THEOREMS OF GROTHENDIECK-SERRE AND BASS-HELLER-SWAN

JOHANNES EBERT

1. Introduction

Let R be a ring. Recall that $K_{0}(R)$ is the Grothendieck group of the semigroup of all isomorphism classes of finitely generated projective R-modules. The assignment $R \mapsto K_{0}(R)$ is a covariant functor from the category of rings to the category of abelian groups; for a ring homorphism $f: R \rightarrow S$, one defines $f_{*}: K_{0}(R) \rightarrow K_{0}(S)$ by $[P] \mapsto\left[P \otimes_{R} S\right]$. Any ring has a canonical homomorphism $j: \mathbb{Z} \rightarrow R$, and we define the reduces K_{0}-group of R to be

$$
\widetilde{K}_{0}(R):=\operatorname{coker}\left(j_{*}: \mathbb{Z} \cong K_{0}(\mathbb{Z}) \rightarrow K_{0}(R)\right)
$$

If R admits a unital homomorphism to a field F, then j_{*} is split-injective.
Theorem A (Grothendieck-Serre). The inclusion $j: \mathbb{Z} \rightarrow \mathbb{Z}\left[\mathbb{Z}^{n}\right]$ induces an isomorphism

$$
j_{*}: K_{0}(\mathbb{Z}) \cong K_{0}\left(\mathbb{Z}\left[\mathbb{Z}^{n}\right]\right)
$$

Hence $\widetilde{K}_{0}\left(\mathbb{Z}\left[\mathbb{Z}^{n}\right]\right)=0$.
This was first proven by Grothendieck, and the proof that we shall discuss was given by Serre [15]. I was unable to locate a proof written down by Grothendieck, but both proofs are discussed in [4, ch. XII, §3, §4].

For the next result, let us recall the definition of the first algebraic K-theory group $K_{1}(R)$ of a ring and the Whitehead group $\mathrm{Wh}(G)$ of a group. If R is a ring, the general linear groups are ordered by inclusion:

$$
R^{\times}=\mathrm{GL}_{1}(R) \subset \mathrm{GL}_{2}(R) \subset \ldots
$$

and the union $\mathrm{GL}(R)$ is the infinite general linear group. The subgroup $E(R) \subset$ $\mathrm{GL}(R)$ generated by the elementary matrices is equal to the commutator subgroup $[\mathrm{GL}(R), \mathrm{GL}(R)]$, by the Whitehead lemma [11, Lemma 3.1]. One defines

$$
K_{1}(R):=\frac{\mathrm{GL}(R)}{E(R)}=\mathrm{GL}(R)^{\mathrm{ab}}
$$

A ring homomorphism $f: R \rightarrow S$ induces a group homomorphism GL $(R) \rightarrow \mathrm{GL}(S)$ and hence $f_{*} K_{1}(R) \rightarrow K_{1}(S)$.

Now let G be a group and let $\mathbb{Z}[G]$ be the integral group ring of G. If $g \in G$, then $\pm g \in \mathbb{Z}[G]$ is a unit (a so called trivial unit. The set of trivial units is a subgroup $\pm G \cong \mathbb{Z} / 2 \times G$ of $\mathrm{GL}_{1}(\mathbb{Z}[G])$. We obtain a homomorphism

$$
i: \pm G \subset \mathrm{GL}_{1}(\mathbb{Z}[G]) \rightarrow \mathrm{GL}(\mathbb{Z}[G]) \rightarrow K_{1}(\mathbb{Z}[G])
$$

whose cokernel is the Whitehead group $\mathrm{Wh}(G)$ of G. The following result was first proven in [3].

Theorem B (Bass-Heller-Swan). The Whitehead group of \mathbb{Z}^{n} is trivial; $\mathrm{Wh}\left(\mathbb{Z}^{n}\right)=$ 0.

The case $n=1$ is a good deal more elementary and was first shown by Higman [7].

The groups $\widetilde{K}_{0}(\mathbb{Z}[G])$ and $\mathrm{Wh}(G)$ play an important role in geometric topology. The group $\widetilde{K}_{0}(\mathbb{Z}[G])$ is the home of the Wall finiteness obstruction for finitely dominated spaces with fundamental group G [16], while $\mathrm{Wh}(G)$ is the home for the Whitehead torsion of a homotopy equivalence between finite complexes with fundamental group G [10], and of the Whitehead torsion of an h-cobordism between closed manifolds with fundamental group $G[8]$. Together with the results from the quoted papers, Theorems A and B show that
(1) If X is a finitely dominated space with fundamental group \mathbb{Z}^{n}, then X is homotopy equivalent to a finite CW-complex.
(2) If $f: X \rightarrow Y$ is a homotopy equivalence between finite CW-complexes with fundamental group \mathbb{Z}^{n}, then f is a simple homotopy equivalence.
(3) If $W: M \rightsquigarrow N$ is an h-cobordism between closed smooth manifolds with fundamental group \mathbb{Z}^{n}, and if $\operatorname{dim}(W) \geq 6$, then $W \cong M \times[0,1]$ relative to M.
Some of the fundamental results about topological manifolds are proven by a torus argument, which brings a torus (a space with fundamental group $\mathbb{Z}^{n}!$) into play in a somewhat unnatural manner. Theorems A and B show that the possible obstructions in $\widetilde{K}_{0}\left(\mathbb{Z}\left[\pi_{1}\left(T^{n}\right)\right]\right)$ and $\mathrm{Wh}\left(\pi_{1}\left(T^{n}\right)\right)$ are trivial, and this if often one of the key ingredients to a torus argument. Among the results which are proven (or can be proven) by a torus argument are the following:
(1) The topological invariance of rational Pontrjagin classes by Novikov [12].
(2) Several pivotal proofs in Kirby-Siebenmann's theory of topological manifolds [9] (the proof of the stable homeomorphism theorem by Kirby makes only implicit use of Theorems A and B.
(3) The topological invariance of Whitehead torsion (originally proven by Chapman [5), and West's theorem [17] that a compact ENR has the homotopy type of a finite complex, have fairly accessible proofs by torus arguments in [6, $\S 17,18]$.
Theorems A and B are proven in the books [4] and [14]. However, these texts prove more general versions, and the actual arguments are scattered over a large number of pages. In this note, we attempt to present the argument in a geodesic way, designed for the reader who just wants to know why A and B are true and then wants to return his attention to geometric topology. The reader who wants to understand these results in the wider context of higher algebraic K-theory should follow Quillen [13, §6].

2. Some commutative algebra

For the rest of this note, R will always be a commutative ring with unit (this assumption is mostly made for convenience, to avoid disctinction between left and right modules). There are two finiteness conditions on a ring which will play an important role in the proofs.

Definition 2.1. A ring R is noetherian if each ideal $I \subset R$ is finitely generated.

Equivalently, R is noetherian if each submodule of a finitely generated R-module is again finitely generated [1, Proposition 6.5]. The following famous theorem of Hilbert is a standard result of commutative algebra.

Theorem 2.2 (Hilbert's basis theorem). If R is noetherian, the so are the polynomial ring $R[t]$ and the Laurent polynomial ring $R\left[t^{ \pm}\right]$.

The proof of the first assertion can be found in [1, Theorem 7.5], and this implies the second one by virtue of [1, Proposition 7.3] since $R\left[t^{ \pm}\right]$is a localization of $R[t]$. By induction, it follows that the ring

$$
\mathbb{Z}\left[\mathbb{Z}^{n}\right]=\mathbb{Z}\left[\mathbb{Z}^{n-1}\right]\left[t_{n}^{ \pm}\right]=\mathbb{Z}\left[t_{1}^{ \pm}, \ldots, t_{n}^{ \pm}\right]
$$

is noetherian. We denote by

$$
\operatorname{Mod}(R), \operatorname{Fin}(R), \operatorname{Proj}(R)
$$

the categories of R-modules, finitely generated R-modules and projective finitely generated R-modules.

Definition 2.3. Let R be a ring and let $M \in \operatorname{Mod}(R)$ be an R-module. We say that the projective dimension of M is at most $n, \operatorname{projdim}_{R}(M) \leq n$, if there is a projective resolution

$$
0 \rightarrow P_{n} \rightarrow \ldots \rightarrow P_{0} \rightarrow M \rightarrow 0
$$

of length n. A ring R is regular if $\operatorname{projdim}_{R}(M)<\infty$ for each R-module M.
Example 2.4. M is projective if and only if $\operatorname{projdim}_{R}(M) \leq 0$. If R is a principal ideal domain, then $\operatorname{projdim}_{R}(M) \leq 1$ for each R-module M. Hence principal ideal domains are regular.

Example 2.5. The rings $\mathbb{Z} / 4$ and $\mathbb{Z}[\mathbb{Z} / n]$ are not regular.
Lemma 2.6. An R-module M is projective if and only if $\operatorname{Ext}_{R}^{1}(M ; N)=0$ for all R-modules N.
Proof. If M is projective, then $0 \rightarrow M \xrightarrow{\text { id }} M \rightarrow 0$ is a projective resolution, which shows that $\operatorname{Ext}_{R}^{1}(M ; N)=0$. Vice versa, assume $\operatorname{Ext}^{1}(M ; N)=0$ for all N and let $f: N \rightarrow M$ be an epimorphism. The exact sequence

$$
\operatorname{Hom}(M ; N) \xrightarrow{f \circ-} \operatorname{Hom}(M ; M) \rightarrow \operatorname{Ext}_{R}^{1}(M ; \operatorname{ker}(f))=0
$$

shows that f is split surjective and hence that M is projective.
Lemma 2.7. Let M be an R-module. The following are equivalent:
(1) There is a projective resolution

$$
0 \rightarrow P_{n} \xrightarrow{d_{n}} P_{n-1} \rightarrow \ldots \rightarrow P_{0} \xrightarrow{d_{0}} M \rightarrow 0
$$

of length n.
(2) For each exact sequence

$$
0 \rightarrow Q \rightarrow P_{n-1} \xrightarrow{d_{n-1}} \ldots \rightarrow P_{0} \xrightarrow{d_{0}} M \rightarrow 0
$$

of R-modules with P_{0}, \ldots, P_{n-1} projective, the module Q is projective.
(3) $\operatorname{Ext}_{R}^{n+1}(M ; N)=0$ for each R-module N.

Proof. The implications $(2) \Rightarrow(1) \Rightarrow(3)$ are clear. To show $(3) \rightarrow(2)$, consider an exact sequence as in (2) and put

$$
M_{k}:= \begin{cases}M & k=0 \\ \operatorname{ker}\left(d_{k-1}\right)=\operatorname{Im}\left(d_{k}\right) & 1 \leq k \leq n-1 \\ Q & k=n\end{cases}
$$

By Lemma 2.6, we need to prove that $\operatorname{Ext}_{R}^{1}\left(M_{n} ; N\right)=0$ for each N. There are short exact sequences

$$
0 \rightarrow M_{k} \rightarrow P_{k-1} \rightarrow M_{k-1} \rightarrow 0
$$

which induce, for each R-module N and $p \in \mathbb{N}$, exact sequences
$0=\operatorname{Ext}_{R}^{p}\left(P_{k-1} ; N\right) \rightarrow \operatorname{Ext}_{R}^{p}\left(M_{k} ; N\right) \rightarrow \operatorname{Ext}_{R}^{p+1}\left(M_{k-1} ; N\right) \rightarrow \operatorname{Ext}^{p+1}\left(P_{k-1} ; N\right)=0$ and isomorphism

$$
\left.\operatorname{Ext}^{1}\left(M_{n} ; N\right)\right) \cong \operatorname{Ext}^{2}\left(M_{n-1} ; N\right) \cong \ldots \cong \operatorname{Ext}_{R}^{n+1}\left(M_{0} ; N\right)=0
$$

Corollary 2.8. If R is regular and noetherian, then each finitely generated R module admits a finite projective resolution, that is, a resolution of finite length by finitely generated projective R-modules.

We need another famous theorem by Hilbert.
Theorem 2.9 (Hilbert's Syzygy theorem). If R is regular, then $R[t]$ and $R\left[t^{ \pm}\right]$are regular.

Proof. Let M be an $R[t]$-module. We can view M, by restriction of scalars, as an R-module, together with an endomorphism $\varphi: M \rightarrow M$ coming from multiplication by t. The sequence

$$
0 \rightarrow R[t] \otimes_{R} M \xrightarrow{t \otimes 1-1 \otimes \varphi} R[t] \otimes_{R} M \xrightarrow{p \otimes m \mapsto p m} M \rightarrow 0
$$

is exact by a direct verification. For any $R[t]$-module N, we obtain exact sequences

$$
\operatorname{Ext}_{R[t]}^{n}\left(R[t] \otimes_{R} M ; N\right) \rightarrow \operatorname{Ext}_{R[t]}^{n+1}(M ; N) \rightarrow \operatorname{Ext}_{R[t]}^{n+1}\left(R[t] \otimes_{R} M ; N\right)
$$

Because $R[t]$ is free as an R-module, there is an isomorphism

$$
\operatorname{Ext}_{R[t]}^{n}\left(R[t] \otimes_{R} M ; N\right) \cong \operatorname{Ext}_{R}^{n}(M ; N)
$$

It follows that if $n>\operatorname{projdim}_{R}(M)$, then $\operatorname{Ext}_{R[t]}^{n+1}(M ; N)$ for all $R[t]$-modules N. In other words projdim ${ }_{R[t]} M \leq n$.

The second part follows from the first and the fact that $R\left[t^{ \pm}\right]$is a flat $R[t]-$ module. Let M be an $R\left[t^{ \pm}\right]$-module and let $\left(x_{i}\right)_{i}$ be a generating set of M, and let $M_{1} \subset M$ be the $R[t]$-module generated by $\left(x_{i}\right)_{i}$. Then (because $R\left[t^{ \pm}\right]$is a flat $R[t]$-module), there is an isomorphism $M_{1} \otimes_{R[t]} R\left[t^{ \pm}\right] \cong M$. It follows that (again using flatness)

$$
\operatorname{Ext}_{R\left[t^{ \pm}\right]}^{n}(M ; N) \cong \operatorname{Ext}_{R\left[t^{ \pm}\right]}^{n}\left(M_{1} \otimes_{R[t]} R\left[t^{ \pm}\right] ; N\right)=\operatorname{Ext}_{R[t]}^{n}\left(M_{1} ; N\right),
$$

and so projdim ${ }_{R\left[t^{ \pm}\right]} M \leq \operatorname{projdim}_{R[t]} M_{1}$.
The basis theorem and the Syzygy theorem together imply that $\mathbb{Z}\left[\mathbb{Z}^{n}\right]$ is regular noetherian.

3. Proof of the Grothendieck-Serre theorem

We shall prove a more precise version:
Theorem 3.1. Let R be a ring and let $R \xrightarrow{i} R[t] \xrightarrow{j} R\left[t^{ \pm}\right]$be the inclusions. Then if R is regular noetherian, the induced maps

$$
K_{0}(R) \xrightarrow{i_{*}} K_{0}(R[t]) \xrightarrow{j_{*}} K_{0}\left(R\left[t^{ \pm}\right]\right)
$$

are isomorphisms.
Remark 3.2. Theorem 3.1 implies Theorem A by induction (using the basis and syzygy theorem in the induction step). In order to prove Theorem 3.1, it is enough to prove that i_{*} and j_{*} are surjective. This is because the map $r: R\left[t^{ \pm}\right] \rightarrow R$, $t^{ \pm} \mapsto 1$ is a right-inverse to $j \circ i$.
Lemma 3.3. If R is regular noetherian, then $j_{*}: K_{0}(R[t]) \rightarrow K_{0}\left(R\left[t^{ \pm}\right]\right)$is surjective.

In the proof, we use the following simple observation: If

$$
0 \rightarrow N_{n} \xrightarrow{d_{n}} N_{n-1} \rightarrow \ldots \rightarrow N_{1} \xrightarrow{d_{0}} N_{0} \rightarrow 0
$$

is an exact sequence of projective R-modules, then

$$
\begin{equation*}
\sum_{i=0}^{n}(-1)^{i}\left[N_{i}\right]=0 \in K_{0}(R) \tag{3.4}
\end{equation*}
$$

To see this, one picks a split of d_{0} to write $N_{1} \cong \operatorname{Im}\left(d_{2}\right) \oplus N_{0}$, observes that $\operatorname{Im}\left(d_{2}\right)$ is projective and argues by induction.
Proof of Lemma 3.3. Let P be a finitely generated projective $R\left[t^{ \pm}\right]$-module. Since $R\left[t^{ \pm}\right]$is noetherian, we can write P as a quotient

$$
P=R\left[t^{ \pm}\right]^{n} / N
$$

where the submodule N is finitely generated. Hence we may write

$$
N=\left\langle x_{1}, \ldots, x_{r}\right\rangle
$$

where $x_{i} \in R\left[t^{ \pm}\right]^{n}$ is a vector whose entries are Laurent polynomials. There is $s \gg 0$ such that $t^{s} x_{i} \in R[t]^{n}$ for all i. Since t^{s} is a unit in $R\left[t^{ \pm}\right]$, it follows that

$$
P=R\left[t^{ \pm}\right]^{n} / N \stackrel{t^{s}}{\cong} R\left[t^{ \pm}\right]^{n} / t^{s} N=\frac{R\left[t^{ \pm}\right]^{n}}{\left\langle t^{s} x_{1}, \ldots, t^{s} x_{r}\right\rangle} \cong \frac{R[t]^{n}}{\left\langle t^{s} x_{1}, \ldots, t^{s} x_{r}\right\rangle} \otimes_{R[t]} R\left[t^{ \pm}\right]
$$

Hence we can find a finitely generated $R[t]$-module M such that

$$
P \cong M \otimes_{R[t]} R\left[t^{ \pm}\right]
$$

Because $R[t]$ is regular noetherian, there is a finite projective resolution

$$
0 \rightarrow Q_{n} \rightarrow \ldots \rightarrow Q_{0} \rightarrow M \rightarrow 0
$$

by Corollary 2.8 . Since $R\left[t^{ \pm}\right]$is a localization of $R[t]$, the functor $-\otimes_{R[t]} R\left[t^{ \pm}\right]$is exact, and hence we get a short exact sequence

$$
\begin{equation*}
0 \rightarrow Q_{n} \otimes_{R[t]} R\left[t^{ \pm}\right] \rightarrow \ldots \rightarrow Q_{0} \otimes_{R[t]} R\left[t^{ \pm}\right] \rightarrow P \rightarrow 0 \tag{3.5}
\end{equation*}
$$

of projective $R\left[t^{ \pm}\right]$-modules. Apply (3.4) to the sequence (3.5) to obtain

$$
[P]=\sum_{i=0}^{n}(-1)^{i}\left[Q_{i} \otimes_{R[t]} R\left[t^{ \pm}\right]\right]=j_{*}\left(\sum_{i=0}^{n}(-1)^{i}\left[Q_{i}\right]\right)
$$

For the proof that $i_{*}: K_{0}(R) \rightarrow K_{0}(R[t])$ is an isomorphism, we need to introduce graded rings.

Definition 3.6. A graded ring is a ring A, together with a decomposition

$$
A=\bigoplus_{n \geq 0} A_{n}
$$

such that $A_{n} A_{m} \subset A_{m+n}$. The ideal of elements of positive degree is

$$
A_{+}:=\bigoplus_{n>0} A_{n} \subset A
$$

(note that $A / A_{+} \cong A_{0}$). An element $a \in A$ is homogeneous if $a \in A_{n}$ for some n. In that case, $|a|:=n$ is the degree of a.

Note that a commutative graded ring is a different thing than a "graded commutative ring". Let us briefly list some important examples of graded rings.

- An (ungraded) ring R considered as a graded ring with $R_{0}:=R$.
- If A is graded, the polynomial ring $A[t]$ is graded, by declaring the degree of $t^{k} a$ to be $n+k$, when $|a|=n$.
- In particular, if R is ungraded, then $R[t, s]$ is graded, by declaring $|s|=$ $|t|=1$.

Definition 3.7. Let A be a graded ring. A graded A-module is an A-module M, together with a decomposition

$$
M=\bigoplus_{n \in \mathbb{Z}} M_{n}
$$

such that $A_{m} M_{n} \subset M_{m+n}$ for all m, n. A homomorphism $f: M \rightarrow N$ between graded modules is graded, if $f\left(M_{n}\right) \subset N_{n}$ for all n. Such an f can be written in the form $f=\bigoplus_{n} f_{n}$, with $f_{n}: M_{n} \rightarrow N_{n}$. A submodule $N \subset M$ of a graded module is graded if $N=\bigoplus_{n} N \cap M_{n}$. In that case, the quotient module M / N inherits a grading from that of M.

We define

$$
\operatorname{Mod}^{\mathrm{gr}}(A), \operatorname{Fin}^{\mathrm{gr}}(A), \operatorname{Proj}^{\mathrm{gr}}(A)
$$

as the categories of all graded A-modules and graded homomorphisms, and the full subcategories such that the underlying A-module is finitely generated (resp. projective). If M is a graded A-module, we define the shift $M[n]$ as the graded A-module with underlying A-module M and grading defined by

$$
M[n]_{m}:=M_{m-n}
$$

For a graded A-module M, we define the graded A_{0}-module

$$
T(M):=M / A_{+} M=M \otimes_{A} A_{0} .
$$

Lemma 3.8. Let A be a graded ring and let $M \in \mathbf{F i n}^{\mathrm{gr}}(A)$. Then
(1) M is generated by finitely many homogeneous elements.
(2) $M_{n}=0$ for $n \ll 0$.
(3) If $T(M)=0$, then $M=0$.

Proof. The first claim is true, because any generating set of M contains a finite generating set. The minimum degree $n_{0} \in \mathbb{Z}$ of an element of a homogeneous generating set has the property that $M_{n}=0$ for $n<n_{0}$, showing claim (2). If $M \neq 0$, it contains a nonzero homogeneous element m of minimal degree, and $m \notin A_{+} M$.

Lemma 3.9. Let A be a graded ring and let $P \in \mathbf{P r o j}^{\mathrm{gr}}(A)$. Then
(1) Let $M \in \operatorname{Mod}^{\text {gr }}(A)$ and let $f: M \rightarrow P$ be a surjective graded homomorphism. Then there is a graded homomorphism $g: P \rightarrow M$ with $f \circ g=\mathrm{id}$.
(2) P is a direct summand of a finitely generated free graded A-module, i.e. a sum of graded modules of the form $A[m]$.

Proof. For claim (1), write $f=\bigoplus_{n} f_{n}$, with $f_{n}: M_{n} \rightarrow P_{n}$. Let $\pi_{n}^{P}: P \rightarrow P_{n}$ and $\pi_{n}^{M}: M \rightarrow M_{n}$ be the projections and let $\iota_{n}: M_{n} \rightarrow M$ be the inclusion. Pick a split $h: P \rightarrow M$ of f of ungraded modules. We define

$$
g=\bigoplus_{n} \pi_{n}^{P} \circ h \circ \iota_{n}: P \rightarrow M
$$

Then

$$
f_{n} \circ g_{n}=f_{n} \circ \pi_{n}^{P} \circ h \circ \iota_{n}=\pi_{n}^{M} \circ f \circ h \circ \iota_{n}=\pi_{n}^{M} \circ \iota_{n}=\mathrm{id}_{M_{n}}
$$

For claim (2), use Lemma 3.8 to construct a graded surjection

$$
\bigoplus_{i=1}^{r} A\left[j_{i}\right] \rightarrow P
$$

and use part (1).
Lemma 3.10. Each $P \in \mathbf{P r o j}^{\text {gr }}(A)$ is of the form $P=M \otimes_{A_{0}} A$ for some $M \in$ Proj ${ }^{\mathrm{gr}}\left(A_{0}\right)$.

Proof. The quotient map $f: P \rightarrow T(P)$ is a surjective homomorphism of graded A_{0}-modules (P is an A_{0} module by forgetting) and $T(P)$ is projective. By Lemma 3.9 (1), there is a graded A_{0}-module map $g: T(P) \rightarrow P$ with $f \circ g=\mathrm{id}$. It induces a homomorphism of graded A-modules

$$
h: T(P) \otimes_{A_{0}} A \rightarrow P, h(x \otimes y)=g(x) y .
$$

Once we can show that h is an isomorphism, the lemma follows. To see this, observe that $T(h): T\left(T(P) \otimes_{A_{0}} A\right)=T(P) \rightarrow T(P)$ is the identity. Because T is right exact, it follows that

$$
0=\operatorname{coker}(T(h)) \cong T(\operatorname{coker}(h))
$$

Since coker (h) is a finitely generated graded A-module, it follows from Lemma 3.8 that $\operatorname{coker}(h)=0$, i.e. that h is surjective. On the other hand, since P is projective, there is a graded homomorphism $k: P \rightarrow T(P) \otimes_{A_{0}} A$ with $h \circ k=\mathrm{id}$, by Lemma 3.9. Since $T(h)$ is an isomorphism, so is $T(k)$. From

$$
\operatorname{ker}(h) \cong \operatorname{coker}(k)
$$

and the right-exactness of T, we obtain

$$
T(\operatorname{ker}(h))=T(\operatorname{coker}(k)) \cong \operatorname{coker}(T(k))=0
$$

and another application of Lemma 3.8 proves that $\operatorname{ker}(h)=0$.

Lemma 3.11. Let A be a noetherian graded ring. Then the functor

$$
-\otimes_{A[t]} A: \mathbf{F i n}^{\mathrm{gr}}(A[t]) \rightarrow \mathbf{F i n}(A)
$$

(induced by the ungraded ring homomorphism $A[t] \rightarrow A, t \mapsto 1$) is exact and essentially surjective.

Proof. Right-exactness is clear. To prove left-exactness, we have to prove that if $N \subset M$ are finitely generated graded $A[t]$-modules, then the induced map $N \otimes_{A[t]}$ $A \rightarrow M \otimes_{A[t]} A$ is injective. Because $M \otimes_{A[t]} A \cong M /(1-t) M$, we find that

$$
\operatorname{ker}\left(N \otimes_{A[t]} A \rightarrow M \otimes_{A[t]} A\right)=\frac{N \cap(1-t) M}{(1-t) N}
$$

Thus to prove left-exactness, we have to verify that

$$
\begin{equation*}
(1-t) N=N \cap((1-t) M) \tag{3.12}
\end{equation*}
$$

It is obvious that $(1-t) N \subset N \cap((1-t) M)$. For the reverse inclusion, let $m \in M$ with $(1-t) m \in N$. To see that $m \in N$, write

$$
m=m_{i}+m_{i+1}+\ldots+m_{j} \in M
$$

as a sum of homogeneous elements $m_{k} \in M_{k}$. Then

$$
(1-t) m=m_{i}+\left(m_{i+1}-t m_{i}\right)+\ldots \in N
$$

implies $m_{i}, m_{i+1}, \ldots \in N$ and hence $m \in N$.
To show that $-\otimes_{A[t]} A$ is essentially surjective, let M be a finitely generated A-module, which can be written as

$$
M=A^{n} / N
$$

with a finitely generated submodule N (here we use that A is noetherian). Let $N=\left\langle x_{1}, \ldots, x_{r}\right\rangle$ and write $x_{i}=\left(x_{i 1}, \ldots, x_{i n}\right)$ with $x_{i j} \in A$. For an arbitrary element $x \in A$, write

$$
x=x_{0}+\ldots+x_{d} \in A
$$

as a sum of homogeneous elements and define the homogenized element as

$$
x^{\prime}:=t^{d} x_{0}+\ldots+t^{0} x_{d} \in A[t]_{d} .
$$

Let

$$
N^{\prime}:=\left\langle x_{1}^{\prime}, \ldots, x_{r}^{\prime}\right\rangle \subset A[t]^{n}
$$

this is a finitely generated submodule generated by homogeneous elements and hence a graded submodule. Define a finitely generated graded $A[t]$-module

$$
M^{\prime}:=A[t]^{n} / N^{\prime}
$$

Then

$$
M^{\prime} \otimes_{A[t]} A \cong M
$$

and this finishes the proof.
The proof of Theorem 3.1 is completed by the following lemma.
Lemma 3.13. If R is regular noetherian, then the map $i_{*}: K_{0}(R) \rightarrow K_{0}(R[t])$ is surjective.

Proof. Let P be a projective finitely generated $R[t]$-module. By Lemma 3.11, there is a finitely generated graded $R[t, s]$-module M with

$$
M \otimes_{R[t, s]} R[t] \cong P
$$

(here we use the basis theorem to see that $R[t]$ is noetherian). By the Syzygy theorem and basis theorem, $R[t, s]$ is regular noetherian, and hence there is a finite projective resolution

$$
0 \rightarrow Q_{n} \rightarrow \ldots \rightarrow Q_{0} \rightarrow M \rightarrow 0
$$

by graded projective $R[t, s]$-modules (use Lemma 3.9). By Lemma 3.11, the tensored sequence

$$
0 \rightarrow Q_{n} \otimes_{R[t, s]} R[t] \rightarrow \ldots \rightarrow Q_{0} \otimes_{R[t, s]} R[t] \rightarrow M \otimes_{R[t, s]} R[t] \cong P \rightarrow 0
$$

is again a projective resolution. By Lemma 3.10, there are finitely generated projective R-modules N_{j} with $N_{j} \otimes_{R} R[t, s] \cong Q_{j}$. Therefore

$$
Q_{j} \otimes_{R[t, s]} R[t] \cong N_{j} \otimes_{R} R[t, s] \otimes_{R[t, s]} R[t] \cong N_{j} \otimes_{R} R[t]
$$

Apply (3.4) to conclude that

$$
[P]=\sum_{j \geq 0}(-1)^{j}\left[N_{j} \otimes_{R} R[t]\right] \in \operatorname{Im}\left(j_{*}\right)
$$

4. Proof of the Bass-Heller-Swan Theorem

Before we can state the version of Theorem B that we actually prove, let us recall a simple fact about $K_{1}(R)$. Suppose that P is a projective finitely generated R-module and $f: P \rightarrow P$ is an automorphism. Pick a complement Q, i.e. a finitely generated projective module such that $P \oplus Q \cong R^{n}$. The automorphism $f \oplus 1$ of R^{n} is represented by a matrix F in $\mathrm{GL}_{n}(R)$. By [11, Lemma 3.2], the class in $K_{1}(R)$ represented by F does not depend on the choice of P and the isomorphism. We denote this class by

$$
[P, f] \in K_{1}(R)
$$

The definitions are made up so that the following relations hold:

$$
\begin{array}{r}
{[P, f g]=[P, f]+[P, g]} \\
{[P, 1]=0} \\
{\left[P_{0} \oplus P_{1}, f_{0} \oplus f_{1}\right]=\left[P_{0}, f_{0}\right]+\left[P_{1}, f_{1}\right] .}
\end{array}
$$

Now we define a homomorphism

$$
\beta: K_{0}(R) \rightarrow K_{1}\left(R\left[t^{ \pm}\right]\right)
$$

by sending the class of a projective module P to $\left[P \otimes_{R} R\left[t^{ \pm}\right], t\right] \in K_{1}\left(R\left[t^{ \pm}\right]\right)$. This could legitimately be called the Bott map, due to its similarity with the Bott map in complex K-theory. In fact, a large portion of the proof of Theorem 4.1 below is very similar to one of the standard proofs [2] of the Bott periodicity theorem. Furthermore, we let $\iota: K_{0}(R) \rightarrow K_{0}\left(R\left[t^{ \pm}\right]\right)$be induced by the inclusion $R \rightarrow R\left[t^{ \pm}\right]$. Here is the version of Theorem B that we actually prove.
Theorem 4.1. If R is regular noetherian, then $(\iota, \beta): K_{1}(R) \oplus K_{0}(R) \rightarrow K_{1}\left(R\left[t^{ \pm}\right]\right)$ is surjective.
Remark 4.2. One can show that (ι, β) is in fact bijective (but one does not need to know this if one only wants to understand why $\mathrm{Wh}\left(\mathbb{Z}^{n}\right)=0$). In the special case of interest, it is fairly easy to prove.

Let us first demonstrate how to derive Theorem B from Theorem 4.1 Recall that if R is commutative, the determinant det : $\mathrm{GL}_{n}(R) \rightarrow R^{\times}$induces a homomorphism

$$
\text { det }: K_{1}(R) \rightarrow R^{\times}
$$

If R is a euclidean ring, det is an isomorphism. For example, it follows that $K_{1}(\mathbb{Z}) \rightarrow$ $\{ \pm 1\}$ is an isomorphism.
Lemma 4.3. The units in the group ring $\mathbb{Z}\left[\mathbb{Z}^{n}\right]=\mathbb{Z}\left[t_{1}^{ \pm}, \ldots, t_{n}^{ \pm}\right]$are precisely the elements of the form $\pm t_{1}^{k_{1}} \cdots t_{n}^{t_{k}}$.
Proof. First consider the case $n=1$. For $p=\sum_{i} a_{i} t^{i} \in \mathbb{Z}\left[t^{ \pm}\right], p \neq 0$, define

$$
\operatorname{deg}(p):=\max \left\{j \mid a_{j} \neq 0\right\}-\min \left\{j \mid a_{j} \neq 0\right\} \in \mathbb{N}_{0}
$$

It is easily checked that $\operatorname{deg}(p q)=\operatorname{deg}(p)+\operatorname{deg}(q)$, so that for a unit p, we must have $\operatorname{deg}(p)=0$. This means $p=a t^{k}$ for some $k, a \in \mathbb{Z}$, and the only possibility for a is ± 1.

If $n \geq 2$ and $p=\sum_{g \in \mathbb{Z}^{n}} a_{g} g \in \mathbb{Z}\left[\mathbb{Z}^{n}\right]^{\times}$is a unit, let $\operatorname{supp}(p) \subset \mathbb{Z}^{n}$ be the set of all g with $a_{g} \neq 0$. Under all coordinate projections $\mathbb{Z}^{n} \rightarrow \mathbb{Z}, p$ maps to a unit. This shows that $\operatorname{supp}(p)$ maps to a singleton for each coordinate projection by the $n=1$ case of the lemma. Hence $\operatorname{supp}(p)$ has a single element, so that $p=a g$ with $g \in \mathbb{Z}^{n}$ and $a \in \mathbb{Z}$; but $a= \pm 1$ is the only possibility.

Proposition 4.4. The homomorphism

$$
\operatorname{det}: K_{1}\left(\mathbb{Z}\left[\mathbb{Z}^{n}\right]\right) \rightarrow \mathbb{Z}\left[\mathbb{Z}^{n}\right]^{\times} \cong \pm \mathbb{Z}^{n}
$$

is an isomorphism. The Whitehead group $\mathrm{Wh}\left(\mathbb{Z}^{n}\right)$ is trivial.
Proof. We prove the first claim by induction on n. The case $n=0$ is clear since \mathbb{Z} is euclidean. For the induction step, we write $\mathbb{Z}\left[\mathbb{Z}^{n}\right]=\mathbb{Z}\left[\mathbb{Z}^{n-1}\right]\left[t_{n}^{ \pm}\right]$and let $j: \mathbb{Z}\left[\mathbb{Z}^{n-1}\right] \rightarrow \mathbb{Z}\left[\mathbb{Z}^{n}\right]$ be the inclusion. The composition

$$
\mathbb{Z}=K_{0}(\mathbb{Z}) \rightarrow K_{0}\left(\mathbb{Z}\left[\mathbb{Z}^{n-1}\right]\right) \xrightarrow{\beta} K_{1}\left(\mathbb{Z}\left[\mathbb{Z}^{n}\right]\right)
$$

sends 1 to $t_{n} \in \mathrm{GL}_{1}\left(\mathbb{Z}\left[\mathbb{Z}^{n}\right]\right) \rightarrow K_{1}\left(\mathbb{Z}\left[\mathbb{Z}^{n}\right]\right)$. Together with the map $K_{1}\left(\mathbb{Z}\left[\mathbb{Z}^{n-1}\right]\right) \rightarrow$ $K_{1}\left(\mathbb{Z}\left[\mathbb{Z}^{n}\right]\right)$ induced by the inclusion, it defines

$$
\alpha: K_{1}\left(\mathbb{Z}\left[\mathbb{Z}^{n-1}\right]\right) \oplus \mathbb{Z} \rightarrow K_{1}\left(\mathbb{Z}\left[\mathbb{Z}^{n}\right]\right)
$$

Theorems A and 4.1 together show that α is surjective. The diagram

commutes by inspection. The left vertical map is an isomorphism, by induction. By a diagram chase, α is injective, and so α is an isomorphism. Therefore, all maps in the diagram are isomorphisms. Furthermore, the composition

$$
\pm \mathbb{Z}^{n} \xrightarrow{i} K_{1}\left(\mathbb{Z}\left[\mathbb{Z}^{n}\right]\right) \xrightarrow{\text { det }} \pm 1 \mathbb{Z}^{n}
$$

is the identity. Since det is an isomorphism, i is surjective, and this shows that $\mathrm{Wh}\left(\mathbb{Z}^{n}\right)=\operatorname{coker}(i)=0$.

Let us now turn to the proof of Theorem 4.1. To that end, we write $[n, B] \in$ $K_{1}(R)$ for the class represented by $\mathrm{GL}_{n}(R)$.

Proposition 4.5. Each element $\mathbf{x} \in K_{1}\left(R\left[t^{ \pm}\right]\right)$can be written as the sum of elements in the image of (ι, β) and elements of the form $\left[P_{0}, 1+t N_{0}\right]+\left[P_{1}, 1+t^{-1} N_{1}\right]$ with P_{i} projective and N_{i} nilpotent.

Proof. Start with an arbitrary $\mathbf{x}=[n, B] \in K_{1}\left(R\left[t^{ \pm}\right]\right)$. We will write $\mathbf{x} \equiv \mathbf{y}$ if $\mathbf{x}-\mathbf{y} \in \operatorname{Im}(\iota, \beta)$. There is k so that $t^{k} B \in \mathrm{GL}_{n}\left(R\left[t^{ \pm}\right]\right) \cap \operatorname{Mat}_{n, n}(R[t])$ (which is not the same as $\mathrm{GL}_{n}(R[t])$. Then

$$
[n, B]=\left[n, t^{-k}\right]+\left[n, t^{k} B\right]=-n k \beta(1)+\left[n, t^{k} B\right] \equiv\left[n, t^{k} B\right]
$$

In other words, we may henceforth assume $B \in \mathrm{GL}_{n}\left(R\left[t^{ \pm}\right]\right) \cap \operatorname{Mat}_{n, n}(R[t])$. Write

$$
B=B_{0}+B_{1} t+\ldots+B_{m} t^{m}
$$

with $B_{m} \in \operatorname{Mat}_{n, n}(R)$. Now we use the Higman trick:

$$
\begin{aligned}
{[n, B]=\left[2 n,\left(\begin{array}{ll}
B & \\
& 1
\end{array}\right)\right.} &]=\left[2 n,\left(\begin{array}{cc}
B_{0}+\ldots+B_{m} t^{m} & -t^{m-1} B_{m} \\
& 1
\end{array}\right)\right]= \\
& =\left[2 n,\left(\begin{array}{cc}
B_{0}+\ldots+B_{m-1} t^{m-1} & -t^{m-1} B_{m} \\
t & 1
\end{array}\right)\right]
\end{aligned}
$$

by elementary row and column operations. The latter matrix is polynomial of degree $\leq \max (1, m-1)$. Hence, as long as $m \geq 2$, we can reduce the degree by 1 , at the price of enlarging the size of the matrices. Therefore

$$
\mathbf{x} \equiv\left[n, B_{0}+t B_{1}\right]
$$

for $B_{0}, B_{1} \in \mathrm{GL}_{n}(R)$ and some n. But setting $t=1$ shows that $B_{0}+B_{1}$ is invertible and so

$$
\begin{array}{r}
{\left[n, B_{0}+t B_{1}\right]=\left[n, B_{0}+B_{1}\right]+\left[n,\left(B_{0}+B_{1}\right)^{-1}\left(B_{0}+t B_{1}\right)\right] \equiv} \\
\equiv\left[n,\left(B_{0}+B_{1}\right)^{-1}\left(B_{0}+B_{1}+(t-1) B_{1}\right)\right]= \\
=\left[n, 1+(t-1)\left(B_{0}+B_{1}\right)^{-1} B_{1}\right]=:[n, 1+(t-1) A] .
\end{array}
$$

Claim 4.6. If $A \in \operatorname{Mat}_{n, n}(R)$ is such that $1+(t-1) A \in \mathrm{GL}_{n}\left(R\left[t^{ \pm}\right]\right)$, then $(1-A) A$ is nilpotent.

To prove the claim, write $(1+(t-1) A)^{-1}=C_{-m} t^{-m}+\ldots+C_{m} t^{m}$ with $C_{i} \in$ $\operatorname{Mat}_{n, n}(R)$. The equation $(1+(t-1) A)(1+(t-1) A)^{-1}=1$ can be written as

$$
\begin{aligned}
(1-A) C_{-m} & =0 \\
(1-A) C_{1-m}+A C_{-m} & =0 \\
\ldots & =0 \\
(1-A) C_{-1}+A C_{-2} & =0 \\
(1-A) C_{0}+A C_{-1} & =1 \\
(1-A) C_{1}+A C_{0} & =0 \\
\ldots & =0 \\
(1-A) C_{m}+A C_{m-1} & =0 \\
A C_{m} & =0
\end{aligned}
$$

From these equations, we read off that

$$
-C_{m}=A C_{m-1} \Rightarrow A^{2} C_{m-1}=0, \ldots, A^{m+1} C_{0}=0
$$

Working downwards and switching the roles of A and $1-A$, we obtain similarly

$$
(1-A)^{m} C_{-1}=0
$$

Using $(1-A) C_{0}+A C_{-1}=1$, we get

$$
\begin{gathered}
A^{m+1}(1-A)^{m+1}=A^{m+1}(1-A)^{m+1}(1-A) C_{0}+A^{m+1}(1-A)^{m+1} A C_{-1}= \\
=(1-A)^{m+2} A^{m+1} C_{0}+A^{m+2}(1-A)^{m+1} C_{-1}=0
\end{gathered}
$$

showing the claim.
Claim 4.7. If $A \in \operatorname{Mat}_{n, n}(R)$ is such that $1+(t-1) A \in \mathrm{GL}_{n}\left(R\left[t^{ \pm}\right]\right)$, then $A=$ $N+P$, where P is an idempotent, N is nilpotent, and P and N commute.

By Claim 4.6. there is r with $A^{r}(1-A)^{r}=0$. Write

$$
1=(x+(1-x))^{2 r}=p(x) x^{r}+q(x)(1-x)^{r}
$$

for some polynomials $p, q \in \mathbb{Z}[x]$. Put

$$
f(x):=x-x^{r} p(x)
$$

Because

$$
f(x)=x\left(1-x^{r-1} p(x)\right)=(x-1)\left(1-(1-x)^{r-1} q(x)\right),
$$

x and $(x-1)$ divide $f(x)$ and so we can write

$$
f(x)=x(x-1) g(x)
$$

for some $g \in \mathbb{Q}[x]$. A quick calculation shows that $g \in \mathbb{Z}[x]$. Now define

$$
P:=p(A) A^{r}
$$

Note that $1-P=q(A)(1-A)^{r}$. Because

$$
P-P^{2}=P(1-P)=p(A) q(A) A^{r}(1-A)^{r}=0
$$

P is an idempotent matrix. Furthermore

$$
N:=A-P
$$

is nilpotent since

$$
N=f(A)=A(1-A) g(A)
$$

showing Claim 4.7. So far, we have seen that each element in $K_{1}\left(R\left[t^{ \pm}\right]\right)$is the sum of an element in the image of (ι, β) and an element of the form

$$
[n, 1+(t-1)(N+P)]
$$

where $P \in \operatorname{Mat}_{n, n}(R)$ is an idempotent, $N \in \operatorname{Mat}_{n, n}(R)$ is nilpotent and $N P=$ $P N$. Since $P^{2}=P$, both $\operatorname{Im}(P)$ and $\operatorname{Im}(1-P)=\operatorname{ker}(P)$ are projective and $\operatorname{Im}(P) \oplus \operatorname{Im}(1-P)=R^{n}$. Thus

$$
[n, 1+(t-1)(N+P)]=[\operatorname{Im}(P), 1+(t-1)(1+N)]+[\operatorname{ker}(P), 1+(t-1) N] .
$$

Now calculate

$$
\begin{array}{r}
{[\operatorname{ker}(P), 1+(t-1) N]=[\operatorname{ker}(P),(1-N)+t N]=} \\
=[\operatorname{ker}(P), 1-N]+\left[\operatorname{ker}(P), 1+t(1-N)^{-1} N\right]= \\
\equiv\left[\operatorname{ker}(P), 1+t(1-N)^{-1} N\right]
\end{array}
$$

and

$$
\begin{array}{r}
{[\operatorname{Im}(P), 1+(t-1)(N+1)]=[\operatorname{Im}(P), t(N+1)-N]=} \\
=[t]+[1+N]+\left[\operatorname{Im}(P), 1-t^{-1}(N+1)^{-1} N\right]= \\
\equiv\left[\operatorname{Im}(P) 1-t^{-1}(N+1)^{-1} N\right] .
\end{array}
$$

This concludes the proof.
The proof of Theorem 4.1 is completed by the following result:
Proposition 4.8. Let R be a regular noetherian ring and let $N: P \rightarrow P$ be nilpotent endomorphism of a finitely generated projective R-module. Then

$$
[P, 1+N]=0 \in K_{1}(R)
$$

Example 4.9. The following example shows that the regularity hypothesis in Proposition 4.8 cannot be dropped. Let $R=\mathbb{Z} / 4$. The element $2 \in R$ is nilpotent. Then $\mathbf{x}=[1+2]=[-1] \in K_{1}(R)$. But under the determinant homomorphism, \mathbf{x} is mapped to the nontrivial element of $R^{\times}=\{1,-1\}$.

For the proof of Proposition 4.8 . let us introduce the category $\operatorname{AutFin}(R)$ whose objects are R-modules M, together with automorphisms $f: M \rightarrow M$. A morphism $(M, f) \rightarrow(N, g)$ is a homomorphism $h: M \rightarrow N$ with $g h=h f$. Let $\operatorname{AutFin}(R) \subset$ $\operatorname{AutMod}(R)$ be the full subcategory of all objects (M, f) with M finitely generated and let $\operatorname{AutProj}(R) \subset \mathbf{A u t F i n}(R)$ be the full subcategory of all objects (P, f) with p projective. Warning: an epimorphism $(M, f) \rightarrow(P, g)$ where P is projective does not necessarily split.

Proposition 4.10. Let R be regular noetherian, let $(M, f) \in \operatorname{AutFin}(R)$ and let

$$
0 \rightarrow\left(P_{n}, g_{n}\right) \rightarrow \ldots \rightarrow\left(P_{0}, g_{0}\right) \rightarrow(M, f) \rightarrow 0
$$

and

$$
0 \rightarrow\left(Q_{m}, h_{m}\right) \rightarrow \ldots \rightarrow\left(Q_{0}, h_{0}\right) \rightarrow(M, f) \rightarrow 0
$$

be two exact sequences with P_{i}, Q_{i} projective. Then

$$
\sum_{i \geq 0}(-1)^{i}\left[P_{i}, g_{i}\right]=\sum_{i \geq 0}(-1)^{i}\left[Q_{i}, h_{i}\right] \in K_{1}(R)
$$

Proof.
Claim 4.11. If

$$
0 \rightarrow\left(P_{n}, g_{n}\right) \xrightarrow{d_{n}} \ldots \xrightarrow{d_{7}}\left(P_{0}, g_{0}\right) \rightarrow 0
$$

is exact with P_{i} projective, then $\sum_{i}(-1)^{i}\left[P_{i}, g_{i}\right]=0 \in K_{1}(R)$.
Let us first consider the case $n=2$. A splitting s of d_{1} yields an isomorphism

$$
\left(P_{1}, d_{1}\right) \cong\left(P_{2} \oplus P_{0},\left(\begin{array}{cc}
g_{2} & * \\
& g_{0}
\end{array}\right)\right) .
$$

By elementary row operations, one sees that

$$
\left[P_{1}, g_{1}\right]=\left[P_{2} \oplus P_{0},\left(\begin{array}{cc}
g_{2} & * \\
& g_{0}
\end{array}\right)\right]=\left[P_{2} \oplus P_{0},\left(\begin{array}{ll}
g_{2} & \\
& g_{0}
\end{array}\right)\right]=\left[P_{2}, g_{2}\right]+\left[P_{0}, g_{0}\right]
$$

as claimed. The case $n \geq 3$ is settled by induction: given

$$
0 \rightarrow\left(P_{n}, g_{n}\right) \xrightarrow{d_{n}} \ldots \xrightarrow{d_{7}}\left(P_{0}, g_{0}\right) \rightarrow 0
$$

is exact with P_{i} projective, choose a splitting $s: P_{0} \rightarrow P_{1}$ of d_{1}. Then $\left(P_{1}, g_{1}\right)$ is isomorphic, in $\operatorname{AutProj}(R)$, to

$$
\left(P_{1}^{\prime} \oplus P_{0},\left(\begin{array}{cc}
g_{1}^{\prime} & * \\
& g_{0}
\end{array}\right)\right)
$$

with $g_{1}^{\prime}:=\left.g_{1}\right|_{P_{1}^{\prime}}$. Therefore

$$
\left[P_{1}, g_{1}\right]=\left[P_{1}^{\prime}, g_{1}^{\prime}\right]+\left[P_{0}, g_{0}\right] \in K_{1}(R)
$$

Since P_{1}^{\prime} is projective, we conclude $\sum_{i}(-1)^{i}\left[P_{i}, g_{i}\right]=0$ by induction.
Claim 4.12. Suppose that

is a commutative diagram in $\operatorname{AutFin}(R)$ with exact rows and P_{i}, Q_{i} projective, then

$$
\sum_{j=0}(-1)^{j}\left[P_{j}, g_{j}\right]=\sum_{j=0}(-1)^{j}\left[Q_{j}, h_{j}\right] \in K_{1}(R)
$$

To show this claim, consider the mapping cylinder $\left(M_{*}, m_{*}\right)$ of the chain map $f_{*}:\left(P_{*}, g_{*}\right) \rightarrow\left(Q_{*}, h_{*}\right)$ of chain complexes in $\mathbf{A u t P r o j}(() R)$. The j th term of the mapping cylinder is $\left(M_{j}, m_{j}\right)=\left(P_{j}, g_{j}\right) \oplus\left(Q_{j-1}, h_{j-1}\right)$. Since f_{*} is a quasiisomorphism, the mapping cylinder is exact. By Claim 4.11, we get

$$
0=\sum_{j}(-1)^{j}\left[M_{j}, m_{j}\right]=\sum_{j}(-1)^{j}\left[P_{j}, g_{j}\right]-\sum_{j}(-1)^{j}\left[Q_{j}, h_{j}\right],
$$

as claimed.
The problem with the general case is that if P is projective, then epimorphisms in AutProj $(() R)$ onto (P, g) do not have to split. Therefore, we cannot invoke the fundamental lemma of homological algebra to constract a chain equivalence between the two complexes, and Claim 4.11 is not yet enough. But we are able to construct a further projective resolution $\left(K_{*}, k_{*}\right)$ of (M, f) which maps to both, $\left(P_{*}, g_{*}\right)$ and $\left(Q_{*}, h_{*}\right)$. The existence of such a resolution implies the Proposition. Let us see how to construct (K_{*}, k_{*}).

Claim 4.13. Let $(M, f) \in \operatorname{AutFin}(R)$. Then there is a projective module Q, an epimorphism $q: Q \rightarrow M$ and an automorphism g of Q such that $q g=f q$.

First pick an epimorphism $p: P \rightarrow M$ from a projective P. We can lift the automorphism $f \oplus f^{-1}$ of $M \oplus M$ to an automorphism of $P \oplus P$. To see this, write

$$
\left(\begin{array}{ll}
f & \\
& f^{-1}
\end{array}\right)=\left(\begin{array}{ll}
1 & f \\
& 1
\end{array}\right)\left(\begin{array}{cc}
1 & \\
-f^{-1} & 1
\end{array}\right)\left(\begin{array}{ll}
1 & f \\
& 1
\end{array}\right)\left(\begin{array}{ll}
& -1 \\
1 &
\end{array}\right) .
$$

Since any endomorphism of M can be lifted to an endomorphism of P, it follows that $f \oplus f^{-1}$ can be lifted to an automorphism h of $P \oplus P$. Define $Q:=P \oplus P$,
$q:=p \circ \operatorname{pr}_{1}$ and $g:=h$. By inspection, the diagram

commutes, which shows the claim.
Claim 4.14. Let $b:(M, f) \rightarrow(N, g)$ be a morphism in $\operatorname{AutFin}(R)$ and let

$$
0 \rightarrow\left(P_{n}, h_{n}\right) \rightarrow \ldots \rightarrow\left(P_{0}, h_{0}\right) \xrightarrow{a_{0}}(N, g) \rightarrow 0
$$

be a finite resolution by objects in $\operatorname{AutProj}(R)$. Then there exists a finite resolution $\left(Q_{*}, k_{*}\right) \rightarrow(M, f)$ by objects in $\operatorname{AutProj}(R)$ and a chain map $\left(Q_{*}, k_{*}\right) \rightarrow$ $\left(P_{*}, h_{*}\right)$ extending b.

Consider

$$
\left(a_{0},-b\right):\left(P_{0}, h_{0}\right) \oplus(M, f) \rightarrow(N, g) ;
$$

this is surjective, and let (B, r) be its kernel. Since R is noetherian, B is finitely generated and we can find a projective module Q_{0} with an automorphism k_{0} and an epimorphism $\left(Q_{0}, k_{0}\right) \rightarrow(B, r)$. This construction yields a commutative square

Proceeding in this manner, we get a partial projective resolution, which can be completed to a finite projective resolution because R is regular noetherian.

Claim 4.15. Under the assumptions of the proposition, there is a finite projective resolution $\left(K_{*}, k_{*}\right)$ of (M, f) and two quasiisomorphisms $\left(K_{*}, k_{*}\right) \rightarrow\left(P_{*}, g_{*}\right)$ and $\left(K_{*}, k_{*}\right) \rightarrow\left(Q_{*}, h_{*}\right)$ covering the identity of (M, f).

To see this, we consider the diagonal $(M, f) \rightarrow(M \oplus M, f \oplus f)$ and apply the previous claim to the resolution $\left(P_{*} \oplus Q_{*}, g_{*} \oplus h_{*}\right) \rightarrow(M \oplus M, f \oplus f)$. The result is a resolution $\left(K_{*}, k_{*}\right)$ of (M, f) with a map to $\left(P_{*} \oplus Q_{*}, g_{*} \oplus h_{*}\right)$ covering the diagonal. Composing with the two projections yields the desired map.

Proof of 4.8. Let $f: P \rightarrow P$ be nilpotent of nilpotence index n (i.e. $f^{n}=0$). We claim that $[P, 1+f]=0 \in K_{1}(R)$ and show this by induction on the nilpotence index. The induction beginning $n=1$ is trivial. The following is a short exact sequence in $\operatorname{AutFin}(R)$:

$$
0 \rightarrow(\operatorname{Im}(f),(1+f)) \rightarrow(P, 1+f) \rightarrow(P / \operatorname{Im}(f), 1+f) \rightarrow 0
$$

Claim 4.16. Let M be a finitely generated R-module and let $f: M \rightarrow M$ be nilpotent of nilpotence index n. Then there is a projective Q, a nilpotent endomorphism g of Q of nilpotence index n and a surjective $q: Q \rightarrow M$ with $q g=f q$.

To see this, let $p: P \rightarrow M$ be an epimorphism from a finitely generate projective module P and put $Q:=P^{n}$. Define

$$
q: Q \rightarrow M ; q=p \circ\left(1 f f^{2} \ldots f^{n-1}\right)
$$

and

$$
g=\left(\begin{array}{ccccc}
0 & & & & \\
1 & 0 & & & \\
& 1 & 0 & & \\
& & \ldots & \ldots & \\
& & & 1 & 0
\end{array}\right)
$$

Obviously $g^{n}=0$ and $q g=f q$.
By Claim 4.16 and since R is regular noetherian, there is a finite projective resolution

$$
0 \rightarrow\left(Q_{m}, 1+f_{m}\right) \rightarrow \ldots \rightarrow\left(Q_{1}, 1+f_{1}\right) \rightarrow(\operatorname{Im}(f), 1+f)
$$

where each f_{j} is nilpotent of nilpotency index $\leq n-1$ (this is possible since $\left.f\right|_{\operatorname{Im}(f)}$ has nilpotency index $\leq n-1$). This yields a finite projective resolution

$$
0 \rightarrow\left(Q_{m}, 1+f_{m}\right) \rightarrow \ldots \rightarrow\left(Q_{1}, 1+f_{1}\right) \rightarrow(P, 1+f) \rightarrow(P / \operatorname{Im}(f), 1) \rightarrow 0
$$

(since $f=0$ on $P / \operatorname{Im}(f)$), and

$$
0 \rightarrow\left(Q_{m}, 1\right) \rightarrow \ldots \rightarrow\left(Q_{1}, 1\right) \rightarrow(P, 1) \rightarrow(P / \operatorname{Im}(f), 1) \rightarrow 0
$$

is another finite projective resolution. It follows from Proposition 4.10 that

$$
0=[P, 1]+\sum_{j \geq 1}(-1)^{j}\left[Q_{j}, 1\right]=[P, 1+f]+\sum_{j \geq 1}(-1)^{j}\left[Q_{j}, 1+f_{j}\right] .
$$

By induction over the nilpotency index, $\left[Q_{j}, 1+f_{j}\right]=0 \in K_{1}(R)$, and so $[P, 1+f]=$ 0.

References

[1] M. F. Atiyah and I. G. Macdonald. Introduction to commutative algebra. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.
[2] Michael Atiyah and Raoul Bott. On the periodicity theorem for complex vector bundles. Acta Math., 112:229-247, 1964.
[3] H. Bass, A. Heller, and R. G. Swan. The Whitehead group of a polynomial extension. Inst. Hautes Études Sci. Publ. Math., (22):61-79, 1964.
[4] Hyman Bass. Algebraic K-theory. W. A. Benjamin, Inc., New York-Amsterdam, 1968.
[5] T. A. Chapman. Topological invariance of Whitehead torsion. Amer. J. Math., 96:488-497, 1974.
[6] Steve Ferry. Geometric topology notes. Available at http://sites.math.rutgers.edu/ sferry/.
[7] Graham. Higman. The units of group-rings. Proc. London Math. Soc. (2), 46:231-248, 1940.
[8] Michel A. Kervaire. Le théorème de Barden-Mazur-Stallings. Comment. Math. Helv., 40:3142, 1965.
[9] Robion C. Kirby and Laurence C. Siebenmann. Foundational essays on topological manifolds, smoothings, and triangulations. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1977. With notes by John Milnor and Michael Atiyah, Annals of Mathematics Studies, No. 88.
[10] J. Milnor. Whitehead torsion. Bull. Amer. Math. Soc., 72:358-426, 1966.
[11] John Milnor. Introduction to algebraic K-theory. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. Annals of Mathematics Studies, No. 72.
[12] S. P. Novikov. Topological invariance of rational classes of Pontrjagin. Dokl. Akad. Nauk SSSR, 163:298-300, 1965.
[13] D. Quillen. Higher algebraic K-theory. I. pages 85-147. Lecture Notes in Math., Vol. 341, 1973.
[14] Jonathan Rosenberg. Algebraic K-theory and its applications, volume 147 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1994.
[15] J.-P. Serre. Modules projectifs et espaces fibrés à fibre vectorielle. In Séminaire P. Dubreil, M.-L. Dubreil-Jacotin et C. Pisot, 1957/58, Fasc. 2, Exposé 23, page 18. Secrétariat mathématique, Paris, 1958.
[16] C. T. C. Wall. Finiteness conditions for CW-complexes. Ann. of Math. (2), 81:56-69, 1965.
[17] James E. West. Mapping Hilbert cube manifolds to ANR's: a solution of a conjecture of Borsuk. Ann. of Math. (2), 106(1):1-18, 1977.
E-mail address: johannes.ebert@uni-muenster.de
Mathematisches Institut der Westfälischen Wilhelms-Universität Münster, Einsteinstr. 62, DE-48149 Münster, Germany

