)-dense. Since the σ(V ′′, V ′)-
topology is Hausdorff, ι(D1(V )) is both closed and dense. This is only possible if
ι(D1(V )) = D1(V ′′), but that implies easily that ι(V ) = V ′′, i.e. if V is reflex-
ive. �
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8. Compact and Fredholm operators on Hilbert spaces

8.1. Compact operators.

Definition 8.1. A bounded operator F : V →W between Banach spaces is compact
if F (D1(V )) ⊂ W is compact. By K(V,W ) ⊂ L(V,W ), we denote the set of all
compact operators.

Equivalently, each bounded sequence vn ∈ V has a subsequence vnk such that
Fvnk is Cauchy.

Examples 8.2. If the rank rank(F ) := dim(im(F )) is finite (for example because
V or W are finite-dimensional), then F is compact. An isomorphism F : V → W
is compact only if V and W are finite-dimensional.

More generally:

Lemma 8.3. Let F : V → W be a compact operator between Banach spaces and
let U ⊂ V be a closed linear subspace. Assume that there is c > 0 such that
‖Fu‖ ≥ c‖u‖ for all u ∈ U . Then U is finite-dimensional.

Proof. We show that D1(U) is compact and invoke Proposition 1.27. So let un ∈ U
with ‖un‖ ≤ 1. We need to find a convergent subsequence. Because F is compact,
we can assume that Fun is a Cauchy sequence, after passage to a subsequence.
Then ‖un − um‖ ≤ 1

c‖Fun − Fum‖ proves that un is a Cauchy sequence. �

Theorem 8.4. Let V,W,U be Banach spaces.

(1) If S ∈ L(W,U) or T ∈ L(V,W ) is compact, then ST is compact.
(2) K(V,W ) ⊂ L(V,W ) is a closed linear subspace.

Proof. (1) is clear, since bounded operators map bounded sequences to bounded
sequences, and Cauchy sequences to Cauchy sequences. (2): it is easy to see that
K(V,W ) is a linear subspace. It remains to prove that if Tn ∈ K(V,W ) converges
in norm to T ∈ L(V,W ), then T is compact. Let vn be a bounded sequence in V ,
and assume that ‖vn‖ ≤ C for all n. There is a subsequence v1,n such that K1v1,n

is Cauchy. Next, there is a subsequence v2,n of v1,n such that K2v2,n is Cauchy.
Continuing in this way, we find subsequences vk,n, vk,n a subsequence of vk−1,n

such that Kkvk,n is Cauchy.
The diagonal sequence n 7→ vn,n is a subsequence of the original sequence, and

for each k, Kkvn,n is a Cauchy sequence. Then

‖Kvn,n−Kvm,m‖ ≤ ‖Kvn,n−Kkvn,n‖+‖Kk(vn,n−vm,m)‖+‖Kkvm,m−Kvm,m‖ ≤
≤ ‖K−Kk‖(‖vn,n‖+‖vm,m‖)+‖Kk(vn,n−vm,m)‖ ≤ 2C‖K−Kk‖+‖Kk(vn,n−vm,m)‖.
Therefore

lim sup
n

lim sup
m

‖Kvn,n−Kvm,m‖ ≤ 2C‖K−Kk‖+lim sup
n

lim sup
m

‖Kk(vn,n−vm,m)‖ = 2C‖K−Kk‖.

Since k was arbitrary and ‖K −Kk‖ → 0, it follows that

lim sup
n

lim sup
m

‖Kvn,n −Kvm,m‖ = 0,

i.e. that Kvn,n is a Cauchy sequence. �

Lemma 8.5. Let V,W Banach spaces and let T : V → W be bounded. The
following are equivalent:
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(1) T is compact.
(2) The dual operator T ′ ∈ L(W ′, V ′) is compact.

Proof. 1 ⇒ 2: The proof uses the Arzela-Ascoli theorem B.63 which the reader
should recall. If T is compact, then K := T (B1(V )) ⊂W is a compact metric space
and in particular separable. Let Ln ∈W ′ be a bounded sequence. Each Ln gives a
continuous function Ln|K : K → K. The set {Ln|K} ⊂ C(K,K) is equicontinuous
and uniformly bounded. By the Arzela-Ascoli theorem, there is a subsequence Lnm
such that Lnm |K is uniformly convergent. Unwinding the definitions, this means
that T ′(Lnm) = Lnm ◦ T ∈ V ′ is a Cauchy sequence.

2⇒ 1. Let T ′ be compact. By the already proven implication 1⇒ 2, the bidual
operator T ′′ : V ′′ →W ′′ is compact. The diagram

V

ιV
��

T // W

ιW
��

V ′′
T ′′ // W ′′

commutes. It follows that T ′′ ◦ ιV = ιW ◦ T is compact. So when vn is a bounded
sequence in V , the sequence ιW (Tvn) has a subsequence which is Cauchy. By the
Hahn-Banach theorem, ιW is an isometric embedding, and so Tvn has a subsequence
which is Cauchy. �

Let us give some instructive examples of compact operators.

Example 8.6. Let a ∈ `∞(N). Then the formula Ta(f) := af defines a bounded
operator Ta : `2(N) → `2(N) with ‖Ta‖ = ‖a‖`∞ . We claim that Ta is compact if
and only if a ∈ c0(N). If a ∈ c00(N), then Ta has finite rank and is hence compact.
For a general element a ∈ c0(N), there is a sequence an ∈ c00(N) which converges
to a. It follows that ‖Tan − Ta‖ → 0, so that Ta is compact.

Vice versa, assume that Ta is compact. We have to prove that for ε > 0, the set
I := {n ∈ N||a(n)| ≥ ε} is finite. The subspace `2(I) = {f ∈ `2(N)| supp(f) ⊂ I} ⊂
`2(N) is closed. For f ∈ `2(I), we have

‖Taf‖2 =
∑
n∈I
|a(n)|2|f(n)|2 ≥ ε2

∑
n∈I
|f(n)|2 = ε2‖f‖2.

It follows from Lemma 8.3 that `2(I) is finite-dimensional, or that I is finite.

8.2. Compact operators on Hilbert spaces. We now specialize to the case of
Hilbert spaces.

Corollary 8.7. A bounded operator T : V →W of Hilbert spaces is compact if and
only if T ∗ is compact.

Proof. It is enough to prove that T ∗ is compact if T is. Let µV : V → V ′ be the
map v 7→ (w 7→ 〈v, w〉), which is a conjugate linear isometric isomorphism. Now

µV ◦ T ∗ = T ′ ◦ µW : W → V ′.

This is because for w ∈W and v ∈ V , we have

T ′(µW (w))(v) = (µW (w))(Tv) = 〈w, Tv〉 = 〈T ∗w, v〉
and

µV (T ∗(w))(v) = 〈T ∗w, v〉.



94 JOHANNES EBERT

Because µV and µW are isomorphisms, and T ′ is compact if T is compact, we get
that T ∗ is compact once T is compact. �

Proposition 8.8. Let V and W be two Hilbert spaces and T ∈ L(V,W ). Then T
is compact if and only if there is a sequence Tn of operators with dim(im(Tn)) <∞
and ‖T − Tn‖ → 0.

Proof. The “if” direction follows from Theorem 8.4 because operators of finite rank
are compact (the fact that V and W are Hilbert spaces plays no role).

For the “only if” direction, we shall assume that W is separable (and the general
case can be reduced to that). Pick an orthonormal basis (wn)n∈N, and let Pn : W →
W be the orthogonal projection onto span{wk|k ≤ n}. Then Pn has finite rank,

and hence so does PnT . We claim that PnT → T in norm. Because T (D1(V ))
is a compact metric space and because the set Pn|T (D1(V ))

is uniformly bounded

and equicontinuous, and converges pointwise to the identity, we get that Pn → id
uniformly on T (D1(V )) by the Arzela-Ascoli theorem. But this means exactly the
same as norm convergence PnT → T . �

8.3. The spectral theorem for self-adjoint compact operators on a Hilbert
space. We first recall the following result from Linear Algebra.

Theorem 8.9 (Spectral theorem for self-adjoint operators on finite-dimensional
Hilbert spaces). Let V be a finite-dimensional complex Hilbert space and let T ∈
L(V ) be selfadjoint operator. Then there exists an orthonormal basis (v1, . . . , vn)
of V which consists of eigenvectors, i.e. Tvi = λivi for i = 1, . . . , n, where λi ∈ R.

The goal of spectral theory of operators in Hilbert spaces is a generalization
of this theorem to bounded operators on Hilbert spaces. The operators for which
the situation is closest to the finite-dimensional case are the compact self-adjoint
operators.

Let us introduce some notations first. Assume that I is a set, and Vi, i ∈ I is a
family of Hilbert spaces. On the (linear-algebraic) direct sum

⊕
i∈I Vi, we introduce

the scalar product 〈(vi)i, (wi)i〉 :=
∑
i∈I〈vi, wi〉Vi . This is a scalar product, and

the Hilbert sum
(2)⊕
i∈I

Vi

of the spaces Vi is the Hilbert space completion of this scalar product.
As a matter of notation, we define

Eig(T, λ) := ker(T − λ),

the space of all eigenvectors of the linear map T to the eigenvalue λ. As in linear
algebra, an eigenvalue of T is a λ ∈ K with Eig(T, λ) 6= {0}.

Theorem 8.10 (Spectral theorem for selfadjoint compact operators). Let T be a
compact self-adjoint operator on a Hilbert space V . Then

(1) all eigenvalues of T are real,
(2) the eigenspaces Eig(T, λ) and Eig(T, µ) are orthogonal if µ 6= λ,

(3) for each ε > 0, the direct sum
⊕(2)
|λ|≥ε Eig(T, λ) is finite-dimensional,

(4) V has a complete orthonormal system which consists of eigenvectors of T ,
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This contains Theorem 8.9 as a special case. Usually, Theorem 8.9 is proven using
determinants (characteristic polynomials). This tool is not available for infinite-
dimensional Hilbert space, and we have to find an alternative proof. In fact, the
following proof simplifies in finite-dimensional spaces and gives the simplest possible
proof of Theorem 8.9.

Proof of Theorem 8.10 (1), (2) and (3). (1): if Tv = λv, then

(λ− λ)〈v, v〉 = 〈v, λv〉 − 〈λv, v〉 = 〈v, Tv〉 − 〈Tv, v〉 = 〈v, Tv〉 − 〈v, Tv〉 = 0

proves λ ∈ R or v = 0.
(2): assume Tv = λv and Tw = µw, λ, µ ∈ R. Then

(λ− µ)〈v, w〉 = 〈λv,w〉 − 〈v, µw〉 = 〈Tv,w〉 − 〈v, Tw〉 = 0

proves λ = µ or 〈v, w〉 = 0.

(3): a vector v ∈
⊕(2)
|λ|≥ε can be written as v =

∑
|λ|≥ε vλ, where Tvλ = λvλ

(only countably many of these vectors can be nonzero). Then by the Pythagoras
identity (all the vectors Tvλ are orthogonal by (1))

‖Tv‖2 =
∑
λ

‖λvλ‖2 =
∑
λ

|λ|2‖vλ‖2 ≥ ε2
∑
λ

‖vλ‖2 = ε2‖v‖2.

Lemma 8.3 shows that
⊕(2)
|λ|≥ε is finite-dimensional. �

Item (4) of Theorem 8.10 is a bit harder. The key step is the following lemma.

Lemma 8.11. Let T ∈ K(V ) be a compact self-adjoint operator on a Hilbert space.
Then either ‖T‖ or −‖T‖ is an eigenvalue of T .

Proof. There is nothing to prove if T = 0, so we may assume

C := ‖T‖ > 0.

By the C∗-identity (Theorem 2.27), we have

C2 = ‖T‖2 = ‖T ∗T‖ = ‖T 2‖.
Let

S(V ) := {v ∈ V |‖v‖ = 1} ⊂ V
be the unit sphere in V . By the definition of the operator norm, there is a sequence
vn ∈ S(V ) such that

lim
n
‖T 2vn‖ = ‖T 2‖ = C2.

Since T is compact, there is a subsequence vnk such that

u := lim
k
Tvnk ∈ V

exists. Then

‖u‖ ≤ ‖T‖ = C

and

T 2vnk → Tu,

hence

‖Tu‖ = C2.

It follows that

C2 = ‖Tu‖ ≤ ‖T‖‖u‖ ≤ C2,
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so that

(8.12) ‖u‖ = C

and

(8.13) C4 = ‖Tu‖2 = 〈Tu, Tu〉 = 〈TTu, u〉 ≤ ‖TTu‖‖u‖ ≤ ‖T‖‖Tu‖‖u‖ = C4.

It follows that

(8.14) 〈T 2u, u〉 = ‖T 2u‖‖u‖.

Hence by the equality case of the Cauchy-Schwarz inequality (Theorem 2.3 (2)), we
must have that T 2u is a multiple of u. In other words, T 2u = µu for some µ ∈ C.
But as

C4 = 〈u, T 2u〉 = 〈u, u〉µ = C2µ,

we have µ = C2, so that

T 2u = C2u,

and that C2 is an eigenvalue of T 2. The operator T restricts to a linear map
T0 : Eig(T,C2)→ Eig(T,C2), which satisfies

(T0 − C)(T0 + C) = T 2 − C2 = 0.

Therefore at least one of T0 − C and T0 + C must have a nonzero kernel, and this
implies that C or −C is an eigenvalue of T0, hence of T . �

End of the proof of Theorem 8.10. Let W ⊂ V be the closed subspace spanned by
all eigenvectors of T . Then T (W ) ⊂ W . If v ∈ W⊥, then Tv ∈ W⊥, because for
each w ∈W , we have Tw ∈W and hence

〈Tv,w〉 = 〈v, Tw〉 = 0.

The operator T |W⊥ therefore maps W⊥ into itself, and when viewed as an operator
W⊥ →W⊥, T |W⊥ is self-adjoint. By Lemma 8.11, W⊥ contains an eigenvector of
T unless W⊥ = {0}. The first is impossible by construction. So W⊥ = 0, hence
W = V . This argument shows that the eigenvectors span all of V . Picking a
complete orthonormal system for each eigenspace provides a complete orthonormal
system consisting of eigenvectors. �

8.4. ∗-Fredholm operators.

Definition 8.15. Let V,W be k-vector spaces and let F : V → W be linear. F
is Fredholm if the kernel ker(F ) and the cokernel W/im(F ) are both finite dimen-
sional. The index of a Fredholm map is the integer

ind(F ) = dim(ker(F ))− dim(W/im(F )) ∈ Z.

If V and W are Banach spaces and F is continuous and Fredholm, then F is a
Fredholm operator.

The first thing we prove has nothing to do with norms and continuity:

Proposition 8.16. Let U
G→ V

F→W be two linear maps. If two of the three linear
maps F,G and FG are Fredholm, then so is the third, and we have

ind(FG) = ind(F ) + ind(G).
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Proof. Recall that a sequence

U0
f1→ U1

f2→ U2

of vector spaces is exact at U1 if im(f1) = ker(f2). If U2 and U0 are finite-
dimensional, then U1 is finite-dimensional. In the situation of the Proposition,
there is a sequence

0→ ker(G)
i→ ker(FG)

G→ ker(F )
∂→ V/im(G)

f→W/im(FG)
p→W/im(F )→ 0

which is everywhere exact. The map i is the inclusion, ∂ sends v ∈ ker(F ) to
v+im(G), f sends v+im(G) to Fv+im(FG), and p sends w+im(FG) to w+im(F ).
It is left to the reader to prove that these maps are indeed well-defined and that
the sequence is exact.

Together with the fact about finite-dimensionality of vector spaces in an exact
sequence, this proves that if two of F,G and FG are exact, then so is the third.

To prove the formula for the index, it is enough to prove that when

0
f0→ U0

f1→ U1
f2→ U2 → . . .

fn→ Un
fn+1→ 0

is an exact sequence of finite-dimensional spaces, then

n∑
j=0

(−1)j dim(Uj) = 0.

To this end, let dj := dim(Uj), rj := dim(im(fj)) and kj := dim(ker(fj)). The
rank-nullity theorem shows

dj = rj+1 + kj+1,

and the exactness of the sequence implies

rj = kj+1.

Therefore
n∑
j=0

(−1)jdj =

n∑
j=0

(−1)j(rj+1 + kj+1) =

n∑
j=0

(−1)j(rj+1 + rj) =

=

n∑
j=0

(−1)jrj +

n+1∑
j=1

(−1)j−1rj = r0 + (−1)nrn+1 = 0 + 0 = 0.

�

Proposition 8.17. Let F : V →W be a Fredholm operator between Banach spaces.
Then im(F ) ⊂W is closed.

Proof. Choose a linear complement Z ⊂W of im(F ); Z is finite-dimensional, equip

Z with a norm and denote the inclusion by I : Z → W . Then V ⊕ Z F+I→ W is
surjective and continuous, and hence an open map by the open mapping theorem.
Since V × (Z \ 0) ⊂ V ⊕ Z is open, (F + I)(V × (Z \ 0)) ⊂ W is open. Therefore,
its complement W \ (F + I)(V × (Z \ 0)) = F (V ) is closed. �

From now on, we turn our attention to Hilbert spaces (many of the following
results remain true for Banach spaces). We denote by Fred(V,W ) ⊂ L(V,W ) the
set of all Fredholm operators (it is not a linear subspace).
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Proposition 8.18. The set Fred(V,W ) ⊂ L(V,W ) is open, and the map

ind : Fred(V,W )→ Z

is locally constant.

Proof. Let T : V → W be Fredholm. Since im(T ) ⊂ W is closed, there is the
orthogonal projection map P : W → im(T ). Since ker(P ) = im(T )⊥ ∼= W/im(T )
and P is surjective, P is Fredholm with index dim(W/im(T ))

The inclusion J : ker(T )⊥ → V is injective, and V/im(J) = V/ ker(T )⊥ ∼=
ker(T ), so J is Fredholm with index −dim(ker(T ).

The composition ker(T )⊥
J→ V

T→W
P→ im(T ) is invertible. Hence there is δ > 0

such that when ‖S − T‖ ≤ δ, then PSJ is also invertible. Since P and PSJ are
Fredholm, so is SJ , and since J is Fredholm, S is Fredholm. Therefore Fred(V,W )
is open.

Moreover, for S as above

0 = ind(PSJ) = ind(P )+ind(S)+ind(J) = dim(W/im(T ))+ind(S)−dim(ker(T )) = ind(S)−ind(T ).

�

Theorem 8.19 (Atkinson). For a bounded operator T : V → W between Hilbert
spaces, the following are equivalent.

(1) T is Fredholm.
(2) There is S ∈ L(W,V ) such that 1− TS and 1− ST are compact.

An operator S as in the Theorem is a parametrix for T .

Proof of 1⇒ 2. Assume that T is Fredholm. Then im(T ) is closed by Proposition
8.17. Write V = ker(T )⊥⊕ ker(T ) and W = im(T )⊕ im(T )⊥. With respect to this
decomposition, we can write

T =

(
T0 0
0 0

)
where T0 : ker(T )⊥ → im(T ) is the restriction of T and bijective. Let

S =

(
T−1

0 0
0 0

)
.

Then

1− TS =

(
0 0
0 1

)
,

where the nonzero entry is the identity on the finite-dimensional space im(T )⊥ and
hence compact. Therefore 1−TS is compact, and similarly, 1−ST is compact. �

For the reverse implication, we isolate the main step as a separate lemma.

Lemma 8.20. Let T : V → W be a bounded operator between Hilbert spaces, let
K : V → U be a compact operator to a further Hilbert space and assume that

‖v‖ ≤ C(‖Tv‖+ ‖Kv‖)

for some C ≥ 0 and all v ∈ V . Then ker(T ) is finite-dimensional and im(T ) is
closed.
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Proof. Let (vn)n be a sequence in ker(T ) with ‖vn‖ ≤ 1. We claim that it has a
convergent subsequence; this will show that dim(ker(T )) < ∞. After passing to
a subsequence, we may assume that Kvn is convergent. But then ‖vn − vm‖ ≤
C‖Kvn −Kvm‖ proves that (vn)n is Cauchy.

To prove that im(T ) is closed, note that im(T ) = im(T |ker(T )⊥). In other words,
we can assume without loss of generality that T is injective, and we do so from now
on.

We show that there is c > 0 so that ‖Tv‖ ≥ c‖v‖ for all v ∈ V ; Lemma 1.18
implies that im(T ) is closed.

If there is no such c, we find for each n a unit vector vn ∈ V with ‖Tvn‖ ≤ 1
n . We

therefore found a sequence of unit vectors vn with ‖Tvn‖ → 0, and after passage to
a subsequence we may assume that Kvn is convergent. It follows from the estimate
‖v‖ ≤ C(‖Tv‖ + ‖Kv‖) that vn is Cauchy and hence tends to some v ∈ V , with
‖v‖ = 1. But we also have Tv = limn Tvn = 0, which contradicts the injectivity of
T . �

Proof of 2⇒ 1 of Theorem 8.19. If 1− ST is compact, we get

‖v‖ ≤ ‖STv‖+ ‖(1− ST )v‖ ≤ ‖S‖‖T‖+ ‖(1− ST )v‖.
Lemma 8.20 implies that ker(T ) is finite-dimensional and im(T ) is closed. But
im(T )⊥ = ker(T ∗), and since

1− S∗T ∗ = (1− TS)∗

is compact, we can apply the same argument and conclude that ker(T ∗) is finite-
dimensional. Therefore, im(T )⊥ is finite-dimensional, and because im(T ) is closed,
we get that W/im(T ) ∼= im(T )⊥ is finite-dimensional as well. �

Corollary 8.21. Let T ∈ Fred(V,W ) and let K ∈ K(V,W ). Then T + K is
Fredholm, and ind(T +K) = ind(T ).

Proof. Let S ∈ Fred(W,V ) be a parametrix for T . Then

1− S(T +K) = 1− ST − SK
and

1− (T +K)S = 1− TS −KS
are compact, and so by Theorem 8.19, T + K is compact. This argument shows
that T + tK is compact for each t ∈ [0, 1], and because the index is locally constant,
ind(T +K) =

∫
(T ). �

Corollary 8.22. Let T ∈ Fred(V,W ). Then the adjoint T ∗ ∈ L(W,V ) is Fredholm,
and ind(T ) = −ind(T ∗).

Proof. Let S be a parametrix for T . Then S∗ is a parametrix for T ∗, and so T ∗ is
Fredholm. Observe that

ker(T ∗) = im(T )⊥ ∼= W/im(T )

(the last is true because im(T ) ⊂ W is closed). The same applies to T ∗ because
this is also Fredholm, and hence

ker(T ) = im(T ∗)⊥ ∼= V/im(T ∗).

It follows that

ind(T ) = dim(ker(T ))−dim(W/im(T )) = dim(V/im(T ∗))−dim(ker(T ∗)) = −ind(T ∗).
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�

8.5. ∗ The Toeplitz index theorem. We discuss an interesting (and fairly deep)
connection between the index of a Fredholm operator and algebraic topology. This
is the first instance of an index theorem.

Consider the Hilbert space L2(S1;C). It contains the space

H(S1) := span{zn|n ≥ 0}
of functions all whose Fourier coefficients of negative index are zero. Let P :
L2(S1)→ H(S1) ⊂ L2(S1) be the orthogonal projection onto H(S1). Furthermore,
let f : S1 → C be a continuous function. This gives rise to a multiplication operator
Mf (h) := fh on L2(S1). Note that

‖Mf‖ = ‖f‖C0 ,

Mfg = MfMg,

Mf+g = Mf +Mg,

and M1 = 1, Mf = (Mf )∗.
We define an operator

Tf : L2(S1)→ L2(S1), Tf = PMfP + (1− P ),

which is called the Toeplitz operator associated with f .
Now recall from elementary algebraic topology the notion of the winding number :

for a continuous function f : S1 → C×, it associates the winding number deg(f) ∈
Z.expand

Theorem 8.23 (Toeplitz index theorem). Let f : S1 → C× be continuous. Then
Tf is a Fredholm operator, and ind(Tf ) = −deg(f).

Lemma 8.24. Let f ∈ C(S1). Then the commutator [P,Mf ] is compact.

Proof. Let A ⊂ C(S1) be the subspace of those f for which [P,Mf ] is compact. We
verify the following claims:

(1) A is a linear subspace (clear).
(2) 1 ∈ A (clear, TM1 −M1T = 0).
(3) f, g ∈ A, then fg ∈ A: for this, note that

[P,Mfg] = PMfg −MfgP = PMfMg −MfMgP = [P,Mf ]Mg +Mf [P,Mg],

which is compact if f, g ∈ A.
(4) If f ∈ A, then f ∈ A. This is because

[P,Mf ] = [P ∗, (Mf )∗] = P ∗(Mf )∗−(Mf )∗P ∗ = (MfP−PMf )∗ = [Mf , P ]∗ = −[P,Mf ]∗

is compact.
(5) z ∈ A. For that, we need to compute [P,Mz] explicitly on the orthonormal

basis {zk}. If k ≥ 0, we have

PMz(z
k)−MzP (zk) = P (zk+1)− zzk = 0,

for k = −1, we have

PMz(z
−1)−MzP (z−1) = Pz0 − 0 = z0,

and for k ≤ −2, we have [P,Mz]z
k = 0. Therefore, [P,Mz] is of rank 1 and

therefore compact.
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The Stone-Weierstrass theorem easily implies that A = C(S1), which is what we
claimed. �

Proof of the Toeplitz index theorem. Let f, g ∈ C(S1). Then (because Mfg =
MfMg)

TfTg − Tfg = (PMfP + (1− P ))(PMgP + (1− P ))− (PMfMgP + (1− P )) =

= PMfPPMgP+PMfP (1−P )+(1−P )PMgP+(1−P )2−PMfMgP−(1−P ) =

(use that P 2 = P , P (1− P ) = (1− P )P = 0 and (1− P )2 = 1− P )

= PMfPMgP − PMfMgP = P [Mf , P ]MgP + PPMfMgP − PMfMgP =

= P [Mf , P ]MgP.

This is compact by the previous lemma.
If f : S1 → C× is continuous, we apply this argument to f and g = f−1 and

obtain that (note that T1 = id)

1− TfTf−1 , 1− TfTf−1

are compact. Hence Tf−1 is a parametrix for Tf , whence Tf is Fredholm. If f, g :
S1 → C× are continuous, the above argument also proves

ind(Tfg) = ind(Tf ) + ind(Tg).

As ‖Tf‖ ≤ ‖f‖, f 7→ Tf is continuous, and therefore ind(Tf ) only depends on the
homotopy class of f in [S1;C×].

One of the key results of elementary algebraic topology is that two maps S1 →
C× are homotopic if and only if they have the same winding number. Therefore,
ind(Tf ) = ind(Tzk), where k = deg(f). But

ind(Tzk) = kind(Tz),

and all that remains is to compute ind(Tz). But

Tz(z
k) =

{
zk k ≤ −1

zk+1 k ≥ 0.

Therefore Tz is injective, and its image is the closed subspace span{zn|n 6= 0} which
has codimension 1. Thus

ind(Tz) = −1 = −deg(z).

�
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9. The spectrum

9.1. Banach algebras.

Definition 9.1. Let k be a field. A k-algebra is a k-vector space A, together with
a k-bilinear map

A×A→ A, (a, b) 7→ ab,

such that this multiplication is associative, that is

(ab)c = a(bc).

We say that A is commutative if ab = ba for all a, b ∈ A. If there is a neutral
element e ∈ A (i.e. ea = ae = a for all a ∈ A) and e 6= 0, we say that A is unital.

If 0 is a neutral element, then A = {0}, so the condition e 6= 0 only excludes
the trivial algebra A = 0. The neutral element e is uniquely determined, because
if e, e′ are two such neutral elements, then e = ee′ = e′. It is customary to denote
1 := e.

A homomorphism φ : A→ B of two algebras is a linear map such that φ(ab) =
φ(a)φ(b) for all a, b ∈ A. If A and B are unital, a homomorphism φ : A → B is
unital if φ(1) = 1. If A is unital, then φ : k → A, z 7→ z1 is an injective unital
homomorphism. It is customary to write z instead of z1.

A left-inverse of a ∈ A is a c with ca = 1, and a right-inverse is b with ab = 1.
An element a ∈ A may have a left (right) inverse but not a right (left) inverse, and
many different left (right) inverses.

An element a of a unital k-algebra is a unit if it has both, a left- and a right
inverse. In that situation, left- and right inverses agree and are uniquely determined:
if c′a = ca = 1 and ab′ = ab = 1, then

c = cab = b = c′ab = c′ = c′ab′ = b′.

It is customary to denote the left-and-right-inverse of a by a−1.
The set A× ⊂ A of units is a group under multiplication.

Definition 9.2. A Banach algebra is a K-algebra A, together with a norm ‖ ‖ on
A, such that

‖ab‖ ≤ ‖a‖‖b‖
for all a, b, and such that the normed vector space (A, ‖ ‖) is complete. A unital
Banach algebra is a Banach algebra, such that the naked K-algebra A is unital and
‖1‖ = 1.

Example 9.3. If X 6= ∅ is a topological space, then Cb(X) is a commutative unital
K-algebra by pointwise multiplication of functions. The usual norm makes is into
a unital Banach algebra. An element f ∈ Cb(X) is a unit if and only if 0 6∈ f(X).

If X is locally compact Hausdorff, then C0(X) is a Banach algebra which is not
unital (unless X is compact).

Example 9.4. For each Banach space V , the space L(V ) := L(V, V ) of bounded
operators becomes a K-algebra, with multiplication (F,G) 7→ FG. The operator
norm turns L(V, V ) into a Banach algebra, which is unital except in the trivial case
V = 0. F ∈ L(V ) is a unit if and only if F is bijective, by the open mapping
theorem.
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Example 9.5. Let (X,µ) be a measure space. Then L∞(X,µ), with the L∞-norm,
is a Banach algebra, which is unital. An element f ∈ L∞(X,µ) is a unit if and
only if there is δ > 0 such that µ(f−1(Bδ(0))) = 0.

Example 9.6. Let X be a measurable space (C.2). Then L∞(X), the space of all
measurable bounded functions f : X → K, is a Banach algebra with the supremum
norm ‖f‖L∞ := supx∈X |f(x)|. f ∈ L∞(X) is a unit if and only if 0 6∈ f(X).

If X carries a measure µ, the quotient map L∞(X)→ L∞(X,µ) which assigns
to a measurable function its equivalence class, is a continuous surjective unital
homomorphism. It is usually not injective. It is important to distinguish the Banach
algebras L∞(X) and L∞(X,µ).

Some of these algebras have even more structure.

Definition 9.7. A C∗-algebra A is a complex Banach algebra A, together with a
R-linear map A→ A, a 7→ a∗, such that

(1) (za)∗ = za∗

(2) (ab)∗ = b∗a∗,
(3) (a∗)∗ = a and
(4) ‖a‖2 = ‖a∗a‖

for all a, b ∈ A and z ∈ C.

Examples 9.8. For a Hilbert space V , L(V ) with T 7→ T ∗ is a C∗-algebra. Cb(X),

L∞(X,µ) and L∞(X) are C∗-algebras with f∗(x) := f(x). All these C∗-algebras
are unital, except in trivial cases.

Since ‖a‖2 = ‖a∗a‖ ≤ ‖a∗‖‖a‖, we have ‖a‖ ≤ ‖a∗‖ for all a, and hence ‖a∗‖ ≤
‖(a∗)∗‖ = ‖a‖, so that ‖a∗‖ = ‖a‖. Furthermore, if A is unital and a ∈ A, we
have 1∗a = 1∗(a∗)∗ = (a∗1)∗ = (a∗)∗ = a and a1∗ = (a∗)∗1∗ = (1a∗)∗ = a, so that
1∗ = 1.

Definition 9.9. Let A be a unital C∗-algebra and a ∈ A. We say that a is self-
adjoint if a∗ = a, that a is unitary if a∗a = aa∗ = 1, and that a is normal if
a∗a = aa∗. Selfadjoint and unitary elements are normal.

Theorem 9.10. Let A be a unital Banach algebra. Then the set A× ⊂ A of
invertible elements is open, and the inversion map ι : A× → A× is continuous.

The first step of the proof is a lemma that is very often used.

Lemma 9.11. Let A be a unital Banach algebra and let a ∈ A with ‖a‖ < 1. Then
1 + a is invertible in A, and

‖(1 + a)−1‖ ≤ 1

1− ‖a‖
.

Proof. For a ∈ A, ‖a‖ < 1, the series

∞∑
n=0

(−1)nan

is absolutely convergent in A. Let b ∈ A be the limit. The same computation that
computes the partial sum of a geometric series proves that

b(1 + a) = (1 + a)b = 1.
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Therefore 1 + a ∈ A×. We also get the estimate

‖(1 + a)−1‖ ≤
∑
n=0

‖a‖n =
1

1− ‖a‖
.

�

Proof of Theorem 9.10. Let a ∈ A×. We show that B 1

‖a−1‖
(a) ⊂ A×, and this

implies that A× is open. So let h ∈ A with ‖h‖ < 1
‖a−1‖ . Then ‖ha−1‖ < 1, and

1 + ha−1 ∈ A× by Lemma 9.11. Since A× is a group, we get

a+ h = (1 + ha−1)a ∈ A×

and
(a+ h)−1 = a−1(1 + ha−1)−1.

Therefore

(a+ h)−1 − a−1 = a−1((1 + ha−1)−1 − 1) = a−1
∞∑
k=1

(ha−1)k

and

‖(a+ h)−1 − a−1‖ ≤ ‖a−1‖
∞∑
k=1

‖ha−1‖k = ‖a−1‖‖ha−1‖ 1

1− ‖ha−1‖

The right hand side tends to 0 as h→ 0, proving that the inversion map is contin-
uous at a. �

9.2. The spectrum of an element in a Banach algebra.

Definition 9.12. Let A be a unital Banach algebra over C and a ∈ A. The
spectrum of a is the set spec(a) ⊂ C which consists of all z ∈ C such that z − a is
not invertible. The complement spec(a)c ⊂ C is the resolvent set.

Lemma 9.13. Let a ∈ A. Then spec(a) ⊂ C is closed and contained in the closed
disc D‖a‖(C) of radius ‖a‖.

Proof. The map J : C→ A, z 7→ z−a is continuous, and hence spec(a)c = J−1(A×)
is open, by Theorem 9.10. If |z| > ‖a‖, then z−a = z(1− a

z ) is invertible as ‖az ‖ < 1,
by Lemma 9.11. �

Example 9.14. If a ∈ Matn,n(C), then spec(a) is the set of all eigenvalues of a.

Example 9.15. If f ∈ C(X), X compact, spec(f) = f(X) ⊂ C.

It is not true that for F ∈ L(V ), any point in spec(F ) is an eigenvector of F
(there will be an ample supply of examples later on).

Lemma 9.16. Let A be a unital C∗-algebra and let a ∈ A.

(1) if a is self-adjoint, then spec(a) ⊂ R.
(2) if a is unitary, then spec(a) ⊂ C.

Proof. (1): Let λ ∈ spec(a) and t ∈ R. Then λ + it ∈ spec(a + it). Therefore
|λ+ it| ≤ ρ(a+ it) ≤ ‖a+ it‖. Therefore

|λ+ it|2 ≤ ‖a+ it‖2 = ‖(a+ it)∗(a+ it)‖ = ‖(a− it)(a+ it)‖ = ‖a2 + t2‖ ≤ ‖a2‖+ t2.

On the other hand
|λ+ it|2 = |λ|2 + t2 + 2t=(λ).
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Together, this shows that
|λ|2 + 2t=(λ) ≤ ‖a2‖

for all t ∈ R. Such an inequality is impossible unless =(λ) = 0.
(2): Since ‖a‖2 = ‖a∗a‖ = ‖1‖ = 1, we have ‖a‖ = 1 and hence ρ(a) ≤ ‖a‖ = 1,

or spec(a) ⊂ D1(C). On the other hand, let |z| < 1. Since a ∈ A× and a−1 = a∗

has norm ‖a−1‖ = ‖a∗‖ = ‖a‖ = 1, we have ‖za−1‖ < 1, and so (1 − za−1) is
invertible, and hence so is

a− z = (1− za−1)a,

in other words z 6∈ spec(a). �

9.3. The spectrum is nonempty. For the deeper investigations of the spectrum,
we henceforth assume that K = C. The first thing we have to consider are the two
spectral mapping theorems.

Theorem 9.17 (First spectral mapping theorem). Let Φ : A→ B be a homomor-
phism of unital Banach algebras and let a ∈ A. Then

specB(Φ(a)) ⊂ specA(a).

Proof. Let z ∈ specA(a)c, that is, (z − a) ∈ A×. Since Φ is multiplicative and
Φ(1) = 1, we get Φ(z − a) = z − Φ(a) ∈ B×, hence z ∈ specB(Φ(a))c. Hence
specA(a)c ⊂ specB(Φ(a))c and so specB(Φ(a)) ⊂ specA(a), as claimed. �

The second spectral mapping theorem is about inserting elements of a Banach
algebra into polynomials. Let p(x) =

∑n
k=0 ckx

k ∈ C[x] be a polynomial, and let
a ∈ A. We define

p(a) :=

n∑
k=0

cka
k ∈ A.

It is easy to check that
p 7→ p(a)

is a homomorphism
C[x]→ A

of unital algebras. Since we do not have a sensible norm on C[x], it does not make
sense to say that it is continuous, bounded or something like that.

Theorem 9.18 (Second spectral mapping theorem). Let p ∈ C[x] and a ∈ A.
Then

specA(p(a)) = p(specA(a)) := {p(z)|z ∈ specA(a)}.

Proof. Let y ∈ C. Write
q(x) := p(x)− y ∈ C[x],

and by the fundamental theorem of algebra, we can write

q(x) =

n∏
j=1

(x− zj).

It follows that

p(a)− y =

n∏
j=1

(a− zj).

The following statements are equivalent:

(1) y ∈ p(specA(a)),
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(2) there is z ∈ specA(a) with p(z) = y,
(3) at least one of the roots zj of q(x) lies in specA(a),
(4) at least one of the (a− zj) is not invertible in A,
(5) the product

∏n
j=1(a− zj) is not invertible in A,

(6) p(a)− y is not invertible in A,
(7) y ∈ spec(p(a)).

The only step that needs to be justified is the equivalence 4⇒ 5. What is relevant
here is that the elements (a − zj) commute with each other; it follows that if the
product is invertible, all of its factors are (exercise). �

We wish to prove that the spectrum of any element in a complex Banach algebra
is nonempty. The actual result is a little more precise, and we need a definition.

Definition 9.19. Let a ∈ A be an element of a unital Banach algebra. The spectral
radius of a is the number

ρ(a) := sup{|z||z ∈ spec(a)} ∈ [0,∞).

The definition of the supremum assumes that spec(a) 6= ∅, which we will show
soon. We already know that the spectrum is contained in D‖a‖(C), from which we
get

(9.20) ρ(a) ≤ ‖a‖.
Our goal is to prove the following result.

Theorem 9.21. Let A be a unital Banach algebra over C and let a ∈ A. Then

specA(a) 6= ∅
and the spectral radius is given by the formula

ρ(a) = lim
n→∞

‖an‖ 1
n .

First part of the proof. Let λ ∈ spec(a). By Theorem 9.18, we have

λn ∈ spec(an),

and (9.20) shows that

|λ|n = |λn| ≤ ‖an‖
and hence

ρ(a) ≤ ‖an‖ 1
n

and hence

ρ(a) ≤ inf
n
‖an‖ 1

n ≤ lim sup
n
‖an‖ 1

n .

�

It remains to be shown that spec(a) 6= ∅ and that

lim sup
n
‖an‖ 1

n ≤ ρ(a).

Let

Ua := {z ∈ C|1− za ∈ A×} ⊂ C.
This is an open subset. Note that

Ua = {z ∈ C×|1
z
∈ spec(a)c} ∪ {0}.
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By (9.20), we have

B 1
‖a‖

(0) ⊂ Ua.

Consider the converse resolvent4 function

Ta : Ua → A, Ta(z) := (1− za)−1.

For |z| < 1
‖a‖ , we have the (absolutely convergent) representation

(9.22) Ta(z) =

∞∑
n=0

znan.

For z, z + h ∈ Ua, we compute

1

h
(Ta(z + h)− Ta(z)) =

1

h
((1− (z + h)a)−1 − (1− za)−1) =

=
1

h
((1−(z+h)a)−1(1−za)−1)(1−za)−1 =

1

h
(1−(z+h)a)−1

(
(1−za)−(1−(z+h)a)

)
(1−za)−1 =

= (1− (z + h)a)−1a(1− za)−1.

It follows that

lim
h→0

1

h
(Ta(z + h)− Ta(z)) = (1− za)−1a(1− za)−1.

Now we call the basic results from the theory of holomorphic functions in one
complex variable. Recall that a holomorphic function is a function f : U → C,
defined on an open subset U ⊂ C, such that for each z ∈ U , the limit

f ′(z) := lim
h→0

1

h
(f(z + h)− f(z))

exists. The above computation shows that for each L ∈ A′, the function

FL,a : Ua → C, FL,a(z) := L(Ta(z))

is holomorphic.
Important examples are power series

f(z) =

∞∑
n=0

cnz
n.

There is a unique R ∈ [0,∞], the radius of convergence, so that the series con-
verges absolutely on BR(0) and diverges outside B̄R(0). One can show that f is
holomorphic on BR(0). Furthermore, if 0 ≤ r < R, the sequence

n 7→ |cn|rn

is bounded (otherwise, we would not have absolute convergence). The fundamental
theorem of elementary complex analysis says that all holomorphic functions can be
written as power series. Here is the precise statement. We have written the proofs
in §D.

4The resolvent function is Ra : spec(a)c → A, Ra := (z− a)−1. We find it more convenient to
use Ta here.
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Theorem 9.23. Let 0 ∈ U ⊂ C be open and let f : U → C be holomorphic. Then
there is a unique power series expansion

f(z) =

∞∑
n=0

cnz
n

which converges absolutely on each disc B̄r(0) ⊂ U . The coefficients cn are given
by the integral formula

cn =
1

2π

∫ 2π

0

f(reit)

rneint
dt.

Corollary 9.24 (Liouville’s theorem). Let f : C→ C be holomorphic and bounded.
Then f is constant.

Proof. Let M := supz |f(z)|. By the formula for the coefficients, we get for each r
that

|cn|rn ≤
1

2π

∫ 2π

0

|f(reit|dt ≤M.

This implies cn = 0 for n > 0. The power series expansion (which converges on C)
shows that f is constant. �

Second part of the proof of Theorem 9.21. We first prove that spec(a) 6= ∅. Sup-
pose, for sake of a contradiction, that spec(a) = ∅. Then a ∈ A×, and Ua = C.
Then

Ta(z) = (1− za)−1 =
1

z
(
1

z
− a)−1

and

lim
z→∞

Ta(z) = 0.

Hence the function z 7→ ‖Ta(z)‖ is bounded. It follows that for each L ∈ A′, the
function FL,a : C→ C is a bounded holomorphic function. By Liouville’s Theorem,
it must be constant, and hence equal to 0. Therefore

0 = FL,a(0) = L(1)

for each L ∈ A′. By the Hahn-Banach theorem, this implies the absurdity 0 = 1.
For the spectral radius formula, it remains to be shown that

lim sup
n
‖an‖ 1

n ≤ ρ(a).

By the definition of Ua and the spectral radius, we have

1

ρ(a)
= sup{r|Dr(C) ⊂ C}.

Therefore, we must prove

(9.25) Dr(C) ⊂ Ua ⇒ r lim sup
n
‖an‖ 1

n ≤ 1.

So let r > 0 such that Dr(C) ⊂ Ua. For L ∈ A′, the power series expansion

FL,a(z) =

∞∑
n=0

znL(an)
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converges around 0. On the other hand, FL,a : Ua → C is holomorphic, and by the
uniqueness part of Theorem 9.23, it follows that the expansion converges absolutely
on Dr(C). Hence there is M(r, L) ≥ 0 such that

rn|L(an)| ≤M(r, L)

for all n. Now we consider the family of linear maps

Gn : A′ → C, Gn(L) := rnL(an).

By the Hahn-Banach theorem, the operator norm of Gn is

‖Gn‖ = rn‖an‖,
and for each L ∈ A′, we have |Gn(L)| ≤M(r, L). The principle of uniform bound-
edness implies that there is C(r) ≥ 0 such that

rn‖an‖ = ‖Gn‖ ≤ C(r)

for all n. It follows that
r‖an‖ 1

n ≤ C(r)
1
n

and hence
r lim sup

n
‖an‖ 1

n ≤ lim
n
C(r)

1
n .

The latter limit equals 1, and hence we have proven (9.25) for each r < 1
ρ(a) . The

spectral radius formula follows. �

Theorem 9.21 has some interesting consequences for C∗-algebras.

Corollary 9.26. Let A be a unital C∗-algebra and let a ∈ A be normal. Then

ρ(a) = ‖a‖.

Proof. First note that by the C∗-identity

‖a2‖2 = ‖(a2)∗a2‖ = ‖a∗a∗aa‖ = ‖(a∗a)(a∗a)‖ = ‖(a∗a)∗(a∗a)‖ = ‖a∗a‖2 = ‖a‖4

or ‖a2‖ = ‖a2‖. Because each power an is also normal, we obtain inductively that

‖a2n‖ = ‖a‖2
n

for all n ≥ 0. By the spectral radius formula

ρ(a) = lim
n→∞

‖an‖ 1
n = lim

n→∞
‖a2n‖ 1

2n = ‖a‖.

�

Corollary 9.27. Let a ∈ A be an arbitrary element of a unital C∗-algebra. Then

‖a‖ =
√
ρ(a∗a).

Note that the left hand side is entirely determined by the algebraic structure of
A (the norm does not enter the definition).

Proof.

‖a‖ =
√
‖a∗a‖ =

√
ρ(a).

�

Definition 9.28. Let A and B be two C∗-algebras. A ∗-homomorphism is an
algebra homomorphism Φ : A→ B such that Φ(a∗) = Φ(a)∗ for all a ∈ A.

It follows automatically that Φ(a) is self-adjoint if a is self-adjoint.
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Corollary 9.29. Let A,B be unital Banach algebras and let Φ : A→ B be a unital
∗-homomorphism. Then Φ is continuous, and ‖Φ‖ = 1, if one of the following
hypotheses holds:

(1) A, B are C∗-algebras and Φ is a ∗-homomorphism.
(2) B is a commutative C∗-algebra.

Proof. (1):

‖Φ(a)‖2 = ρ(Φ(a)∗Φ(a)) = ρ(Φ(a∗a)) ≤ ρ(a∗a) = ‖a‖2;

the inequality holds by Theorem 9.17.
(2): because B is commutative, Φ(a) is normal, and so

‖Φ(a)‖ = ρ(Φ(a)) ≤ ρ(a) ≤ ‖a‖
by Theorem 9.17 and the simple inequality ρ(a) ≤ ‖a‖. �
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10. The spectral theorem for normal bounded operators on Hilbert
spaces

The spectral theorem is not a single theorem, but a collection of various related
results about normal operators on Hilbert spaces. We take the finite-dimensional
case as a model case. Recall from Linear Algebra:

Theorem 10.1. Let V be a finite-dimensional complex Hilbert space and let T ∈
L(V ) be normal. Then there is an orthonormal basis (v1, . . . , vn) of eigenvectors,
Tvj = λjvj.

In that case spec(T ) = {λ1, . . . , λn}. For each v ∈ V , we have

v =

n∑
k=1

〈vk, v〉vk

and therefore

‖v‖2 =

n∑
k=1

|〈vk, v〉|2.

It follows that

‖Tv‖2 =

n∑
k=1

|〈λkvk, v〉|2 ≤ max
k
|λk|2

n∑
k=1

|〈vk, v〉|2 = max
k
|λk|2‖v‖2

and therefore

(10.2) ‖T‖ = max
k
|λk|.

It is also easily seen that
T ∗vk = λkvk.

10.1. The continuous functional calculus. From linear algebra, one remembers
that the operation of inserting matrices into polynomials is very important for the
understanding of the structure of matrices. For any unital C-algebra and any a ∈ A,
there is a unique algebra homomorphism

Φpa : C[x]→ A

with
Φpa(1) = 1, Φpa(x) = a.

This is defined by the formula

Φpa(

m∑
k=0

ckx
k) =

m∑
k=0

cka
k.

The homomorphism Φpa is called the polynomial functional calculus for a, and it is
common to denote

p(a) := Φpa(p).

The functional calculus tells us how to insert elements of A into polynomials.
One can insert elements of A into more general functions. For example, we can

take z 6∈ spec(a) and define

1

a− z
:= (a− z)−1.

More generally, one can define f(a) for every rational function on C which has no
poles on spec(a). Up to this point, no norm or topology on A is used.
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If a ∈ A is an element of a unital Banach algebra, we can define expressions such
as

exp(a) :=

∞∑
k=0

1

k!
ak.

The series on the right converges absolutely. Instead of the exponential series, one
can take any other power series f(x) :=

∑∞
k=0 ckx

k with positive convergence radius
R, and define f(a) when a ∈ A has norm ‖a‖ < R. These ideas can be pursued
further and give the “holomorphic functional calculus”. It defines f(a) whenever
f is a holomorphic function defined on an open neighborhood of spec(a), and a is
an element of a Banach algebra. The construction of the holomorphic functional
calculus requires deeper results from complex analysis.

Instead, we want to generalize the polynomial functional calculus for normal
elements of a unital C∗-algebra. The goal is the continuous functional calculus. To
what this should accomplish, let us return to the situation of Theorem 10.1. Let
f : spec(T ) = {λ1, . . . , λn} → C be an arbitrary function, we define the linear map
ΦcT (f) ∈ L(V ) by the formula

ΦcT (f)vj := f(λj)vj .

It is easily proven that

ΦcT : C(spec(T ))→ L(V )

is a unital ∗-homomorphism, and that ΦcT (x) = T , and that ΦcT is the unique such
homomorphism. It extends the polynomial functional calculus in the sense that
p ∈ C[x] defines a map p : spec(T )→ C, and then

ΦcT (p) = ΦpT (p).

To verify this, one shows that

ΦcT (p)vj = p(λj)vj = ΦpT (p)vj .

Theorem 10.3 (The spectral theorem: functional calculus version). Let A be
a unital C∗-algebra and let a ∈ A be normal. Then there is a unique algebra
homomorphism

Φca : C(spec(a))→ A,

the continuous functional calculus, such that

Φca(1) = 1,

Φca(x) = a

and

Φca(f) = Φca(f)∗.

Moreover,

‖Φca(f)‖ = ‖f‖
for all f ∈ C(spec(a)).

We usually write

f(a) := Φca(f).

Remark 10.4. It turns out that the proof is substantially simpler if a is assumed
to be self-adjoint. However, we shall carry out all steps for normal a whenever
possible, to clearly understand the additional difficulty.



FUNCTIONAL ANALYSIS 113

Proof of the uniqueness statement of Theorem 10.3. Let Φa,Φ
′
a : C(spec(a)) → A

be two such homomorphisms. We consider

B := {f ∈ C(spec(a))|Φa(f) = Φ′a(f)} ⊂ C(spec(a)).

This is a subalgebra of C(spec(a)). It contains 1 and the identity function x.
Since Φa and Φ′a are both ∗-homomorphisms, we have f ∈ B ⇒ f . Since x
is injective, the Stone-Weierstrass theorem implies that B is dense in C(spec(a)).
Finally, by Corollary 9.29, Φa and Φ′s are continuous, so that B is closed. Therefore
B = C(spec(a)). �

Construction of the functional calculus for self-adjoint a. Let p =
∑n
k=0 ckx

k ∈ C[x].
Note that

p(a)∗ =

n∑
k=0

ck(a∗)k.

It follows that p(a) is normal if a is normal. Therefore (Corollary 9.26), we have

(10.5) ‖p(a)‖ = ρ(p(a)) = sup
y∈spec(p(a))

|y| = sup
z∈spec(a)

|p(z)|.

Now let
T ⊂ C(spec(a))

be the subalgebra of all polynomial functions. For f ∈ T , pick a polynomial p ∈ C[x]
such that p(λ) = f(λ) for all λ ∈ spec(a). (When spec(a) is infinite, p is uniquely
determined, but this is not the case if spec(a) is a finite set). We define

Φca(f) := Φpa(p) = p(a).

The equation (10.5) shows that

‖Φca(f)‖ = ‖f‖C(spec(a)).

Therefore, Φca(f) is well-defined (it does not depend on the choice of the polynomial
p), and

Φca : T → A

is an isometry.
Since the polynomial functional calculus is an algebra homomorphism, Φca is an

algebra homomorphism, and it is clear that

Φca(1) = 1, Φca(x) = a.

Since Φca is an isometry, it extends by continuity to an isometry

Φca : T → A

from the closure to A. The closure is a subalgebra of C(spec(a)), and the extended
map Φca is an isometry and an algebra homomorphism by a straightforward limit
argument.

Up to this point, the construction works for normal a. Now assume that a∗ = a.
Therefore

spec(a) ⊂ R
by Lemma 9.16. This has the following consequence: if f =

∑n
k=0 ckx

k ∈ T , then

the conjugate f ∈ C(spec(a)) is given by the formula

(10.6) f(z) =

n∑
k=0

ckzk =

n∑
k=0

ckz
k
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for all z ∈ spec(a). Hence the conjugate of f ∈ T is again in T .
Therefore the subalgebra T ⊂ C(spec(a)) is invariant under conjugation, and it

is clear that it separates points and contains 1. Therefore, by the Stone–Weierstrass
theorem, T = C(spec(a)).

This finishes the construction of Φca and proves that it is an isometry. We have
not yet checked that Φca is a ∗-homomorphism. But the identity (10.6), together
with a∗ = a, shows that

Φca(f) = Φca(f)∗

whenever f ∈ T , and this identity extends by continuity to all of C(spec(a)). �

Remark 10.7. When a ∈ A is normal, but not self-adjoint, then T ⊂ C(spec(a))
is not preserved by conjugation. Hence the Stone–Weierstrass theorem cannot be
applied (in fact, the closure T is usually smaller than C(spec(a))).

The procedure must then be modified; one considers the subalgebra

Q ⊂ C(spec(a))

which consists of all polynomial functions of the form

n∑
k,l=0

cklx
kxl.

This lies dense in C(spec(a)) by the Stone–Weierstrass theorem, and the formula

Φca(

n∑
k,l=0

cklx
kxl) :=

n∑
k,l=0

ckla
k(a∗)l

defines a ∗-homomorphism Q → A (it is important that a is normal in order for
Φca to be multiplicative). To extend Φca to all of C(spec(a)), one needs to prove that
Φca is bounded (the automatic continuity from Corollary 9.29 is of no use for that
because Q is not complete). It is even an isometry, and the equation

‖
n∑

k,l=0

ckla
k(a∗)l‖ = sup

λ∈spec(a)

|
n∑

k,l=0

cklλ
k(λ∗)l|

holds, but is much more difficult to prove than the equation (10.5) of the above
proof.

The naive estimate

‖
n∑

k,l=0

ckla
k(a∗)l‖ ≤

n∑
k,l=0

|ckl|‖a‖k+l

is not sufficient to prove that Φca is bounded.

10.2. Multiplication operators. Theorem 10.1 asserts that any normal operator
on a finite-dimensional Hilbert space is equivalent to a certain normal form. Here,
the normal form is a diagonal matrix. For normal operators on Hilbert spaces, the
normal form is necessarily more complicated.

Let us first define the appropriate version of equivalence.

Definition 10.8. Let (Vj , Tj), j = 0, 1, be two Hilbert spaces with Tj ∈ L(Vj). A
unitary equivalence U : (V0, T0) → (V1, T1) is an isometric isomorphism U : V0 →
V1 such that UT0U

∗ = T1.
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Note that L(V0) → L(V1), T 7→ UTU∗ is a ∗-isomorphism of C∗-algebras, and
so it preserves adjoints, spectra and so on.

Next, we define the normal form.

Definition 10.9. Let (X,µ) be a measure space and let f ∈ L∞(X,µ). We define
the multiplication operator Mf ∈ L(L2(X,µ)) by

Mf (h) := fh.

Examples 10.10. (1) Let T be as in Theorem 10.1. Let X = n with the
counting measure, and let f : n → C be the function f(j) := λj. Let U :
`2(n)→ V be the isometric isomorphism determined by U(δj) := vj. Then
UTU∗ = Mf . Hence Theorem 10.1 might be restated by saying that each
normal operator on a finite-dimensional Hilbert space is unitarily equivalent
to an operator of the form Mf .

(2) Similarly, let X = N with the counting measure and let a ∈ c0(N). The
spectral theorem for compact self-adjoint operators can be restated by say-
ing that each compact selfadjoint operator on a separable Hilbert space is
unitarily equivalent to a multiplication operator. The proof of the spectral
theorem for compact selfadjoint operators can be adapted to deal with com-
pact normal operators as well.

Indeed, the general version reads as follows.

Theorem 10.11 (Spectral theorem, multiplication operator version). Let V be a
Hilbert space and let T ∈ L(V ) be normal. Then there is a locally finite measure
space (X,µ), f ∈ L∞(X,µ) and a unitary equivalence

U : (L2(X,µ),Mf ) ∼= (V, T ).

If V is separable, we can take µ to be σ-finite.

One advantage of this formulation is that it gives a lot of insight of the behaviour
of normal operators. To that end, let us first study the multiplication operators
Mf in some detail.

Definition 10.12. Let (X,µ) be a measure space and let f : X → C be measurable.
The essential range essrange(f) of f consists of all z ∈ C such that for each ε > 0,
the set f−1(Bε(z)) has positive measure.

It is clear that essrange(f) ⊂ C is closed, and that ‖f‖L∞ = supz∈essrange(f) |f(z)|.

Lemma 10.13. Let (X,µ) be a measure space.

(1) L∞(X,µ) → L(L2(X,µ)), f 7→ Mf , is a unital ∗-homomorphism, and
‖Mf‖ ≤ ‖f‖L∞ .

(2) If µ is locally finite, then ‖Mf‖ = ‖f‖L∞ for all f .
(3) Mf is invertible if and only if there exists ε > 0 such that µ(f−1(Bε(0))) =

0.
(4) spec(Mf ) = essrange(f).

Proof. (1) is clear, except perhaps the identity M∗f = Mf , which follows from

〈Mfh, g〉 =

∫
X

fhgdµ =

∫
X

hfgdµ = 〈h,Mfg〉.
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(2): the inequality ‖Mf‖ ≤ ‖f‖L∞ is trivial. For the reverse one, let ε > 0. The
set {x ∈ X||f(x)| ≥ ‖f‖L∞ − ε} has positive measure, and because (X,µ) is locally
finite, this set contains a subset S with 0 < µ(S) <∞. Then ‖χS‖2L2 = µ(S) and

‖MfχS‖2 =

∫
S

|f(x)|2 ≥ (‖f‖L∞ − ε)2µ(S)

together prove that ‖f‖L∞ − ε ≤ ‖Mf‖.
(3): The existence of such an ε shows that |f(x)| ≥ ε almost everywhere.

Hence g(x) := 1
f(x) is (almost everywhere) defined and (essentially) bounded, and

MfMg = MgMf = 1. Vice versa, if Mf is invertible, the open mapping theorem
shows that there is c > 0 such that ‖Mfh‖2 ≥ c2‖h‖2 for all h ∈ L2(X), or∫

X

|f |2|h|2dµ ≥ c2
∫
X

|h|2.

Now let h = χf−1(Bδ(0)). We get

δ2µ(f−1(Bδ(0))) ≥
∫
X

|f |2|h|2dµ ≥ c2
∫
X

|h|2 = c2µ(f−1(Bδ(0)))

When δ < c, this is only possible if µ(f−1(Bδ(0))) = 0.
(4): follows immediately from (3). �

Corollary 10.14. Mf is self-adjoint if and only if essrange(f) ⊂ R, and this
happens if and only if spec(Mf ) ⊂ R. Mf is unitary if and only if essrange(f) ⊂ S1,
and this happens if and only if spec(Mf ) ⊂ S1. �

10.3. Proof of the multiplication operator version of the spectral theo-
rem. Consider a normal operator T ∈ L(V ) on a Hilbert space. Theorem 10.3
provides the continuous functional calculus

ΦcT : C(spec(T ))→ L(V )

of T , which for simplicity we denote by f(T ) := ΦcT (f).

Lemma 10.15. For each v ∈ V , there exists a unique Radon measure µv on
spec(T ) with µv(spec(T )) = ‖v‖2 and an isometry

Uv : L2(spec(T ), µv)→ V

such that
Uv(1) = v

and such that
Uv ◦Mf = f(T )U

for all f ∈ C(spec(T )).
We have µv(spec(T )) = ‖v‖2. The image of Uv is the closure of the linear

subspace
{f(T )v|f ∈ C(spec(T ))} ⊂ V.

Proof. Let us first prove the uniqueness of µv, which help to prove existence. The
conditions on Uv force∫

spec(T )

fdµv =

∫
spec(T )

1fdµv = 〈1, f〉L2 = 〈Uv(1), Uv(Mf (1))〉 = 〈v, f(T )v〉

Hence the integration functional for µv is uniquely determined, and so µv itself is
unique.



FUNCTIONAL ANALYSIS 117

To show existence, we define a functional

Lv(f) := 〈v, f(T )v〉

on C(spec(T )). Note that

Lv(1) = 〈v, v〉 = ‖v‖2.

The functional Lv is positive: if f ≥ 0, we can write f = gg for some g ∈ C(spec(T ))
and obtain

Lv(f) = 〈v, g(T )g(T )v〉 = 〈g(T )v, g(T )v〉 ≥ 0

because the continuous functional calculus is a ∗-homomorphism.
By the Riesz–Markov–Kakutani theorem, there is a unique Radon measure µv

such that ∫
spec(T )

fdµv = 〈v, f(T )v〉

for all f ∈ C(spec(T )). Note that

µv(spec(T )) = ‖v‖2.

Let us now define

U0 : C(spec(T ))→ V

by

U0(h) := h(T )v.

Clearly U0(1) = v and U0 is linear. It is also clear that

(10.16) U0(fh) = f(T )U0(h).

Calculate

‖U0(h)‖2 = 〈h(T )v, h(T )v〉 = 〈v, h(T )∗h(T )v〉 = 〈|h|2(T )v, v〉 =

∫
X

|h|2dµv = ‖h‖2L2(spec(T ),µv).

Therefore U0 is an isometry when C(spec(T )) carries the L2-norm of the measure
µv. Therefore, it extends to an isometry

Uv : L2(spec(T ), µv)→ V.

The equation (10.16) shows that

Uv ◦Mf = f(T ) ◦ Uv

for all f ∈ C(spec(T )). By construction, the image of U0 is equal to

{f(T )v|f ∈ C(spec(T ))},

and so the image of Uv is the closure of that linear subspace. �

If the isometry Uv from Lemma 10.15 were surjective, the proof of Theorem 10.11
would already be complete: then Uv : L2(X,µv)→ Vv is an isometric isomorphism
with inverse U∗v , and the lemma shows

UvMfU
∗
v = f(T )

for all f ∈ C(spec(T )). Applied to f = x, this gives Theorem 10.11.
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Definition 10.17. Let T ∈ L(V ) be normal. A closed linear subspace W ⊂ V is
T -invariant if

f(T )(W ) ⊂W
for all f ∈ C(spec(T )).

The cyclic subspace generated by v ∈ V is

Vv := {f(T )v|f ∈ C(spec(T ))} ⊂ V.

The cyclic subspace Vv is T -invariant, and the image of the isometry Uv is pre-
cisely Vv. The proof of Theorem 10.11 is finished by breaking up V into cyclic
pieces.

Consider two families (Vi)i∈I and (Wi)i∈I of Hilbert spaces. Let Ti ∈ L(Vi,Wi).
Then ⊕

i∈I
Ti :

⊕
i∈I

Vi →
⊕
i∈I

Wi

denotes the linear map

(vi)i 7→ (Tivi)i.

This is not necessarily bounded, but if supi∈I ‖Ti‖ < ∞, then it is bounded, and
one checks easily that

‖
⊕
i∈I

Ti‖ = sup
i∈I
‖Ti‖,

so that it extends to a bounded operator⊕
i∈I

Ti :

(2)⊕
i∈I

Vi →
(2)⊕
i∈I

Wi

of the Hilbert sums. It is easy to see that⊕
i∈I

T ∗i = (
⊕
i∈I

Ti)
∗.

Example 10.18. Let (Xi, µi)i∈I be locally finite measure spaces, and let fi ∈
L∞(Xi, µi). Let X =

∐
i∈I Xi be the disjoint union. The formula

µ(S) :=
∑
i∈I

µi(S ∩Xi)

defines a measure on X (on the σ-algebra generated by all measurable subsets
of some Xi). The union f :=

∐
i∈I f : X → C is measurable and ‖f‖L∞ =

supi∈I ‖fi‖L∞ .

Then L∞(X,µ) ∼=
⊕

i∈I L
2(Xi, µi), and Mf corresponds to

⊕(2)
i∈IMfi .

Lemma 10.19. Let V be a Hilbert space and let T ∈ L(V ) be normal. Then there
are Hilbert spaces Vi, normal Ti ∈ L(Vi) such that (Vi, Ti) is cyclic and such that

(
⊕
i

Vi,
⊕
i

Ti)

is unitarily equivalent to (V, T ).

Lemma 10.15, Lemma 10.19 and Example 10.18 together finish the proof of
Theorem 10.11.

Before we give the proof of Lemma 10.19, we isolate the key observation.
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Lemma 10.20. Let T ∈ L(V ) be normal and let W ⊂ V be a closed, T -invariant
linear subspace. Then the orthogonal complement W⊥ is T -invariant.

Proof. Let v ∈W⊥ and f ∈ C(spec(T )). Then for each w ∈W , we have

〈f(T )v, w〉 = 〈v, f(T )∗w〉 = 〈v, f(T )w〉 = 0

because f(T )w ∈W . �

Proof of Lemma 10.19. The decomposition is obtained by an argument with Zorn’s
lemma, which is similar to the argument for the existence of complete orthonormal
systems (Theorem 2.41).

Let Z be the set of all subsets S ⊂ V with the following properties:

(1) For all v ∈ S, we have ‖v‖ = 1,
(2) if v, w ∈ S, v 6= w, the cyclic subspaces Vv and Vw are orthogonal.

The set Z is ordered by inclusion of subsets. It is not empty because ∅ ∈ Z. If
C ⊂ Z is a chain, it is easy to check that

⊕
S∈C S is an element of Z. Hence each

chain in Z has an upper bound, and Zorn’s Lemma guarantees the existence of a
maximal element S ∈ Z.

We have to prove that W :=
⊕(2)

v∈S Vv = V , or that W⊥ = 0. For each f ∈
C(spec(T )), we have f(T )(W ) ⊂ W , and so by Lemma 10.19, W⊥ is T -invariant.
If W⊥ 6= 0, we could pick w ∈ W⊥ with ‖w‖ = 1. Then the cyclic subspace Vw is
contained in W⊥, and so S ∪ {w} ∈ Z, contradicting the maximality of S. �

10.4. The measurable functional calculus. The measurable functional calculus
is an extension of the continuous functional calculus to measurable functions. Unlike
the continuous functional calculus, it can only be defined for normal operators on
a Hilbert space, not for normal elements of a C∗-algebra.

One application of Theorem 10.11 is to extend the continuous functional calculus
of a normal operator to the measurable functional calculus.

First some notation. For a measurable space (X,B), we let L∞(X,B) be the
space of all bounded measurable functions f : X → C (here C has the Borel σ-
algebra. This is a C∗-algebra, with the supremum norm, pointwise multiplication
of functions and f∗(x) := f(x). L∞(X,B) is unital unless µ(X) = 0. One has to
distinguish between L∞(X,B) and L∞(X,µ): the latter is only defined when we
specify a measure. The quotient map L∞(X) → L∞(X,µ) is surjective, but not
injective in general.

For a compact Hausdorf space X, let B be the Borel-σ-algebra, so that (X,B) is
a measurable space. We denote L∞(X) := L∞(X,B).

Theorem 10.21 (Measurable functional calculus). Let V be a Hilbert space and
let T ∈ L(V ) be normal. Then there exists a unique ∗-homomorphism

ΦmT : L∞(spec(T ))→ L(V ),

the measurable functional calculus with the following properties:

(1) For f ∈ C(spec(T )), ΦmT (f) = ΦcT (f),
(2) if fn ∈ L∞(spec(T )) is a bounded sequence and fn → f ∈ L∞(X) point-

wise, then ΦmT (fn)v → ΦmT (f)v for each v ∈ V .

The construction that we shall give or Corollary 9.29 proves that ‖ΦmT (f)‖ ≤
‖f‖L∞ for all f , but equality does not have to be true.
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Proof. First we prove existence, and the first step is that we can change (V, T ) up to
unitary equivalence. Indeed, suppose that V0, V1 are two Hilbert spaces, Tj ∈ L(Vj)
are normal, U : (V0, T0)→ (V1, T1) is a unitary equivalence. Then

Ad(U) : L(V0)→ L(V1), T 7→ UTU∗

is a ∗-isomorphism of C∗-algebras. Hence it preserves multiplication, the spectrum,
the norm and the adjoint operation. If T1 = Ad(U)(T0), then spec(T1) = spec(T0).
Suppose that

ΦmT0
: L∞(T0)→ L(V0)

is a measurable functional calculus for T0. Then

ΦmT1
:= Ad(U) ◦ ΦmT2

is a measurable functional calculus for T1.
Hence by the multiplication operator version of the spectral theorem, we may

assume that (V, T ) = (L2(X,µ),Mf ). We can change f on a set of measure zero5

such that f(X) ⊂ essrange(f). Because f(X) ⊂ essrange(f) = spec(Mf ), the
composite g ◦ f makes sense when g : spec(Mf ) → C is a function. If g is (Borel-
Borel)-measurable, then g ◦ f is measurable. We define

ΦmMf
: L∞(essrange(f))→ L(L2(X,µ))

by the formula

ΦmMf
(g) := Mg◦f .

It is straightforward to prove that ΦmMf
is a unital ∗-homomorphism (using the

identities from Lemma 10.13), that ‖ΦmMf
(g)‖ ≤ ‖g‖L∞ and that ΦmMf

(x) = Mf .

In particular, the restriction of ΦmMf
to C(spec(Mf )) is a unital ∗-homomorphism

which maps x to Mf . Therefore, by the uniqueness statement of Theorem 10.3,
ΦmMf
|C(spec(Mf )) agrees with the continuous functional calculus of Mf .

Now assume that gn ∈ L∞(essrange(f)) is a sequence with ‖gn‖L∞ ≤ C and
that gn(y)→ g(y) for all x. Let h ∈ L2(X,µ). We need to prove that

(10.22) ‖ΦmMf
(gn − g)h‖2L2 → 0.

But

‖ΦmMf
(gn − g)h‖2L2 =

∫
X

|gn(f(x))− g(f(x))|2|h(x)|2dµ(x).

The integrand converges pointwise to 0, and

|gn(f(x))− g(f(x))|2|h(x)|2 ≤ 4C2|h(x)|2.

Since |h|2 is integrable, the dominated convergence theorem applies and proves
(10.22).

This finishes the existence proof. For the uniqueness, suppose that Φ0,Φ1 :
L∞(spec(T ))→ L(V ) be two ∗-homomorphisms with properties (1) and (2) of the
theorem. Put

B := {f ∈ L∞(spec(T ))|Φ0(f) = Φ1(f)} ⊂ L∞(spec(T )).

5Here is how this works: the preimage f−1(essrange(f)c) ⊂ X has measure zero, because the
open set essrange(f)c can be written as the countable union of open balls, and the preimage of

each of those balls has measure zero. Therefore, we can achieve, by changing f on a set of measure

0, that f(X) ⊂ essrange(f). It follows that essrange(f) = f(X).
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We have to prove that B = L∞(spec(T )). Since Φ0 and Φ1 are ∗-homomorphisms,
B is a subalgebra. By automatic continuity, Φ0 and Φ1 are continuous, and so B
is closed. By property (1), C(spec(T )) ⊂ B. Furthermore, if fn ∈ B is a bounded
sequence which converges pointwise to f ∈ L∞(spec(T )), by property (2). Lemma
10.23 below implies B = L∞(spec(T )), which is what we had to prove. �

Lemma 10.23. Let X be a compact metric space and let B ⊂ L∞(X) be a closed
subalgebra such that

(1) C(X) ⊂ B,
(2) if fn ∈ B is a bounded sequence which converges pointwise to f ∈ L∞(X),

then f ∈ B.

Then B = L∞(X).

Proof. One might naively expect that each f ∈ L∞(X) is the pointwise limit of
a sequence of continuous functions, which would make the proof almost trivial.
However, that is not true (try to prove it to understand the problem), so the proof
is a little more complicated.

For each bounded f ∈ L∞(X), there is a sequence of step functions which
converge uniformly to f . Because B is norm-closed, it is enough to prove that each
step function belongs to B, and by linearity, we must prove that for each Borel set
S ⊂ X, χS ∈ B.

So let B be the Borel-σ-algebra of X and define

C := {S ∈ B|χS ∈ B} ⊂ B.

We must show that C = B, and do this by proving that C is a σ-algebra and that
each open subset U ⊂ X belongs to C.

Since 0, 1 ∈ B, we have

∅, X ∈ C.

Because χSc = 1− χS , it follows that

S ∈ C ⇒ Sc ∈ C.

Since B is an algebra and χSχS′ = χS∩S′ , it follows that

S, S′ ∈ C ⇒ S ∩ S′ ∈ C.

Because S∪S′ = (Sc∩S′c)c, C is a Boolean algebra. If S1 ⊂ S2 ⊂ . . . ⊂ S =
⋃∞
n=1,

then χSn → χS pointwise, and so S ∈ C if all Sn belong to C. If Un, n ∈ N are
elements of C, then

Sn :=

n⋃
m=1

Um ∈ C

for all n, and S1 ⊂ S2 ⊂ . . .
⋃∞
n=1 Sn =

⋃∞
n=1 Un, we get that

⋃∞
n=1 Un ∈ C.

Altogether, C is a σ-algebra.
For an open subset U ⊂ X, there is a sequence fn ∈ C(X) with 0 ≤ fn ≤ 1 which

converges pointwise to χU . This is shown in the course of the proof of Proposition
C.59. Hence U ∈ C. �
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10.5. Spectral measures. The measurable functional calculus is the most pow-
erful version of the spectral theorem.

Theorem 10.24. Let V be a Hilbert space and let T ∈ L(V ) be normal. Let

ΦmT : L∞(spec(T ))→ L(V )

be the measurable functional calculus provided by Theorem 10.21 and let B be te
Borel-σ-algebra of spec(T ). We define

E : B → L(V )

by

E(A) := ΦmT (χA) ∈ L(V ).

Then (for Borel sets A,B,An)

(1) Each E(A) is a projection.
(2) E(∅) = 0, E(spec(T )) = 1.
(3) E(A)E(B) = E(B)E(A) = E(A ∩B).
(4) if A ∩B = ∅, then E(A ∪B) = E(A) + E(B), and im(E(A))⊥im(E(B)).
(5) If A1 ⊂ A2 ⊂ . . . is an ascending sequence of Borel sets, then

E(

∞⋃
n=1

An) = lim
n→∞

E(An)

in the strong operator topology.

The projection E(A) is called the spectral projection of A, and the map E is called
the spectral measure of T .

Proof. This is an almost trivial consequence of Theorem 10.21: (1) follows from
χA = χ2

A = χA. (2) follows from χ∅ = 0 and χspec(T ) = 1. (3) follows from
χA∩B = χAχB . (4) follows from χA∪B = χA + χB which holds for disjoint A,B.
(5) follows from limn χAn(x) = χ⋃∞

n=1 An
(x). �

Examples 10.25. (1) Let dim(V ) < ∞. For A ⊂ spec(T ), E(A) is the or-
thogonal projection onto

⊕
λ∈A Eig(T, λ).

(2) If f ∈ L∞(X,µ) and T = Mf , E(A) is multiplication by the characteristic
function of the set f−1(A).

Proposition 10.26. Assume the situation of Theorem 10.24 and fix a vector v ∈
V . Define

νv : B → R, A 7→ 〈E(A)v, v〉.
This is a (nonnegative) measure, and it agrees with the measure µv constructed in
Lemma 10.15. For each f ∈ L∞(spec(T )), we have

(10.27) 〈v, f(T )v〉 =

∫
spec(T )

f(x)dνv(x).

Proof. Since E(A) = E(A)E(A) = E(A)∗E(A), we have

〈E(A)v, v〉 = 〈E(A)v,E(A)v〉 ≥ 0,

so that νv is nonnegative. If A ∩B = ∅, then

〈E(A ∪B)v, v〉 = 〈E(A)v, v〉+ 〈E(B)v, v〉
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and if A1 ⊂ A2 ⊂ . . ., then E(An)v → E(
⋃∞
n=1An)v and so

lim
n
νv(An) = lim

n
〈E(An)v, v〉 = 〈lim

n
E(An)v, v〉 = 〈E(

∞⋃
n=1

An)v, v〉 = νv(

∞⋃
n=1

An).

Hence νv is a Borel measure with total mass

〈E(spec(T ))v, v〉 = ‖v‖2.
Since the step functions lie norm dense in L∞(spec(T )), it suffices to prove (10.27)
for step functions. So let f =

∑n
j=1 ajχAj with disjoint Aj ’s, and compute

〈v, f(T )v〉 =

n∑
j=1

aj〈v,E(Aj)v〉 =

n∑
j=1

νv(Aj) =

∫
spec(T )

f(x)dνv(x).

For all continuous functions f , we have∫
X

fdµv = 〈v, f(T )v〉 =

∫
spec(T )

f(x)dνv(x),

and so the Borel measures νv and µv represent the same functional on C(spec(T )).
By the uniqueness part of the Riesz–Markov–Kakutani theorem, µv = νv, as
claimed. �

Proposition 10.28. Assume the situation of Theorem 10.24 and let λ ∈ spec(T ).
Then E({λ}) is the orthogonal projection onto ker(T−λ). Hence λ is an eigenvalue
of T if and only if E({λ}) 6= 0.

Proof. The identity (x− λ)χ{λ} = 0 ∈ L∞(spec(T )) implies that

(T − λ)E({λ}) = 0

and so that
im(E({λ})) ⊂ ker(T − λ).

The reverse inclusion is less formal. Assume

u ∈ ker(T − λ).

Suppose that f ∈ C(spec(T )) vanishes in a neighborhood of λ. Then the function

g := f
x−λ is continuous, and since g · (x− λ) = f , we get

f(T )u = g(T )(T − λ)u = 0.

Next, there is a sequence of continuous fn : spec(T ) → [0, 1] such that fn ≡ 0
on a neighborhood of λ and such that limn fn(x) = χspec(T )\λ(x) for all x. Then
χ{λ} + fn → 1 pointwise (and dominated), so that

u = lim
n

(χ{λ}(T )u+ fn(T )u) = E({λ})u+ 0.

Therefore ker(T − λ) ⊂ imE({λ}). �
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11. Spectral theory via Banach algebras

In the previous chapter, we developped the different version of the spectral theo-
rem out of the continuous functional calculus for normal operators (Theorem 10.3).
The proof, however, was only given for self-adjoint operators. In this chapter, we
give the proof for normal elements of a C∗-algebra, which is much harder, and
requires a fresh look at commutative Banach algebras.

11.1. The spectrum of a commutative Banach algebra.

Lemma 11.1. Let A be a unital complex Banach algebra and let ϕ : A→ C be an
algebra homomorphism with ϕ(1) = 1. Then ϕ(a) ∈ specA(a) for all a ∈ A and ϕ
is bounded with operator norm ‖ϕ‖ = 1.

Proof. Let a ∈ A. Then {ϕ(a)} = specC(ϕ(a)), and by Theorem 9.17, it follows
that ϕ(a) ∈ specA(a). Moreover |ϕ(a)| ≤ ρ(a) ≤ ‖a‖. �

Definition 11.2. Let A be a commutative unital complex Banach algebra. The
spectrum Spec(A) of A is the set of all unital algebra homomorphisms ϕ : A→ C.
By Lemma 11.1, Spec(A) ⊂ D1(A′), and we equip it with the wk∗-topology.

Lemma 11.3. The space Spec(A) is a compact Hausdorff space.

Proof. By the Banach-Alaoglu theorem, D1(A′) is compact and Hausdorff when
equipped with the wk∗-topology. Hence it suffices to prove that Spec(A) ⊂ A′ is
wk∗-closed. Denote for a ∈ A

pa : A′ → C, pa(L) := L(a).

This map is continuous by the definition of the wk∗-topology. Finally

Spec(A) = p−1
1 (1) ∩

⋂
a,b∈A

(papb − pab)−1(0),

and this is clearly a closed subspace. �

Lemma 11.4. Let X be a compact Hausdorff space. Then the map

η : X → Spec(C(X)), η(x)(f) := f(x)

is a homeomorphism.

Proof. Urysohn’s Lemma shows that η is injective: if x0 6= x1 ∈ X, there is f ∈
C(X) with f(x0) = 0 and f(x1) = 1. Then

η(x0)(f) = 0 6= 1 = η(x1)(f)

shows that η(x0) 6= η(x1).
The map η is continuous by the definition of wk∗: it suffices to show that

pf ◦ η : X → C

is continuous for each f ∈ C(X), where pf (ϕ) = ϕ(f). But

pf (η(x)) = η(x)(f) = f(x)

is by definition continuous.
Finally, we have to prove that η is surjective. To this end, we argue by contra-

diction and assume that ϕ ∈ Spec(C(X)) is not of the form ηx for any x ∈ X.
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Then for each x ∈ X, we have ϕ 6= ηx, and hence there is a function fx ∈ C(X)
with

ϕ(fx) 6= ηx(fx) = fx(x).

Let

gx :=
ϕ(fx)− fx

ϕ(fx)− fx(x)
∈ C(X)

(the denominator is a number). Then

gx(x) = 1

and
ϕ(gx) = 0.

Let Ux := {y ∈ X|gx(y) 6= 0} ⊂ X; this is an open subset. Because X is compact,
we find x1, . . . , xr ∈ X such that X =

⋃r
j=1 Uxj . Let

h :=

r∑
j=1

gxjgxj > 0 ∈ C(X).

It follows that

1 =

r∑
j=1

gxj
h
gxj .

Hence

1 = ϕ(1) =

r∑
j=1

ϕ(
gxj
h

)ϕ(gxj ) = 0,

a contradiction. �

Lemma 11.5 (Gelfand transform). Let A be a commutative unital complex Banach
algebra. The formula

â(ϕ) := ϕ(a)

defines a unital algebra homomorphism

Γ : A→ C(Spec(A)), Γ(a)(ϕ) := â(ϕ),

the Gelfand transform. We have

â(Spec(A)) ⊂ specA(a)

and in particular
‖â‖ ≤ ρ(a).

Proof. We first show that Γ(a) is a continuous function when a ∈ A. But Γ(a) is
nothing else than the restriction of the evaluation map pa : A′ → C, L 7→ L(a), to
the subspace Spec(A) ⊂ A′, and hence clearly continuous, by the construction of
the wk∗-topology.

Since each ϕ ∈ Spec(A) is a unital algebra homomorphism, we have

Γ(ab)(ϕ) = ϕ(ab) = ϕ(a)ϕ(b) = Γ(a)(ϕ)Γ(b)(ϕ)

and
Γ(1)(ϕ) = ϕ(1) = 1.

The proof that Γ(a + b) = Γ(a) + Γ(b) is the same. Hence Γ is a unital algebra
homomorphism.

Lemma 11.1 shows that â(ϕ) = ϕ(a) ∈ specA(a), and so â(Spec(A)) ⊂ specA(a).
The estimate ‖â‖ ≤ ρ(a) follows immediately. �
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Example 11.6. Let A = C(X). The composition of Γ with the isomorphism
η∗ : C(Spec(C(X))) → C(X) induced by the homeomorphism η from Lemma 11.4
is the map

η∗ ◦ Γ : C(X)→ C(Spec(C(X)))→ C(X)

given by
η∗(Γ(f))(x) = Γ(f)(η(x)) = η(x)(f) = f(x),

hence the identity. Therefore Γ is an isomorphism in that case.

11.2. The Gelfand-Naimark theorem.

Theorem 11.7 (Gelfand-Naimark Theorem). Let A be a commutative unital com-
plex Banach algebra, a ∈ A and λ ∈ specA(a). Then there exists ϕ ∈ Spec(A) such
that ϕ(a) = λ.

Corollary 11.8. Let a ∈ A be an element of a commutative unital Banach algebra.
Then

â(Spec(A)) = specA(a)

and
‖â‖ = ρ(a). �

Corollary 11.9 (Gelfand-Naimark Theorem for C∗-algebras). Let A be a commu-
tative unital C∗-algebra. Then the Gelfand transform Γ : A → C(Spec(A)) is an
isometric ∗-isomorphism.

Proof. If a ∈ A is selfadjoint, then specA(a) ⊂ R by Lemma 9.16. It follows from
Lemma 11.1 that â ∈ C(Spec(A)) is real-valued.

A general element of A can be written in the form

a = a1 + ia2,

where

a1 :=
1

2
(a+ a∗), a2 :=

1

2i
(a− a∗)

are self-adjoint. Then a∗ = a1 − ia2, and it follows that

(11.10) â∗(ϕ) = ϕ(a1)− iϕ(a2) = ϕ(a1) + iϕ(a2) = â(ϕ).

Therefore Γ is a ∗-homomorphism.
Because A is commutative, every element of A is normal. From Corollary 11.8

and Corollary 9.26, we get
‖â‖ = ρ(a) = ‖a‖,

so that Γ is an isometry.
The subalgebra Γ(A) ⊂ C(Spec(A)) is closed and contains 1. It separates the

points by definition: if ϕ0 6= ϕ1 ∈ Spec(A), then there is a ∈ A with â(ϕ0) =
ϕ0(a) 6= ϕ1(a) = â(ϕ1). Finally, because

Γ(a∗) = Γ(a)∗ = Γ(a),

Γ(A) is invariant under conjugation. By the Stone-Weierstrass theorem, Γ(A) =
C(Spec(A)). �

Equation (11.10) also shows the following result.

Lemma 11.11. Let A be a unital C∗-algebra. Then each unital algebra homomor-
phism ϕ : A→ C is in fact a ∗-homomorphism. �
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The first step in the proof of Theorem 11.7 is of independent interest.

Theorem 11.12 (Gelfand-Mazur). Let A be a commutative unital complex Banach
algebra which is a field. Then A ∼= C.

Proof. For a ∈ A, there exists z ∈ spec(a). Then a−z1 ∈ A is not invertible, hence
a− z1 = 0, hence a = z1. Therefore C→ A, z 7→ z1 is an isomorphism. �

Proof of Theorem 11.7. It is enough to prove that if a ∈ A is not invertible, then
there is ϕ ∈ Spec(A) with ϕ(a) = 0. The set

(a) := {ba|b ∈ A} ⊂ A

is an ideal in A (Definition A.22), and (a) 6= 1, since otherwise 1 = ba and a must
be invertible since A is commutative. A standard application of Zorn’s Lemma
(Theorem A.23) proves that there is a maximal ideal I ⊂ A with (a) ⊂ I (this
means that I 6= A and that when I ⊂ J ⊂ A is a larger ideal with J 6= A, then
J = I.

The closure I of I is again an ideal. Since A× ∩ I = ∅ and A× ⊂ A is open, it
must be true that A× ∩ I = ∅. Hence I 6= A, and by maximality of I, it follows
that I = I, or that I is closed.

The quotient space A/I is a Banach space. The formula

(a+ I)(b+ I) := ab+ I

gives a well-defined structure of a unital commutative algebra on A/I, and the
quotient map π : A→ A/I is an algebra homomorphism.

For x, y ∈ A/I, we claim that

‖xy‖ ≤ ‖x‖‖y‖.

To see this, let ε > 0 and pick a, b ∈ A with π(a) = x and π(b) = y and ‖a‖ ≤ ‖x‖+ε,
‖b‖ ≤ ‖y‖+ ε. Then

‖xy‖ = ‖π(ab)‖ ≤ ‖ab‖ ≤ ‖a‖‖b‖ ≤ (‖x‖+ ε)(‖y‖+ ε);

as this is true for all ε > 0, we get ‖xy‖ ≤ ‖x‖‖y‖.
It is clear that

‖1‖ = ‖π(1)‖ ≤ ‖1‖ = 1;

and

‖1‖ = ‖11‖ ≤ ‖1‖2

implies 1 ≤ ‖1‖. Together ‖1‖ = 1.
This proves that the quotient A/I of a unital commutative Banach algebra by a

proper ideal is again a unital commutative Banach algebra.
If I is maximal, then A/I is a field: if x ∈ A/I is not a unit, then the ideal

(x) ⊂ A/I is a proper ideal, and the preimage π−1((x)) ⊂ A is a proper ideal which
contains I. Since I is maximal, I = π−1((x)), and this implies x = 0.

Using Theorem 11.12, we find A/I ∼= C. The composition A
π→ A/I ∼= C is the

desired ϕ ∈ Spec(A). �
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11.3. The continuous functional calculus.

Definition 11.13. Let A be a unital C∗-algebra and let a ∈ A be a normal element.
We let C∗(a) ⊂ A be the smallest closed ∗-subalgebra such that 1 ∈ C∗(a) and
a, a∗ ∈ C∗(A).

More constructively, C∗(a) is the closure of the span of all elements ak(a∗)l,
k, l ∈ N. Note that C∗(a) is commutative. By the Gelfand-Naimark theorem (or
rather Corollary 11.9), the Gelfand transformation is a ∗-isomorphism

Γ : C∗(a) ∼= C(Spec(C∗(a))).

Lemma 11.14. The function Γ(a) = â ∈ C(Spec(C∗(a))) gives a homeomorphism

â : Spec(C∗(a))→ specC∗(a)(a) ⊂ C.

Proof. From Lemma 11.1, it follows that â(Spec(C∗(a))) ⊂ specC∗(a)(a), and from

Theorem 11.7, it follows that â maps onto specC∗(a)(a).
Since both spaces are compact, it is enough to verify that â is injective. So

assume

â(ϕ0) = â(ϕ1)

for ϕ0, ϕ1 ∈ Spec(C∗(a)). This equation means that

ϕ0(a) = ϕ1(a).

The set

B := {b ∈ C∗(a)|ϕ0(b) = ϕ1(b)} ⊂ C∗(a)

is a closed subalgebra and contains 1 and a. Moreover, Lemma 11.11 shows that
B is a ∗-subalgebra, and the definition of C∗(a) proves that B = C∗(a), in other
words that ϕ0 = ϕ1. �

By Theorem 9.17, we have

specA(a) ⊂ specC∗(a)(a) ⊂ C.

The converse is also true:

Lemma 11.15. Let A be a unital C∗-algebra, let B ⊂ A be a closed unital ∗-
subalgebra. Then for each a ∈ B, we have

specA(a) = specB(a).

Proof. The inclusion ⊂ follows from Theorem 9.17. For the reverse inclusion, we
need to prove that if a ∈ B is invertible in A, then its inverse lies in B (suppose
this is shown and λ ∈ specA(a)c. Then a− λ is invertible in A, hence invertible in
B, hence λ ∈ specB(a)c.)

Assume that a ∈ B is self-adjoint and invertible in A. Since specB(a) ⊂ R,
a + it ∈ B× whenever t ∈ R \ {0}. So (a + it)−1 ∈ B. Since the inversion map is
continuous, we have

a−1 = lim
t→0

(a+ it)−1 ∈ B

since B is closed.
Now let a ∈ B be a general element which is invertible in A. Then a∗a and aa∗

are selfadjoint and invertible in A, and by what we have shown

(a∗a)−1, (aa∗)−1 ∈ B.
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Then
((a∗a)−1a∗)a = 1

and
a(a∗(aa∗)−1) = 1

prove that a is invertible in B. �

Theorem 11.16. Let a ∈ A be a normal element of a unital C∗-algebra. Then
there is a unique unital ∗-homomorphism

Φca : C(specA(a))→ A

such that Φca(x) = a. It is an isometry.

Proof. We have established uniqueness already in the proof of Theorem 10.3. We
define Φca as the composition

C(specA(a)) = C(specC∗(a)(a))
◦â→ C(Spec(C∗(a)))

Γ−1

→ C∗(a) ⊂ A.
The first equality comes from Lemma 11.15. The second is an isomorphism by
Lemma 11.14. The third is the inverse of the Gelfand transform.

This defines a unital ∗-homomorphism which is also an isometry. To show that
it sends the identity function x to a, we need to prove

Γ−1(x ◦ â) = a ∈ A.
But this is a tautology: x is the identity and â = Γ(a) are just two notations for
the same thing, so clearly

Γ−1(x ◦ â) = Γ−1(â) = Γ−1(Γ(a)) = a.

�

Appendix A. The Axiom of Choice and Zorn’s Lemma

A.1. The Axiom of Choice.

Axiom of Choice. If Xi, i ∈ I, are nonempty sets, and I 6= ∅, then the product∏
i∈I

Xi = {(xi)i∈I |xi ∈ Xi}

is nonempty.

Lemma A.1. The following three axioms are equivalent:

(1) The axiom of choice.
(2) Every surjective map f : X → Y has a right inverse, i.e. there is a map

g : Y → X with f ◦ g = idY .
(3) For every set X, there is a choice function ch : P(X) \ {∅} → X, i.e. a

function such that ch(S) ∈ S for each S ∈ P(X) \ {∅}.

Proof. 1⇒ 3: Without loss of generality, X 6= ∅. The product∏
S∈P(X)\∅

S

is not empty, and we pick an element

(xS)S∈P(X)\∅.

Then ch(S) := xS is a choice function.
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3 ⇒ 2: Since f is surjective, we have f−1(y) 6= ∅ for each y. Let ch be a choice
function for X. Then put

g(y) := ch(f−1(y)) ∈ X.
2⇒ 1: The map

f : {(i, x)|i ∈ I, x ∈ Xi} → I; f(i, x) := i

is surjective, and let g be a right inverse of f . Then

(g(i))i∈I ∈
∏
i∈I

Xi.

�

A.2. Zorn’s lemma.

Definition A.2. A partial order on a set X is a binary relation ≤ on X such that

(1) x ≤ x for all x ∈ X,
(2) if x ≤ y, y ≤ z, then x ≤ z,
(3) if x ≤ y and y ≤ x, then x = y.

A total order is a partial order, such that for all x, y ∈ X, one of the relations
x ≤ y or y ≤ x holds.

A partially ordered set or poset is a set X, together with a partial order on X.
A subset Y ⊂ X is a chain if the induced partial order is a total order.

We write x < y if x ≤ y, but x 6= y, x ≥ y if y ≤ x, and x > y if y < x.

Definition A.3. Let X be a partially ordered set and Y ⊂ X.

(1) An upper bound for Y is an x ∈ X, such that y ≤ x for all y ∈ Y .
(2) An lower bound for Y is an x ∈ X, such that y ≥ x for all y ∈ Y .
(3) A strict upper bound for Y is an upper bound x such that y < x for all

y ∈ Y .
(4) A strict lower bound for Y is a lower bound x such that y > x for all y ∈ Y .
(5) A maximal element of X is an x ∈ X, such that y ∈ X, x ≤ y implies

y = x.
(6) A minimal element of X is an x ∈ X, such that y ∈ X, x ≥ y implies

y = x.
(7) A greatest element of X is an upper bound for X.
(8) A least element of X is a lower bound for X.

We remark that greatest elements are maximal, and that a poset X has at most
one greatest element. Maximal elements do not need to be greatest elements, and
a set might have many maximal elements. An analogous remark holds for least
elements and minimal elements.

Theorem A.4 (Zorn’s Lemma). Let X be a nonempty partially ordered set such
that each chain in X has an upper bound. Then X has a maximal element.

Zorn’s lemma is logically equivalent to the Axiom of Choice. One direction is
fairly easy, and we prove the other one further below.

Proof that Zorn’s Lemma implies the Axiom of Choice. Let f : X → Y be surjec-
tive. We let Z be the set of all pairs (Z, h), with Z ⊂ Y and h : Z → X a map with
f(h(y)) = y for all y ∈ Z. We have to prove that there is an element (Y, g) ∈ Z.



FUNCTIONAL ANALYSIS 131

The set Z is partially ordered by inclusion:

(Z, h) ≤ (Z ′, h′)⇔ Z ⊂ Z ′, h′|Z = h.

Since (∅, ∅) ∈ Z (the empty set with the empty map to X), Z 6= ∅. Let C be a chain
in Z. Put

W :=
⋃

(Z,h)∈C

Z ⊂ Y

For y ∈W , pick (Z, h) ∈ C such that y ∈ Z. If (Z ′, h′) ∈ C is another such element,
then either (Z, h) ≤ (Z ′, h′) or (Z ′, h′) ≤ (Z, h) because C is a chain. In the first
case

h(y) = (h′|Z)(y) = h′(y)

and similarly, in the second case h(y) = h′(y). Therefore, the map

k : W → X; k(y) = h(y) y ∈ Z, (Z, h) ∈ C

is well-defined and f(k(y)) = y for all y ∈ W . By construction (Z, h) ≤ (W,k) for
all (Z, h) ∈ C, so that C has an upper bound.

By Zorn’s Lemma, Z has a maximal element (Z, h). If Z 6= Y , pick y ∈ Y \ Z
and x ∈ X with f(x) = y. Then (Z ′, h′), defined by

Z ′ := Z ∪ {y}, ;h′|Z := h, h′(y) := x

is an element of Z with (Z ′, h′) > (Z, h), contradicting the maximality of (Z, h). �

A.3. Proof of Zorn’s lemma from the Axiom of Choice. The proof of Zorn’s
lemma that we give now follows [7]. We need some preliminaries.

Definition A.5. A well-ordering on a set X is a total order ≤ on X, such that
each nonempty subset Y ⊂ X has a least element.

The (unique) least element of Y will be denoted

min(Y ).

Note that a subset of a well-ordered set is again well-ordered. If X is partially
ordered and x ∈ X, we write

P (X,x) := {y ∈ X|y < x}.

Definition A.6. Let X be well-ordered. An initial segment of X is a subset Y ⊂ X
with the property that

y ∈ Y, z ∈ X, z < y ⇒ z ∈ Y.
An initial segment Y is proper if Y 6= X.

Lemma A.7. Let X be a well-ordered set.

(1) The proper initial segments Y ⊂ X are exactly the subsets P (X,x), x ∈ X.
(2) The union of initial segments is an initial segment.

Proof. (1): It is clear that P (X,x) is a proper initial segment. If Y 6= X is an
initial segment, let

x := min(X \ Y ).

If y < x, then y ∈ Y by the definition of x, so that P (X,x) ⊂ Y . If y ∈ Y , then
x ≤ y cannot hold by assumption, so that x > y. Hence Y ⊂ P (X,x).

(2): If Y =
⋃
i∈I Yi is a union of initial segments, y ∈ Y , x ∈ X, x < y, pick

i ∈ I with y ∈ Yi. Then x ∈ Yi ⊂ Y . �
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The proof of Zorn’s Lemma is by contradiction, and it is structured into two
lemmas.

Lemma A.8. Assume that X 6= ∅ is a partially ordered set such that each of its
chains has a upper bound, but X has no maximal element. Let CH(X) be the set of
all chains in X. Then there is a map g : CH(X) → X, such that g(C) is a strict
upper bound for C, for each C ∈ CH(X).

Proof. Let Upp(C) ⊂ X be the set of all strict upper bounds for the chain C. The
hypothesis implies that

Upp(C) 6= ∅
for each chain C: if y is an upper bound for C, there is x ∈ X with y < x since X
has no maximal element, and x ∈ Upp(C). Now let ch be a choice function for X,
using the axiom of choice. We define

g : CH(X)→ X; g(C) := ch(Upp(C)).

By construction, g(C) is a strict upper bound for each C. �

Assumption A.9. For the rest of the proof, let X be a partially ordered set in
which each chain has an upper bound, but which has no maximal element, and let
g : CH(X)→ X be a map as constructed in Lemma A.8.

Definition A.10. A subset A ⊂ X is distinguished, if

(1) A is well-ordered,
(2) for all x ∈ A, we have x = g(P (A, x)).

Lemma A.11. Let X, g be as in A.9.

(1) If A,B ⊂ X are distinguished, either A is an initial segment of B or B is
an initial segment of A.

(2) A union of distinguished subsets is distinguished.
(3) If A is distinguished, then A = A ∪ {g(A)} is distinguished.

Proof. (1): Let C be the union of all common initial segments of A and B, which
is a common initial segment of A and B, by Lemma A.7 (2). We have to show that
C = A or C = B. For the sake of contradiction, assume that C is proper in both,
A and B. Then there are a ∈ A and b ∈ B such that

C = P (A, a) = P (B, b).

Since A and B are distinguished, we have

a = g(P (A, a)) = g(P (B, b)) = b

and put

C := C ∪ {a} ⊂ A ∩B.
Let

c ∈ C, x ∈ A and x < c.

Then x ∈ C: if c = a, x ∈ P (A, a) = C ⊂ C, and if c ∈ C, then x < c < a implies
x ∈ P (A, a) as well. Therefore, C is an initial segment of A. For symmetry reasons,
C is an initial segment of B. This is a contradiction as C is a proper subset of C
and C contains all common initial segments.
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(2): Let Ai ⊂ X, i ∈ I be distinguished subsets and let

U :=
⋃
i∈I

Ai ⊂ X.

We claim that U is distinguished.
Firstly, we show that U is totally ordered. Let x, y ∈ U , x ∈ Ai, y ∈ Aj . By (1),

Ai is an initial segment of Aj or vice versa; without loss of generality Ai ⊂ Aj , and
x, y ∈ Aj . Since Aj is totally ordered, x ≤ y or y ≤ x.

To prove that U is well-ordered, let Z ⊂ U be nonempty. There is i ∈ I such
that Z ∩Ai 6= ∅, and we put

y := min(Z ∩Ai).

Claim: y is a least element of Z. To verify this, let z ∈ Z and choose j ∈ I with
z ∈ Aj . If Aj ⊂ Ai, then z ∈ Z ∩ Ai and hence z ≥ y. If Aj 6⊂ Ai, Ai is an initial
segment of Aj by (1). If z ∈ Ai, we have z ≥ y by definition. If z 6∈ Ai, we have
x < z whenever x ∈ Ai, in particular y < z. Therefore y is a least element of Z,
and hence U is well-ordered.

For the last property of a distinguished set, we first show that when Ai ⊂ U and
x ∈ A, then

(A.12) P (Ai, x) = P (U, x).

Assume that this is proven. Then for x ∈ U , pick i ∈ I with x ∈ Ai and conclude

x = g(P (Ai, x)) = g(P (U, x)).

To prove (A.12), observe that P (Ai, x) ⊂ P (U, x) holds trivially. If y ∈ P (U, x),
pick j ∈ I with y ∈ Aj . If Aj ⊂ Ai, y ∈ Ai and y < x, so y ∈ P (Ai, x). If Aj 6⊂ Ai,
Ai ⊂ Aj is an initial segment. If y ∈ Ai, then again y ∈ P (Ai, x). If y 6∈ Ai, we
must have y > z for all z ∈ Ai, in particular y > x, which is absurd. This finishes
the proof of (A.12) and hence of part (2) of the lemma.

(3): it is clear that A is well-ordered, and it is also clear that P (A, x) = P (A, x)
for all x ∈ A, so that

g(P (A, x)) = x

when x ∈ A. We have arranged things so that P (A, g(A)) = A and so

g(A, g(A)) = g(A)

as well. �

Proof of Zorn’s lemma. We argue by contradiction, and let X and g be as in A.9.
Let U ⊂ X be the union of all distinguished subsets of X, which is distinguished by
Lemma A.11 (2), and let U = U ∪ {g(U)}, which is also distinguished by Lemma
A.11 (3). Since g(U) 6∈ U , U is a proper subset of U , which is a contradiction. �

A.4. Application I: Bases in vector spaces. We give now three typical appli-
cations of Zorn’s lemma.

Theorem A.13 (Bases in vector spaces). Let k be a field and let V be a k-vector
space, Z ⊂ Y ⊂ V be two subsets such that Z is linearly independent and Y
generates V . Then there is a basis X with L ⊂ X ⊂ Y .
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Proof. Let X be the set of all linearly independent subsets L with Z ⊂ L ⊂ Y . We
order X by inclusion. Since Z ∈ X, X 6= ∅. Let C be a chain in X. Then B :=

⋃
L∈C

contains Z and is contained in Y , and it is linearly independent: if b1, . . . , bn ∈ B,
a1, . . . , an ∈ K are such that

n∑
i=1

aibi = 0,

pick L1, . . . , Ln ∈ C with bi ∈ Li. Since C is a chain, we can assume that L1 ⊂
. . . ⊂ L1. So b1, . . . , bn ∈ Ln and since Ln is linearly independent, it follows that
a1 = . . . = an = 0. Therefore B is linearly independent. Hence the hypotheses of
Zorn’s lemma hold, and there is a maximal element C ∈ X. If C would not generate
V , we find v ∈ Y \ span(C), and C ∪ {v} is linearly independent, contradicting the
maximality of C.

Hence C is a linearly independent generating set, in other words a basis of V . �

A.5. Application II: The ultrafilter lemma. Ultrafilters are a crucial tool for
the proof of Tychonov’s Theorem. Let us begin with some definitions.

Definition A.14. Let X be a set. A filter on X is a nonempty subset F ⊂ P(X)
such that

(1) ∅ 6∈ F ,
(2) F1, . . . , Fn ∈ F ⇒

⋂n
i=1 Fi ∈ F ,

(3) F ∈ F , F ⊂ G ⊂ X ⇒ G ∈ F .

The second property is also called finite intersection property : a subset A ⊂
P(X) has the finite intersection property if F1, . . . , Fn ∈ A, then

⋂n
i=1 Fi 6= ∅.

Example A.15. If x ∈ X, then

Fx := {S ⊂ X|x ∈ S}
is a filter.

Example A.16. If X is infinite, then

F := {S ⊂ X||Sc| <∞}
is a filter.

Example A.17. If A ⊂ P(X) has the finite intersection property, then

〈A〉 := {S ⊂ X|∃F1, . . . , Fn ∈ A :

m⋂
i=1

Fi ⊂ S

is a filter, the filter generated by A.

Example A.18. If X is a topological space and x ∈ X a point, the set U(x) of all
neighborhoods of x is a filter, the neighborhood filter of x.

Lemma A.19. For a filter F on X, the following conditions are equivalent:

(1) F is a maximal filter, i.e. if G is a filter with F ⊂ G, then G = F .
(2) If S ⊂ X, then S ∈ F or Sc ∈ F .
(3) If S ⊂ X is a subset such that S ∩ F 6= ∅ for all F ∈ F , then S ∈ F .

Definition A.20. An ultrafilter on X is a filter that satisfies the conditions of
Lemma A.19.
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Proof of Lemma A.19. 1 ⇒ 3: The hypothesis says that F ∪ {S} has the finite
intersection property. Then 〈F∪{S}〉 is a filter which contains F . So by maximality
of F ,

〈F ∪ {S}〉 = F ⇒ S ∈ F .
3⇒ 2: One of the sets F∪{S} and F∪{Sc} have the finite intersection property.

If not, there are
F1, . . . , Fn, G1, . . . , Gm ∈ F

such that
S ∩ F1 ∩ . . . ∩ Fn = ∅

and
Sc ∩G1 ∩ . . . ∩Gm = ∅.

It follows that
F1 ∩ . . . ∩ Fn ∩G1 ∩ . . . ∩Gm = ∅,

violating the filter axioms.
If F ∪ {S} has the finite intersection property, then S ∈ F , and if F ∪ {Sc} has

the finite intersection property, then Sc ∈ F .
2⇒ 1: Let G be a filter with F ⊂ G and S ∈ G. It cannot be that Sc ∈ F , since

Sc ∩ S = ∅. Hence S ∈ F , so F = G and F is maximal. �

Lemma A.21 (Ultrafilter-Lemma). Let A ⊂ P(X) have the finite intersection
property. Then there is an ultrafilter F containing A.

Proof. Let F ⊂ P(P(X)) be the set of all filters F on X which contain A. We order
F by inclusion. We use Zorn’s Lemma to show that F contains a maximal element.
Since 〈A〉 ∈ F, F 6= ∅. Let G be a chain in F. Then

H =
⋃
G∈G
G

is a filter, as one easily checks. For example, if F1, . . . , Fn ∈ H, there are G1, . . . ,Gn ∈
G with Fj ∈ Gj . Since G is a chain, we can assume that Gn ⊂ . . . ⊂ G1, so that
Fj ∈ G1. It follows that

⋂n
j=1 Fj ∈ G1 ⊂ H.

Therefore, the chain G has an upper bound. Zorn’s Lemma guarantees the
existence of a maximal element F ∈ F, which is our desired ultrafilter. �

A.6. Application III: Maximal ideals in algebras.

Definition A.22. Let k be a field. A k-algebra is a k-vector space A, together with
a bilinear map

A×A→ A, (a, b) 7→ ab,

such that
(ab)c = a(bc)

for all a, b, c ∈ A. An ideal in A is a linear subspace I ⊂ A such that ax, xa ∈ I
holds for all a ∈ A, x ∈ I.

We say that A is commutative if ab = ba holds for all a, b ∈ A, and unital if
there is 1 ∈ A, 1 6= 0, such that a1 = 1a = a for all a ∈ A.

Theorem A.23 (Existence of maximal ideals). Let A be a commutative unital k-
algebra and let I ⊂ A be a proper ideal, that is I 6= A. Then there exists a maximal
ideal J with I ⊂ J ⊂ A, that is, J is an ideal, J 6= A, and for every other ideal
J ⊂ K ⊂ A, we have K = J or K = A.
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Proof. Let X be the set of all proper ideals J with I ⊂ J , and order X by inclusion.
This satisfies the hypotheses of Zorn’s lemma, as one verifies easily. Take a maximal
element J of X. �
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Appendix B. General topology

B.1. The definition.

Notation B.1. For a set X, we denote by P(X) its power set, i.e. the set of all
subsets of X.

Definition B.2. Let X be set. A topology on X is a subset T ⊂ P(X), such that

(1) ∅, X ∈ T ,
(2) whenever Ui ∈ T , i ∈ I, then

⋃
i∈I Ui ∈ T ,

(3) whenever U1, . . . , Un ∈ T , then
⋂n
i=1 Ui ∈ T .

A topological space is a pair (X, T ), consisting of a set X and a topology T on X.
The elements of T are called open subsets of X.

Usually, we denote a topological space (X, T ) just by the symbol X.

Definition B.3. Let X be a topological space. A subset A ⊂ X is closed if the
complement Ac = X \A is open.

We note:

(1) ∅ and X are closed,
(2) whenever Ai, i ∈ I are closed subsets, then

⋂
i∈I Ui is closed,

(3) whenever A1, . . . , An are closed, then
⋃n
i=1Ai is closed.

Definition B.4. Let X be a topological space and let x ∈ X. A subset N ⊂ X is a
neighborhood of x, if x ∈ N and if there is an open subset U such that x ∈ U ⊂ N .
By U(x), we denote the set of all neighborhoods of x.

We observe:

Lemma B.5. A subset V ⊂ X is open if and only if V is a neighborhood of each
of its points. �

Definition B.6. Let X be a topological space and, Z ⊂ X be a subset and let
x ∈ X.

(1) We say that x is an interior point of Z if Z ∈ U(x), and we denote by Z◦

the set of all interior points of Z.
(2) We say that x is a limit point of Z if U ∩Z 6= ∅ for each U ∈ U(x), and we

denote by Z the set of all limit points of Z, which is also called the closure
of Z in X.

It is clear that
Z◦ ⊂ Z ⊂ Z.

The difference is denoted
∂Z := Z \ Z◦

and its points are called boundary points of Z.

Lemma B.7. (1) Z◦ is open and it is the largest open subset of Z.

(2) Z
c

= (Zc)◦,
(3) Zc = (Z◦)c,
(4) Z is closed, and it is the smallest closed set containing Z.
(5) Z is open iff Z = Z◦.
(6) Z is closed iff Z = Z.



138 JOHANNES EBERT

Proof. (1) For x ∈ Z◦, there is an open U with x ∈ U ⊂ Z. If y ∈ U , then Z is
a neighborhood of y, so y ∈ Z◦. This shows that Z◦ is a neighborhood of x, and
therefore Z◦ is open. If U ⊂ Z is open and y ∈ U , Z is a neighborhood of y and so
y ∈ Y ◦, so that altogether U ⊂ Z◦.

(2): x ∈ Zc is equivalent to the existence of a neighborhood U of x with U∩Z = ∅,
i.e. U ⊂ Zc; and this is equivalent to x ∈ (Zc)◦.

(3) follows from (2) by taking complements:

Zc = ((Zc)c)c
(2)
= (((Zc)c)◦)c = (Z◦)c.

(4): follows from (1) and (2) by taking complements. (5) and (6) are also easy
consequences. �

Definition B.8. Let X and Y be topological spaces and x ∈ X. A map f : X → Y
is continuous at x if for each neighborhood U of f(x), the preimage f−1(U) is a
neighborhood of x. f is continuous if it is continuous at each x ∈ X.

Lemma B.9. f : X → Y is continuous if and only if f−1(U) ⊂ X is open for each
open U ⊂ Y .

Proof. Let f be continuous, U ⊂ Y open and x ∈ f−1(U). Then U is a neighbor-
hood of f(x), hence by continuity f−1(U) is a neighborhood of x, and since this
holds for all x ∈ f−1(U), f−1(U) is open. Vice versa, assume that preimages of
open subsets are open and let x ∈ X. Let V be a neighborhood of f(x) and pick
an open x ∈ U ⊂ V . Then x ∈ f−1(U) is open and so f−1(V ) is a neighborhood of
x. �

Lemma B.10. The composition f ◦ g of two continuous maps is continuous. �

Definition B.11. A homeomorphism f : X → Y between topological spaces is a
bijective continuous map such that the inverse map is continuous as well.

Lemma B.12. Let X and Y be topological spaces. A map f : X → Y is continuous
if and only if for each Z ⊂ X, we have

f(Z) ⊂ f(Z).

Proof. Let f : X → Y be continuous and let Z ⊂ X. To check that f(Z) ⊂ f(Z),
we have to check that for each y ∈ Z and each neighborhood U ⊂ Y of f(y), we have
U ∩ f(Z) 6= ∅. But f−1(U) is a neighborhood of y, and therefore f−1(U) ∩ Z 6= ∅,
so that there is z ∈ f−1(U) ∩ Z. It follows that

f(z) ∈ U ∩ f(Z),

and in particular U ∩ f(Z) is not empty.
For the reverse implication, assume that f is not continuous at x ∈ X and pick

a neighborhood U ⊂ Y of f(x) such that f−1(U) is not a neighborhood of x. It

follows that x ∈ f−1(U)c = f−1(U c), and that

f(x) ∈ f(f−1(U c)) ⊂ f(f−1(U c)) ⊂ U c.
But that means that U is not a neighborhood of f(x), a contradiction. �

Definition B.13. Let X be a topological space and let A ⊂ X be a subset. The
subspace topology on A is defined as follows. A subset U ⊂ A is open if and only
if it is of the form U ∩A with U ⊂ X open.
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Definition B.14. An injective continuous map f : X → Y is called an embed-
ding or a homeomorphism onto its image if the map f : X → f(X) ⊂ Y is a
homeomorphism, where f(X) carries the subspace topology.

B.2. Metric spaces.

Definition B.15. Let X be a set. A pseudometric d on X is a map

d : X ×X → [0,∞)

such that

d(x, x) = 0,

d(x, y) = d(y, x)

(symmetry) and

d(x, y) ≤ d(x, z) + d(z, y)

(triangle inequality) hold for all x, y, z ∈ X. A pseudometric space (X, d) is a pair,
consisting of a set X and a pseudometric d on X.

A pseudometric d is a metric if in addition

d(x, y) = 0⇒ x = y.

A metric space is a pair (X, d), consisting of a set X and a metric on X.

On the field K = R or C, a metric is given by the absolute value

d(x, y) := |x− y|.

More generally, if V is a K-vector space and ‖ ‖ a seminorm, then

d(v, w) := ‖v − w‖

is a pseudometric, which is a metric if and only if ‖ ‖ is a norm.
We are usually interested in metric spaces, but occasionally it is handy to have

the more general definition at hand. For a pseudometric space (X, d), x ∈ X and
r > 0, we denote by

Br(x) := {y ∈ X|d(x, y) < r}
the open ball of radius r around x, and by

Br(x) := {y ∈ X|d(x, y) ≤ r}

the closed ball of radius r around x.

Definition B.16. Let (X, d) be a pseudometric space and let U ⊂ X. We say that
U is open if for each x ∈ U , there is r > 0 such that Br(x) ⊂ U . The collection of
all open subsets of X is a topology, the metric topology induced by d.

Definition B.17. A topological space X is metrizable if there is a metric d on X
which induces the given topology on X.

It is easily verified that this is indeed a topology. Let us list some easy properties
of the metric topology.

Lemma B.18. Let X be a pseudometric space, x ∈ X and r > 0. Then Br(x) is
open and Br(x) is closed.
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Proof. Let y ∈ Br(x). Let δ > 0 be such that δ + d(x, y) ≤ r. The triangle
inequality shows that Bδ(y) ⊂ Br(x), in other words, that Br(x) is open. Similarly,
if y ∈ Br(x)c, then d(x, y) > r, and there is ε > 0 such that r + ε ≤ d(x, y). The
triangle inequality proves that Bε(y)∩Br(x) = ∅, so that Br(x)c is a neighborhood
of each of its points, therefore open. �

Warning: it is not always true that Br(x) is the closure of Br(x).

Definition B.19. A topological space X is called Hausdorff space or T2-space if
for x, y ∈ X with x 6= y, there are neighborhoods U ∈ U(x) and V ∈ U(y) with
U ∩ V = ∅.

A metric space is Hausdorff: if x 6= y, then B 1
2d(x,y)(x) and B 1

2d(x,y)(y) are

disjoint open neighborhoods of x and y.
For metric spaces, one can express all topological concepts using convergent

sequences.

Definition B.20. A sequence N → X, n 7→ xn in a topological space converges
to x ∈ X, in symbol limn→∞ xn = x, if for each neighborhood U ∈ U(x), there is
n0 ∈ N such that xn ∈ U for all n ≥ n0.

In a metric space, this can be expressed more conveniently: limn→∞ xn = x if
and only if for each ε > 0, there is n0 ∈ N such that d(x, xn) ≤ ε for all n ≥ n0.

Lemma B.21. Let X be a metric space and Z ⊂ X.

(1) A point x ∈ X lies in Z if and only if there is a sequence xn ∈ Z with
x = limn xn.

(2) The set Z ⊂ X is closed if and only if for each sequence xn ∈ Z which
converges to x ∈ X, we have x ∈ Z.

Proof. 1: if x ∈ Z, then B 1
n

(x) ∩ Z 6= ∅, and we can therefore find points xn ∈
B 1
n

(x)∩Z. The sequence xn converges to x. Vice versa, if xn ∈ Z and limn→∞ xn =

x, then for each neighborhood U of x, we have xn ∈ U for sufficiently large n, in
particular U ∩ Z 6= ∅.

2: Assume that Z is closed, xn ∈ Z and limn xn = x ∈ X. Then by part (1),
x ∈ Z = Z. Vice versa, assume that limits of sequences in Z lie in Z and let x ∈ Z.
Then by (1), there is a sequence xn ∈ Z which converges to x, proving that x ∈ Z,
so Z = Z. �

Theorem B.22. Let X and Y be metric spaces and let f : X → Y be a map. The
following are equivalent:

(1) f is continuous.
(2) For each x ∈ X and each ε > 0, there is δ > 0 so that f(Bδ(x)) ⊂ Bε(f(x)).
(3) f is sequentially continuous. In other words, if xn is a convergent sequence

in X, then f(limn xn) = limn f(xn).

Proof. 1⇒ 2: Bε(f(x)) is open, and since f is continuous, f−1(Bε(f(x))) is open.
Therefore, there is δ > 0 with Bδ(x) ⊂ f−1(Bε(f(x))), which means f(Bδ(x)) ⊂
Bε(f(x)).

2⇒ 3: is straightforward.
3⇒ 1: we use Lemma B.12. Let Z ⊂ X; we have to prove that

f(Z) ⊂ f(Z).
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For x ∈ Z, pick a sequence xn ∈ Z with limn xn = x. Then f(x) = limn f(xn),

hence f(x) ∈ f(Z). �

Definition B.23. A metric space X is complete if each Cauchy sequence in X
converges. More precisely: if (xn) is a Cauchy sequence in X (that is, for each
ε > 0, there is n0 such that for all m,n ≥ n0, we have d(xn, xm) ≤ ε), then there
exists x ∈ X with x = limn xn.

It is of course known that R, C are complete.

B.3. Bases and subbases of a topology.

Definition B.24 (Neighborhood basis). Let X be a topological space and x ∈ X.
A neighborhood basis of x is a set U of neighborhoods of x such that for each
neighborhood U ∈ U(x), there is V ∈ U with V ⊂ U .

Definition B.25 (Basis and subbasis). Let (X, T ) be a topological space. A basis
for the topology of X is a subset B ⊂ T such that each element U of T can be
written as the union of elements of B.

A subbasis for T is a subset A ⊂ T containing X such that the set

{O ⊂ X|∃U1, . . . , Un ∈ A : O = U1 ∩ . . . ∩ Un}

is a basis for T .

Definition B.26. A subset Z ⊂ X of a topological space is called dense if Z = X.

Definition B.27 (Countability axioms). Let X be a topological space.

(1) X is first countable if each x ∈ X has a countable neighborhood basis.
(2) X is second countable if the topology of X has a countable basis.
(3) X is separable if X has a countable dense subset.

Examples B.28. (1) A metric space X is first countable: the set {B 1
n

(x)|n ∈
N} is a neighborhood basis for x.

(2) A second countable space is first countable: if B is a countable basis, then
{U ∈ B|x ∈ U} is a neighborhood basis for x.

(3) A second countable space is separable: let B be a countable basis. Without
loss of generality, each U ∈ B is nonempty. Pick xU ∈ U , for each U ∈ B.
Then the set {xU |U ∈ B} ⊂ X is dense.

(4) A separable metric space X is second countable: assume that Z = {zn|n ∈
N} ⊂ X is a countable dense subset. We claim that U := {B 1

m
(zn)|m,n ∈

N} is a basis for the topology of X. It suffices to show that if U ⊂ X is
open and x ∈ U , then there are m,n with x ∈ B 1

m
(zn).

There is m such that B 2
m

(x) ⊂ U , and there is n such that d(x, zn) < 1
2m .

Then x ∈ B 1
m

(zn) ⊂ U .

(5) Rn is separable: Qn ⊂ Rn is dense.

B.4. The topology generated by a set of subsets.

Definition B.29. Let X be a set and let T0, T1 be two topologies on X. We say
that T1 is coarser than T0 - or that T0 is finer than T1 if T1 ⊂ T0, or equivalently,
if id : (X, T0)→ (X, T1) is continuous.
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On each set X, there is a coarsest topology, which consists only of the two sets ∅
and X. This is the trivial topology. The finest topology on X is the discrete topology
which consists of all subsets of X. These two topologies are rather uninteresting.
More interesting is the coarsest topology which contains a certain supply of subsets
of X.

Lemma B.30. Let X be a set and let A ⊂ P(X).

(1) There is a uniquely determined coarsest topology T with A ⊂ T .
(2) T consists of X, and all sets U with the following property: for each x ∈ U ,

there are U1, . . . , Un ∈ A such that

x ∈
n⋂
j=1

Uj ⊂ U.

(3) Let Z be a topological space and let f : Z → X be a map. Then f : Z →
(X, T ) is continuous if and only if f−1(U) ⊂ Z is open for each U ∈ A.

(4) A is a subbasis for T if
⋃
U∈A U = X.

(5) A is a basis for T if
⋃
U∈A U = X and if for U, V ∈ A, and each x ∈ U ∩V ,

there is W ∈ A with x ∈W ⊂ U ∩ V .

Proof. 1: Let T be the set of all topologies on X (this is a subset of P(P(X))). If
Ti, i ∈ I, are topologies on X, then so is the intersection⋂

i∈I
Ti ⊂ P(X).

We must define
T :=

⋂
S∈T,A⊂S

S.

This is the desired topology.
2: let S be the set of all sets U with the stated property, together with X. It is

easy to check that S is a topology and that A ⊂ S. Therefore T ⊂ S. On the other
hand, if U is a topology containing A and U ∈ S, then it follows from Lemma B.5
that U ∈ U . Therefore S ⊂ U , which in particular implies S ⊂ T .

3: since A ⊂ T , any continuous map f : Z → (X, T ) has the property that
f−1(U) ⊂ Z is open whenever U ∈ A. On the other hand, if f−1(U) is open
for each U ∈ A, then f−1(U1 ∩ . . . ∩ Un) = f−1(U1) ∩ . . . ∩ f−1(Un) is open when
U1, . . . , Un ∈ A. Any set in T can be written as the union of such finite intersections,
and so its preimage is open in Z, so f is continuous.

4, 5: This is straightforward from the definition of a (sub)basis and the explicit
description of T given in (2). �

B.5. The induced topology and products.

Definition B.31. Let X be a set, let Yi, i ∈ I, be topological spaces and let
F := {fi : X → Yi|i ∈ I} be a family of maps. The topology on X induced by F
is the coarsest topology on X which contains all the sets f−1

j (Vj), where Vj ⊂ Yj is

open (see Lemma B.30).

Using Lemma B.30, we see that U ⊂ X is open in the topology induced by F if
and only if for each x ∈ U , there is a finite subset J ⊂ I and open Vj ⊂ Y , j ∈ J ,
such that

x ∈
⋂
j∈J

f−1
j (Vj) ⊂ U.
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Lemma B.32. The induced topology has the following properties.

(1) The maps fi : X → Yi are continuous.
(2) The induced topology is the coarsest topology with this property.
(3) If Z is a further topological space and g : Z → X is a map, then g is

continuous if and only if fi ◦ g is continuous for each i ∈ I.

Proof. 1: By the concrete description of the induced topology, it is clear that all
maps fi are continuous.

3: By Lemma B.30, g is continuous if and only if g−1(f−1
i (V )) is open for each

i ∈ I and each open subset V ⊂ Yi. Since g−1(f−1
i (V )) = (fi ◦ g)−1(V ), this

condition is equivalent to the continuity of fi ◦ g.
2: denote the induced topology by T , and let S be another topology on X so

that each fi : (X;S) → Yi is continuous. By (3), the map id : (X,S) → (X, T ) is
continuous, but that means that T is coarser than S. �

The most interesting special case of this construction is the product topology.
Let Xi, i ∈ I, be topological spaces. We denote by pj :

∏
i∈I Xi → Xj be the

projection map from the cartesian product. We can view
∏
i∈I Xi as the set of all

families (xi)i∈I with xi ∈ Xi, and the projection map is given by pj((xi)i∈I) := xj .

Definition B.33. The product topology on
∏
i∈I Xi is the topology induced by the

family {pj :
∏
i∈I Xi → Xj} of all projection maps.

One can easily prove that in the case of a finite product X1 × . . . × Xn, the
product topology has a basis which consists of all the sets U1 × . . . × Un, with
Uj ⊂ Xj open. The general case is a little less intuitive: a basis is given by all the

sets of the form p−1
i1

(Ui1) ∩ . . . ∩ p−1
in

(Uin).

B.6. The product topology for metric spaces.

Lemma B.34. Let (X, dX) and (Y, dY ) be metric spaces. Then the metric

dX×Y ((x0, y0), (x1, y1)) := max{dX(x0, x1), dY (y0, y1)}

induces the product topology on X × Y .

This is an exercise. More interesting is the case of countable products.

Proposition B.35. Let (Xn, dn)n∈N be metric spaces. On the product
∏∞
n=1Xn,

the formula

d∏((xn)n, (yn)n) :=

∞∑
n=1

1

2n
dn(xn, yn)

1 + dn(xn, yn)

defines a metric, and d∏ induces the product topology.

Proof. The only property of a metric which is nontrivial is the triangle inequality.
To prove this, let 0 ≤ a, b, c be real numbers with a ≤ b+ c. Then

(B.36)
a

1 + a
≤ b

1 + b
+

c

1 + c
.

This is because f(t) := 1
1+t is increasing, so that a

1+a ≤
b+c

1+b+c , and the easily

verified inequality b+c
1+b+c ≤

b
1+b + c

1+c . The inequality (B.36) immediately implies
the triangle inequality for d∏.
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The projection map

pm : (

∞∏
n=1

Xn, d∏)→ Xm

is continuous (since the function f is continuous at 0). Therefore, by Lemma B.32,
the identity

(

∞∏
n=1

Xn, d∏)→ (

∞∏
n=1

Xn, T )

is continuous, where T denotes the product topology. Hence the topology induced
by d∏ is finer than the product topology. We also need to show that it is coarser
than the product topology, in other words: each subset which is open in the metric
topology is open in the product topology. If we can show that each ball Br((xn)n)
contains a neighborhood of (xn)n in the product topology, we are done with that.

Choose n0 with
∑∞
n=n0+1

1
2n ≤

r
2 . Then there are δ1, . . . , δn0

> 0, so that

Bδ1(x1)× . . .×Bδn0
(xn0

)×
∏

n=n0+1

Xn ⊂ Br((xn)n).

This proves all claims. �

B.7. Net convergence. Lemma B.21 and Theorem B.22 show that the topology
of metric spaces is adequately reflected by convergence of sequences, which is very
convenient for all purposes of analysis. In general topological spaces, this does not
need to hold, and a more general notion of convergence is necessary. There are two
such concepts: nets and filters. We develop the language of nets; for convergence
of filters, we refer to the literature.

Definition B.37. A directed set is a set I, together with a binary relation ≤ on I
such that

(1) x ≤ x,
(2) x ≤ y, y ≤ z ⇒ x ≤ z,
(3) for all x, y ∈ I, there is z ∈ I such that x ≤ z and y ≤ z.

A net in a set X consists of a directed set I, together with a map N : I → X.
If N : I → X is a net and Z ⊂ X, we say that N is eventually in Z if there is

i ∈ I such that N(j) ∈ Z for all j ≥ i. We say that N is frequently in Z if for
each i ∈ I, there is j ≥ i with N(j) ∈ Z.

Definition B.38. Let X be a topological space and let N : I → X be a net. We
say that N converges to x ∈ X, in symbols limiN(i) = x if for each neighborhood
U of x, N is eventually in U .

Remark B.39. If X is Hausdorff, then a net N : I → X has at most one limit.

Examples B.40. (1) N with the usual order relation is a directed set. A net
N : N→ X converges to x if and only if limn→∞N(n) = x.

(2) The set of neighborhoods U(x) of x ∈ X is a directed set with the relation
U ≤ V :⇔ V ⊂ U . Picking a point xU ∈ U for each U ∈ U(x) gives a net
N : U(x)→ X, N(U) := xU , and this net converges to x.

(3) The Riemann integral can be formulated using nets: the set Z of all par-
titions of the interval [a, b] (that is, just finite subsets of (a, b)) is a di-
rected set, with the relation Z0 ≤ Z1 ⇔ Z0 ⊂ Z1. For a bounded function
f : [a, b]→ R, we define the upper sum U(f, Z) and the lower sum L(f, Z).
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Then N0, N1 : Z → R, N0(Z) = L(Z, f) and N1(Z) = U(T, f) are two
nets, and f is Riemann integrable if and only if both nets converge to the
same limit.

Lemma B.21 has the following generalization in terms of nets, valid for any space.

Lemma B.41. Let Z ⊂ X be a subset of a topological space and x ∈ X. Then
x ∈ Z if and only if there is a net N : I → Z ⊂ X with limiN = x.

Proof. If N : I → Z ⊂ X is a net with x = limiN(i), then each neighborhood U of
x contains some N(i), and therefore U ∩ Z 6= ∅, so that x ∈ Z.

On the other hand, if x ∈ Z, then each neighborhood U ∈ U(x) contains a point
xU ∈ U ∩ Z. We define a map6

N : U(x)→ Z, U 7→ xU .

On U(x), we introduce the relation U ≤ V :⇒ V ⊂ U , so that N is a net. Clearly
limU xU = x. �

Theorem B.42. A map f : X → Y of topological spaces is continuous if and only
if for each net N : I → X which converges to some x ∈ X, the net f ◦N : I → Y
converges to f(x).

Proof. Let f : X → Y be continuous and let N : I → X be a net with limit x. Let
U ⊂ Y be a neighborhood of f(x). Then f−1(U) is a neighborhood of x, and so N
is eventually in f−1(U). But this means that f ◦N is eventually in U , and hence
limi f(N(i)) = f(x) = f(limiN(i)).

Vice versa, let Z ⊂ X be a subset. We have to prove that f(Z) ⊂ f(Z), by
Lemma B.12. For x ∈ Z, pick a net N : I → Z with limiN(i) = x, using Lemma
B.41. It follows that

f(x) = f(lim
i
N(i)) = lim

i
f(N(i)) ∈ f(Z),

using Lemma B.41 again. �

There is a notion of a subnet of a net, whose precise formulation is quite abstract.

Definition B.43. Let I, J be directed sets and let ϕ : I → J be a map. We say
that ϕ is cofinal if for all j ∈ J , there is i0 ∈ I, such that for all i ≥ i0, we have
ϕ(i) ≥ j.

A subnet of a net N → X is the compostion N ◦ ϕ : J → X with a cofinal map
ϕ : J → I.

B.8. Compactness.

Definition B.44. An open cover of (X, T ) is a subset U ⊂ T such that
⋃
U∈U U =

X. A subcover of U is a subset V ⊂ U which is also a cover.
A topological space X is compact if each open cover of X has a finite subcover.

There is a dual formulation of the definition using closed subsets.

Definition B.45. A subset A ⊂ P(X) has the finite intersection property if the
intersection A1 ∩ . . . ∩An of finitely many elements of A is nonempty.

Theorem B.46. Let X be a topological space. The following are equivalent:

6The way we wrote this requires the axiom of choice, but that can be circumvented.
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(1) X is compact,
(2) Let A ⊂ P(X) be a family of closed subsets with the finite intersection

property. Then ⋂
A∈A

A 6= ∅

Proof. For a family A ⊂ P(X) of closed subsets, we let

A] := {Ac|A ∈ A}

which is a family of open subsets. For a family O of open subsets, we let

O[ := {U c|U ∈ O},

a family of closed subsets.
1⇒ 2: Let X be compact and let A be a family of closed subsets with the finite

intersection property. Then no finite subset of A] covers X. As X is compact, and
all elements of A] are open, this implies that A] is not a cover of X. In other words

∅ 6= (
⋃
A∈A

Ac)c =
⋂
A∈A

(Ac)c =
⋂
A∈A

A.

2⇒ 1: Let O be an open cover of X. Then⋂
U∈O

U c = ∅,

hence O[ does not have the finite intersection property. By the hypothesis on X,
there are U1, . . . , Un ∈ O with

⋂n
i=1 U

c
i = ∅. Then (Ui)

n
i=1 is a finite subcover of

O. �

Proposition B.47. Let X be compact and let f : X → R be continuous. Then f
attains maximum and minimum.

Among the many useful properties of compact spaces, we single out one, which
is very often used.

Proof. For r < R := supx∈X f(x), the set Ar := {x|f(x) ≥ r} is closed, and
nonempty. The system

A = {Ar|r < R}
of closed subsets has the finite intersection property. Therefore, there is x ∈⋂
r<RAr, and f attains its maximum at x. Similarly, one proves the existence

of a minimum. �

One of the most important theorems about compactness is Tychonov’s Theorem
which asserts that the product

∏
i∈I Xi of compact spaces is compact. We prove

this later on; the case of finite products is easier. We start with a helpful remark.

Remark B.48. Let X be a topological space and let B be a basis for the topology.
Then X is compact if and only if each open cover U ⊂ B has a finite subcover. In
other words, it is enough to prove that covers by sets of a basis have finite subcovers.
This is because A = {V ∈ B|∃U ∈ U : V ⊂ U} is an open cover, and if A has a
finite subcover, then so does U .

Theorem B.49 (Baby Tychonov). Let X and Y be compact. Then X × Y is
compact.
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Proof. Let U be an open cover of X × Y . Since the sets of the form U × V ,
U ⊂ X, V ⊂ Y open, form a basis of the topology of X × Y , we can assume that
U = {Ui × Vi|i ∈ I}, by Remark B.48.

For each x ∈ X, the sets (Ui × Vi) ∩ {x} × Y form a cover of the compact space
{x}×Y ∼= Y , and so there is a finite subset Ix ⊂ I such that {x}×Y ⊂

⋂
i∈Ix Ui×Vi.

The set Wx :=
⋂
i∈Ix Ui ⊂ X is an open neighborhood of x, and as X is compact,

we find x1, . . . , xn ∈ X with Wx1 ∪ . . . ∪Wxn = X. Then

{Ui × Vi|i ∈ Ix1
∪ . . . ∪ Ixn} ⊂ U

is a finite subcover of U . �

B.9. Compactness and Hausdorff property. Spaces which are both compact
and Hausdorff are extremely well-behaved.

Lemma B.50. Let f : X → Y be a map of topological spaces.

(1) If f is injective and Y is Hausdorff, then X is Hausdorff.
(2) If f is surjective and X is compact, then Y is compact.

Proof. (1): Let x0 6= x1 ∈ X. Then f(x0) 6= f(x1), and there are open disjoint
neighborhoods U0 of x0 and U1 of x1. Then f−1(Ui) is an open neighborhood of
xi and f−1(U0) ∩ f−1(U1) = ∅.

(2): Let U be an open cover of Y . Then f−1(U) = {f−1(U)|U ∈ U} is an
open cover of X, which has a finite subcover {f−1(U1), . . . , f−1(Un)}. Since f is
surjective, we have Ui = f(f−1(Ui)) and

Y = f(X) = f(f−1(U1)) ∪ . . . f(f−1(Un)) = U1 ∪ . . . ∪ Un,
so that U has a finite subcover. �

Lemma B.51. Let X be a topological space and Z ⊂ X a subspace.

(1) If X is compact and Z is closed, then Z is compact.
(2) If X is Hausdorff and Z is compact, then Z is closed.

Proof. (1): Let U be an open cover of Z. For each U ∈ U , there is an open VU ⊂ X
with VU ∩ Z = U . Then

V := {VU |U ∈ U} ∪ {X \ Z}
is an open cover which has a finite subcover {VU1 , . . . , VUn , X\Z}. Then {U1, . . . , Un}
is a finite subcover of U .

(2): Let x ∈ Zc be a point. For each y ∈ Z, there are open neighborhoods
y ∈ Uy, x ∈ Vy which are disjoint. Since Z is compact, there are y1, . . . , yn ∈ Z
such that

Z ⊂ Uy1 ∪ . . . ∪ Uyn =: U.

Then x ∈ Vy1 ∩ . . . ∩ Vyn =: V , V is open and V ∩ U = ∅. It follows that V ⊂ Zc,
and since x was arbitrary, that Zc is open, hence Z is closed. �

Theorem B.52. Let f : X → Y be bijective, X compact and Y Hausdorff. Then
f is a homeomorphism.

Proof. By Lemma B.50, X is Hausdorff and Y is compact. Let g : Y → X be the
inverse map to f . In order to prove that g is continuous, it suffices to show that
f(A) ⊂ Y is closed for each closed A ⊂ X.

By Lemma B.51, A is compact, hence by Lemma B.50, f(A) is compact, hence
f(A) ⊂ Y is closed by Lemma B.51. �
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B.10. Compactness and sequential compactness.

Definition B.53. A space X is sequentially compact if each sequence in X has a
convergent subsequence.

Theorem B.54. (1) Let X be first countable and compact. Then X is sequen-
tially compact.

(2) Let X be second countable and sequentially compact. Then X is compact.

We will soon prove that for metric spaces, compactness and sequential compact-
ness are equivalent.

Proof. (1): Let (xn) be a sequence in X and let

Am := {xn|n ≥ m} ⊂ X.

Then Am 6= ∅ is closed, and we have

A1 ⊃ A2 ⊃ . . .

Since X is compact, A :=
⋂∞
m=1Am 6= ∅, and we pick x ∈ A. Let (Vn)n be a

neighborhood basis of x. The sets Un := V1 ∩ . . . ∩ Vn form a neighborhood basis
of x with the extra property that U1 ⊃ U2 ⊃ . . .. Then Un ∩Am 6= ∅ for all m and
n, and so there is k ≥ m with

xk ∈ Un.
We can inductively pick a sequence xnk with xnk ∈ Uk, and since (Un)n is a
neighborhood basis, limk→∞ xnk = x.

(2): Let B be a countable basis for the topology of X and let U be an open cover
of X. The set

B′ := {O ∈ B|∃U ∈ U : O ⊂ U} ⊂ B
is an countable open cover of X, and it is enough to cover X by finitely elements
from B′. This argument shows that it is enough to show that each countable open
cover of X has a finite subcover.

So let U = {Un|n ∈ N} be an open cover of X. Assume that U has no finite
subcover. This means that Vn :=

⋃n
k=1 Uk 6= X. Hence there is a sequence xn ∈ X,

such that xn 6∈ Vn. There is a subsequence xnm with limm xnm = x ∈ X. Then
x ∈ UN for some N , and so xnm ∈ UN for m ≥ m0. This is a contradiction when
nm > N . �

Corollary B.55 (Heine-Borel Theorem). A subset X ⊂ Rn is compact if and only
if it is closed and bounded (here the topology on Rn is the product topology, which
is the same as the one induced by the norm ‖x‖`∞ := max{|x1|, . . . , |xn|}.

Proof. If X ⊂ Rn is compact, it must be closed because Rn is Hausdorff, by Lemma
B.51. The function f = ‖ ‖`∞ : Rn → R is continuous, and by Proposition B.47, f
attains its maximum on X and is in particular bounded.

If X ⊂ Rn is bounded and closed, it is a closed subset of [−R,R]n for some
R ≥ 0. Using Lemma B.51, it suffices to prove that [−R,R]n is compact, and
by Theorem B.49, it suffices to do so in the case n = 1. The interval [−R,R] is
sequentially compact by the Bolzano-Weierstrass Theorem, and therefore compact
by Theorem B.54, because R is second countable because it is a separable metric
space. �
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B.11. Tychonov’s Theorem.

Theorem B.56 (Tychonov). Let Xi, i ∈ I, be compact. Then the product

X =
∏
i∈I

Xi

is compact.

Proof. We denote the projections by pi : X → Xi. Let A ⊂ P(X) be a family of
closed subsets with the finite intersection property. By the Ultrafilter Lemma A.21,
there is an ultrafilter F on X which contains A. For each i ∈ I, we let

Gi := {pi(S)|S ∈ F ⊂ P(Xi).

This is a family of closed subsets of Xi, and it has the finite intersection property,
because

pi(S1) ∩ . . . ∩ pi(Sn) ⊃ pi(S1) ∩ . . . ∩ pi(Sn) ⊃ pi(S1 ∩ . . . ∩ Sn) 6= ∅.
Since Xi is compact, the set

Zi :=
⋂
S∈F

pi(S)

is not empty. Using the Axiom of Choice, the product

Z =
∏
i∈I

Zi ⊂ X

is not empty, and we pick an element

x = (xi)i∈I ∈ Z
(note that xi ∈ Zi). We claim that

x ∈ S
for each S ∈ F . From this, it will follow that

x ∈
⋂
S∈F

S ⊂
⋂
A∈A

A =
⋂
A∈A

A,

and in particular that the intersection of A is not empty, which shows that X is
compact.

Let U ⊂ X be a neighborhood of x. By the definition of the product topology,
there is a finite subset J ⊂ I and open neighborhoods Uj of xj , j ∈ J , such that

x ∈
⋂
j∈J

p−1
j (Uj) ⊂ U.

Since xj ∈ pj(S), it follows that Uj ∩ pj(S) 6= ∅ for each S ∈ F , and this implies

p−1
j (Uj) ∩ S 6= ∅

for all S ∈ F . Since F is an ultrafilter, it follows Lemma A.19 that

p−1
j (Uj) ∈ F

and hence that

U ∈ F ,
so that

U ∩ S 6= ∅
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for each S ∈ F . As U was an arbitrary neighborhood of x, we conclude that

x ∈ S

for each S ∈ F , as claimed. �

Corollary B.57. Let Xn, n ∈ N, be compact metric spaces. Then
∏∞
n=1Xn is

sequentially compact.

Proof. By Tychonov’s theorem,
∏∞
n=1Xn is compact. Proposition B.35 shows that∏∞

n=1Xn is a metric space, hence first countable, and hence sequentially compact
by Theorem B.54. �

B.12. Metric spaces: completeness and compactness.

Definition B.58. A metric space X is totally bounded if for each ε > 0, there
are finitely many points x1, . . . , xr ∈ X such that

⋃r
j=1Bε(xj) = X.

Theorem B.59. Let X be a metric space. The following are equivalent:

(1) X is compact.
(2) X is sequentially compact.
(3) X is complete and totally bounded.

Proof. 1 ⇒ 2: since metric spaces are first countable, this follows from Theorem
B.54.

2 ⇒ 3: Let (xn)n be a Cauchy sequence in X and let (xnm)m be a convergent
sequence with limm→∞ xnm = x. The sequence d(xm, xnm) in R converges to 0,
and so

lim
m→∞

(d(x, xm) ≤ d(x, xnm) + d(xnm , xm)) = 0.

Hence X is complete. If X is not totally bounded, there is δ > 0, so that for
arbitrarily chosen x1, . . . , xn ∈ X, we have

X \
n⋃
j=1

Bδ(xj) 6= ∅.

Hence there is a sequence xn with d(xn, xm) ≥ δ whenever m 6= n. Each subse-
quence has the same property and hence cannot converge, so that X is not sequen-
tially compact.

3⇒ 2: let (xn)n be a sequence in X. We claim that there is a Cauchy sequence
(ym)m in X and infinite subsets N ⊃ J1 ⊃ J2 ⊃ . . ., such that d(xn, ym) ≤ 1

2m

whenever m ∈ Jn.
Since X is totally bounded, we can cover X by finitely many balls of radius 1

2 .
One of those balls, say B 1

2
(y1) contains infinitely many terms of (xn)n, and we let

J1 be the set of those indices. The ball B 1
2
(y1) is totally bounded. We can repeat

the argument and find y2 ∈ B 1
2
(y1), such that B 1

4
(y2) contains infinitely many of

the xm’s with m ∈ J1, and we let J2 ⊂ J1 be the set of those indices. We pick a
subsequence xnm with nm ∈ Jm.

The sequence (ym) is Cauchy and hence has a limit y := limm ym. Since
d(ym, xnm) ≤ 1

2m , we conclude that limm xnm = y. Therefore (xn) has a convergent
subsequence.

3 ⇒ 1: For each n, cover X by finitely many balls B 1
2n

(xn,1), . . . , B 1
2n

(xn,rn).

Then the set {xn,j |n ∈ N, 1 ≤ j ≤ rn} ⊂ X is dense. Therefore X is separable,
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and hence second countable. We have already established that X is sequentially
compact, and Theorem B.54 finishes the proof. �

In the proof of the implication 3⇒ 1, we have seen:

Corollary B.60. A compact metric space is second countable.

Another important property of compact metric spaces is the

Lemma B.61 (Lebesgue-Lemma). Let X be a sequentially compact metric space
and let U be an open cover of X. Then there is δ > 0 such that for each x ∈ X,
there is U ∈ U with Bδ(x) ⊂ U . Such a δ is called a Lebesgue number of U .

Proof. Suppose that the Lemma fails for some sequentially compact metric space
and some open cover U of X. Then for each δ > 0, there is yδ ∈ X such that Bδ(yδ)
is not contained in any of the open sets U ∈ U .

Some subsequence (xn)n of the sequence n 7→ y 1
n

converges to some x ∈ X.

Hence there is a sequence an of positive numbers with an → 0, a sequence xn → x,
so that no Ban(xn) is contained in one of the elements of U . But there is U0 ∈ U and
ε > 0, so that Bε(x) ⊂ U0. For sufficiently large n, we have Ban(xn) ⊂ Bε(x) ⊂ U0.
This is a contradiction. �

Now we turn to the Arzela-Ascoli theorem, which is often used.
For two topological spaces X and Y , we denote by C(X,Y ) the set of all con-

tinuous maps X → Y .

Definition B.62. Let X be a topological space and let Y be a metric space. A
subset F ⊂ C(X,Y ) is equicontinuous, if for each ε > 0 und each x ∈ X, there is
an open neighborhood U ⊂ X of x, so that for all f ∈ F and x′ ∈ U , we have

d(f(x), f(x′)) ≤ ε.

If F = {f} is a single map, the condition of equicontinuity amounts to the
continuity of f .

Theorem B.63 (Arzela -Ascoli). Let X be a separable topological space and let Y
be a complete metric space. Let F ⊂ C(X,Y ) be equicontinuous, and assume that
for each x ∈ X, the set

Zx := {f(x)|f ∈ F} ⊂ Y
is compact. Then

(1) every sequence fn ∈ F has a subsequence which converges pointwise.
(2) every sequence fn ∈ F which converges pointwise converges uniformly on

each compact subset of X, and the limit function is continuous.

Proof. (1) Let {xm|m ∈ N} ⊂ X be dense. The metric space Z :=
∏∞
m=1 Zxm is

sequentially compact, by Corollary B.57. Let gn ∈ Z be the element (fn(xm))m.
Since Z is sequentially compact, a subsequence gnk of gn is convergent in Z. But
that means nothing else than that limn fnk(xm) ∈ Y exists for each m. For x ∈ X,
pick an open neighborhood Ux ⊂ X as in the definition of equicontinuity and pick
xm ∈ Ux. Then for each y ∈ Ux, we have

d(fnk(y), fnl(y)) ≤ d(fnk(y), fnk(xm)) + d(fnk(xm), fnl(xm)) + d(fnl(xm), fnl(y)) ≤
≤ ε+ d(fnk(xm), fnl(xm)) + ε.

(B.64)
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As limk fnk(xm) ∈ Y exists, this shows that fnk(y) is a Cauchy sequence in Y and
hence converges.

(2) the estimate (B.64) proves more: if fn(x) converges for all x, then each
x ∈ X has a neighborhood Ux over which the convergence is uniform. This proves
the continuity of the limit. Now let K ⊂ X be compact. We have to prove that
fn|K converges uniformly. So let ε > 0, and for each x ∈ K, choose a neighborhood
Ux ⊂ X of X over which the convergence is uniform. There are finitely many
x1, . . . , xr ∈ K so that K ⊂ U = Ux1 ∪ . . . ∪ Uxr , and the sequence is uniformly
convergent on the union U . �

B.13. Urysohn’s Lemma.

Theorem B.65 (Urysohn’s Lemma). Let X be a topological space. The following
conditions on X are equivalent.

(1) If A,B ⊂ X are disjoint closed sets, there are disjoint open sets U, V with
A ⊂ U and B ⊂ V .

(2) If A ⊂ W ⊂ X, A closed, W open, there is an open subset U with A ⊂
U ⊂ U ⊂W .

(3) If A,B are disjoint closed sets, there is a continuous function f : X → [0, 1]
with f |A = 0 and f |B = 1.

Proof. 3⇒ 1: put U := f−1([0, 1
2 )) and V := f−1(( 1

2 , 1]).
1 ⇒ 2: let B := W c and pick A ⊂ U , B ⊂ V , U ∩ V = ∅, U, V open. As V is

open, we even have U ∩ V = ∅, which implies U ⊂W .
2⇒ 3: this is the interesting direction. We first claim that there are open subsets

Ua, a ∈ Q ∩ [0, 1], with A ⊂ U0, U1 = Bc, and

Us ⊂ Ur
whenever s < r. To this end, choose an enumeration q0 = 1, q1 = 0, q2, q3, . . . of
Q ∩ [0, 1]. Put U1 = Bc, and choose U0 so that A ⊂ U0 ⊂ U0 ⊂ U1.

Suppose the sets U0, U1, Uq1 , . . . , Uqk−1
have already been constructed. There

are i, j < k with qi < qk < qj , and none of the numbers ql with l < k lies in (qi, qj).
Now construct Uqk so that

Uqi ⊂ Uqk ⊂ Uqk ⊂ Uql .
Now we define f : X → [0, 1] by

f(x) :=

{
inf{r|x ∈ Ur} x ∈ U1

1 x ∈ U c1 .

It is clear that f |B = 1 and f |A = 0, and that 0 ≤ f ≤ 1. It remains to prove that
f is continuous. It suffices to check that for each a ∈ R, the sets f−1(−∞, a) and
f−1(a,∞) are open. The following cases are easy:

(1) If a > 1, then f−1(−∞, a) = X and f−1(a,∞) = ∅ are open.
(2) If a < 0, then f−1(−∞, a) = ∅ and f−1(a,∞) = X are open.
(3) f−1(−∞, 0) = ∅ = f−1(1,∞) is open.

For r ∈ Q ∩ [0, 1], we have

(1) f(x) < r ⇒ x ∈ Ur (clear),
(2) x ∈ U cr ⇒ f(x) ≥ r (negation of (1)),
(3) x ∈ Ur ⇒ f(x) ≤ r (clearr),
(4) f(x) > r ⇒ x ∈ U cr (negation of (3)).
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For 0 < a ≤ 1, we therefore have

f−1(−∞, a) ⊂
⋃

r<a,r∈Q∩[0,1]

Ur ⊂
⋃

r<a,r∈Q∩[0,1]

f−1((−∞, r]) = f−1(−∞, a).

Both inclusions must be equalities of sets. Hence f−1((−∞, a)) is open.
For 0 ≤ a < 1, we have

f−1((a,∞)) ⊂
⋃

s>a,s∈Q∩[0,1]

U cs .

If a < r < s, then Ur ⊂ Us or U cs ⊂ Ur
c
, and hence

f−1((a,∞)) ⊂
⋃

r>a,r∈Q∩[0,1]

Ur
c ⊂

⋃
r>a,r∈Q∩[0,1]

U cr ⊂
⋃

r>a,r∈Q∩[0,1]

f−1([r,∞)) = f−1((a,∞)).

Again, both inclusions are equalities, and this shows

f−1((a,∞)) =
⋃

r>a,r∈Q∩[0,1]

Ur
c
,

and the latter set is open. �

Definition B.66. A space X that satisfies the conditions of Theorem B.65 is called
normal. A normal Hausdorff space is a T4-space.

Lemma B.67. Metric spaces are normal (and T4).

Proof. For a subset A ⊂ X, we define dA : X → R by

dA(x) := inf
y∈A

d(x, y).

One verifies that
|dA(x)− dA(y)| ≤ d(x, y),

so that dA is continuous. If A is closed, then d−1
A (0) = A.

If A,B are disjoint, then put

f(x) :=
dA(x)

dA(x) + dB(x)
.

If A and B are closed, then dA + dB > 0, so that the quotient is defined and
continuous. We have clearly 0 ≤ f ≤ 1, f |A = 0 and f |B = 1. �

Lemma B.68. Compact Hausdorff spaces are normal and hence T4.

Proof. Let X be compact Hausdorff. We first prove that when A ⊂ X is closed
and y ∈ X \A, there are disjoint open sets U, V with A ⊂ U and y ∈ V .

Reason: for each x ∈ A, there are disjoint neighborhoods x ∈ Ux and y ∈ Vx.
Because A is compact, we find x1, . . . , xr ∈ A with A ⊂ U := Ux1 ∪ . . .∪Uxr . Then
V := Vx1

∩ . . . ∩ Vxr is an open neighborhood of y, and U ∩ V = ∅.
Now let A,B be disjoint closed subsets of X. For each y ∈ B, there are disjoint

open sets Uy, Vy with A ⊂ Uy and x ∈ Vy. Since B is compact, we find y1, . . . , ys ∈
B with B ⊂ V := Vy1 ∪ . . . ∪ Vys . Then A ⊂ Uy1 ∩ . . . Uys =: U , U is open, and
U ∩ V = ∅. �

The first part of the proof of Lemma B.68 proves a more general statement:

Lemma B.69. Let X be a Hausdorff space, A ⊂ X compact, x ∈ X \ A. Then
there are disjoint open sets U, V with x ∈ V and A ⊂ U . �
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B.14. Consequences of Urysohn’s Lemma: Tietze extension and a metriza-
tion theorem.

Theorem B.70 (Tietze extension theorem). Let X be a normal space, let Y ⊂ X
be a closed subspace and let f : Y → R be a continuous function. Then there is a
continuous function g : X → R with g|Y = f .

Proof. We give the proof only in the case where f is bounded; the general case can
be reduced to this case. We formulate the result in functional-analytic language:
we have to prove that the map

T : Cb(X;R)→ Cb(Y ;R); T (g) := gf

which restricts a bounded continuous function to Y , is surjective. Clearly, Cb(X)
and Cb(Y ) are Banach spaces (when equipped with the supremum norm) and T is
a bounded operator of norm at most 1 (equal to 1 unless Y = ∅).

Let f ∈ Cb(Y ), R := ‖f‖. Put A := {y ∈ Y |f(y) ≥ R
3 } and B := {y ∈ Y |f(y) ≤

−R3 }. These are disjoint subsets of Y and closed in the subspace topology. Since
Y is closed in X, A and B are also closed in X.

By Ursohn’s lemma, there is a continuous function h : X → [−R3 ,
R
3 ], h|A = R

3

and h|B = −R3 . Then

‖h‖ ≤ 1

3
‖f‖

and

‖Th− f‖ ≤ 2

3
‖f‖.

A Lemma which appears in the proof of the open mapping theorem7, proves from
this that for each f ∈ Cb(Y ;R), there is g ∈ Cb(X;R) with Tg = f and

‖g‖ ≤ 1

3

1

1− 2
3

‖f‖ = ‖f‖,

which is what we wanted to prove. �

Theorem B.71 (Special case of Urysohn’s metrization theorem). Let X be a com-
pact Hausdorff space. Then the following are equivalent:

(1) X is second countable.
(2) There are countably many continuous functions fk : X → [0, 1], k ∈ N

which separate the points of X, in other word for x 6= y ∈ X, there is k
with fk(x) 6= fk(y).

(3) X is metrizable.

Proof. 2⇒ 1: this is the content of Corollary B.60.
1 ⇒ 2: Let B = {Un|n ∈ N} be a basis for the topology of X. Let I :=

{(m,n) ∈ N × N|Un ⊂ Um}, which is a countable set. For (m,n) ∈ I, pick a
function fm,n : X → [0, 1] with f |Un = 1 and f |Ucm = 0, which exists by Urysohn’s
lemma and Lemma B.68. If x 6= y ∈ X, there is m ∈ N with x ∈ Um, y 6∈ Um. Since
{x} is closed as X is Hausdorff, there is an open V with x ∈ V ⊂ V ⊂ Um, and so
there is n ∈ N with x ∈ Un ⊂ V . Then (m,n) ∈ I and fm,n(x) = 1, fm,n(y) = 0.

7This Lemma will be included in the lecture notes.
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2⇒ 3: Let (fk)k be a family of functions as in (2). Consider the function

f : X → Z :=

∞∏
k=1

[0, 1]; f(x) := (fk(x))k.

This is continuous and injective since (fk) separates the points of X. As Z is
Hausdorff, so is the image f(X) ⊂ Z. By Theorem B.52, f : X → f(X) is a
homeomorphism. But Z is metrizable by B.35, and hence so is f(X) ∼= X. �

B.15. The Stone–Weierstrass Theorem.

Theorem B.72 (Stone–Weierstrass Theorem). Let X be a compact Hausdorff
space. Let A ⊂ C(X;K) be a subalgebra with the following properties:

(1) 1 ∈ A,
(2) A separates the points of X (i.e. for x 6= y ∈ X, there is f ∈ A with

f(x) 6= f(y)),
(3) if f ∈ A, then the complex conjugate f ∈ A.

Then A is dense.

Corollary B.73. For each continuous function f : [a, b]→ K, there is a sequence
pn of polynomials which converges uniformly on [a, b] to f .

Proof. Let A ⊂ C([a, b];K) be the subalgebra of polynomials. This satisfies the
hypotheses of Theorem B.72, so it lies dense in C([a, b];K), as claimed. �

Corollary B.74. For each continuous function f : S1 → C, there is a sequence pn
of trigonometric polynomials, in other words, functions of the form

∑n
k=−n anz

n,
an ∈ C, which converges uniformly to f .

Proof. Apply Theorem B.72 to the algebra T ⊂ C(S1;C) of all trigonometric poly-
nomials. �

For the proof of Theorem B.72, we first have to verify one special case of Corollary
B.73.

Lemma B.75. (1) There is a sequence of polynomials gn which converges uni-
formly on each compact subinterval of (0, 2) to the function

√
x.

(2) There is a sequence of polynomials fn which converges uniformly on [0, 1]
to
√
x.

(3) For each S > 0, there is a sequence of polynomials pn which converges
uniformly on [0, S] to

√
x.

(4) For each R > 0, there is a sequence of polynomials qn which converges
uniformly on [−R,R] to |x|.

Proof. 1: it is known from calculus that the function
√

1 + x can be expanded into
the power series

∞∑
k=0

( 1
2

k

)
xk,

where the binomial coefficients for s ∈ R are defined as(
s

k

)
:=

s(s− 1) · · · (s− k + 1)

k!
;

(
s

0

)
:= 1.
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The power series has radius of convergence 1, and so the sequence of partial sums

gn(x) :=

n∑
k=0

( 1
2

k

)
xk

converges uniformly on each compact subinterval of (−1, 1).

1⇒ 2: The sequence
√

1
m + x converges uniformly on [0,∞) to

√
x, and by (1),

each
√

1
m + x, m ≥ 2, can be approximated uniformly by polynomials on [0, 1].

2⇒ 3: put pn(x) :=
√
Sfn( xS ).

3⇒ 4: put qn(x) := pn(x2), for suitable S. �

Proof of Theorem B.72. First, we reduce to the case K = R. Suppose that A ⊂
C(X;C) is a subalgebra which satisfies the hypotheses of the Theorem, and that
the theorem is proven for K = R. Put B := A ∩C(X;R). Then B is a subalgebra,
1 ∈ B, and B separates points. To see the latter claim, let f ∈ A with f(x) 6= f(y).
Then either =(f(x)) 6= =(f(y)) or <(f(x)) 6= <(f(y)), but =(f) = 1

2i (f − f) ∈
A∩C(X;R) and <(f) = 1

2 (f+f) ∈ A∩C(X;R). By the real version of the theorem,
B ⊂ C(X;R) is dense. If f ∈ C(X;C), pick g, h ∈ B with ‖g−<(f)‖, ‖h−=(f)‖ ≤
ε. Then g + ih ∈ B and ‖f − (g + ih)‖ ≤ 2ε.

Hence it is enough to prove the real case. We shall prove that the closure
A ⊂ C(X;R) is dense. By Lemma B.75, we see that

f ∈ A⇒ |f | ∈ A
(since qn(f) ∈ A converges uniformly to |f |). Because

max(f, g) =
1

2
(g + f + |g − f |)

and

min(f, g) =
1

2
(g + f − |g − f |),

we get
f, g ∈ A⇒ max(f, g),min(f, g) ∈ A.

The properties of A that have been used in the proof also hold for A, and therefore
we conclude

(B.76) f, g ∈ A⇒ max(f, g),min(f, g) ∈ A.
Now consider h ∈ C(X;R) and let ε > 0 be arbitrary. First fix x ∈ X. For

y ∈ X, there is a function hx,y ∈ A with hx,y = f(x) and hx,y(y) = f(y) (this
follows since 1 ∈ A and since A separates the points of X). The set

Uy := {z ∈ X|hx,y(z) < f(z) + ε

is an open neighborhood of y. Since X is compact, we find finitely many points
y1, . . . , yr, such that Uy1 ∪ . . . ∪ Uyr = X. The function

hx := min(hx,y1 , . . . , hx,yr )

is an element of A by (B.76).
Let z ∈ X be arbitrary, say z ∈ Uyj . Then

hx(z) ≤ hx,yj (z) < f(z) + ε,

and moreover
hx(x) = f(x).
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Let
Vx := {z ∈ X|f(z)− ε < hx(z)},

which is an open neighborhood of x. Using the compactness of X again, we find
z1, . . . , zs ∈ X with X = Vz1 ∪ . . . ∪ Vzs . Now put

h := max(hz1 , . . . , hzs).

By (B.76), h ∈ A. Because hzi < f + ε, we have h < f + ε. Moreover, for z ∈ Vzj ,
h(z) ≥ hzj (z) > f(z)− ε.

Therefore h > f − ε, and altogether ‖f − h‖ < ε. Therefore A ⊂ C(X;R) and a
fortiori A is dense. �

B.16. Locally compact spaces.

Definition B.77. A space X is locally compact if each point x ∈ X of X has a
compact neighborhood.

For example Rn and each open or closed subset of Rn is locally compact. Each
compact space is locally compact, for trivial reasons. Without a Hausdorff hypoth-
esis, locally compact spaces can be equite pathological (for example, open subsets
of locally compact spaces do not need to be locally compact).

Lemma B.78. Let X be a locally compact Hausdorff space and let x ∈ U ⊂ X be
an open neighborhood of x. Then there is an open set O with x ∈ O ⊂ O ⊂ U and
O compact.

Hence open or closed subspaces of locally compact Hausdorff spaces are locally
compact.

Proof. Let C be a compact neighborhood of x. By Lemma B.51, C ⊂ X is closed.
Hence C ∩ U c ⊂ X is closed, and as a subset of the compact set C compact, again
by Lemma B.51.

Since x 6∈ C∩U c, Lemma B.69 shows that there are disjoint open sets V,W with
x ∈W and C ∩ U c ⊂ V .

Using Lemma B.51 again, we see that W ∩ C is a compact neighborhood of x.
But

(W ∩ C) ∩ U c = W ∩ (C ∩ U c) = ∅
and therefore W ∩C ⊂ U . So we have found a compact neighborhood D of x which
is contained in U . By definition of the term “neighborhood”‘, D contains an open
neighborhood x ∈ O of x. Since D is closed (again Lemma B.51), O ⊂ D = D ⊂
U . �

A locally compact Hausdorff space is not necessarily normal, but a weaker version
of Urysohn’s Lemma is true for locally compact spaces.

Proposition B.79. Let X be locally compact, A ⊂ X compact, B ⊂ X closed,
A ∩ B = ∅. Then there is a continuous function f : X → [0, 1] with f |A = 1 and

f |B = 0, and the support supp(f) := {x ∈ X|f(x) 6= 0} is compact.

Proof. Put U := Ac, so that B ⊂ U . For x ∈ B, there is an open set Vx with
x ∈ Vx ⊂ Vx ⊂ U , by Lemma B.78. Since B is compact, we can cover B by finitely
many such sets Vx1 , . . . , Vxr . The closure K of the open set V = Vx1 ∪ . . . ∪ Vxr is
compact, being a union of finitely many compact sets. The closed subsets ∂V and
A are disjoint subsets of K.
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The space K is compact Hausdorff and hence normal. Using Urysohn’s Lemma,
there is g : K → [0, 1] with g|A = 1 and g|∂V = 0.

Note that Kc = V c. Define f : X → [0, 1] by

f(x) =

{
g(x) x ∈ K
0 x ∈ V c,

which is continuous. �

Definition B.80. A locally compact space X is σ-compact if there are compact
subspaces Kn ⊂ X, n ∈ N with K1 ⊂ K◦2 ⊂ K2 ⊂ K◦3 ⊂ K3 ⊂ . . . and

⋃∞
n=1Kn =

X. Such a sequence of compact subsets is called a compact exhaustion of X.

Lemma B.81. A second countable locally compact Hausdorff space is σ-compact.

Proof. Let B be a countable basis for the topology of X, and let B′ ⊂ B be the
subset of those U with compact closure. Using Lemma B.78, B′ = {U1, . . . , } is a
basis for the topology.

Now put K1 := U1. There is n2 with K1 ⊂
⋃n2

k=1 Uk, and put K2 :=
⋃n2+1
k=1 Uk.

There is n3 with K2 ⊂
⋃n3

k=1 Uk and put K3 :=
⋃n3+1
k=1 Uk. Continue in this fashion.

�

Theorem B.82 (Partitions of unity). Let X be a σ-compact locally compact Haus-
dorff space and let U be an open cover of X. Then there exists a partition of
unity subordinate to the cover U , that is, a family (fj)j∈J of continuous functions
fj : X → [0, 1], such that

(1) The family fj is locally finite, which means that each x ∈ X has a neigh-
borhood which intersects only finitely many of the supports supp(fj) :=

{y ∈ X|fj(y) 6= 0}.
(2) For each j ∈ J , there is U ∈ U with supp(fj) ⊂ U .
(3)

∑
j∈J fj(x) = 1 for all x ∈ X (this is a finite sum).

Proof. The set Ln := Kn \K◦n−1 is compact. For each x ∈ Ln, pick a set Ux ∈ U ,
a compact neighhorhood Cx of x and an open set Vx with Cx ⊂ Vx ⊂ Ux ∩ (Kn+1 \
K◦n−2) (hence Vx is compact), and a function hx : X → [0, 1] with supp(hx) ⊂ Vx,
hx|Cx = 1, according to Proposition B.79. Finitely many of such Cx cover Ln.

Hence we have found a finite set In, and for each i ∈ In a function hi : X → [0, 1]
such that the support of hi is contained in one of the sets of U , and in the set
Kn+1 \K◦n−2, and the sum

∑
i∈In hi ≥ 0 is positive everywhere on Ln.

Putting all those finite sets In, n ∈ N and these functions together, we found a
countable set I, and functions hi : X → [0, 1] each of which has support in one of
the sets of U . Moreover, only finitely many of the supports of hi intersect Kn, and
the (finite) sum

∑
i∈I hi(x) > 0 for all x. Finally, we put

fi(x) :=
hi(x)∑
i∈I hi(x)

.

�

B.17. The 1-point compactification.

Definition B.83. Let X be a topological space. We define X+ := X ∪{∞}, where
∞ is an element not contained in X, with the following topology. A set U ⊂ X+ is
open if either
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(1) U ⊂ X ⊂ X+ and U ⊂ X is open (type 1) or
(2) ∞ ∈ U , and X+ \ U ⊂ X is a closed compact set (type 2).

Lemma B.84. The collection of open sets in X+ described above is a topology,
and X+ is compact.

Proof. In order to prove the first claim, we need to verify:

(1) X+ and ∅ are open (clear).
(2) Arbitrary unions and finite intersections of type 1 open sets are type 1 open

sets (clear).
(3) Finite intersections of two type 2 open sets are type 1 open sets (this is be-

cause finite unions of compact closed subsets of X are closed and compact).
(4) Arbitrary unions of type 2 open sets are type 2 open sets. This is because

an intersection of arbitrarily many closed compact sets is closed (clear) and
compact (by Lemma B.51).

(5) Let U1 be open of type 1 and U2 open of type 2. Then U1 ∩ U2 is open of
type 1 (clear).

(6) Let U1 be open of type 1 and U2 open of type 2. Then U1 ∪ U2 is open of
type 2, because X+\(U1∪U2) = (X+\U1)∩(X+\U2) is the intersection of
a closed compact set with a closed set and hence also compact by Lemma
B.51.

Let U be an open cover of X+. The point ∞ is contained in one of the sets of U ,
say x ∈ U . Then X+ \ U is compact, and U \ {U} is an open cover of X+ \ U ,
hence has a finite subcover. �

We denote by ι : X → X+ the inclusion map. It is continuous, and its image is
open and dense.

Proposition B.85. (1) ι is a homeomorphism.
(2) X+ is Hausdorff if and only if X is locally compact and Hausdorff.
(3) X+ is Hausdorff and second countable if and only if X is second countable

locally compact and Hausdorff.

Proof. 1: it is clear that ι is continuous and ι : X → ι(X) is bijective. If U ⊂ X
is open, then ι(U) ⊂ X+ is a (type 1) open subset, and hence also open in the
subspace topology of ι(X).

2: if X+ is Hausdorff, then X ∼= ι(X) is clearly Hausdorff, and locally compact
by Lemma B.78. If X is Hausdorff, then any two points x, y ∈ x ⊂ X+ can be
separated by disjoint open sets of type 1. If X is also locally compact and x ∈ X,
we can find x ∈ U ⊂ K, where U is open and K compact (and hence closed).
Then X+ \K is a type 2 open set which contains ∞, but is disjoint from the open
neighborhood U of x.

3: Subspaces of second countable spaces are always second countable. This
proves “only if”. For the other implication, note that a neighborhood basis of X,
together with the sets of the form X+ \Kn for a compact exhaustion of X, makes
up a basis for the topology of X+. �

Corollary B.86. A second countable locally compact Hausdorff space is metrizable.
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Appendix C. Measure and integration

C.1. σ-algebras and measurable spaces.

Notation C.1. If X is a set, we denote by P(X) the power set of X, i.e. the
set of all subsets of X. Furthermore, for a subset S ∈ P(X), we denote by Sc the
complement of S, Sc := X \ S.

Definition C.2. Let X be a set. A σ-algebra on X is a subset B ⊂ P(X), such
that the following hold:

(1) ∅ ∈ B,
(2) B is closed under forming complements, i.e. S ∈ B ⇒ Sc ∈ B,
(3) B is closed under forming countable unions, i.e. Sn ∈ B, n ∈ N, then⋃∞

n=1 Sn ∈ B.

A measurable space is a pair (X,B), consisting of a set X together with a σ-algebra
B on X. We call the elements of B the measurable subsets of X.

Lemma C.3. Let B be a σ-algebra, and S, T ∈ B, Sn ∈ B, n ∈ N. Then S∩T, S−
T ∈ B,

⋂∞
n=1 Sn ∈ B.

Proof. Use

(
⋂
n

Sn)c =
⋃
n

Scn

and

S − T = S ∩ T c.
�

Lemma C.4. Let A ⊂ P(X) be a collection of subsets of a set X. Then there is a
unique smallest σ-algebra 〈A〉 which contains A.

Proof. Let S be the set of all σ-algebras on X which contain A. The set S is
nonempty, since P(X) is an element of S. Then put

〈A〉 :=
⋂
B∈S
B.

�

Definition C.5. Let X be a topological space, with topology T ⊂ P(X). The
σ-algebra 〈T 〉 on X is called the Borel-σ-algebra, and its elements are the Borel
sets.

If X is second-countable and U a countable basis for its topology, then 〈T 〉 = 〈U〉.

The Dynkin lemma.

Definition C.6. Let X be a set. A π-system on X is a subset F ⊂ P(X), such
that

S, T ∈ F ⇒ S ∩ T ∈ F .
A Dynkin system on X is a subset D ⊂ P(X) such that

(1) X ∈ D,
(2) A,B ∈ D, A ⊂ B ⇒ B \A ∈ D,
(3) An ∈ D, A1 ⊂ A2 ⊂ . . .⇒

⋃∞
n=1An ∈ D.
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For each subset A ⊂ P(X), there is a unique smallest Dynkin system λ(A) which
contains A. The proof of its existence is as the proof of Lemma C.4.

Lemma C.7. A subset B ⊂ P(X) which is both, a π-system and a Dynkin system,
is a σ-algebra.

Proof. If S ∈ B, then Sc = X−S ∈ B, by the first two axioms of a Dynkin system.
Now let Sn, n ∈ N, be an arbitrary countable collection of elements of B. We have
to show that

⋃∞
n=1 Sn ∈ B. It is, by the third axiom of a Dynkin system, enough

to prove that
⋃m
n=1 Sn ∈ B, for each m. This is shown by induction on m, and the

inductive step amounts to proving that S, T ∈ B ⇒ S ∪ T ∈ B. But Sc, T c ∈ B,
and because B is a π-system, we have

(S ∪ T )c = Sc ∩ T c ∈ B,

which implies S ∪ T ∈ B. �

Lemma C.8 (Dynkin lemma). Let A be a π-system on X and let D be a Dynkin
system which contains A. Then the σ-algebra B(A) generated by A is contained in
D.

Proof. It is enough to consider the case where D = λ(A) is the smallest Dynkin
system containing A. Let

D1 := {T ⊂ X|T ∩ S ∈ D ∀S ∈ A}.

As A is a π-system, we have A ⊂ D1, and we claim that D1 is a Dynkin system.
As A ⊂ D, it follows that X ∈ D1. If A ⊂ B and A,B ∈ D1 and S ∈ A, then

(B −A) ∩ S = B ∩ S −A ∩ S.

As A∩S and B ∩S are in D and as D is a Dynkin system, we get (B−A)∩S ∈ D
and hence B − A ∈ D1. If A1 ⊂ A2 ⊂ . . . is an increasing sequence of elements of
D1, and S ∈ A, then

(

∞⋃
n=1

An) ∩ S =

∞⋃
n=1

An ∩ S.

Since An∩S ∈ D and since D is a Dynkin system, it follows that (
⋃∞
n=1An)∩S ∈ D

and hence
⋃∞
n=1An ∈ D1. This finishes the proof that D1 is a Dynkin system

containing A. As D = λ(A), this implies D ⊂ D1. In particular:

(C.9) T ∈ D, S ∈ A ⇒ T ∩ S ∈ D.

Now put

D2 := {T ⊂ X|T ∩ S ∈ D∀S ∈ D}.
By (C.9), we find that A ⊂ D2. We claim that D2 is a Dynkin system. It is clear
that X ∈ D2, and the other two axioms are verified by the same argument as above,
replacing the statement ”S ∈ A” by ”S ∈ D”. As D2 is a Dynkin system which
contains A, it again follows that D ⊂ D2. This means that

S, T ∈ D ⇒ S ∩ T ∈ D,

or in other words that D is a π-system. It follows that D is a σ-algebra, by Lemma
C.7. Since A ⊂ D, the σ-algebra σ(A) must be contained in D. �
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C.2. Measurable maps.

Definition C.10. Let (X,B) and (Y, C) be measurable spaces. A map f : X → Y
is measurable if f−1(S) ∈ B for each S ∈ C.

If C is the σ-algebra generated by A ⊂ P(X), it is enough to prove that f−1(S) ∈
B for each S ∈ A. It is clear that compositions of measurable maps are measurable.

When f : X → Y is a continuous map between topological spaces and CX , CY are
the respective Borel-σ-algebras, then f : (X, CX)→ (Y, CY ) is clearly measurable.

Lemma C.11. Let (X,B) be a measurable space, let Y be a topological space and
let fn : X → Y be a sequence of measurable maps. Suppose that f(x) = limn fn(x)
exists for all x ∈ X. Then the limit map f is measurable.

Proof. If U ⊂ Y is open, then x ∈ f−1(U) if and only if x ∈ f−1
n (U) for all

sufficiently large n. Therefore

f−1(U) =

∞⋃
n=1

∞⋂
m=n

f−1
n (U)

and since each fn is measurable, it follows that f−1(U) ∈ B. �

Lemma C.12. Let X be a measurable space and let fn : X → [−∞,∞] be mea-
surable. Then supn fn, infn fn, lim infn fn and lim supn fn are measurable.

Proof. Since max : Rn → R is continuous, the functions gn := max(f1, . . . , fn) are
measurable, and supn fn = limn gn, and so supn fn is measurable. Similarly, infn fn
is measurable. Furthermore

lim inf
n

fn = sup
n

inf
k≥n

fk

and
lim sup

n
fn = inf

n
sup
k≥n

fk

are measurable. �

C.3. Measures.

Definition C.13. Let X be a set and let B be a σ-algebra on X. A measure on B
is a function µ : B → [0,∞] such that

(1) µ(∅) = 0,
(2) if Sn ∈ B, n ∈ N, are pairwise disjoint, then µ(

⋃∞
n=1 Sn) =

∑∞
n=1 µ(Sn).

A measure space is a tuple (X,B, µ), consisting of a set X, a σ-algebra and a
measure µ on B. The elements of B are called the measurable subsets of X.

Example C.14. Let X be any set. The counting measure on X is µ : P(X) →
[0,∞], µ(S) := |S|. Slightly more generally, for a function a : X → [0,∞], the
weighted counting measure µ(S) :=

∑
s∈S a(s) is a measure.

The construction of other measures is a nontrivial task. In the next subsection,
we learn the key device for the construction of measures.

Lemma C.15. (1) If S ⊂ T , then µ(S) ≤ µ(T ).
(2) If S1 ⊂ S2 ⊂ . . . is an ascending sequence of elements of B and S :=⋃∞

n=1 Sn, then µ(S) = limn µ(Sn).
(3) For an arbitrary countable collection Sn ∈ B, we have µ(

⋃∞
n=1) ≤

∑∞
n=1 µ(Sn).
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(4) If S1 ⊃ S2 ⊃ . . . is a descending sequence of elements of B, and µ(S1) <∞,
then

µ(

∞⋂
n=1

Sn) = lim
n
µ(Sn).

Proof. (1): Since T = S∪̇(T − S), we have µ(T ) = µ(S) + µ(T − S).
(2): by (1), we have µ(S1) ≤ µ(S2) ≤ . . . ≤ µ(S), so that limn µ(Sn) ≤ µ(S).

The reverse inequality is nontrivial only if limn µ(Sn) <∞. Write Tn := Sn−Sn−1,
T1 = S1, so that S is the disjoint union

⋃∞
n=1 Tn, and

µ(S) =

∞∑
n=1

µ(Tn).

All the sets Tn have finite measure, and µ(Tn) = µ(Sn)−µ(Sn−1), so that
∑m
n=1 µ(Tn) =

µ(Sm) (telescope sum).
(3): Let T0 = ∅ and Tn :=

⋃n
m=1 Sm; which is an ascending sequence with union⋃∞

n=1 Sn. It follows from (2) that

µ(

∞⋃
n=1

Sn) = lim
n→∞

µ(Tn)

and therefore, it is enough to prove that µ(Tn) ≤
∑n
m=1 µ(Sm). But Tm − Tm−1 ⊂

Sm, and so

µ(Tn) =

n∑
m=1

µ(Tm − Tm−1) ≤
n∑

m=1

µ(Sm).

(4): Since

S1 =

∞⋃
n=1

(S1 − Sn)∪̇
∞⋂
n=1

Sn,

it follows from (2) that

µ(S1) =
∞

lim
n=1

µ(S1 − Sn) + µ(

∞⋂
n=1

Sn)

or that (here we are using that µ(S1) <∞)

µ(

∞⋂
n=1

Sn) = µ(S1)− lim
n
µ(S1 − Sn) = lim

n
µ(S1)− µ(S1 − Sn) = lim

n
µ(Sn).

�

Definition C.16. Let (X,B, µ) be a measure space. A null set is a set S ⊂ X such
that there is T ∈ B with µ(S) = 0 and S ⊂ T . We say that (X,B, µ) is complete if
every null set is an element of B.

Lemma C.17. Let (X,B, µ) be a measure space. Let C ⊂ P(X) be the set of
all subsets T , such that there is S ∈ B, so that the symmetric difference S∆T :=
(S−T )∪ (T −S) is a null set. Then C is a σ-algebra, µ admits a unique extension
to a measure µ′ on C and (X, C, µ′) is complete.
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Proof. The symmetric difference is T∆S = (T ∩ Sc) ∪ (T c ∩ S) and so

T c∆Sc = T∆S.

Hence the complement of a set in C also belongs to C. Assume that Sn ∈ C, Tn ∈ B
with Sn∆Tn a null set. Then

(

∞⋃
n=1

Tn)∆(

∞⋃
n=1

Sn) ⊂
∞⋃
n=1

Tn∆Sn,

and the union of countable many null sets is a null set.
Let µ′ be a measure on C extending µ, S ∈ C, and T ∈ B with S∆T a null set,

we must have
µ′(S∆T ) = 0,

and because
(S ∩ T ) ∪ (S − T ) = S

(S ∩ T ) ∪ (T − S) = T,

we must have µ′(S) = µ(T ). This proves uniqueness of µ′. To prove existence,
first observe that if T0, T1 ∈ B are two sets such that Ti∆S is a null set, it follows
that T0∆T1 is a null set, hence µ(T1) = µ(T0). Hence defining µ′(S) := µ(T ) is
unambiguous, and the σ-additivity is left as an exercise. �

Definition C.18. Let (X,B, µ) be a measure space. We say:

(1) µ is finite if µ(X) <∞,
(2) µ is locally finite if each measurable subset S ⊂ X with µ(S) > 0 contains

a measurable subset T ⊂ S with 0 < µ(T ) <∞,
(3) µ is σ-finite if there is a decomposition X =

⋃∞
n=1Xn of X into countably

many disjoint measurable subsets such that µ(Xn) <∞ for all n.

Remark C.19. A σ-finite measure is locally finite: if S ⊂ X has positive measure
and X =

⋃∞
n=1Xn is a decomposition of X into disjoint subsets of finite mea-

sure, then µ(S) =
∑∞
n=1 µ(S ∩Xn). At least one of µ(Xn ∩ S) is positive, and is

necessarily finite.

C.4. The Caratheodory extension theorem.

Definition C.20. A (concrete) Boolean algebra on a set X is a subset A ⊂ P(X),
so that

(1) ∅ ∈ A,
(2) S, T ∈ A ⇒ Sc ∈ A, S ∪ T ∈ A.

It follows that X = ∅c ∈ A and with S, T ∈ A that

(1) S ∩ T = (Sc ∪ T c)c ∈ A,
(2) S \ T := S ∩ T c ∈ A,
(3) the symmetric difference S4T := (S ∪ T ) \ (S ∩ T ) ∈ A.

Calculations with these set operations are most easily performed when one identi-
fies P(X) with the set FX2 of all functions X → F2 (identify S with the characteristic
function χS). Then

χ∅ = 0, χS∩T = χSχT , χS4T = χS + χT , χS∪T = χSχT + χS + χT .

Definition C.21. Let A be a Boolean algebra on X. A premeasure on A is a
function µ : A → [0,∞] such that
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(1) µ(∅) = 0,
(2) µ(S ∪ T ) = µ(S) + µ(T ) for all S, T ∈ A, that is, µ is finitely additive,
(3) If S1, S2, . . . are countably many elements of A, so that their union S =
∪∞n=1Sn also lies in A, then µ(∪∞n=1Sn) ≤

∑∞
n=1 µ(Sn).

(4) A premeasure is finite if µ(X) <∞, and it is σ-finite if X can be written
as the union of countably many elements X1, X2, . . . ∈ A with µ(Xn) <∞
for all n.

The axioms imply that
µ(S) ≤ µ(T )

whenever S ⊂ T . It also follows from the axioms that if S1, S2, . . . ∈ A are pairwise
disjoint subsets whose union lies in A, then

µ(∪∞n=1Sn) =

∞∑
n=1

µ(Sn).

To see this, we only have to verify that
∑∞
n=1 µ(Sn) ≤ µ(∪∞n=1Sn), but this is true

since for each m
m∑
n=1

µ(Sn) = µ(∪mn=1Sn) ≤ µ(∪∞n=1Sn)

by finite additivity.

Theorem C.22 (Caratheodory extension theorem). Let µ0 : A → [0,∞] be a σ-
finite premeasure defined on a Boolean algebra on a set X. Then there is a unique
measure µ on the σ-algebra 〈A〉 generated by A such that µ|A = µ0.

The standard proof of this result is notorious for being completely unintuitive.
We present an alternative proof that we learnt from [10, §2.1].

Outline of the proof in the case µ(X) <∞. We define the outer measure µ∗ : P(X)→
[0,∞) by

µ∗(S) := inf
S⊂∪∞n=1An,An∈A

∞∑
n=1

µ0(An).

Furthermore, we define B ⊂ P(X) as the set of all S ∈ P(X) such that for each
ε > 0, there is T ∈ A with

µ∗(S4T ) ≤ ε,
and for S ∈ B, we define

µ(S) := µ∗(S).

We have to prove that B is a σ-algebra which contains A, that µ is a measure and
that µ|A = µ0, and that µ is uniquely determined by µ0. �

The details of the proof are given in a sequence of lemmas.

Lemma C.23. If (X,A) and µ0 are as in the theorem, and µ0(X) < ∞, and if
µ, µ′ are two extensions of µ0 to a measure on 〈A〉, then µ = µ′.

Proof. Let D ⊂ 〈A〉 be the set of all S such that µ(S) = µ′(S). Then A ⊂ D. It is
easily verified that D is a Dynkin system, and that A is a π-system. Hence by the
Dynkin lemma C.8, D = 〈A〉, as claimed. �

Lemma C.24 (Properties of the outer measure). We have

(1) µ∗(A) = µ0(A) for all A ∈ A,
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(2) µ∗(S) ≤ µ∗(T ) if S ⊂ T ,
(3) µ∗(∪∞n=1Sn) ≤

∑∞
n=1 µ

∗(Sn).

Proof. (1): Since A ⊂ A ∪ ∅ ∪ ∅ ∪ . . ., it is clear that µ∗(A) ≤ µ0(A). For the
reverse inequality, assume A ⊂ ∪∞n=1An. Define B1 := A∩A1 and Bn := (A∩An)\
∪n−1
k=1(A∩Ak) ⊂ An. Then Bn ∈ A, and A is the disjoint union ∪∞n=1Bn. It follows

that

µ0(A) =

∞∑
n=1

µ0(Bn) ≤
∞∑
n=1

µ0(An),

and passage to the infimum proves the claim.
(2) is clear.
(3): Let ε > 0 and let Sn ⊂ ∪∞m=1An,m, An,m ∈ A with

∑∞
m=1 µ0(An,m) ≤

µ∗(Sn) + ε
2n . Then ∪∞n=1Sn ⊂ ∪∞m,n=1An,m and hence

µ∗(∪∞n=1Sn) ≤
∞∑

n,m=1

µ0(An,m) ≤
∞∑
n=1

µ∗(Sn) +
ε

2n
= (

∞∑
n=1

µ∗(Sn)) + ε.

�

Lemma C.25. For R,S, T ⊂ X, we have

(1) µ∗(R4T ) ≤ µ∗(R4S) + µ∗(S4T ).
(2) |µ∗(S)− µ∗(T )| ≤ µ∗(S4T ).

Proof. (1): Since R4T = (R4S)4(S4T ) ⊂ (R4S) ∪ (S4T ), we have

µ∗(R4T ) ≤ µ∗((R4S) ∪ (S4T )) ≤ (R4S) + µ∗(S4T ).

(2): We have obviously S = (S ∩ T ) ∪ (S \ T ) ⊂ (S ∩ T ) ∪ (S4T ) and hence

µ∗(S) ≤ µ∗(S ∩ T ) + µ∗(S4T ) ≤ µ∗(T ) + µ∗(S4T )

and by symmetry also

µ∗(T ) ≤ µ∗(S) + µ∗(S4T ),

and the claim follows. �

Lemma C.26. (1) A ⊂ B,
(2) S ∈ B, then Sc ∈ B,
(3) S, T ∈ C, then S ∪ T ∈ B,
(4) If S1, S2, . . . ∈ B, then ∪∞n=1Sn ∈ B.

In short, B is a σ-algebra which contains A and hence 〈A〉.

Proof. (1): follows from the fact that µ∗(A) = µ0(A) when A ∈ A. (2): is clear be-
cause Sc4Ac = S4A. (3): let ε > 0 and pick A,B ∈ A with µ∗(S4A), µ∗(T4B) ≤
ε. It is easily seen that

(S ∩ T )4(A ∩B) ⊂ (S4A) ∪ (T4B).

Therefore

µ∗((S ∩ T )4(A ∩B)) ≤ µ∗(S4A) + µ∗(T4B) ≤ 2ε.

(4) we first prove that An ∈ A implies ∪∞n=1An ∈ B. To that end, we can assume
without loss of generality that the sets An are disjoint. Because

m∑
n=1

µ∗(An) = µ∗(∪mn=1An) ≤ µ∗(∪∞n=1An) ≤ µ0(X) <∞,
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the series
∞∑
n=1

µ∗(An)

is (absolutely) convergent. For ε > 0, choose m so that

∞∑
n=m+1

µ∗(An) ≤ ε.

Then ∪mn=1An ∈ A, and

µ∗((∪∞n=1An)4(∪mn=1An)) = µ∗(∪∞n=m+1An) ≤
∞∑

n=m+1

µ∗(An) ≤ ε.

Therefore, ∪∞n=1An ∈ B. Now let S1, S2, . . . ∈ B. To show that ∪∞n=1Sn ∈ B, we can
assume that all the sets Sn are disjoint, and pick An ∈ A with µ(An4Sn) ≤ ε

2n .
Because (∪∞n=1An)4(∪∞n=1Sn) ⊂ ∪∞n=1(An4Sn), we obtain

µ∗((∪∞n=1An)4(∪∞n=1Sn)) ≤
∞∑
n=1

µ∗(An4Sn) ≤ ε,

which as ∪∞n=1An ∈ B proves ∪∞n=1Sn ∈ B. �

Lemma C.27. µ∗ : B → [0,∞) is a measure.

Proof. We first prove finite additivity and assume that S, T ∈ B are disjoint. We
already know that µ(S ∪ T ) ≤ µ∗(S) + µ∗(T ). For the reverse inequality, pick
A,B ∈ A with µ∗(S4A), µ∗(T4B) ≤ ε. Then

µ∗(S) + µ∗(T ) ≤ µ∗(A) + µ∗(S4A) + µ∗(B) + µ∗(T4B) ≤ µ∗(A) + µ∗(B) + 2ε.

Note that

µ∗(A) + µ∗(B) = µ∗(A \B) + µ∗(A ∩B) + µ∗(B) = µ∗(A ∪B) + µ∗(A ∩B).

Because S ∩ T = ∅, we have

A ∩B ⊂ (A4S) ∪ (B4T )

and so µ∗(A ∩B) ≤ 2ε, and therefore

µ∗(A) + µ∗(B) ≤ µ∗(A ∪B) + 2ε.

On the other hand

µ∗((A ∪B)4(S ∪ T )) ≤ µ∗(A4S) + µ∗(B4T ) ≤ 2ε

and therefore

µ∗(A ∪B) ≤ µ∗(S ∪ T ) + 2ε.

Putting everything together yields

µ∗(S) + µ∗(T ) ≤ µ∗(A) + µ∗(B) + 2ε ≤ µ∗(A ∪B) + 4ε ≤ µ∗(S ∪ T ) + 6ε.

At this point, we have verified that µ∗ : B → [0,∞) is finitely additive. For the
σ-additivity, let S1, S2, . . . ∈ B be disjoint. For each m, we have

m∑
n=1

µ∗(Sn) = µ∗(∪mn=1Sn) ≤ µ∗(∪∞n=1Sn)
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and passage m→∞ proves
∞∑
n=1

µ∗(Sn) ≤ µ∗(∪∞n=1Sn).

The reverse inequality is already proven. �

At this point, the proof in the case µ0 <∞ is complete.

Proof in the σ-finite case. Choose subsets X1 ⊂ X2 ⊂ . . . ⊂ X with µ0(Xn) < ∞
and ∪∞n=1Xn = X. For each n, let

λn : A → [0,∞), λn(A) := µ0(A ∩Xn).

Then λn is a finite premeasure, and there are unique measures µn : 〈A〉 → [0,∞)
extending λn. For S ∈ B, we have µn(S) ≤ µn+1(S) and so can define

µ(S) := lim
n→∞

µn(S) ∈ [0,∞].

From the monotone convergence theorem C.32 for the counting measure8, we see
that µ is a measure, and one checks that µ|A = µ0.

By construction, it is clear that µn(S) = µ(S ∩ Xn) (since the right hand side
defines a measure on 〈A〉 which extends λn), and so we must have defined µ(S) as
above. This shows uniqueness. �

C.5. The construction of the Lebesgue measure. As a simple example for
how the Caratheodory extension theorem works, let us present the construction of
the Lebesgue measure, firstly on [0, 1]. Let A ⊂ P([0, 1]) be the set of all sets which
can be written as the finite union of (open, half-open, or closed) intervals. We note
that each element of A can be written as the finite union of disjoint intervals, and
that A is a Boolean algebra on R. Let a ≤ b ∈ R and let I be one of the sets
[a, b], (a, b), (a, b], [a, b). Then one easily checks that

lim
n→∞

1

n
|I ∩ 1

n
Z| = b− a.

Now if A ∈ A, we define the elementary volume by

µ0(A) := lim
n→∞

1

n
|A ∩ 1

n
Z|.

Since each A ∈ A is a finite disjoint union of intervals, the limit exists and is equal
to the sum of the lengths of the individual intervals. It is clear that µ0 is finitely
additive. Now let A1, A2, . . . are countably many elements of A, so that their union
A = ∪∞n=1An also lies in A. We have to prove that µ(∪∞n=1An) ≤

∑∞
n=1 µ(An).

We can assume without of generality that A is an interval, and that each An is an
interval. Let ε > 0. There is a compact interval B ⊂ A with µ0(A) ≤ µ0(B) + ε,
and there are open intervals An ⊂ On with µ0(On) ≤ µ0(An) + ε

2n .
The sets On, n ∈ N, form an open cover of B, and by compactness B ⊂ ∪mn=1On.

It follows that

µ0(A) ≤ µ0(B) + ε ≤
m∑
n=1

µ0(On) + ε ≤ ε+

m∑
n=1

µ0(An) +

m∑
n=1

ε

2n
≤ 2ε+

∞∑
n=1

µ0(An).

Hence the Caratheodory extension theorem yields a Borel measure µ on [0, 1] which
extends µ0. This µ is the Lebesgue measure. The Lebesgue measure on R can be

8Check for yourself that this forward reference does not produce a circular argument!
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obtained by either taking the limit of the restrictions to [−n, n], or by a slight
modification of the above construction.

C.6. The integral of nonnegative functions. For the construction of the in-
tegral, we first study the integration of functions X → [0,∞] with respect to a
measure µ on X. For the rest of this section, we fix a measure space (X,B, µ).

Definition C.28. A nonnegative step function on X is a measurable function
f : X → [0,∞) which only assumes finitely many values. We denote by St+(X)
the set of all nonnegative step functions on X.

Alternatively, we can write f =
∑n
j=1 anχSn as a finite linear combination of

characteristic functions, but this representation is not unique.

Definition C.29. Let f be a nonnegative step function and let 0 < a1 < . . . <
ar <∞ be the finitely many values it takes. We define∫

X

f(x)dµ(x) :=

r∑
j=1

ajµ(f−1(aj)) ∈ [0,∞].

Lemma C.30. Let f, g ∈ St+(X)

(1) if a ≥ 0, then
∫
X
afdµ = a

∫
X
fdµ.

(2)
∫
X

(f + g)dµ =
∫
X
fdµ+

∫
X
gdµ.

(3) If f ≤ g, then
∫
X
fdµ ≤

∫
X
gdµ.

(4) If f ∈ St+(X), the function ν : B → [0,∞], ν(S) :=
∫
X
χSfdµ is a measure.

(1) and (2) of the Lemma imply that∫
X

n∑
j=1

ajχSjdµ =

n∑
j=1

ajµ(Sj).

It seems easier to define the integral by that formula, but this leaves the issue of
showing that the result does not depend on the way in which f is written as a linear
combination of characteristic functions.

Proof. The first claim is trivial. For the second one, note that we can write∫
X

fdµ =
∑

a∈[0,∞)

aµ(f−1(a))

(this is a finite sum of course). Furthermore,

(f + g)−1(c) =
⋃

a∈[0,c]

f−1(a) ∩ g−1(c− a),

and this is a finite disjoint union. It follows that∫
X

(f + g)dµ =
∑

c∈[0,∞)

cµ((f + g)−1(c)) =
∑

c∈[0,∞)

∑
a∈[0,c]

cµ(f−1(a) ∩ g−1(c− a)) =

∑
a∈[0,∞)

∑
b∈[0,∞)

(a+ b)µ(f−1(a) ∩ g−1(b)) =

∑
a∈[0,∞)

∑
b∈[0,∞)

aµ(f−1(a) ∩ g−1(b)) +
∑

a∈[0,∞)

∑
b∈[0,∞)

bµ(f−1(a) ∩ g−1(b)) =
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a∈[0,∞)

aµ(
⋃

b∈[0,∞)

f−1(a) ∩ g−1(b)) +
∑

b∈[0,∞)

bµ(
⋃

a∈[0,∞)

f−1(a) ∩ g−1(b)) =

∑
a∈[0,∞)

aµ(f−1(a)) +
∑

b∈[0,∞)

bµ(g−1(b)) =

∫
X

fdµ+

∫
Y

gdµ.

(3): the difference g − f is an element of St+(X). (4): Since a finite linear
combination of measures with nonnegative coefficients is a measure, it is enough to
consider the case f = χT , T ∈ B. It is straightforward to prove that ν is a measure
in that case. �

Definition C.31. Let f : X → [0,∞] be measurable. We define∫
X

f(x)dµ(x) := sup
g∈St+(X),g≤f

∫
X

g(x)dµ(x).

Two of the properties proved in Lemma C.30 carry over to the integral of non-
negative functions without any difficulty. These are

(1) if a ≥ 0, then
∫
X
afdµ = a

∫
X
fdµ.

(2) If f ≤ g, then
∫
X
fdµ ≤

∫
X
gdµ.

The other properties also hold, but this requires more work.

Theorem C.32 (Monotone convergence theorem). Let f1 ≤ f2 ≤ . . . be an in-
creasing sequence of nonnegative measurable functions on X. Then

lim
n→∞

∫
X

fn(x)dµ(x) =

∫
X

lim
n→∞

fn(x)dµ(x)

This is the key step for the development of the theory. Up to that point, we have
not used the σ-additivity of µ, and it is being used in the proof of the monotone
convergence theorem exactly once. The reader should look out to identify the step
where it is used.

Proof. Put f(x) := limn→∞ fn(x), which is measurable. Since
∫
X
fn(x)dµ(x) ≤∫

X
f(x)dµ(x), we obtain

lim
n→∞

∫
X

fn(x)dµ(x) ≤
∫
X

f(x)dµ(x).

For the reverse inequality, let g ∈ St+(X) with g ≤ f and let ε > 0. Put

Sn := {x ∈ X|fn(x) ≥ (1− ε)g(x)} ⊂ X.
The set Sn is measurable, we have S1 ⊂ S2 ⊂ . . ., and

⋃∞
n=1 Sn = X (for the

latter, note that g−1(0) ⊂ S1 and if g(x) > 0, then we have fn(x) ≥ (1− ε)g(x) for
sufficiently large n). Since S 7→

∫
S

(1− ε)g(x)dµ(x) is a measure, we know that

(1− ε)
∫
X

g(x)dµ(x) =

∫
X

(1− ε)g(x)dµ(x) = lim
n→∞

∫
Sn

(1− ε)g(x)dµ(x).

Because
∫
Sn

(1− ε)g(x)dµ(x) ≤
∫
Sn
fn(x) ≤

∫
X
fn(x)dµ(x), we obtain

lim
n→∞

∫
Sn

(1− ε)g(x)dµ(x) ≤ lim
n→∞

∫
X

fn(x)dµ(x).

Altogether

(1− ε)
∫
X

g(x)dµ(x) ≤ lim
n→∞

∫
X

fn(x)dµ(x).
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This estimate holds for all ε > 0, and so∫
X

g(x)dµ(x) ≤ lim
n→∞

∫
X

fn(x)dµ(x).

This is true for all step functions g ≤ f , and so∫
X

f(x)dµ(x) ≤ lim
n→∞

∫
X

fn(x)dµ(x),

as desired. �

Lemma C.33. Let f : X → [0,∞] be measurable. Then there is a sequence
f1 ≤ f2 ≤ f3 . . . of nonnegative step functions which converges pointwise to f .

Proof. For a > 0, let Aa := {x ∈ X|f(x) ≥ a}, which is measurable. The functions

fn =

4n∑
k=1

1

2n
χA k

2n

do the job. �

Lemma C.34. Let f, g : X → [0,∞] be measurable.

(1) if a ≥ 0, then
∫
X
afdµ = a

∫
X
fdµ.

(2)
∫
X
f + gdµ =

∫
X
fdµ+

∫
X
gdµ.

(3) If f ≤ g, then
∫
X
fdµ ≤

∫
X
gdµ.

(4) The function ν : B → [0,∞], ν(S) :=
∫
X
χSfdµ is a measure.

Proof. Properties (1) and (3) have been used in the proof of the monotone conver-
gence theorem and follow easily from the definitions. Properties (2) and (4) follow
from Lemma C.30, Lemma C.33 and the monotone convergence theorem. �

Theorem C.35 (Fatou’s Lemma). For sequences of measurable nonnegative func-
tions, we have ∫

X

lim inf
n

fn(x)dµ(x) ≤ lim inf
n

∫
X

fn(x)dµ(x).

Proof. Put
gn(x) := inf

k≥n
fk(x).

This function is measurable, and g1 ≤ g2 ≤ . . ., and limn gn = lim infn fn. By the
monotone convergence theorem, we see that∫

X

lim inf
n

fn(x)dµ(x) = lim
n

∫
X

gn(x)dµ(x).

For each k ≥ n, we have gn ≤ fk, and therefore∫
X

gn(x)dµ(x) ≤ inf
k≥n

∫
X

fk(x)dµ(x),

which implies

lim
n

∫
X

gn(x)dµ(x) ≤ lim inf
n

∫
X

fn(x)dµ(x).

�

The following simple facts are sometimes useful.

Lemma C.36. Let X be a measure space and f : X → [0,∞].
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(1) If
∫
X
fdµ <∞, a > 0 and Aa := {x ∈ X|f(x) ≥ a}, then µ(Aa) <∞.

(2) If
∫
X
fdµ = 0, then f(x) = 0 for almost all x.

Proof. (1) this is simply the estimate

0 ≤ aµ(Aa) =

∫
X

aχAadµ ≤
∫
X

fdµ.

(2) The above inequality proves that µ(Aa) = 0 for all a > 0, and hence that

{x|f(x) 6= 0} =

∞⋃
n=1

A 1
n

has measure zero. �

C.7. The Hölder and Minkowski inequality. So far, we only have the notion
of the integral of a nonnegative measurable function X → [0,∞]. Of course, we
want to integrate real-valued, or complex-valued functions. The functions we will
be able to integrate are the functions in L1(X,µ). There are other spaces Lp(X,µ)
for each p ∈ [1,∞], which are also important. As many arguments are parallel in
the case p = 1 and p > 1, we start immediately with the case of an arbitrary p.

We consider a measure space (X,µ). For a measurable function f : X → [0,∞]
and p ∈ [1,∞), we define

‖f‖Lp := (

∫
X

fpdµ)1/p ∈ [0,∞].

Furthermore, we put

‖f‖L∞ := inf
µ(S)=0

sup
x∈X−S

f(x) ∈ [0,∞].

Theorem C.37 (Hölder inequality). Let f, g : X → [0,∞] be measurable and let
p, q ∈ [1,∞] satisfy 1

p + 1
q = 1 (with the convention that 1

∞ = 0). Then

‖fg‖L1 ≤ ‖f‖Lp‖g‖Lq .

Proof. In the following cases, the inequality is trivial: p = 1, q = 1, ‖f‖Lp = ∞,
‖f‖Lp = 0, ‖g‖Lq = ∞ and ‖g‖Lq = 0. Hence we may assume p, q ∈ (1,∞), and
0 < ‖f‖Lp , ‖g‖Lq <∞.

For x, y ≥ 0, the Young inequality

xy ≤ 1

p
xp +

1

q
yq

holds. It is trivial if x = 0 or y = 0. For x, y > 0, we use convexity of the
exponential function

e
1
pa+ 1

q b ≤ 1

p
ea +

1

q
eb

and insert a = p log(x), b = q log(y) to obtain

xy = elog(x)+log(y) = e
1
pp log(x)+ 1

q q log(y) ≤ 1

p
ep log(x) +

1

q
eq log(y) =

1

p
xp +

1

q
yq.

Integrating gives

‖fg‖L1 =

∫
X

fgdµ ≤ 1

p

∫
X

fpdµ+
1

q

∫
X

gqdµ =
1

p
‖f‖pLp +

1

q
‖g‖qLq .
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For t > 0 arbitrary, we obtain

(C.38) ‖fg‖L1 = ‖(tf)(
g

t
)‖L1 ≤ 1

p
tp‖f‖pLp +

1

q

1

tq
‖g‖qLq =: F (t),

and therefore

(C.39) ‖fg‖L1 ≤ inf
t∈(0,∞)

F (t).

Since limt→0 F (t) = limt→∞ F (t) = +∞, the infimum of F is attained at a t0 with
F ′(t0) = 0. But F ′(t0) = 0 holds if and only if

t0 = (
‖g‖qLq
‖f‖pLp

)
1
p+q ,

by an easy computation. Hence, inserting this value of t0 into (C.38) yields

‖fg‖L1 ≤ 1

p
(
‖g‖qLq
‖f‖pLp

)
p
p+q ‖f‖pLp +

1

q
(
‖g‖qLq
‖f‖pLp

)
−q
p+q ‖g‖qLq =

=
1

p
‖g‖

pq
p+q

Lq ‖f‖
p− p2

p+q

Lp +
1

q
‖g‖q−

−q2
p+q

Lq ‖f‖
pq
p+q

Lp .

But p+q
pq = 1

q + 1
p = 1, p− p2

p+q = p2+pq−p2
p+q = pq

p+q = 1 and q − q2

p+q = 1, and so the

last expression is

=
1

p
‖g‖Lq‖f‖Lp +

1

q
‖g‖Lq‖f‖Lp = ‖f‖Lp‖g‖Lq .

�

Theorem C.40 (Minkowski inequality). If p ∈ [1,∞] and f, g : X → [0,∞] are
measurable, we have

‖f + g‖Lp ≤ ‖f‖Lp + ‖g‖Lp .

Proof. The cases p = 1,∞ are trivial, so we assume p ∈ (1,∞). Furthermore, the
cases where ‖f + g‖Lp = 0, ‖f‖Lp = ∞ and ‖g‖Lp = ∞ are trivial, and we can
exclude them. The crude estimate

‖f + g‖pLp =

∫
X

|f + g|pdµ ≤ 2p
∫
X

max(|f |p, |g|p)dµ ≤

≤ 2p
∫
X

(|f |p + |g|p)dµ = 2p(‖f‖Lp + ‖g‖Lp)

shows that ‖f‖Lp , ‖g‖Lp <∞ implies ‖f + g‖Lp <∞. Compute

‖f+g‖pLp =

∫
X

(f+g)p−1fdµ+

∫
X

(f+g)p−1gdµ = ‖(f+g)p−1f‖L1+‖(f+g)p−1g‖L1 .

Let q = (1− 1
p )−1. The Hölder inequality implies

‖f+g‖pLp ≤ ‖(f+g)p−1‖Lq‖f‖Lp+‖(f+g)p−1‖Lq‖g‖Lp = ‖(f+g)p−1‖Lq (‖f‖Lp+‖g‖Lp).

But p
q = p(1− 1

p ) = p− 1 and (p− 1)q = p, so that

‖(f + g)p−1‖Lq = (

∫
X

(f + g)(p−1)q)
1
q = ((

∫
X

(f + g)p)
1
p )

p
q = ‖f + g‖p−1

Lp .

Now divide by ‖f + g‖p−1
Lp ∈ (0,∞). �
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C.8. Lp-spaces.

Definition C.41. Let p ∈ [1,∞]. We define L p(X,K) as the space of all functions
f : X → K such that

(1) f is measurable,
(2) ‖f‖Lp = ‖|f |‖Lp <∞.

It follows from Theorem C.40 that L p(X,K) is a vector space and ‖ ‖Lp is a
seminorm. The space N (X,K) := {f ∈ L p(X,K)|‖f‖Lp = 0} is exactly the
subspace of all null functions, i.e. of all functions which vanish almost everywhere.

Theorem C.42. Let fn ∈ L p(X,K) be an Lp-Cauchy sequence. Then

(1) There is a subsequence which converges pointwise almost everywhere to a
function f : X → K.

(2) The limit function belongs to L p(X,K).
(3) limn ‖fn‖Lp = ‖f‖Lp , ‖f − fn‖Lp = 0.

Proof. We give the detailed proof in the case p <∞. The case p =∞ is easier.
(1) After passage to a subsequence, we can assume that

‖fn+1 − fn‖Lp ≤
1

4n

for all n. Let

Xn := {x ∈ X||fn+1(x)− fn(x)| ≥ 1

2n
} ⊂ X,

which is a measurable subset. We estimate

(
1

4n
)p ≥ ‖fn+1 − fn‖pLp ≥

∫
Xn

|fn+1(x)− fn(x)|pdµ(x) ≥ µ(Xn)(
1

2n
)p

and therefore, we get

µ(Xn) ≤ (
1

2n
)p.

Let

Yn :=
⋃
m≥n

Xm

and

Y :=

∞⋂
n=1

Yn

(note that Y1 ⊃ Y2 ⊃ . . .). Then

µ(Yn) ≤ (
1

2n
)p

1

1− ( 1
2 )p

,

and hence

µ(Y ) = 0.

If x ∈ Y c, then x ∈ Y cn =
⋂∞
m=nX

c
m for some n, and so for m ≥ n, we have

|fm+1(x)− fm(x)| ≤ 1

2m
.

Since K is complete, this implies that fm(x) converges. Hence fm|Y c is pointwise
convergent.
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(2): Being the pointwise limit of measurable functions, f is measurable. By
Fatou’s lemma∫

X

|f(x)|pdµ(x) ≤ lim inf
n

∫
X

|fn(x)|pdµ(x) = lim inf
n
‖fn‖pLp <∞.

(3): Again by Fatou’s lemma

‖fn − f‖pLp =

∫
X

lim
m
|fn(x)− fm(x)|pdµ(x) ≤ lim inf

m
‖fn(x)− fm(x)‖pLp ≤ ε

for sufficiently large n. On the other hand

‖fn‖Lp ≤ ‖fn − f‖Lp + ‖f‖Lp
and therefore

lim sup
n
‖fn‖Lp ≤ ‖f‖Lp ,

while
‖f‖Lp ≤ ‖f − fn‖Lp + ‖fn‖

and so
‖f‖Lp ≤ lim inf

n
‖f − fn‖Lp + lim inf

n
‖fn‖ = lim inf

n
‖fn‖.

�

Theorem C.43 (Dominated convergence theorem). Let p ∈ [1,∞). Let fn ∈
L p(X,V ) be a sequence which converges pointwise almost everywhere to a function
f : X → K. Assume that there is a measurable function g : X → [0,∞] with∫
X
g(x)pdµ <∞, and assume that |fn(x)| ≤ g(x) for all n and almost all x. Then

f ∈ L p(X,K) and ‖fn − f‖Lp → 0.

Proof. Without loss of generality, we can assume that |fn(x)| ≤ g(x) and limn |fn(x)−
f(x)| = 0 for all x. We have 0 ≤ |fn(x)− fm(x)| ≤ 2g(x) and

lim
n

lim sup
m

|fn(x)− fm(x)| = 0.

Therefore, by a repeated application of Fatou’s lemma,∫
X

2pg(x)pdµ =

∫
X

2pg(x)p − lim
n

lim sup
m

|fn(x)− fm(x)|pdµ =

=

∫
X

lim
n

(2pg(x)p − lim sup
m

|fn(x)− fm(x)|p)dµ ≤

≤ lim inf
n

∫
X

(2pg(x)p − lim sup
m

|fn(x)− fm(x)|p)dµ =

= lim inf
n

∫
X

lim inf
m

(2pg(x)p − |fn(x)− fm(x)|p)dµ ≤

≤ lim inf
n

lim inf
m

∫
X

(2pg(x)p − |fn(x)− fm(x)|p)dµ =

=

∫
X

2pg(x)pdµ− lim sup
n

lim sup
n

∫
X

|fn(x)− fm(x)|pdµ.

We conclude that

lim sup
n

lim sup
n

∫
X

|fn(x)− fm(x)|pdµ = 0.

Therefore fn is an Lp-Cauchy sequence, which implies all claims by Theorem C.42.
�
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Lemma C.44. Let N (X,K) be the space of null functions X → K, i.e. functions
which are nonzero only on a set of measure 0. Let p ∈ [1,∞). Then

{f ∈ L p(X,K)|‖f‖Lp = 0} = N (X,K).

Definition C.45. We let Lp(X,K) := L p(X,K)/N (X,K) with the induced quo-
tient norm.

The space Lp(X,K) is a normed space, since we divided out all elements of norm
0. Moreover

Proposition C.46. The normed space Lp(X,K) is complete.

Proof. For sake of notational clarity, we denote by the letters fn and f measurable
functions in L p(X), and by [vn], [v] ∈ Lp(X) their equivalence classes. Typical
elements of Lp(X) will be denoted vn, v.

Let now vn be a Cauchy sequence in Lp(X). We have to prove that vn converges,
and for that, it is enough to prove that some subsequence is convergent. Pick
representatives fn ∈ L p(X), i.e. [fn] = vn. Then fn ∈ L p(X) is an Lp-Cauchy
sequence, and by Theorem C.42, we can assume that fn converges in the Lp-norm
to some f ∈ L p(X). Then vn converges in Lp(X) to v := [f ] ∈ Lp(X). �

Definition C.47. Let St(X,K) be the set of all step functions X → K, i.e. all
measurable functions which can be written in the form f =

∑r
j=1 ajχSj , where

Sj ⊂ X is a measurable subset and aj ∈ K. We denote by Stf (X,K) ⊂ St(X,K)
the subset of all step functions f with µ({x|f(x) 6= 0}) <∞.

Proposition C.48. If p ∈ [1,∞), then Stf (X) ⊂ L p(X) is a dense subspace. If
p =∞, then St(X) ⊂ L∞(X) is dense.

Proof. Let us first assume that µ(X) < ∞. Let f ∈ L p(X) and ε > 0. Put
δ := ε

µ(X)1/p
. Let Z ⊂ K be a countable dense subset. Pick zi ∈ Z, i ∈ N, such

that f(X) ⊂
⋃∞
i=1Bδ(zi). We can write X as a disjoint union of measurable sets

Xi, so that |f(x)− zi| ≤ δ for x ∈ Xi. The measurable function

g =

∞∑
i=1

ziχXi

satisfies |g(x)− f(x)| ≤ δ for all x, and hence

‖g − f‖pLp ≤ δµ(X)1/p = ε.

Furthermore

gn =

n∑
i=1

ziχXi

is a step function, and |gn| → |g| monotonously increasing. Hence the monotone
convergence theorem implies that

lim
n
‖g − gn‖Lp = 0.

Putting everything together, we find a step function h := gn such that

‖h− f‖Lp ≤ ε.

This finishes the proof when µ(X) <∞.
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In the general case, we consider for m ∈ N the set Sm := {x||f(x)|p ≥ 1
m}. Then

µ(Sm)
1

m
≤
∫
X

|f |pdµ,

and so Sm has finite measure. Since limm

∫
Sm
|f |pdµ =

∫
X
|f |pdµ, there is m so

that ∫
X

|f |pdµ ≥
∫
Sm

|f |pdµ ≥
∫
X

|f |pdµ− ε.

It follows that there is T ⊂ X of finite measure such that

‖f − χT f‖pLp ≤ ε/3.
It suffices to approximate χT f by elements of Stf (X) with arbitrary precision, and
this has been done in the first step of the proof. �

C.9. Construction of the integral. After the work from the previous section,
we are ready to define the integral of a function f ∈ L 1(X,K).

Definition C.49. Let f ∈ Stf (X,K). We define∫
X

fdµ =
∑
v∈V K

vµ(f−1(v)) ∈ K

(which is a finite sum).

Lemma C.50. The map Stf (X,K)→ K given by f 7→
∫
X
fdµ is linear, and

|
∫
X

fdµ| ≤ ‖f‖L1 .

Proof. It is clear that
∫
X
afdµ = a

∫
X
fdµ when f ∈ Stf (X,K) and a ∈ K. For the

additivity, we note that

(f + g)−1(v) =
⋃
u∈K

f−1(u) ∩ g−1(v − u)

(finite disjoint union) and compute∫
X

(f+g)dµ =
∑
v∈K

vµ((f+g)−1(v)) =
∑
v∈K

∑
u∈K

(u+(v−u))µ(f−1(u)∩g−1(v−u)) =

=
∑
w∈K

∑
u∈K

(u+ w)µ(f−1(u) ∩ g−1(w)) =

=
∑
w∈K

∑
u∈K

uµ(f−1(u) ∩ g−1(w)) +
∑
w∈K

∑
u∈V

wµ(f−1(u) ∩ g−1(w)) =

=
∑
u∈K

uµ(f−1(u)) +
∑
w∈K

wµ(g−1(w)) =

∫
X

fdµ+

∫
X

gdµ.

From the linearity, we conclude∫
X

r∑
j=1

vjχSjdµ =

r∑
j=1

vjµ(Sj),

and this easily implies the estimate. �

It follows that
∫
X
dµ extends to a linear map L 1(X,K) → K and descends to

a linear map L1(X,K)→ K. We need to perform a last consistency check:
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Lemma C.51. Assume that f : X → [0,∞) belongs to L 1(X,R). Then the
integral of f as a nonnegative function and as an element of L 1(X,R) agree.

Proof. For the purpose of this proof, let
∫ ′
X
fdµ be the integral of f as a nonnegative

function. It is clear that ∫ ′
X

gdµ =

∫
X

gdµ

when g ∈ St+(X) ∩ Stf (X,R). By Lemma C.33, we find a sequence fn of non-
negative step functions which converges monotonously to f . By the monotone
convergence theorem, we have∫ ′

X

fdµ = lim
n

∫ ′
X

fndµ = lim
n

∫
X

fndµ.

It follows that fn is an L1-Cauchy sequence, and therefore limn

∫
X
fndµ =

∫
X
fdµ.
�

Proposition C.52. Let X be σ-finite. Let f ∈ L1(X,µ,K) and let K ⊂ K be a
closed convex subset. The following are equivalent:

(1) For each measurable S with 0 < µ(S) <∞, we have

1

µ(S)

∫
S

fdµ ∈ K.

(2) For almost all x ∈ X, f(x) ∈ K.

Proof. 2⇒ 1: We first consider the case of a step function f . We write

f =

n∑
j=1

ajχTj

with disjoint sets Tj such that
⋃n
j=1 Tj = X and µ(Tj) > 0 (we possibly have to

include f−1(0), which might have infinite measure). Then a1, . . . , an ∈ K, and

1

µ(S)

∫
S

fdµ =
1

µ(S)

n∑
j=1

µ(S ∩ Tj)aj =

n∑
j=1

µ(S ∩ Tj)
µ(S)

aj

shows that the left hand side is a convex combination of the points a1, . . . , an and
hence belongs to K. The case of a general f is done by picking a sequence fn → f
of step functions which converge in L1-norm to f .

1⇒ 2: The complement K\K can then be written as a countable union of closed
convex sets. If f(x) ∈ K does not hold for almost all x, we find a closed convex set
L ⊂ K with L ∩K = ∅ such that S := f−1(L) has positive finite measure. Then
by the already proven implication, we get

1

µ(S)

∫
S

fdµ ∈ L,

and hence not in K. �
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C.10. Product measures and the Fubini theorem. Let (X,A, µ) and (Y,B, ν)
be two complete measure spaces. A set of the form S×T , S ∈ A and T ∈ B, is called
a measurable box. We define A ⊗ B as the σ-algebra generated by all measurable
boxes. Note that

(S × T ) ∩ (S′ × T ′) = (S ∩ S′)× (T ∩ T ′),
so that the measurable boxes form a π-system. For a subset S ⊂ X × Y , x ∈ X
and y ∈ Y , we define

Sx := {y ∈ Y |(x, y) ∈ S} ⊂ Y
and

Sy := {x ∈ X|(x, y) ∈ S} ⊂ X.

Lemma C.53. Assume that X and Y are both σ-finite. Then for each S ∈ A⊗B,
the following statements hold:

(1) For almost all x ∈ X, the set Sx belongs to B.
(2) For almost all Y ∈ y, the set Sy belongs to A.
(3) The (almost everywhere defined) function fS : X → [0,∞], fS(x) := ν(Sx)

is measurable.
(4) The (almost everywhere defined) function gS : Y → [0,∞], gS(y) := µ(Sy)

is measurable.
(5) We have

∫
Y
gS(y)dν(y) =

∫
X
fS(x)dµ(x).

(6) The formula (µ ⊗ ν)(S) :=
∫
X
fS(x)dµ(x) is a measure on the σ-algebra

A⊗ B.

Proof. Let X1 ⊂ X2 ⊂ . . . X and Y1 ⊂ Y2 ⊂ . . . Y be exhaustions of X and Y
by subsets of finite measure. We let C ⊂ P(X × Y ) be the set of all S ⊂ X × Y
such that S and all the sets S ∩ (Xn × Yn) satisfy the statements (1)–(5). Clearly,
C contains the set M of all measurable boxes. We will prove that C is a Dynkin
system. As M is a π-system, the Dynkin lemma will then imply that A⊗ B ⊂ C,
and this finishes the proof of the claims (1)–(5). It is clear that X×Y ∈ C. Assume
that Sn ∈ C, n ∈ N. Then S =

⋃∞
n=1 Sn ∈ C: claims (1) and (2) follows from the

fact that A and B are σ-algebras, claims (3) and (4) from the fact that pointwise
limits of measurable functions are measurable, and claim (5) from the monotone
convergence theorem.

Now let S, T ∈ C and S ⊂ T . The task is to prove that T − S ∈ C. Let
Sn := S ∩ (Xn×Yn) and define Tn analogously. It is clear that (T −S)x = Tx−Sx
and (T −S)y = T y −Sy are measurable for almost all x or y, so that the functions
fT−S and gT−S are almost everywhere defined.

Since fSn + fTn−Sn = fTn and gSn + gTn−Sn = gTn , and as fSn and gSn are
finite, it follows that fTn−Sn and gTn−Sn are measurable. The same is then true for
gT−S = limn gTn−Sn and fT−S . Furthermore, the computation∫

Y

gSn(y)dν(y) +

∫
Y

gTn−Sn(y)dν(y) =

∫
Y

gTn(y)dν(y) =

=

∫
X

fTn(y)dµ(y) =

∫
X

fSn(y)dµ(y) +

∫
X

fTn−Sn(y)dµ(y)

finishes the verification that T − S ∈ C. This also finishes the proof that all sets in
A⊗ B satisfy (1)–(5).

It is an easy application of the monotone convergence theorem that µ ⊗ ν is a
measure. �
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For a function f : X × Y → K, we denote by fx : Y → K the function fx(y) :=
f(x, y), and similarly fy(x) := f(x, y).

Theorem C.54 (Tonelli and Fubini theorem). Let (X,µ) and (Y, ν) be σ-finite
measure spaces.

(1) If f : X × Y → [0,∞] is measurable, then∫
X×Y

fdµ⊗ ν =

∫
X

(

∫
Y

fx(y)dν(y))dµ(x) =

∫
Y

(

∫
X

fx(y)dµ(x))dν(y).

(2) Assume that f ∈ L 1(X × Y ). Then for almost all x ∈ X, the function
fx : Y → K, fx(y) := f(x, y), belongs to L 1(Y,K), the (almost everywhere
defined) function g : X → K, g(x) :=

∫
Y
fx(y)dν(y) is in L 1(X,K), and∫

X×Y
f(x, y)dµ⊗ ν(x, y) =

∫
X

g(x)dµ(x).

(3) If f : X ×Y → K is measurable and
∫
X

(
∫
Y
|f(x, y)|dν(y))dµ(x) <∞, then

f ∈ L 1(X × Y ).

Proof. (1) By Lemma C.33, there is an increasing sequence of step functions which
converge pointwise to f . For a step function, statement (1) is an easy consequence of
Lemma C.53, and the general case follows from the monotone convergence theorem.

(2) Let F ⊂ L 1(X×Y ) be the subspace of function which satisfy the conclusion
of the theorem. It is clear that F is a linear subspace.

Each characteristic function f = χS with µ ⊗ ν(S) < ∞ belongs to F . This
follows immediately from Lemma C.53. Therefore by linearity Stf (X × Y ) ⊂ F .

Therefore, it remains to be proven that L1-limits of functions in F belong to
F , so let fn be an L1-Cauchy sequence of step functions which converges almost
everywhere to f . Then for almost all x, (fn)x converges almost everywhere to fx.
By part (1)

‖fn − f‖L1 =

∫
X

‖(fn)x − fx‖L1dµ(x),

and so the functions hn : X → [0,∞], hn(x) := ‖(fn)x− fx‖L1 converge to 0 in the
L1-norm. By Theorem C.42, it follows that ‖(fn)x → fx‖L1 → 0 for almost all x
(after passing to a subsequence, of course). It follows that fx ∈ L 1(Y ) for almost
all x. It also follows that gn(x)→ g(x) for almost all x. Moreover

‖gn − gm‖L1(X) = ‖fn − fm‖L1(X×Y ),

and so gn is an L1-Cauchy sequence. Therefore g ∈ L 1(X). Finally∫
X

g(x)dµ(x) = lim
n

∫
X

gn(x)dµ(x) = lim
n

∫
X×Y

fn(x, y)dµ⊗ν(x, y) =

∫
X×Y

f(x, y)dµ⊗ν(x, y).

(3) follows from (1), (2). �

Lemma C.55. Let (X,µ) be σ-finite and let f : X → [0,∞] be measurable. For
ε > 0, let

Sε := {x ∈ X|f(x) ≥ ε}.
Then ∫

X

fdµ =

∫ ∞
0

µ(Sε)dε.
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Proof. Let
Y := {(x, t) ∈ X × R|0 ≤ t ≤ f(x)} ⊂ X × R.

This is measurable. Let λ be the Lebesgue measure on R. By Fubini, we have

(µ⊗ λ)(Y ) =

∫
X

λ(Yx)dµ(x) =

∫
X

f(x)dµ(x),

as well as

(µ⊗ λ)(Y ) =

∫ ∞
0

µ(Y t)dλ(t) =

∫ ∞
0

µ(St)dλ(t).

�

C.11. Borel measures.

Definition C.56. Let X be a topological space. The Borel-σ-algebra is the smallest
σ-algebra which contains all open subsets of X. A Borel measure on X is a measure
which is defined on the Borel σ-algebra.

Definition C.57. Let X be a locally compact Hausdorff space. A Borel measure µ
on X is a Radon measure if

(1) µ(K) <∞ for all compact K ⊂ X (“µ is locally finite”),
(2) for each Borel set S ⊂ X, we have

µ(S) = sup
K⊂S compact

µ(K)

(“µ is inner regular”) and
(3) for each Borel set S ⊂ X, we have

µ(S) = inf
S⊂U open

µ(U).

(“µ is outer regular”).

Proposition C.58. Let X be a locally compact Hausdorff space and let µ be a
Radon measure on X. Then Cc(X) ⊂ Lp(X,µ) for each p, and if p <∞, then this
is a dense linear subspace.

Proof. Let B be the Borel-σ-algebra and let T be the topology on X. Since T ⊂ B,
each continuous function X → K is measurable. If f ∈ Cc(X), then µ(supp(f)) <
∞, and it follows that |f | ≤ ‖f‖C0µ(supp(f)) <∞, so that f ∈ Lp(X,µ).

For the density, it suffices to prove that for each measurable subset S ⊂ X with
µ(S) <∞ and for each ε > 0, there is f ∈ Cc(X) with ‖f − χS‖Lp ≤ ε.

Since µ is regular, there is a compact K ⊂ S and an open S ⊂ U with µ(U−K) ≤
ε. A consequence of Urysohn’s Lemma (Proposition B.79) yields a continuous
function f : X → [0, 1] with χK ≤ f ≤ µU . Then

‖f − χS‖Lp ≤ ‖f − χK‖Lp + ‖χS − χK‖Lp .
But 0 ≤ f − χK ≤ χU − χK , and 0 ≤ χS − χK ≤ χU − χK and so

‖f − χS‖Lp ≤ 2‖χU − χK‖Lp = 2(µ(U \K))1/p ≤ 2ε1/p.

�

Proposition C.59. Let X be a second countable locally compact space and let µ
be a locally finite Borel measure. Then µ is a Radon measure.

Proof. Let us first assume that X is compact. Then µ is finite. Let D ⊂ B be the
set of all S such that µ(S) = supK⊂S compact µ(K) = infS⊂U open µ(U).
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(1) Each open U ⊂ X belongs to D. Outer regularity is not an issue. By
Corollary B.86, X is metrizable. Let Kn := {x ∈ U |distUc(x) ≤ 1

n}.
Then Kn is compact, Kn ⊂ K◦n+1 ⊂ Kn+1 ⊂ . . . and

⋃
nKn = U . Let

fn : X → [0, 1] be continuous with fn|Kn = 1 supp(fn) ⊂ Kn+1. Then
fn → χU pointwise almost everywhere, and the dominated convergence
theorem implies

µ(U) = lim
n→∞

∫
X

fndµ.

But
∫
X
fndµ ≤ µ(Kn+1), whence limn→∞ µ(Kn+1) = µ(U).

(2) Intersections of elements of D are in D. To see this, note that S ∈ D if
and only if there are compact Kn and open Un with Kn ⊂ S ⊂ Un, so
that χKn and χUn converge almost everywhere to χS . If T is another set in
D, consider Ln ⊂ T ⊂ Vn and observe that χKn∩Ln = χKnχLn converges
almost everywhere to χS∩T , and so does χUn∩Vn .

(3) Complements of elements in D are in D. This is clear, and uses that we
assumed X to be compact.

(4) Ascending unions of elements in D are in D. Let S1 ⊂ S2 . . . be a sequence
in D with S =

⋃
n Sn. Pick Kn ⊂ Sn ⊂ Un with µ(Un \Kn) ≤ ε

n . Then
Kn ⊂ S, and µ(S \Kn) becomes arbitrarily small, and S ⊂

⋃
n Un. Then

µ(

m⋃
n=1

Un \
m⋃
n=1

Sn) ≤ µ(
⋃
n

(Sn \Kn)) ≤
∑
n

µ(Sn \Kn) ≤ ε.

(2), (3) and (4) prove that D is a Dynkin system and a π-system, hence a σ-algebra
by Lemma C.7, and since D contains all open sets, D = B. This finishes the proof
in the compact case.

In the general case, pick an exhaustion X1 ⊂ X◦1 ⊂ X2 ⊂ . . . X of X by compact
sets. The measure µ induces a measure µn on Xn by µn(S) := µ(S). The measure
µn is inner and outer regular by the first part of the proof.

For a measurable S, let Sn := S ∩ Xn. By the regularity of µn+1, there is a
closed and hence compact Kn ⊂ Sn and a subset Vn ⊂ Xn+1 which is open in the
subspace topology, such that µn+1(Vn \ Kn) ≤ ε

2n . The set Un := Vn ∩ X◦n+1 is
open in X, Kn ⊂ Sn ⊂ Un and µ(Un \Kn) ≤ ε

2n .
For inner regularity, there are two cases to distinguish: if µ(S) < ∞, then

µ(S) = limn→∞ µ(Sn), and µ(Kn) → µ(S). If µ(S) = ∞, then µ(Sn) and hence
µ(Kn) becomes arbitrarily large.

Outer regularity is only an issue if µ(S) < ∞. But we have S ⊂
⋃
n Un, and

the latter is open, and the same argument as in the proof of item (4) above proves
that. �
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Appendix D. Holomorphic functions

We develop the basic theory of holomorphic functions on open subsets of the
complex plane. We present the absolute minimum which is necessary for the de-
velopment of spectral theory. As our exposition is geared towards the applications
in functional analysis, we consider holomorphic functions with values in complex
Banach spaces throughout (in the usual treatments of the theory, only functions
with values in C are studied). This does not make any of the proofs much harder.

D.1. Remarks about differential calculus. We begin by recalling the definition
of differentiability in several variables. We start with functions from (open subsets
of) Banach spaces to Banach spaces. We consider real Banach spaces V,W whose
norms we denote by the symbol |v|, to avoid heavy notation. On the vector space
L(V ;W ) of continuous linear maps, we consider the operator norm which we denote
as usual by ‖F‖. We also agree that we write Fv for the value of F ∈ L(V,W ) at
v ∈ V .

Definition D.1. Let V,W be Banach spaces, let U ⊂ V be open and let f : U →W
be a function. For x ∈ U , we let

−x+ U = {−x+ y|y ∈ U} = {h ∈ V |x+ h ∈ U}
and note that 0 ∈ −x + U . We say that f is differentiable at x ∈ U if there is a
function

−x+ U → L(V ;W ), h 7→ F (x, h),

which is continuous at x and such that

f(x+ h) = f(x) + F (x, h)h

for all h ∈ −x+ U .
The differential of f at x is the linear map

Df(x) := F (x, 0) ∈ L(V ;W ).

For example, linear maps are differentiable, and DF (x) = F . Linear combina-
tions of differentiable maps are differentiable, and the formulas

D(f + g)(x) = Df(x) +Dg(x), D(af)(x) = aDf(x)

hold.

Example D.2. Let U ⊂ R be open. A function f : U → V is differentiable at
x ∈ U if and only if the limit

f ′(x) := lim
h→0

1

h
(f(x+ h)− f(x)) ∈ V

exists, and we have
f ′(x) = Df(x)1 ∈ V.

Reason: if the limit f ′(x) exists, we define F (x, h) ∈ L(R;V ) ∼= V by

F (x, h) =

{
1
h (f(x+ h)− f(x)) h 6= 0

f ′(x) h = 0.

Then F (x, h) is continuous at h = 0, and f(x+ h) = f(x) + F (x, h)h. Vice versa,
if f is differentiable, then

1

h
(f(x+h)−f(x))−Df(x)1 =

1

h
(F (x, h)h)−F (x, 0)1 = (F (x, h)−F (x, 0))1→ 0,
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so that the limit f ′(x) exists and is equal to Df(x)1.

Example D.3. If A is a real (or complex) unital Banach algebra and A× ⊂ A is
its (open) set of invertible elements, the function

ι : A× → A, ι(x) = x−1

is differentiable. To see this, write

(x+ h)−1 − x−1 = −(x+ h)−1hx−1.

We define F (x, h) ∈ L(A,A) by

F (x, h)v := −(x+ h)−1hx−1.

The function h 7→ F (x, h) is continuous. We conclude that ι is differentiable and

Dι(x)v = −x−1vx−1.

Important is the chain rule.

Theorem D.4. Let V0, V1, V2 be Banach spaces, Ui ⊂ Vi be open and let f : U0 →
U1 ⊂ V1 be differentiable at x ∈ U0, and g : U1 → V2 be differentiable at f(x). Then
g ◦ f is differentiable at x, and

D(g ◦ f)(x) = Dg(f(x))Df(x).

Proof. Let F (x, ) and G(f(x), ) be functions certifying the differentiability of f
and g at x and f(x). Then

g(f(x+ h)) = g(f(x) + F (x, h)h) = g(f(x)) +G(f(x), F (x, h)h)F (x, h)h.

Define H(x, h) ∈ L(V0;V1) by

H(x, h)v := G(f(x), F (x, h)h)F (x, h)v.

This is continuous at h = 0 since G and F are continuous. Therefore g ◦ f is
differentiable at x, and

D(g ◦ f)(x) = H(x, 0) = G(f(x), 0)F (x, 0) = Dg(f(x))Df(x).

�

Let U ⊂ V be open and let f : U → W be differentiable at x. Let v ∈ V .
The curve c : R → V , c(t) = x + tv is differentiable. By the chain rule, f ◦ c is
differentiable at 0, and

D(f ◦ c)(0) = Df(x)Dc(0).

But Dc(0)1 = v, and D(f ◦ c)(0)1 = limh→0
1
h (f(x + hv) − f(x)). Therefore, we

see that

Df(x)v = lim
h→0

1

h
(f(x+ hv)− f(x)).
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D.2. Holomorphy.

Definition D.5. Let U ⊂ C be an open subset, let V be a complex Banach space,
and let f : U → V be a function. We say that f is complex differentiable at z ∈ U
if the limit

f ′(z) := lim
h→0

1

h
(f(z + h)− f(z)) ∈ V

exists. We say that f is holomorphic if f is complex differentiable at each point
z ∈ U , and if the function U → V , z 7→ f ′(z) is continuous9.

To relate this notion to the notion of differentiablity from D.1, we do some linear
algebra first.

Definition D.6. Let V,W be two complex Banach spaces. We let LC(V ;W ) be
the space of bounded C-linear maps V →W , with the usual operator norm. This is
a (real) subspace of the real Banach space LR(V,W ) of all R-linear bounded linear
maps. Moreover, let L−C (V ;W )subsetLR(V ;W ) be the space of all C-antilinear
maps F : V →W , which are the bounded R-linear maps such that F (zv) = zF (v),
for all z ∈ C and v ∈ V .

Lemma D.7.
LR(V ;W ) ∼= LC(V ;W )⊕ L−C (V ;W ).

Proof. We have LC(V ;W )∩L−C (V ;W ) = 0, because a linear map F which is both,
C-linear and C-antilinear satisfies

iF (v) = F (iv) = −iF (v)

for all v ∈ V and hence F = 0.
If F : V →W is R-linear, then

Fl(v) :=
1

2i
(iF (v) + F (iv))

is C-linear because

Fl(iv)− iFl(v) =
1

2i
(iF (iv) + F (−v)− i2F (v)− iF (iv)) = 0

and

Fa(v) := F (v)− Fl(v) =
1

2i
(iF (v)− F (iv))

is C-antilinear. �

Proposition D.8. Let W be a complex Banach space, z ∈ U ⊂ C open and
f : U →W . The following are equivalent:

(1) f is complex differentiable at z.
(2) f is differentiable at z when viewed as a map between real Banach space,

and the differential Df(z) ∈ LR(V ;W ) is C-linear, i.e. an element of
LC(V ;W ) ⊂ LR(V ;W ).

In that case, we have
Df(z)v = f ′(z)v ∈W.

for all v ∈ C.

9One can drop the hypothesis that f ′ is continuous, it follows from the existence of f ′(z) for
ech z. However, the stronger hypothesis simplifies the proofs in my opinion, and usually it does

not take much work to verify this assumptions in practice.
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Proof. 1⇒ 2. We define, for h ∈ −z + U , an element A(h) ∈W by

A(h) :=

{
1
h (f(z + h)− f(z)) h 6= 0

f ′(z) h = 0.

Then A : −z + U →W is continuous function, and

f(z + h) = f(z) +A(h)h

for h 6= 0 and by continuity also if h = 0. The map C→W , v 7→ A(h)v is complex
linear. It follows that f is differentiable at z, Df(z) is the C-linear map v 7→ f ′(z)v.

2 ⇒ 1: let A : −z + U → LR(C;W ) be a map certifying that f is differentiable
at z. In other words,

f(z + h) = f(z) +A(h)h

and A is continuous at 0. The hypothesis says that A(0) = Df(z) is C-linear. We
can write A(h) = B(h) + C(h), where B(h) is C-linear and C(h) is C-antilinear,
using Lemma D.7. Both, B and C are continuous at 0, and C(0) = 0. Therefore

1

h
(f(z + h)− f(z)) =

1

h
(B(h)h+ C(h)h).

Since B(h) is C-linear, we have

1

h
B(h)h = B(h)1

and

| 1
h
C(h)h| ≤ ‖C(h)‖.

Altogether,

lim
h→0

1

h
(f(z + h)− f(z))−B(h)1 = 0

as C(0) = 0. It follows that f ′(z) exists and is equal to B(0)1 = A(0)1 = Df(z)1.
�

Le us give some typical examples.

Example D.9. A rational functions f(z) = p(z)
q(z) , where p, q ∈ C[z] are two poly-

nomials, is a holomorphic function U → C, where U = {z ∈ C|q(z) 6= 0}.
The functions f(z) := z, f(z) = |z|2 are not holomorphic.

Example D.10. Let A be a unital complex Banach algebra. Then the function

ι : A× → A, a 7→ a−1

whose real differentiability was shown in D.3, is in fact holomorphic.

D.3. Power series. Let ak ∈ V and consider the series

(D.11)

∞∑
k=0

akz
k.

Lemma D.12. (1) If |akrk| ≤ C for all k, and |z| < r, the series (D.11) is
absolutely convergent.

(2) There is a unique R ∈ [0,∞], such that (D.11) converges absolutely for all
|z| < R and diverges for all |z| > R. R is called the radius of convergence.
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(3) R is given by the formula

(D.13) R =
1

lim supn |an|1/n
.

Proof. 1 follows from the estimate |akzk| ≤ C( |z|r )k.
2: We let

R := sup{r ≥ 0|∃C∀k : |akrk| ≤ C} ∈ [0,∞].

If |z| > R, then |akzk| is unbounded and hence (D.11) diverges. If |z| < R, there
is |z| < r < R and C such that |akrk| ≤ C for all k. Then

∑∞
k=0 akz

k is absolutely
convergent.

3: If

|z| > 1

lim supn |an|1/n
= lim inf

n

1

|an|1/n
,

there are infinitely many n such that

|z| ≥ 1

|an|1/n

and hence

|anzn| ≥ 1.

Therefore (D.11) diverges for such z.
If

|z| < lim inf
n

1

|an|1/n
,

pick s > |z| such that

s < lim inf
n

1

|an|1/n
,

which means that

s <
1

|an|1/n

for almost all n, and hence

sn|an| < 1

for almost all n. Therefore

|anzn| = sn|an|(
z

s
)n

for almost all n, and (D.11) converges for such z. �

The formula (D.13) for the radius is often not very convenient, and can sometimes
be replaced by a simpler formula.

Lemma D.14. Let (an)n be a sequence in C, such that an 6= 0 for all n. Assume
that

lim
n

|an+1|
|an|

∈ [0,∞)

exists. Then

lim
n

|an+1|
|an|

= lim sup
n
|an|1/n.
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Proof. Write bn := |an|,
P := lim sup

n
|an|1/n,

and

Q := lim
n

|an+1|
|an|

.

Let ε > 0. Let m such that | bn+1

bn
−Q| ≤ ε for all n ≥ m. For such n, we have

bn = bm
bm+1

bm
· · · bn

bn−1

and hence

(bn)1/n ≤ (bm)1/n(Q+ ε)
n−m
n

as well as

(bn)1/n ≥ (bm)1/n(Q− ε)
n−m
n

For q > 0 and C > 0, we have

lim
n
C1/nq

n−m
n = lim

n
C1/nq(

1

qm
)

1
n = q.

Therefore, if Q = 0, we have

lim sup
n

b1/nn ≤ ε

for each ε > 0 and hence P = 0. For Q > 0, we get that

Q− ε ≤ P ≤ Q+ ε

for all ε > 0 and hence P = Q as well. �

Now let
∑∞
n=0 anz

n have have convergence radius R > 0 and consider the func-
tion

f(z) =

∞∑
n=0

anz
n

from BR(0) ⊂ C to V . Our goal is to prove that f is holomorphic, and the derivative
is the limit of the formally differentiated series

(D.15)

∞∑
n=1

annz
n−1.

Lemma D.16. The series (D.15) has the same radius of convergence as the original
series (D.11). The function

f(z) =

∞∑
n=0

anz
n

is holomorphic in the open disc of convergence, and the formula

f ′(z) =

∞∑
n=1

annz
n−1

holds.
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Proof. 1: if (D.15) converges for z 6= 0 and n ≥ 1, then

|anzn| ≤ |z||nanzn−1|,

so that (D.11) is also convergent for z. Vice versa, let R be the radius of convergence
for (D.11) and |z| < R. Pick q ∈ (0, 1) such that |z| < qR < R. There is q < s < 1
and C such that

|ansnRn| ≤ C
for all n. Then

|(n+ 1)an+1q
nRn| ≤ (n+ 1)(

q

s
)nC → 0

is in particular bounded, so that (D.15) converges for z.
2: We compute

1

h
((z + h)n − zn)− nzn−1h =

1

h

n−2∑
k=0

(
n

k

)
zkhn−k = h

n−2∑
k=0

(
n

k

)
zkhn−k−2 =

= h

n−2∑
k=0

(
n− 2

k

)
zkhn−k−2

(
n
k

)(
n−2
k

) .
But (

n
k

)(
n−2
k

) =
n!k!(n− k − 2)!

k!(n− k)!(n− 2)!
=

n(n− 1)

(n− k)(n− k − 1)
≤ 1

2
n(n− 1)

if 0 ≤ k ≤ n. Therefore

| 1
h

((z+h)n−zn)−nzn−1h| ≤ n(n− 1)

2
|h|

n−2∑
k=0

(
n− 2

k

)
|z|k|h|n−k−2 =

n(n− 1)

2
|h|(|z|+|h|)n−2.

Let

g(z) =

∞∑
n=1

annz
n−1.

Then

| 1
h

(f(z + h)− f(z))− g(z)| = |
∞∑
n=1

an(
(z + h)n − zn

h
− nzn−1)| ≤

≤ |h|
∞∑
n=1

|an|
n(n− 1)

2
(|z|+ |h|)n−2.

If |z| < R and |h| ≤ 1
2 (R−|z|), we have |z|+|h| ≤ 1

2 (R+|z|), and so
∑∞
n=1 |an|

n(n−1)
2 (|z|+

|h|)n−2 <∞. It follows that

lim
h→0

1

h
(f(z + h)− f(z))− g(z) = 0 �.

The most prominent example of a holomorphic function defined by a power series
is the exponential function

ez := exp(z) :=
∑
n=0

1

n!
zn ∈ C

which converges absolutely for each z ∈ C.

D.4. The local Cauchy theorem.
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D.5. Curve integrals. The fundamental theorem of calculus implies that each
continuous function f : I → R defined on an interval in R has a primitive function
F , i.e. a differentiable function with F ′ = f . For continuous functions on open
subsets of C, this is not true, and the failure is quite interesting. We will from
now on only consider holomorphic functions with values in C, but the extension to
Banach space valued functions is not very difficult.

As a first motivating step, let U ⊂ C be open and let f : U → C be continuous.
Suppose that f has a primitive function F : U → C, which by definition means a
holomorphic function F with F ′ = f . Let γ : [0, 1] → U be a smooth map. The
function [0, 1]→ C, t 7→ F (γ(t)) is differentiable, and by the fundamental theorem
of calculus, we get

(D.17) F (γ(1))− F (γ(0)) =

∫ 1

0

d

dt
F (γ(t))dt =

∫ 1

0

f(γ(t))γ′(t)dt.

In the second equality, we used the chain rule: if f is just differentiable, we have
for v ∈ C that

D(F ◦ γ)(t)v = DF (γ(t))Dγ(t)v,

but Dγ(t)v = γ̇(t)v and DF (γ(t))Dγ(t)v = F ′(γ(t))γ̇(t)v. We take equation (D.17)
as motivation for the following definition.

Definition D.18. Let U ⊂ C be open, let f : U → C be a continuous function and
let γ : [0, 1]→ U be a smooth path. We define∫

γ

f(z)dz :=

∫ 1

0

f(γ(t))γ′(t)dt.

It follows that for a holomorphic function f and any path γ : [0, 1]→ U , we have

f(γ(1))− f(γ(0)) =

∫
γ

f ′(z)dz.

Theorem D.19. Let U ⊂ C be open, f : U → C holomorphic, and let Γ : (−ε, ε)×
[0, 1]→ U be a smooth map. Define smooth curves

γs(t) := Γ(s, t).

Then the function F : (−ε, ε)→ C defined by

F (s) :=

∫
γs

f(z)dz

is differentiable and satisfies

F ′(s) = f(γs(1))
∂

∂s
γs(1)− f(γs(0))

∂

∂s
γs(0).

Proof. Compute

F (s) =

∫
γs

f(z)dz =

∫ 1

0

f(Γ(s, t))
∂

∂t
Γ(s, t)dt.

This is differentiable by the theorem on differentation under the integral sign, and
the derivative is

F ′(s) =

∫ 1

0

∂

∂s

(
f(Γ(s, t))

∂

∂t
Γ(s, t)

)
dt =
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(D.20) =

∫ 1

0

(
∂

∂s
f(Γ(s, t)))

∂

∂t
Γ(s, t)dt+

∫ 1

0

f(Γ(s, t))(
∂

∂s

∂

∂t
Γ(s, t))dt.

The first integral is equal to∫ 1

0

f ′(Γ(s, t)))
∂

∂s
Γ(s, t)

∂

∂t
Γ(s, t)dt =

=

∫ 1

0

∂

∂t
f ′(Γ(s, t)))

∂

∂s
Γ(s, t)dt = ( partial integration)

= −
∫ 1

0

f ′(Γ(s, t)))
∂

∂t

∂

∂s
Γ(s, t)dt+ [f(Γ(s, t)

∂

∂s
Γ(s, t)]1t=0.

By Schwarz’ theorem on the symmetry of higher partial derivatives, the first sum-
mand cancels against the second summand in (D.20), and the theorem is proven. �

To make use out of this computation, we introduce a couple of notions.

Definition D.21. Let U ⊂ C be open. Let γ0, γ1 : [0, 1]→ U be smooth.

(1) A smooth homotopy Γ : γ0  γ1 is a smooth map

Γ : [0, 1]× [0, 1]→ U

such that Γ(i, t) = γi(t) for all t and i = 0, 1.
(2) If γ0(0) = γ1(0), γ0(1) = γ1(1), a homotopy Γ will be relative endpoints,

provided that

Γ(s, i) = γ0(i)

for i = 0, 1 and all s.
(3) If γ0 and γ1 are closed curves, i.e. γi(0) = γi(1), Γ is a homotopy of closed

curves, provided that

Γ(s, 0) = Γ(s, 1)

for all s.

It is easy to prove that these various notions of homotopy are equivalence rela-
tions on the sets of curves.

D.6. The main theorem of the local theory.

Definition D.22. A subset U ⊂ C is star-shaped with respect to z0 ∈ U if for
each z ∈ U and each t ∈ [0, 1], z0 + t(z − z0) ∈ U .

For example C, as well as balls Br(z) are star-shaped.

Corollary D.23 (Cauchy integral theorem). Let U ⊂ C be open and star-shaped
with respect to z0 and let f : U → C be holomorphic. Then for each closed curve γ
in U , we have ∫

γ

f(z)dz = 0.

Proof. Let Γ : [0, 1]× [0, 1]→ U , Γ(s, t) := z0 + s(γ(t)− z0). Then γs(t) := Γ(s, t)
is a smooth closed curve for each s. By Theorem D.19, the function

G : [0, 1]→ C, G(s) :=

∫
γs

f(z)dz
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is constant, but G(1) =
∫
γ
f(z)dz and

G(0) =

∫
γ0

f(z)dz =

∫ 1

0

f(z0)γ̇s(t)dt = 0.

�

For w ∈ C and r > 0, we let Cr(w) be the curve

t 7→ w + re2πit.

Then ∫
Cr(w)

1

z − w
dz =

∫ 1

0

1

re2πit
2πire2πitdt = 2πi

∫ 1

0

1dt = 2πi.

Theorem D.24 (Cauchy integral formula). Let U ⊂ C be open and let f : U → C
be holomorphic, z ∈ U and Br(z0) ⊂ U . Then for all z ∈ Br(z0), we have

f(z) =
1

2πi

∫
Cr(z)

f(w)

w − z
dw.

Proof. The function g(w) := f(w)
w−z is holomorphic on U \ z, and the closed curves

Cr(z0) and Cδ(z) are homotopic through closed curves in U \ z, for small enough
δ > 0. From Theorem D.19, we see that

1

2πi

∫
Cr(z0)

f(w)

w − z
dw =

1

2πi

∫
Cδ(z)

f(w)

w − z
dw =

=
1

2πi

∫ 1

0

f(z + δe2πit)

δe2πit
2πiδe2πitdt =

=

∫ 1

0

f(z + δe2πit)dt.

But

lim
δ→0

∫ 1

0

f(z + δe2πit)dt = f(z). �

Now assume that Br(z0) ⊂ U . Then whenever z ∈ Br(z0), we have by Theorem
D.24

f(z) =
1

2πi

∫
Cr(z0)

f(w)

w − z
dw =

1

2πi

∫
Cr(z0)

f(w)

(w − z0)− (z − z0)
dw =

=
1

2πi

∫
Cr(z0)

f(w)

w − z0

1

1− z−z0
w−z0

dw =

=
1

2πi

∫
Cr(z0)

f(w)

w − z0

∞∑
n=0

(z − z0)n

(w − z0)n
dw =

=

∞∑
n=0

(
1

2πi

∫
Cr(z0)

f(w)

(w − z0)n+1
dw)(z − z0)n.

The exchange of integration and summation is justified because the geometric series
converges uniformly on im(Cr(z0)). We arrive at the following fundamental result.
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Theorem D.25. Let U ⊂ C be open, z0 ∈ U and Br(z0) ⊂ U . Let f : U → C be
holomorphic. Define

an :=
1

2πi

∫
Cr(z0)

f(w)

(w − z0)n+1
dw ∈ C.

Then

(1) The power series
∞∑
n=0

an(z − z0)n

converges absolutely and locally uniformly on Br(z0) to f .
(2) f is smooth, and all derivatives of f are holomorphic.
(3) The estimate

|an| ≤ ‖f |∂Br(z0)‖
2π

rn

holds.

Proof. We have shown (1). Part (2) follows, because sums of power series are
holomorphic in the interior of the disc of convergence. The estimate follows from

an =
1

2πi

∫
Cr(z0)

f(w)

(w − z0)n+1
dw = 2πi

∫ 1

0

f(z0 + re2πit)

rne2πint
dt

and the standard estimate for integrals over compact intervals. �

Corollary D.26 (Liouville’s Theorem). A bounded holomorphic function f : C→
C is constant.

Proof. If |f(z)| ≤ C for all z ∈ C, we have

|an| ≤
2πC

rn

for all r > 0, and hence an = 0 whenever n > 0. It follows that f is constant. �
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