
THE ADAMS CONJECTURE, AFTER EDGAR BROWN
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1. Introduction

Let X be a finite CW-complex. Denote by Sph(X) the abelian group of stable
fibre-homotopy classes of spherical fibrations on X. Let F (n) be the monoid of
self-homotopy-equivalences of S

n−1 and let F := colimn→∞ F (n). The classifying
space BF represents Sph(X), i.e. Sph(X) ∼= [X; BF ]. For any vector bundle ξ on
X, let J(ξ) ∈ Sph(X) be the stable fibre homotopy class of the spherical fibration
ξ \ 0 → X (cut out the zero-section). This construction defines a homomorphism
J : KO0(X) → Sph(X).

Theorem 1.1. (The Adams Conjecture)

Let X be a finite CW-complex and k ∈ Z. Let ξ be a real vector bundle on X.
Then there exists t ∈ N (which depends on ξ and k), such that J(kt(Ψk − 1)ξ) = 0.

Alternatively, one can formulate the theorem as the statement that the composi-
tion

KO0(X)
Ψk

−1
→ KO0(X)

J
→ Sph(X) → Sph(X)[

1

k
]

is zero. There are several proofs in the literature. The case when the rank of ξ is
less or equal than 2 was established by Adams [1], which led Adams to conjecture
Theorem 1.1. Adams’ result is the basis for all proofs of 1.1 in the general case.

Quillen [8] uses the technique of Brauer lifting and algebraic computations of the
cohomology of general linear groups and orthogonal groups over finite fields. Sullivan
[11] gave a proof using étale homotopy theory and Friedlander [7], following ideas
of Quillen [9], another one. A purely topological proof was given by Becker and
Gottlieb [4] depending on the transfer and the fact that the classifying space BF of
spherical fibrations is an infinite loop space. The latter fact can only proven using
infinite loop space machines, the quickest methods being Segal’s theory of Γ-spaces
[10].

In an unpublished manuscript1 [5], Edgar Brown introduced a clever argument
which avoids the use of the fact that BF is an infinite loop space. Apart from that,
his approach is similar to Becker-Gottlieb’s. In this note, we follow Brown’s method
in a somewhat modernized notation.

Here is an outline of this note. In section 2, we discuss generalities about spherical
fibrations and the ”mod k Dold theorem” [1], which is the basis for the proof of the
conjecture for bundles of small rank, which is given in 3 (there are two other places
where this theorem is used). Apart from the mod k Dold theorem, one uses the
representation theory of the group O(2). In 4, we introduce the Becker-Gottlieb
transfer and show the crucial Proposition 4.7. Based on this proposition and the

1The author of this note is indebted to Karlheinz Knapp for sending him a copy.
1
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Hopf-Samelson theorem, we show in 5 how the Adams conjecture for general vector
bundles can be derived from that for bundles with structural group Σn ≀ O(2). In
the last section 6, we show that the Adams conjecture for O(2) bundles (established
in section 3) implies the conjecture for the structural group Σn ≀ O(2). For that we
need a geometric description for the transfer in KO-theory for finite coverings. We
also show that both transfers agree in KO-theory.

We fix the following notations. All vector bundles are real. The tautological line
bundle over RP

n or PR
∞ will be denoted by γ. The trivial n-dimensional bundle

over a space X is denoted by ǫn
X or simply ǫn if X is understood. For a locally compct

space X, let X+ be the one-point compactification of X. The sphere spectrum is
denoted by S.

2. Spherical fibrations and the mod k Dold theorem

We say that a spherical fibration of fibre dimension n is a fibration E → X such
that the fibres are homotopy equivalent to a sphere S

n−1 (sic). Given two spherical
fibrations E0, E1 → X, we can form its fibrewise join E0 ∗ E1, which is a spherical
fibration of fibre dimension n0 +n1. We say that two spherical fibrations E0 and E1

are stably fibre homotopy equivalent if there exist n0, n1 ∈ N and a fibre homotopy
equivalence E0 ∗ ǫn0 → E1 ∗ ǫn1 .

The stable fibre homotopy equivalence classes of spherical fibrations form an
Abelian semigroup and its Grothendieck group is denoted by Sph(X).

Let F := colim F (Sk; Sk), where the latter space denotes base-point preserving
homotopy equivalences of S

k. F is a topological grouplike monoid and its classifying
space BF is a classifying space for equivalence classes of spherical fibrations, in other
words for any space X there is a natural bijection Sph(X) ∼= [X,BF ].

Now we will present two theorems which are used in the proof of1.1 and we shall
give plausibility arguments. Both are based on the following result of Dold [6],
Theorem 6.1. Let X be a CW-complex and let E0, E1 → X be two fibrations. If
f : E0 → E1 is a map over X which is a homotopy equivalence, then f is a fibre
homotopy equivalence.

If q : E → X is a spherical fibration and g : E → S
n−1 is a map which has

degree 1 when restricted to any fibre (i.e. f ◦ ιx is a homotopy equivalence), then
the map (q, g) : E → X × S

n−1 satisfies the assumption of Dold’s result. Therefore,
in order to show that a spherical fibration E is stably trivial, it suffices to construct
a homotopy left inverse of the inclusion ιx of the fibre (after stabilization). A first
application of that reasoning is:

Theorem 2.1. (Dold’s theorem on spherical fibrations, stable homotopy version) Let
X be a finite complex and E → X be a spherical fibration. Then [E] = 0 ∈ Sph(X)
if and only if E is S-orientable.

For a vector bundle ξ, we can phrase Theorem 2.1 as the statement that ξ is
S-orientable if and only if J(ξ) = 0.
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Proof. Let [E] = 0 ∈ Sph(X). This means that there is an n ∈ N and a fibre
homotopy equivalence E ∗ ǫn → ǫr+n. The composition Σn

Th(E) = Th(E ∗ ǫn) →
Th(ǫn+r) = Σn+r+∞X+ → Σr+nS clearly desuspends to an S-orientation of E.

Conversely, if E is S-oriented, the orientation is realized by a map u : Σn Th(E) →
S

r+n of spaces for some n ∈ N. The composition E ∗ ǫn ∗ ǫ1 → Th(E ∗ ǫn) =
Σn Th(E) → S

r+n is a homotopy left-inverse of the fibre inclusion. �

Theorem 2.2. (The mod k Dold theorem) Let E0, E1 → X be two spherical fibra-
tions over a finite complex. Assume that there exists a map f : E0 → E1 which has
degree k in any fibre. Then for some t ∈ N, kt[E0] = kt[E1] ∈ Sph(X).

Sketch of Proof. A different, but complete proof can be found in [1]. First choose a
complement E2 of E1. Then the map F ∗ id : E0 ∗ E2 → E1 ∗ E2 = ǫr has degree k
in any fibre. Thus it is enough to show the result when E1 is trivial and has very
large rank.

Assume that rk E >> dim X. We show the theorem by induction on the cells of
X. For the 0-skeleton, the result is trivial, with t = 0. So assume that there is a
t ∈ N and a map g : ktE|X(n−1) → S

N−1 which has fibrewise degree 1. The problem
we have to solve can be summarized in the diagram

(2.3) ktE|X(n−1)

��

g //
S

N−1

ϕku

��
ktE|X(n)

99

f // SN−1,

where ϕm : S
N−1 → S

N−1 is a map of degree m. Here N := ktr and u ≥ t is yet
to be determined. The obstructions to the existence of the dotted arrow lie in the
groups

Hp(ktE|X(n) , ktE|X(n−1) ; πp−1(hofib(ϕku)),

which are all trivial except in the case p = N − 1 + n. If the map φk induced
multiplication by k on homotopy groups, it would follow that πp−1(hofib(ϕku)) is
k-torsion. However, φk does not induce multiplication by k. But the homology of
hofib(ϕku) is ku-torsion by a simple application of the Leray-Serre spectral sequence
and by Serre class theory, we see that πp−1((hofib(ϕku) is k-torsion.

So we know that the obstructions to the existence of the dotted arrow in 2.3 are
all k-torsion. Therefore, when we take the Whitney sum of the diagram with itself
ku times for some u, the obstruction problem becomes solvable. This finishes the
sketch of proof. �

3. The Adams conjecture for bundles of rank ≤ 2

The Adams conjecture 1.1 is trivially true if k = 0, 1, since Ψ1 = id. For all k,
Ψk = Ψ−k. Therefore we can assume that k > 1.

The proof of 1.1 begins with a trivial observation.
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Lemma 3.1. If the Adams conjecture 1.1 holds for all vector bundles of even rank,
then it holds for all vector bundles.

Proof. Let ξ be a bundle of odd rank. By assumption ktJ(Ψk(ξ⊕ ǫ1)− (ξ⊕ ǫ1)) = 0
for some t ∈ N. But ktJ(Ψk(ξ ⊕ ǫ1) − (ξ ⊕ ǫ1)) = ktJ(Ψkξ − ξ) + ktJ(ǫ1 − ǫ1) =
ktJ(Ψkξ − ξ). �

Theorem 3.2. The Adams conjecture holds for all bundles of rank two.

We need a fact about line bundles.

Proposition 3.3. Let ξ ∈ KO0(X) be a real line bundle on a finite complex X.
Then for some t ∈ N, 2t(1 − ξ) = 0.

Proof. Because X is a finite complex, there exists a map f : X → RP
2n for some

n such that f ∗γ = ξ. But the group K̃O
0
(RP

2n) is a finite 2-group. Therefore
2e(1 − γ) = 0 for some t = t(n).

To see the assertion about K̃O
0
(RP

2n), look at the Atiyah-Hirzebruch spectral

sequence. The group H̃∗(RP
2n) is a finite 2-group, as well as H̃∗(RP

2n; Z). Therefore
KO0(RP

2n) = Z ⊕ A, A a finite 2-group. �

Let ξ → X be a 2-dimensional bundle. The first task we have to accomplish is the
computation of the Adams operation Ψkξ. Let RO(O(2)) be the real representation
ring of the group O(2). The bundle ξ induces a homomorphism RO(O(2)) →
KO0(X), which is a homomorphism of λ-rings. Therefore we need to compute
the Adams operations on RO(O(2)).

Any element of O(2) is conjugate to either an element in SO(2) or to the nontrivial
element in Z/2. Therefore the restriction map

(3.4) ι : RO(O(2)) → RO(SO(2)) × RO(Z/2)

is injective. Let λ2 be the determinant representation, 1 be the trivial representa-
tion and µ1 be the defining representation of O(2). The irreducible representation
of SO(2) defined by g 7→ gk is denoted νk, k ≥ 0; the nontrivial one-dimensional
representation of Z/2 is η.

Lemma 3.5. The Adams operations on ν1 are given by Ψkν1 = νk.

Proof. Recall that Ψk is defined using the Newton polynomials Qk:

Ψk(x) = Qk(λ
1(x), λ2(x), . . . λk(x)).

If x is 2-dimensional, λ1(x) = x, λ0(x) = λ2(x) = 1, λk(x) = 0. The recursion
formula for the Newton polynomials gives Qk − λ1Qk−1 + λ2Qk−2 = 0. Note that
ν1νk = νk−1 + νk+1. By induction, the result is true if k = 0, 1.

�
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Lemma 3.6. There exists a unique representation µk of O(2), such that ι(µk) =
(νk, 1 + η).

Proof. Uniqueness follows from the injectivity of 3.4. To show the existence, recall
that O(2) is the semidirect product Z/2 ⋉ SO(2), where the nontrivial element of
Z/2 acts by g 7→ g−1 on SO(2). The homomorphism νk : SO(2) → SO(2), g 7→ gk

is Z/2-equivariant and therefore it extends to O(2). The extension is the desired
homomorphism µk : O(2) → O(2), alias representation of O(2). �

Identify R
2 with C. The C → C, z 7→ zk is O(2)-equivariant when O(2) acts by

µ1 on the source and by µk on the target.

The Adams operations on the representation µ1 are given by the next lemma.

Lemma 3.7. Ψkµ1 = µk for odd k and Ψkµ1 = µk − λ2 + 1 for even k.

Proof. This follows from an application of the injective ι to both sides of the equa-
tions. If k is odd, then

ιΨkµ1 = Ψk(ν1, 1 + η) = (νk, 1 + η) = ιµk.

If k is even, then

ιΨkµ1 = Ψk(ν1, 1 + η) = (νk, 2),

while

ι(µk − λ2 + 1) = (νk − 1 + 1, 1 + η − η + 1).

�

Corollary 3.8. For an O(2)-bundle ξ, denote by ξ(k) the bundle associated to ξ and
the O(2)-representation µk. Then there exists a nonlinear fibrewise map f : ξ → ξ(k)

which has degree k in any fibre.

Proof of Theorem 3.2. Let ξ be an O(2)-bundle. If k is odd, then

Ψk(ξ) − ξ = ξ(k) − ξ

by 3.7. By Corollary 3.8, there is a fibrewise map ξ → Ψkξ of degree k. By the
mod k Dold theorem 2.2, the proof is complete in that case.

If k is even, then

Ψk(ξ) − ξ = (ξ(k) − ξ) + (1 − det(ξ)).

The first summand becomes trivial after multiplication with kt and application
of J by the same argument as before. The second summand is annihilated by some
large power ks since 2s divides ks (Proposition 3.3).

�
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4. The transfer

An important tool for the proof of the Adams conjecture is the Becker-Gottlieb
transfer [4]. We give a simplified account, which is sufficient for the proof of the
Adams conjecture. Note that any finite CW-complex X can be embedded into a
euclidean space and a neighborhood of the image is a manifold which is homotopy
equivalent to X. Therefore the study of homotopy properties of vector bundles
over finite complexes can be reduced to the study of smooth vector bundles on
smooth manifolds. Let E and B be smooth manifolds and p : E → B be a proper
submersion (alias fibre bundle with closed fibre). Let TvE := ker Tp be the vertical
tangent bundle of E.

Choose an embedding j : E → B × R
n over B for some n. Let

ν(j) := p∗TB ⊕ ǫn
E/TE ∼= p∗TB ⊕ ǫn

E/(p∗TB ⊕ TvE) ∼= ǫn
E/TvE

be the normal bundle of j. Choose a tubular neighborhood of j(E), i.e. an open
embedding of the normal bundle ν(j) of j onto an open neighborhood U of j(E),
which is the identity along the zero section of ν(j). Let c : (B × R

n)+ → U+ be
the collapse map, i.e. c is the identity on U and it sends all point outside U to
the additional point of U+. Clearly ΣnB+

∼= (B × R
n)+ and U+ ∼= Th(ν(j)). The

inclusion ν(j) ⊂ ǫn
E induces a map i : Th(ν(j)) → ΣnE+. Consider the composition

i ◦ c : ΣnB+ → σnE+. The dimension n was arbitrary, and when n tends to ∞, we
obtain a map of spectra

trfp : Σ∞B+ → Σ∞E+,

the transfer of the fiber bundle p : E → B. By the Whitney embedding theorem
and the parameterized tubular neighborhood theorem, the construction of trfp is
unique up to a contractible space of choices.

We note the following facts: The transfer is natural with respect to pullbacks. In
other words, if f : B′ → B is a map and p′ : E ′ := E ×B B′ → B′ is the induced
bundle, then the diagram

(4.1) Σ∞E ′

+
// Σ∞E+

Σ∞B′

+
//

trfp′

OO

Σ∞B+

trfp

OO

is homotopy-commutative (even on the nose when the choices are appropriate).
We note two consequences of this fact. First of all, if f : A → B is the inclusion of
a subspace, EA := E|A, then we get a commutative diagram

(4.2) Σ∞EA,+
// Σ∞E+

// Σ∞E/EA

Σ∞A+
//

trfp|A

OO

Σ∞B+

trfp

OO

// Σ∞B/A.

trfp|B/A

OO
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In other words, the relative transfer is defined.

For any space X, let diagX : X → X × X be the diagonal map. The obvious
pullback diagram

(4.3) E

p

��

diagE // E × E
p×id // B × E

id×p

��
B

diagB // B × B

leads to the commutative diagram of spectra

(4.4) Σ∞E+

diagE // Σ∞E+ ∧ Σ∞E+
p∧id // Σ∞B+ ∧ Σ∞E+

Σ∞B+

trfp

OO

diagB // Σ∞B+ ∧ Σ∞B+.

id∧ trfp

OO

Proposition 4.5. Let p : E → B be a fibre bundle and let A be a commutative
ring spectrum with multiplication map µ : A ∧ A → A. Then for any (x, y) ∈
A∗(B) × A∗(E), we have the equality trf∗p(p

∗x · y) = x trf∗p(y).

Proof. This follows immediately from the diagram 4.4. More precisely

(4.6)
trf∗p(p

∗x·y) = µ◦(x∧y)◦(p∧id)◦diagE ◦ trfp = µ◦(x∧y)◦(id∧ trfp)◦diagB = x·trf∗p(y).

�

Proposition 4.7. Let p : E → X be a smooth proper fibre bundle with fibre F . Then
the composition trf∗p p∗ : H∗(X) → H∗(X) is multiplication by the Euler number
χ(F ).

Proof. By 4.5, we have trf∗p p∗(x) = trf∗p(p
∗(x) · 1) = x trf∗p(1). Without loss of

generality, we can assume that X is connected. Let x → X be the inclusion of a
base-point; the diagram

(4.8) F //

c

��

E

p

��
x // X

is a pullback-diagram. Moreover, H0(X) → H0(x) is an isomorphism. Therefore
it is enough to show that trf∗c(1) = χ(F ). This is the same as showing that the
degree of the composition

(4.9) τ : S
n → Th ν(j) → S

nF+ → S
n
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is χ(F ). Here F is embedded into R
n via j : F → R

n. The first map is the
collapse map, the second one is induced by the inclusion ν(j) → F × R

n and the
last map is the projection. Let U be an ǫ-tubular neighborhood of F , f : U → F
the retraction map. Then the map U → D

n
ǫ which sends x to x−f(x) is proper and

extends to U+ → (Dn
ǫ )+ ∼= S

k. The composition with the collapse S
n → U+ is τ . Let

φt : F → F be an isotopy of F with φ0 = id. Instead of x 7→ x−f(x) we can consider
x 7→ φt(f(x)): they are homotopic. If the fixed points of φt are nondegenerate, we
can compute the degree from the preimages of 0, which are precisely the fixed points
of φt. Let φt be generated by a nondegenerate vector field V , it follows that

deg(τ) =
∑

x∈F

indx V = χ(F );

the latter equality is true by the Poincaré-Hopf theorem.

�

5. Reduction of the general conjecture to bundles with structural

group Σn ≀ O(2)

Proposition 5.1. (Brown’s clever trick) Let F → E
p
→ B be a smooth fibre bundle

such that the fibre F is connected2 and has χ(F ) = 1. Let ξ be a real vector bundle
of rank r on B. If J(p∗ξ) = 0, then J(ξ) = 0.

Proof. Let u : Th(p∗ξ) → ΣrS be a Thom class whose existence is asserted by
Dold’s theorem 2.1 and the assumption that J(p∗ξ) = 0. Let B̃ and Ẽ be the sphere
bundles of ξ⊕ ǫ1 and p∗ξ⊕ ǫ1, respectively. Observe that Ẽ = E×B B̃, whence there
is a fibration p̃ : Ẽ → B̃ with fibre F . Let τ be the relative transfer

τ : Σ∞(B̃/B) → Σ∞(Ẽ/E).

But B̃/B ∼= Th(ξ) and Ẽ/E ∼= Th(p∗ξ). Thus τ is a map

Th(ξ) → Th(p∗ξ).

We want to show that the composition u◦τ : Th(ξ) → ΣrS is an S-Thom class for
ξ. Let x ∈ B be an arbitrary base-point, let ix : S

r → B̃ be the inclusion of a fibre
and let jx : S

r → Th(ξ) be the composition of ix with the quotient map B̃ → Th(ξ).
It induces jx : ΣrS → Th(ξ). We have to show that u ◦ τ ◦ jx has degree ±1. We
clearly have a pullback diagram

(5.2) F × S
r //

��

Ẽ = Th(p∗ξ)

��

S
r

jx // B̃ = Th(ξ).

2Removing this hypothesis requires an only marginally more complicated proof.



THE ADAMS CONJECTURE, AFTER EDGAR BROWN 9

Therefore the diagram of transfers

(5.3) ΣrΣ∞F+
inc // Th(p∗ξ)

u // ΣrS

ΣrS
jx //

trf

OO

Th(ξ)

τ

OO

commutes. Moreover, the composition of the inclusion map inc : ΣkΣ∞F+ →
Th(p∗ξ) with u is an S-orientation of the trivial bundle F × R

k. Therefore its
degree (note that Z ∼= π0(Σ

∞F+)) is ±1. Therefore the degree of the composition
u ◦ τ ◦ jx = u ◦ inc ◦ trf is ±χ(f) = ±1 by Proposition 4.7. �

Theorem 5.4. If the Adams conjecture holds for all bundles with structural group
Σn ≀ O(2) := Σn ⋉ O(2)n, (for all n, on all spaces X) then it holds for all vector
bundles.

Proof. First we collect a few facts about Lie groups. Let G be a connected compact
Lie group with maximal torus T and Weyl group W = NT/T . A well-known
theorem (Hopf-Samelson) says that the Euler number χ(G/T ) of the quotient is
equal to |W |, the order of the Weyl group. Therefore χ(G/NT ) = 1. We apply this
to the group SO(2n). Let T = SO(2)n ⊂ SO(2n) be the standard maximal torus.
Let N0T be the normalizer in SO(2) and NT be the normalizer in O(2n). Because
SO(2n)/N0T = O(2n)/NT , it follows that χ(O(2n)/NT ) = 1.

The normalizer NT ⊂ O(2n) can be identified with the wreath product Σn ≀O(2).

Now let ξ → X be an arbitrary vector bundle on a finite complex X. We want to
show that the Adams conjecture holds for ξ, under the assumption of the theorem.
By 3.1, we can assume that the rank of ξ is even, say rk ξ = 2n.

Let P → X be the associated O(2n)-principal bundle and let E := P/(Σn ≀

O(2))
p
→ P/O(2n) = X. This is a smooth fibre bundle with fibre O(2n)/(Σn ≀O(2)),

which has Euler number 1.

On the other hand, p∗ξ has structural group Σn ≀ O(2). By assumption, the
Adams conjecture holds for p∗(ξ). In other words, there exists a t ∈ N such that
J(p∗kt(Ψk − 1)ξ) = 0. Now represent the element kt(Ψk − 1)ξ ∈ KO0(X) as a
difference ζ − ǫm for some vector bundle ζ and some m ∈ N. Therefore J(p∗η) = 0
and by Proposition 5.1 it follows that J(η) = 0, which is what we had to show. �

6. Reduction to O(2)-bundles

For the last step, we need to introduce the geometric transfer in KO-theory for
finite coverings. Let f : X → Y be a finite covering of degree n and ξ → X a vector
bundle of rank m. Let f!ξ be the vector bundle on Y of rank mn whose fibre at
y ∈ Y is the vector space of sections in ξ|f−1(y), which is the same as

⊕
x∈f−1(y) ξx.

This construction defines a map

f! : KO0(X) → KO0(Y ),

the geometric transfer of f .
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Proposition 6.1. For any Σn ≀ O(2)-bundle ξ on a space Y , there exists an n-fold
covering f : X → Y and an O(2)-bundle λ such that f!λ ∼= ξ.

Proof. We need the notion of induced representations. Let H ⊂ G be two groups,
where H has finite index in G. Let V be an H-representation. It defines a G-vector
bundle G ×H V → G/H. The space of its sections is a G-representation denoted
indG

H V .

In our specific situation, let H := O(2) × (Σn−1 ≀ O(2)) ⊂ Σn ≀ O(2) =: G; this
is an index n subgroup. The projection on the first factor is a homomorphism
ρ : H → O(2) and the induced representation indG

H ρ is isomorphic to the standard
representation W of G.

Let P be a G-principal bundle for ξ and put X := P/H. Clearly there is an
n-sheeted covering p : X → Y and P → X is an H-principal bundle. Let λ :=
P ×H,ρ R

2. The assertion that p!λ ∼= ξ is a simple consequence of the fact about
induced representations. �

Proposition 6.2. The geometric transfer commutes with Adams operations after
inverting k, more precisely, for a finite covering f : X → Y , a vector bundle ξ on
X, there exists t ∈ N such that kt(Ψkf!ξ − f!Ψ

kξ) = 0.

The proof of 6.2 is deferred, because it needs a further detour. First we show how
to finish the proof of the Adams conjecture.

Proof of the Adams conjecture. By 5.4, it remains to show the Adams conjecture
for an Σn ≀ O(2)-bundle, assuming (3.2) that it holds for O(2)-bundles. Let ξ be a
Σn ≀ O(2)-bundle on Y . By 6.1, write ξ = f!λ. Then for some sufficient large power
kt

(6.3) ktJ((Ψk − 1)ξ) = J(kt(Ψk − 1)f!λ) = J(f!k
t(Ψk − 1)λ)

by Proposition 6.2. By 3.2, there exists an s ∈ N such that there is a degree ks

fibrewise map h : Ψkλ → λ.

By taking fibrewise joins, it follows that there is a degree ksn fibrewise map
f!Ψ

kλ → f!λ. �

Now we turn to the proof of 6.2. First note that inversion of k is indeed necessary.
Consider the covering f : EZ/2 → BZ/2. Clearly f!(ǫ

1) = γ + ǫ1. Thus Ψ2f!(1) −
f!(Ψ

21) = Ψ2(1 ∗ γ)− 1− γ = 1− γ 6= 0. The situation does not improve by passing
to finite subcomplexes.

There are essentially two possibilities to prove 6.2. The first method is representation-
theoretic and the argument can be found in [8], at least for finite structural groups.
We give a topological proof.

Proposition 6.4. For a finite covering f : X → Y , Y compact, the maps f! :
KO0(X) → KO0(Y ) and trf∗f : KO0(X) → KO0(Y ) coincide.
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Proof. There is a short proof based on the Atiyah-Singer family index theorem for
elliptic operators. In our case, the covering is considered to be a manifold bundle.
Let V → X be a real vector bundle. The operator from sections of V to 0 is an
elliptic operator; f!V is the analytic index while trf∗f V is the topological index.

For those who prefer not to use the index theorem, there is the following more
elementary argument.

Let X be a locally compact space. Then elements in the K-theory with compact
support KO0

c (X) are represented by complexes

0 → V0
φ1
→ V1 . . . → Vn

φn
→ 0

of vector bundles on X, such that the Vi are trivialized outside a compact set,
the maps φi are constant and the complex is exact. For the equivalence relation
between such complexes and further details, compare [3]. For any open embedding
j : U → X, there is an map j! : U → X, given by extension of complexes by constant
ones. Let U ; W ; Z be locally compact spaces, j : U → W be an open embedding,
h : W → Z a finite covering such that h ◦ j : U → Z is an open embedding. We
claim that h! ◦ jj = (h ◦ j)!, where, of course h! is the geometric transfer. This can
be seen as follows. If j is a homeomorphism, then the statement can be checked
directly. For general j, look at the diagram

U
h◦j

$$I

I

I

I

I

I

I

I

I

I

I

j// h−1(j(U))d
h// ⊂ // Y

��
j(U)

⊂ // Z

with cartesian right square.

Now return to the situation of the Proposition. Let j : X → Y × R
8m be an

embedding. Consider the diagram

(6.5) KO0(X)
f! //

β

��

KO0(Y )

β

��

KO0
c (X × R

8m)
(f×id)!// KO0

c (Y × R
8m).

The vertical maps are the Bott periodicity maps and the diagram commutes by the
definition of the latter ones. Consider the homotopy h : [0, 1]×X ×R

8m → Y ×R
8m

defined by the formula:

(6.6) hs(x, v) := (f(x), v + sj(x));

this is a proper homotopy through coverings starting at f × id. Therefore (f ×
id)! = (h1)!. Let ι : X × R

8m → Y × R
8m be a a tubular neighborhood of the image

of j; we can choose it to agree with h1 on X × D
8m
δ for some δ > 0. In other words,
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ι is the composition h1 ◦ inc; inc : X × D
8m
δ → X × R

8m. Also inc! = id (suitably
interpreted). Therefore

(f × id)! = (h1)! = ι!.

But the homotopy-theoretic transfer of f is, up to Bott periodicity maps, the
same as the extension map ι! : KO0

c (X × R
8m) → KO0

c (Y × R
8m). �

Proof of 6.2. We know that the Adams operations Ψk : Z × BO → Z × BO are
not infinite loop maps. But they are infinite loop maps when k is inverted: Ψk :
BO → BO[ 1

k
] is an infinite loop map, in other words, there is a map of spectra

Ψk : KO → KO[ 1
k
] which induces Ψk on infinite loop spaces. But maps of spectra

commute with the homotopy theoretic transfer (for trivial reasons). More precisely,
for x ∈ KO0(X), both, Ψk(trf∗f x) and trf∗f Ψk(x) are represented by

(6.7) Σ∞Y+

trff
→ Σ∞X+

x
→ KO

Ψk

→ KO[
1

k
].

By 6.4, the same is true for the geometric transfers. Spelling this out gives the
result. �
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