THEOREMS OF GROTHENDIECK-SERRE AND
BASS-HELLER-SWAN

JOHANNES EBERT

1. INTRODUCTION

Let R be aring. Recall that Ky(R) is the Grothendieck group of the semigroup of
all isomorphism classes of finitely generated projective R-modules. The assignment
R — Ky(R) is a covariant functor from the category of rings to the category of
abelian groups; for a ring homorphism f : R — S, one defines f, : Ko(R) — Ko(S5)
by [P] — [P ®g S]. Any ring has a canonical homomorphism j : Z — R, and we
define the reduces Ky-group of R to be

Ko(R) := coker(j, : Z = Ko(Z) — Ko(R)).
If R admits a unital homomorphism to a field F, then j, is split-injective.

Theorem A (Grothendieck—Serre). The inclusion j : Z — Z[Z™] induces an iso-
morphism

Jx + Ko(Z) = Ko(Z[Z"]).
Hence Ko(Z[Z"]) = 0.

This was first proven by Grothendieck, and the proof that we shall discuss was
given by Serre [I5]. I was unable to locate a proof written down by Grothendieck,
but both proofs are discussed in [4 ch. XII, §3, §4].

For the next result, let us recall the definition of the first algebraic K-theory
group K (R) of a ring and the Whitehead group Wh(G) of a group. If R is a ring,
the general linear groups are ordered by inclusion:

R* =GL;(R) c GLy(R) C ...,

and the union GL(R) is the infinite general linear group. The subgroup E(R) C
GL(R) generated by the elementary matrices is equal to the commutator subgroup
[GL(R), GL(R)], by the Whitehead lemma [I1, Lemma 3.1]. One defines
_ GL(R)
- BE(R)
A ring homomorphism f : R — S induces a group homomorphism GL(R) — GL(S)
and hence f,K;(R) — K;(S).

Now let G be a group and let Z[G] be the integral group ring of G. If g € G, then
+g € Z|G] is a unit (a so called trivial unit. The set of trivial units is a subgroup
+G 2 Z/2 x G of GL1(Z[G]). We obtain a homomorphism

i:+G C GL1(Z[G]) — GL(Z[G]) — K1 (Z[G]),

whose cokernel is the Whitehead group Wh(G) of G. The following result was first
proven in [3].

= GL(R)*.

Kl(R) :
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Theorem B (Bass-Heller-Swan). The Whitehead group of Z™ is trivial; Wh(Z"™) =
0.

The case n = 1 is a good deal more elementary and was first shown by Higman
.
The groups Ko (Z|G]) and Wh(G) play an important role in geometric topology.
The group I?O(Z[G]) is the home of the Wall finiteness obstruction for finitely
dominated spaces with fundamental group G [16], while Wh(G) is the home for
the Whitehead torsion of a homotopy equivalence between finite complexes with
fundamental group G [10], and of the Whitehead torsion of an h-cobordism between
closed manifolds with fundamental group G [8]. Together with the results from the
quoted papers, Theorems [A] and [B] show that

(1) If X is a finitely dominated space with fundamental group Z", then X is
homotopy equivalent to a finite CW-complex.

(2) If f : X — Y is a homotopy equivalence between finite CW-complexes with
fundamental group Z", then f is a simple homotopy equivalence.

(3) W : M ~» N is an h-cobordism between closed smooth manifolds with
fundamental group Z", and if dim(W) > 6, then W = M x [0, 1] relative
to M.

Some of the fundamental results about topological manifolds are proven by a
torus argument, which brings a torus (a space with fundamental group Z"!) into
play in a somewhat unnatural manner. Theorems [A] and [B] show that the possible
obstructions in Ko (Z[m (T™)]) and Wh(ry (T™)) are trivial, and this if often one of
the key ingredients to a torus argument. Among the results which are proven (or
can be proven) by a torus argument are the following:

(1) The topological invariance of rational Pontrjagin classes by Novikov [12].

(2) Several pivotal proofs in Kirby-Siebenmann’s theory of topological mani-
folds [9] (the proof of the stable homeomorphism theorem by Kirby makes
only implicit use of Theorems [A] and [B]

(3) The topological invariance of Whitehead torsion (originally proven by Chap-
man [B]), and West’s theorem [I7] that a compact ENR has the homotopy
type of a finite complex, have fairly accessible proofs by torus arguments
in [6, §17,18).

Theorems [A| and [B| are proven in the books [4] and [I4]. However, these texts
prove more general versions, and the actual arguments are scattered over a large
number of pages. In this note, we attempt to present the argument in a geodesic
way, designed for the reader who just wants to know why [A] and [B] are true and
then wants to return his attention to geometric topology. The reader who wants to
understand these results in the wider context of higher algebraic K-theory should
follow Quillen [I3] §6].

2. SOME COMMUTATIVE ALGEBRA

For the rest of this note, R will always be a commutative ring with unit (this
assumption is mostly made for convenience, to avoid disctinction between left and
right modules). There are two finiteness conditions on a ring which will play an
important role in the proofs.

Definition 2.1. A ring R is noetherian if each ideal I C R is finitely generated.
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Equivalently, R is noetherian if each submodule of a finitely generated R-module
is again finitely generated [I, Proposition 6.5]. The following famous theorem of
Hilbert is a standard result of commutative algebra.

Theorem 2.2 (Hilbert’s basis theorem). If R is noetherian, the so are the polyno-
mial ring R[t] and the Laurent polynomial ring R[t*].

The proof of the first assertion can be found in [I, Theorem 7.5], and this implies
the second one by virtue of [I, Proposition 7.3] since R[t*] is a localization of R[t].
By induction, it follows that the ring

Z[Z") = Z[Z" [ty ) = ZItT S - - )
is noetherian. We denote by
Mod(R), Fin(R), Proj(R)

the categories of R-modules, finitely generated R-modules and projective finitely
generated R-modules.

Definition 2.3. Let R be a ring and let M € Mod(R) be an R-module. We say
that the projective dimension of M is at most n, projdimy(M) < n, if there is a
projective resolution

0—->P,—...>FPh—>M-—0

of length n. A ring R is regular if projdimg (M) < oo for each R-module M.

Example 2.4. M is projective if and only if projdimz (M) < 0. If R is a principal
ideal domain, then projdimp (M) < 1 for each R-module M. Hence principal ideal
domains are regular.

Example 2.5. The rings Z/4 and Z[Z/n] are not regular.

Lemma 2.6. An R-module M is projective if and only if Ext}%(M; N) =0 for all
R-modules N.

Proof. If M is projective, then 0 — M MM S50isa projective resolution, which
shows that Exth(M; N) = 0. Vice versa, assume Ext'(M; N) = 0 for all N and let
f: N — M be an epimorphism. The exact sequence

Hom(M; N) ' Hom(M; M) — Extk(M;ker(f)) = 0
shows that f is split surjective and hence that M is projective. O

Lemma 2.7. Let M be an R-module. The following are equivalent:

(1) There is a projective resolution

0—>Pnﬁ$Pn,1—>...—>P0@M—>O

of length n.
(2) For each exact sequence

05 Q=P ™ . 5P %M 0

of R-modules with Py, ..., P,_1 projective, the module Q) is projective.
(3) Ext%™(M;N) =0 for each R-module N.
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Proof. The implications (2) = (1) = (3) are clear. To show (3) — (2), consider an
exact sequence as in (2) and put

M k=0
My, = S ker(dg—1) =Im(dg) 1<k<n-1
Q k=n.

By Lemma we need to prove that Ext}%(Mn; N) = 0 for each N. There are
short exact sequences

0> M, —> Pr_1—> Mp_1—0
which induce, for each R-module N and p € N, exact sequences
0 = Ext?(Py_1; N) — Extb (My; N) — Ext? ™ (My,_1; N) = Ext?™ (P,_1; N) =0
and isomorphism
Ext!(M,; N)) = Ext*(M,_1; N) = ... = Ext’s™ (My; N) = 0. 0.
Corollary 2.8. If R is regular and noetherian, then each finitely generated R-

module admits a finite projective resolution, that is, a resolution of finite length by
finitely generated projective R-modules. O

We need another famous theorem by Hilbert.

Theorem 2.9 (Hilbert’s Syzygy theorem). If R is regular, then R[t] and R[t*] are
regular.

Proof. Let M be an R[t]-module. We can view M, by restriction of scalars, as an
R-module, together with an endomorphism ¢ : M — M coming from multiplication
by t. The sequence

0= Rit] ®r M 'SP Rlt) 0 M P57 M — 0
is exact by a direct verification. For any R[t]-module N, we obtain exact sequences

Extiyy (Rlf] @ M; N) — Extly (M; N) = Exty (Rlt] @ M; N).

Because R[t] is free as an R-module, there is an isomorphism

Extipy (R[] ®r M; N) = Extp(M; N).
It follows that if n > projdimp (M), then Ext;’%'ﬁ]l (M; N) for all R[t]-modules N. In
other words projdimppy M < n.

The second part follows from the first and the fact that R[t*] is a flat R[t]-
module. Let M be an R[t*]-module and let (x;); be a generating set of M, and
let M; C M be the R[t]-module generated by (x;);. Then (because R[tT] is a flat
R[t]-module), there is an isomorphism M; ® gy, R[t*] = M. It follows that (again
using flatness)

Exthys)(M; N) & Extiye (My ®@ppy RIEF]; N) = Exthy (My; N),
and so projdim pp+) M < projdim gy M;. O

The basis theorem and the Syzygy theorem together imply that Z[Z"] is regular
noetherian.
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3. PROOF OF THE GROTHENDIECK—SERRE THEOREM

We shall prove a more precise version:

Theorem 3.1. Let R be a ring and let R - RJt] EN R[t*] be the inclusions. Then
if R is regular noetherian, the induced maps

Ko(R) = Ko(RI[t]) = Ko(R[t*])
are isomorphisms.
Remark 3.2. Theorem implies Theorem [A| by induction (using the basis and
syzygy theorem in the induction step). In order to prove Theorem [3.1} it is enough

to prove that i, and j. are surjective. This is because the map r : R[t*] — R,
t+ — 1 is a right-inverse to j o .
Lemma 3.3. If R is reqular noetherian, then j. : Ko(R[t]) — Ko(R[tT]) is surjec-

tive.

In the proof, we use the following simple observation: If
05N, BN, 1 ... N B Ny—0

is an exact sequence of projective R-modules, then

n

Z(—l)i[Ni] =0¢€ Ko(R). (3.4)

i=0
To see this, one picks a split of dy to write N1 = Im(dz) @ Ny, observes that Im(ds)
is projective and argues by induction.
Proof of Lemma[3.3 Let P be a finitely generated projective R[t*]-module. Since
R[t*] is noetherian, we can write P as a quotient
P = RIF]"/N,
where the submodule N is finitely generated. Hence we may write
N = (x1,...,2.)
where x; € R[t*]" is a vector whose entries are Laurent polynomials. There is
s> 0 such that t°z; € R[t]" for all 4. Since ¢* is a unit in R[t*], it follows that
. } R[ti]n R[t]n
P = R[t*]"/N = R[t*]"/t°N = = R[t%].
=17/ 1"/ (t521, ..., t52.)  (t5x1,...,t52,) Drpy R[]
Hence we can find a finitely generated R[t]-module M such that
P = M gy RItY].

Because R[t] is regular noetherian, there is a finite projective resolution

0-Q,—...>Qo—>M—0

by Corollary Since R[t*] is a localization of R[t], the functor — ® gy R[tF] is
exact, and hence we get a short exact sequence

0= Qn ®rpy RItF] = ... = Qo gy RtT] = P =0 (3.5)
of projective R[t*]-modules. Apply (3.4) to the sequence ([3.5)) to obtain

1P] = 3" (~1)[Q; ®mp RIEF]) = 4 (3 (-1)°[Qi). 0

=0 =0
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For the proof that i, : Ko(R) — Ko(R[t]) is an isomorphism, we need to intro-
duce graded rings.

Definition 3.6. A graded ring is a ring A, together with a decomposition
A=Pa,
n>0
such that A, A,, C Aytn. The ideal of elements of positive degree is
A=A, cA

n>0

(note that A/A; = Ag). An element a € A is homogeneous if a € A, for some n.
In that case, |a| := n is the degree of a.

Note that a commutative graded ring is a different thing than a “graded com-
mutative ring”. Let us briefly list some important examples of graded rings.
e An (ungraded) ring R considered as a graded ring with Ry := R.
e If A is graded, the polynomial ring A[t] is graded, by declaring the degree
of t*a to be n + k, when |a| = n.
e In particular, if R is ungraded, then RJ[t,s] is graded, by declaring |s| =
[t| = 1.

Definition 3.7. Let A be a graded ring. A graded A-module is an A-module M,
together with a decomposition
V=@,

neEZ

such that A,,M,, C M4+, for all m,n. A homomorphism f : M — N between
graded modules is graded, if f(M,,) C N,, for all n. Such an f can be written in the
form f =&, fn, with f, : M;, = N,. A submodule N C M of a graded module
is graded if N = @, N N M,,. In that case, the quotient module M /N inherits a
grading from that of M.

We define
Mod®'(A), Fin® (4), Proj® (A)

as the categories of all graded A-modules and graded homomorphisms, and the
full subcategories such that the underlying A-module is finitely generated (resp.
projective). If M is a graded A-module, we define the shift M[n] as the graded
A-module with underlying A-module M and grading defined by

Mn]m := Mpy—n.
For a graded A-module M, we define the graded Ag-module
T(M):=M/A, M =M ®4 Ap.
Lemma 3.8. Let A be a graded ring and let M € Fin®" (A). Then

(1) M is generated by finitely many homogeneous elements.
(2) M, =0 forn <0.
(3) If T(M) =0, then M = 0.
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Proof. The first claim is true, because any generating set of M contains a finite
generating set. The minimum degree ng € Z of an element of a homogeneous
generating set has the property that M, = 0 for n < ng, showing claim (2). If
M # 0, it contains a nonzero homogeneous element m of minimal degree, and
m¢g AL M. O

Lemma 3.9. Let A be a graded ring and let P € Proj® (A). Then

(1) Let M € Mod® (A) and let f : M — P be a surjective graded homomor-
phism. Then there is a graded homomorphism g : P — M with f o g =id.

(2) P is a direct summand of a finitely generated free graded A-module, i.e. a
sum of graded modules of the form A[m).

Proof. For claim (1), write f = €,, fn, with f, : M,, — P,. Let 7l P — P, and
W,A/ : M — M, be the projections and let ¢,, : M,, — M be the inclusion. Pick a
split A : P — M of f of ungraded modules. We define

g:@ﬁthOLnip*)M.

Then

fnognanoﬂﬁohobnZW%OthOLnZWTJyOLnZidMn.

For claim (2), use Lemma to construct a graded surjection

@A[ji] - P
i=1
and use part (1). O

Lemma 3.10. Each P € Proj® (A) is of the form P = M ®4, A for some M €
Proj® (Ayp).

Proof. The quotient map f : P — T(P) is a surjective homomorphism of graded
Ag-modules (P is an Ay module by forgetting) and T(P) is projective. By Lemma
3.9 (1), there is a graded Ag-module map g : T(P) — P with fog =id. It induces
a homomorphism of graded A-modules

h:T(P)®a, A— P, h(z®y) =g(z)y.

Once we can show that & is an isomorphism, the lemma follows. To see this, observe
that T'(h) : T(T(P) ®a4, A) = T(P) — T(P) is the identity. Because T is right
exact, it follows that

0 = coker(T'(h)) = T'(coker(h)).

Since coker(h) is a finitely generated graded A-module, it follows from Lemma
that coker(h) = 0, i.e. that h is surjective. On the other hand, since P is projective,
there is a graded homomorphism & : P — T(P) ® 4, A with h o k = id, by Lemma
Since T'(h) is an isomorphism, so is T'(k). From

ker(h) = coker(k)
and the right-exactness of T', we obtain
T'(ker(h)) = T'(coker(k)) = coker(T'(k)) = 0,
and another application of Lemma proves that ker(h) = 0. g
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Lemma 3.11. Let A be a noetherian graded ring. Then the functor
— @A A : Fin® (Aft]) — Fin(A)

(induced by the ungraded ring homomorphism Alt] — A, t — 1) is exact and
essentially surjective.

Proof. Right-exactness is clear. To prove left-exactness, we have to prove that if
N C M are finitely generated graded A[t]-modules, then the induced map N ® 4
A — M ®4py A is injective. Because M ® 41 A= M /(1 —t)M, we find that

NN(1l-t)M
ker(N QA A— M ®apy A) = (1(0]\;

Thus to prove left-exactness, we have to verify that
(1-t)N=Nn(1-t)M). (3.12)
It is obvious that (1—¢)N C NN ((1—t)M). For the reverse inclusion, let m € M
with (1 —¢)m € N. To see that m € N, write
m=m; +mip1+...+mj; €M
as a sum of homogeneous elements my € My. Then
(I—tym=m;+ (mjy1 —tm;)+... €N

implies m;, m;y1,... € N and hence m € N.
To show that — ®4[; A is essentially surjective, let M be a finitely generated
A-module, which can be written as

M =A"/N
with a finitely generated submodule N (here we use that A is noetherian). Let
N = (z1,...,2,) and write z; = (z41,...,%n) with z;;; € A. For an arbitrary
element z € A, write
rT=x0+...+taxq€ A
as a sum of homogeneous elements and define the homogenized element as
2 =tlro+ ...+t € Alt]q.
Let
N’ = (z},...,2)) C A[t]™;

this is a finitely generated submodule generated by homogeneous elements and
hence a graded submodule. Define a finitely generated graded A[t]-module

M’ := A[t]"/N'.
Then
M’ ®A[t] A= ]\47
and this finishes the proof. (I
The proof of Theorem is completed by the following lemma.

Lemma 3.13. If R is regular noetherian, then the map i. : Ko(R) — Ko(R[t]) is
surjective.
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Proof. Let P be a projective finitely generated R[t]-module. By Lemma [3.11} there
is a finitely generated graded R[t, s]-module M with
M ®R[t,s] R[t] = P

(here we use the basis theorem to see that R[t] is noetherian). By the Syzygy
theorem and basis theorem, R[t, s] is regular noetherian, and hence there is a finite
projective resolution

0-Qp— ... Qo—>M—0

by graded projective R[t, s]-modules (use Lemmal[3.9). By Lemma the tensored
sequence
0= Qn Qg5 R[t] = ... = Qo @gjt.s) R[t] = M Qppq R[t] =P —0
is again a projective resolution. By Lemma there are finitely generated pro-
jective R-modules N; with N; @ R[t, s] = Q;. Therefore
Q) ®Ryt,s) Rt] = N; ®r R[t, s] @rp,s) R[t] = N; @ R[t].
Apply (3.4) to conclude that

[P =Y (~1Y[N; ®r R[t]] € Im(j.). .
>0

4. PROOF OF THE BASS-HELLER-SWAN THEOREM

Before we can state the version of Theorem [B| that we actually prove, let us
recall a simple fact about K7(R). Suppose that P is a projective finitely generated
R-module and f : P — P is an automorphism. Pick a complement @, i.e. a finitely
generated projective module such that P& @ = R"™. The automorphism f&1 of R™
is represented by a matrix F' in GL,(R). By [II, Lemma 3.2], the class in K;(R)
represented by F' does not depend on the choice of P and the isomorphism. We
denote this class by

[P, f] € K1(R).
The definitions are made up so that the following relations hold:

[P, fg] = [P, f]+ [P.g]
[P,1]=0
[Po @ P, fo® f1] = [Po, fol + [P1, f].
Now we define a homomorphism
B Ko(R) — Ki(R[t¥]),

by sending the class of a projective module P to [P ®g R[t*],t] € K1(R[t¥]). This
could legitimately be called the Bott map, due to its similarity with the Bott map
in complex K-theory. In fact, a large portion of the proof of Theorem below
is very similar to one of the standard proofs [2] of the Bott periodicity theorem.
Furthermore, we let « : Ko(R) — Ko(R[tT]) be induced by the inclusion R — R[tF].
Here is the version of Theorem [B] that we actually prove.

Theorem 4.1. If R is regular noetherian, then (1, B) : K1(R)®Ko(R) — K (R[tT])
18 surjective.

Remark 4.2. One can show that (¢, 8) is in fact bijective (but one does not need to
know this if one only wants to understand why Wh(Z") = 0). In the special case
of interest, it is fairly easy to prove.
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Let us first demonstrate how to derive Theorem [Bl from Theorem ]l Recall that
if R is commutative, the determinant det : GL,,(R) — R* induces a homomorphism
det : Ky(R) — R*.

If R is a euclidean ring, det is an isomorphism. For example, it follows that K;(Z) —
{£1} is an isomorphism.

Lemma 4.3. The units in the group ring Z|Z") = Z[tE, ..., tE] are precisely the
elements of the form 4t ... .

Proof. First consider the case n = 1. For p =", a;t' € Z[tF], p # 0, define

deg(p) := max{jla; # 0} — min{j|a; # 0} € No.
It is easily checked that deg(pg) = deg(p) + deg(q), so that for a unit p, we must
have deg(p) = 0. This means p = at® for some k, a € Z, and the only possibility
for a is +1.

If n>2and p= dezn ag9 € Z[Z"]* is a unit, let supp(p) C Z" be the set
of all g with ay # 0. Under all coordinate projections Z"™ — Z, p maps to a unit.
This shows that supp(p) maps to a singleton for each coordinate projection by the
n =1 case of the lemma. Hence supp(p) has a single element, so that p = ag with
g € Z" and a € Z; but a = %1 is the only possibility. O

Proposition 4.4. The homomorphism
det : K1(Z[2"]) — Z[Z2"])* = £Z"
is an isomorphism. The Whitehead group Wh(Z") is trivial.

Proof. We prove the first claim by induction on n. The case n = 0 is clear since
Z is euclidean. For the induction step, we write Z[Z"] = Z[Z"!][t:] and let
j : Z]Z"'] — Z|Z™] be the inclusion. The composition

Z = Ko(Z) — Ko(Z[Z" ")) 5 Ky (2[2")
sends 1 to t,, € GL1(Z[Z"]) — K1(Z[Z"]). Together with the map K;(Z[Z"']) —
K, (Z|Z"]) induced by the inclusion, it defines

a: Ky(Z[Z"Y) ® Z — K\(Z[Z")).

Theorems [A] and [41] together show that « is surjective. The diagram

Ki(Z]Z" 1Y) & Z —2> K, (Z]Z"))

i det @ id i det

(£Z" Yo Z ————— 72"

commutes by inspection. The left vertical map is an isomorphism, by induction.
By a diagram chase, « is injective, and so « is an isomorphism. Therefore, all maps
in the diagram are isomorphisms. Furthermore, the composition

+7" 5 Ky (Z[Z") & +127
is the identity. Since det is an isomorphism, ¢ is surjective, and this shows that
Wh(Z™) = coker(i) = 0. O

Let us now turn to the proof of Theorem 4.1} To that end, we write [n, B] €
K1 (R) for the class represented by GL,(R).
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Proposition 4.5. Each element x € K1 (R[t*]) can be written as the sum of ele-
ments in the image of (v, ) and elements of the form [Py, 1+tNo]+ [Py, 1+t"1N]
with P; projective and N; nilpotent.

Proof. Start with an arbitrary x = [n, B] € Ki(R[t*]). We will write x = y if
x —y € Im(s, B). There is k so that t* B € GL,,(R[t*]) N Mat,, ,(R[t]) (which is not
the same as GL,,(R[t]). Then

[n, B] = [n,t %] + [n,t* B] = —nkB(1) + [n, t* B] = [n, t* B].
In other words, we may henceforth assume B € GL,,(R[t*]) N Mat,, ,(R[t]). Write
B=DBy+ Bit+ ...+ B,t"
with B, € Mat,, ,,(R). Now we use the Higman trick:

n, B = {%, <B 1)} _ {2% (BO+...+Bmtm —tmlle)] _

_ |:27’l, <B() + ... +th_1tm71 tmlle)]

by elementary row and column operations. The latter matrix is polynomial of
degree < max(1,m — 1). Hence, as long as m > 2, we can reduce the degree by 1,
at the price of enlarging the size of the matrices. Therefore

X = [Tl, B() + tBl]

for By, By € GL,,(R) and some n. But setting t = 1 shows that By+ Bj is invertible
and so
[n, By + tB1] = [n, By + Bi1] + [n, (Bo + B1) "' (Bo + tB1)] =
= [n,(Bo+ B1) Y (Bo + By + (t — 1) By)]

=[n, 14 (t—1)(Bo + B1) 'By] =: [n, 1 + (t — 1) A].

Claim 4.6. If A € Mat,, ,,(R) is such that 1+ (t—1)A € GL, (R[tT]), then (1 A)A
is nilpotent.

To prove the claim, write (1 + (t — 1)A)™ = C_p,t ™™ + ... + Cipt™ with C; €
Mat,, »(R). The equation (1 + (t —1)A)(1+ (¢ —1)A)~! =1 can be written as

(1—A)C_p, =0
(1= A)Cy_p+ AC_p =0
.=0

(1 — A)C,l +AC_5 =0
(1-A)Cy+AC_; =1
(1= A)C, + ACp = 0

=0
(1— A)Cypy + ACyy_1 =0
AC,, = 0.

From these equations, we read off that

—Cp, = AC,,_1 = AQCm_l =0, ..., Am+100 =0.
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Working downwards and switching the roles of A and 1 — A, we obtain similarly
(1-A)"C_;=0.
Using (1 — A)Cy + AC_; =1, we get
AT — A = AT (1 - AL - A)Cy 4+ AT (1 - AT AC =
— (1 _ A)m+2Am+ICO + Am+2(1 _ A)m-HC,l —
showing the claim.

Claim 4.7. If A € Mat,, ,(R) is such that 1+ (¢t — 1)A € GL,(R[tF]), then A =
N + P, where P is an idempotent, N is nilpotent, and P and N commute.

By Claim there is r with A"(1 — A)" = 0. Write
1= (z+(1-2)* =p@)a” +q(z)(1 - )"
for some polynomials p, q € Z[z]. Put
f(@) =z —2"p(x).
Because
fl@) =21 = 2" "p(e)) = (z = 1)(1 - (1 - )" q(z)),
z and (x — 1) divide f(x) and so we can write
f(z) = z(z = 1)g(z)
for some g € Q[x]. A quick calculation shows that g € Z[z]. Now define
P:=p(A)A".
Note that 1 — P = g(A)(1 — A)". Because
P~ P? = P(1 - P) = p(A)g(A)A"(1 - A =0,
P is an idempotent matrix. Furthermore
N:=A-P
is nilpotent since
N = f(A) = A(1 - A)g(A),

showing Claim So far, we have seen that each element in K (R[t*]) is the sum
of an element in the image of (¢, ) and an element of the form

[n, 14+ (t—1)(N + P)]

where P € Mat,, ,(R) is an idempotent, N € Mat,, ,,(R) is nilpotent and NP =
PN. Since P2 = P, both Im(P) and Im(1 — P) = ker(P) are projective and
Im(P) & Im(1 — P) = R". Thus

n, 14+ (t—1)(N+P)|=[Im(P),1+ (t —1)(1+ N)] + [ker(P),1+ (t — 1)N].
Now calculate
[ker(P),1+ (t —1)N] = [ker(P),(1 — N) +tN] =
= [ker(P),1 — N] + [ker(P),1+t(1— N)"'N] =
= [ker(P),14+t(1 — N)"'N]
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and
[m(P),1+ (t—1)(N+1)] = Im(P),t(N+1)— N] =
=[t]+ 14+ N]+ [Im(P),1 -t Y (N+1)"'N] =
= [Im(P)1 —t (N +1)"'N].
This concludes the proof. ([l

The proof of Theorem is completed by the following result:

Proposition 4.8. Let R be a regular noetherian ring and let N : P — P be
nilpotent endomorphism of a finitely generated projective R-module. Then

[P,1+ N]=0¢c K;(R).

Example 4.9. The following example shows that the regularity hypothesis in
Proposition cannot be dropped. Let R = Z/4. The element 2 € R is nilpotent.
Then x = [1 + 2] = [-1] € K1(R). But under the determinant homomorphism, x
is mapped to the nontrivial element of R* = {1, —1}.

For the proof of Proposition let us introduce the category AutFin(R) whose
objects are R-modules M, together with automorphisms f : M — M. A morphism
(M, f) — (N, g) is a homomorphism h : M — N with gh = hf. Let AutFin(R) C
AutMod(R) be the full subcategory of all objects (M, f) with M finitely generated
and let AutProj(R) C AutFin(R) be the full subcategory of all objects (P, f) with
p projective. Warning: an epimorphism (M, f) — (P, g) where P is projective does
not necessarily split.

Proposition 4.10. Let R be regular noetherian, let (M, f) € AutFin(R) and let
0— (Pnagn) e (POagO) — (M»f) —0
and
0= (Qmyhm) = ... = (Qo,ho) = (M, f) =0
be two exact sequences with P;, Q); projective. Then
Z(_l)i[Phgi] = Z(_l)i[thi] € Ki(R).
i>0 i>0
Proof.

Claim 4.11. If
0= (Paygn) ... B (Po,g0) = 0
is exact with P; projective, then Y ,(—1)'[P;, ;] = 0 € K1(R).
Let us first consider the case n = 2. A splitting s of d; yields an isomorphism

(Py,dy) = <P2 o P, (92 ;)) .

By elementary row operations, one sees that

[P, g1] = {PQ@PO, (92 g"‘oﬂ = {PQ@PO, (92 goﬂ — [Pa, ga] + [Po, 90]

as claimed. The case n > 3 is settled by induction: given

0= (Pn,gn) S ... B (P, 90) > 0



14 JOHANNES EBERT

is exact with P; projective, choose a splitting s : Py — P; of d;. Then (Py,¢1) is
isomorphic, in AutProj(R), to

/
(P{@P0;<gl *>)a

9o
with g := g1|p;. Therefore
[Pr,g1] = [P1, 61] + [Po, 90] € K1(R).
Since P{ is projective, we conclude Y_,(—1)*[P;, g;] = 0 by induction.
Claim 4.12. Suppose that

0*>(Pn7gn)*>...*>(P0,go)*>(M7f)*>0

- S

0—— (Qn,hn) —>... — (Qo, hg) —> (M, f) ——=0

is a commutative diagram in AutFin(R) with exact rows and P;, Q); projective,
then

> ([P g5 =D (=1)[Q), by € Ki(R).

=0 =0

To show this claim, consider the mapping cylinder (M., m.) of the chain map
fut (Pay gx) = (Qx, hy) of chain complexes in AutProj(()R). The jth term of the
mapping cylinder is (M;, m;) = (P}, g;) ® (Qj—1,hj—1). Since f. is a quasiisomor-
phism, the mapping cylinder is exact. By Claim [£.11] we get

0="> (=1)[M;,m;] = (1) [P, 9;] = Y (1)@, hy],
J J J
as claimed.

The problem with the general case is that if P is projective, then epimorphisms
in AutProj(()R) onto (P,g) do not have to split. Therefore, we cannot invoke
the fundamental lemma of homological algebra to constract a chain equivalence
between the two complexes, and Claim is not yet enough. But we are able
to construct a further projective resolution (K, k) of (M, f) which maps to both,
(Px, g«) and (Qx«, hy). The existence of such a resolution implies the Proposition.
Let us see how to construct (K, k.).

Claim 4.13. Let (M, f) € AutFin(R). Then there is a projective module @, an
epimorphism ¢ : Q — M and an automorphism g of @ such that qg = fq.

First pick an epimorphism p : P — M from a projective P. We can lift the
automorphism f @& f~' of M @ M to an automorphism of P @& P. To see this, write

Cr)-C - )0 D6

Since any endomorphism of M can be lifted to an endomorphism of P, it follows
that f @ f~! can be lifted to an automorphism h of P ® P. Define Q := P @ P,
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q :=popr; and g := h. By inspection, the diagram

Pao P v

P o b
PP M
commutes, which shows the claim.
Claim 4.14. Let b: (M, f) — (N, g) be a morphism in AutFin(R) and let
0= (Payhn) = ... = (Po,ho) 3 (N, g) = 0

be a finite resolution by objects in AutProj(R). Then there exists a finite reso-
lution (Q«, k«) — (M, f) by objects in AutProj(R) and a chain map (Q., k.) —
(Px, hy) extending b.

Consider
(a07_b) : (Po,h()) D (M7f) — (N7g)a
this is surjective, and let (B,r) be its kernel. Since R is noetherian, B is finitely
generated and we can find a projective module Qg with an automorphism kq, and
an epimorphism (Qq, ko) — (B, 7). This construction yields a commutative square

(Qo, ko) — (M, f)

|

(P07h0) - (N’ g)'

Proceeding in this manner, we get a partial projective resolution, which can be
completed to a finite projective resolution because R is regular noetherian.

Claim 4.15. Under the assumptions of the proposition, there is a finite projective
resolution (K, k) of (M, f) and two quasiisomorphisms (K, ki) — (Ps,gs) and
(K, ki) = (Qx, hy) covering the identity of (M, f).

To see this, we consider the diagonal (M, f) = (M & M, f @ f) and apply the
previous claim to the resolution (P, ® Qs, g« ® hs) = (M & M, f & f). The result
is a resolution (K, k,) of (M, f) with a map to (P. ® Q«, g« @ hs) covering the
diagonal. Composing with the two projections yields the desired map. O

Proof of [{.8 Let f: P — P be nilpotent of nilpotence index n (i.e. f" =10). We
claim that [P,1+ f] = 0 € K;(R) and show this by induction on the nilpotence
index. The induction beginning n = 1 is trivial. The following is a short exact
sequence in AutFin(R):

0= (Im(f), (1 +f)) = (P14 f) = (P/Im(f),1+ f) = 0.

Claim 4.16. Let M be a finitely generated R-module and let f : M — M be nilpo-
tent of nilpotence index n. Then there is a projective @, a nilpotent endomorphism
g of @ of nilpotence index n and a surjective ¢ : Q — M with qg = fq.

To see this, let p : P — M be an epimorphism from a finitely generate projective
module P and put @ := P"™. Define

q:Q—M; g=po(1ff*... ")
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and

= O
— O

Obviously g™ = 0 and qg = fq.
By Claim and since R is regular noetherian, there is a finite projective
resolution

O_>(QMa1+fm)_>"'_>(Q1;1+f1)—>(1m(f)71+f)-

where each f; is nilpotent of nilpotency index < n —1 (this is possible since f|im (s
has nilpotency index < n — 1). This yields a finite projective resolution

0= (Qm, 1+ fin) = ... = (Qu, 1+ f1) = (P 1+ f) = (P/Im(f),1) = 0
(since f =0 on P/Im(f)), and
0= (Qm,1) = ... = (Q1,1) = (P,1) = (P/Im(f),1) = 0
is another finite projective resolution. It follows from Proposition that

0=[P1]+> (-1)[Q;,1] = [P 1+ f1+ > _(-1)[Q;, 1+ f;).

jz1 j>1

By induction over the nilpotency index, [Q;, 1+ f;] = 0 € K1(R), and so [P, 1+ f] =
0. (I
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