THEOREMS OF GROTHENDIECK-SERRE AND BASS-HELLER-SWAN

JOHANNES EBERT

1. INTRODUCTION

Let R be a ring. Recall that $K_0(R)$ is the Grothendieck group of the semigroup of all isomorphism classes of finitely generated projective R-modules. The assignment $R \mapsto K_0(R)$ is a covariant functor from the category of rings to the category of abelian groups; for a ring homorphism $f: R \to S$, one defines $f_*: K_0(R) \to K_0(S)$ by $[P] \mapsto [P \otimes_R S]$. Any ring has a canonical homomorphism $j: \mathbb{Z} \to R$, and we define the reduces K_0 -group of R to be

$$K_0(R) := \operatorname{coker}(j_* : \mathbb{Z} \cong K_0(\mathbb{Z}) \to K_0(R)).$$

If R admits a unital homomorphism to a field F, then j_* is split-injective.

Theorem A (Grothendieck–Serre). The inclusion $j : \mathbb{Z} \to \mathbb{Z}[\mathbb{Z}^n]$ induces an isomorphism

$$j_*: K_0(\mathbb{Z}) \cong K_0(\mathbb{Z}[\mathbb{Z}^n]).$$

Hence $\widetilde{K}_0(\mathbb{Z}[\mathbb{Z}^n]) = 0.$

This was first proven by Grothendieck, and the proof that we shall discuss was given by Serre [15]. I was unable to locate a proof written down by Grothendieck, but both proofs are discussed in [4, ch. XII, $\S3$, $\S4$].

For the next result, let us recall the definition of the first algebraic K-theory group $K_1(R)$ of a ring and the Whitehead group Wh(G) of a group. If R is a ring, the general linear groups are ordered by inclusion:

$$R^{\times} = \operatorname{GL}_1(R) \subset \operatorname{GL}_2(R) \subset \dots,$$

and the union $\operatorname{GL}(R)$ is the infinite general linear group. The subgroup $E(R) \subset \operatorname{GL}(R)$ generated by the elementary matrices is equal to the commutator subgroup $[\operatorname{GL}(R), \operatorname{GL}(R)]$, by the Whitehead lemma [11, Lemma 3.1]. One defines

$$K_1(R) := \frac{\operatorname{GL}(R)}{E(R)} = \operatorname{GL}(R)^{\operatorname{ab}}.$$

A ring homomorphism $f : R \to S$ induces a group homomorphism $\operatorname{GL}(R) \to \operatorname{GL}(S)$ and hence $f_*K_1(R) \to K_1(S)$.

Now let G be a group and let $\mathbb{Z}[G]$ be the integral group ring of G. If $g \in G$, then $\pm g \in \mathbb{Z}[G]$ is a unit (a so called *trivial unit*. The set of trivial units is a subgroup $\pm G \cong \mathbb{Z}/2 \times G$ of $\mathrm{GL}_1(\mathbb{Z}[G])$. We obtain a homomorphism

$$i: \pm G \subset \operatorname{GL}_1(\mathbb{Z}[G]) \to \operatorname{GL}(\mathbb{Z}[G]) \to K_1(\mathbb{Z}[G]),$$

whose cokernel is the *Whitehead group* Wh(G) of G. The following result was first proven in [3].

Date: November 28, 2018.

Theorem B (Bass-Heller-Swan). The Whitehead group of \mathbb{Z}^n is trivial; $Wh(\mathbb{Z}^n) = 0$.

The case n = 1 is a good deal more elementary and was first shown by Higman [7].

The groups $\widetilde{K}_0(\mathbb{Z}[G])$ and Wh(G) play an important role in geometric topology. The group $\widetilde{K}_0(\mathbb{Z}[G])$ is the home of the Wall finiteness obstruction for finitely dominated spaces with fundamental group G [16], while Wh(G) is the home for the Whitehead torsion of a homotopy equivalence between finite complexes with fundamental group G [10], and of the Whitehead torsion of an h-cobordism between closed manifolds with fundamental group G [8]. Together with the results from the quoted papers, Theorems A and B show that

- (1) If X is a finitely dominated space with fundamental group \mathbb{Z}^n , then X is homotopy equivalent to a finite CW-complex.
- (2) If $f: X \to Y$ is a homotopy equivalence between finite CW-complexes with fundamental group \mathbb{Z}^n , then f is a simple homotopy equivalence.
- (3) If $W: M \rightsquigarrow N$ is an h-cobordism between closed smooth manifolds with fundamental group \mathbb{Z}^n , and if dim $(W) \ge 6$, then $W \cong M \times [0,1]$ relative to M.

Some of the fundamental results about topological manifolds are proven by a *torus argument*, which brings a torus (a space with fundamental group \mathbb{Z}^n !) into play in a somewhat unnatural manner. Theorems A and B show that the possible obstructions in $\widetilde{K}_0(\mathbb{Z}[\pi_1(T^n)])$ and $Wh(\pi_1(T^n))$ are trivial, and this if often one of the key ingredients to a torus argument. Among the results which are proven (or can be proven) by a torus argument are the following:

- (1) The topological invariance of rational Pontrjagin classes by Novikov [12].
- (2) Several pivotal proofs in Kirby-Siebenmann's theory of topological manifolds [9] (the proof of the stable homeomorphism theorem by Kirby makes only implicit use of Theorems A and B.
- (3) The topological invariance of Whitehead torsion (originally proven by Chapman [5]), and West's theorem [17] that a compact ENR has the homotopy type of a finite complex, have fairly accessible proofs by torus arguments in [6, §17,18].

Theorems A and B are proven in the books [4] and [14]. However, these texts prove more general versions, and the actual arguments are scattered over a large number of pages. In this note, we attempt to present the argument in a geodesic way, designed for the reader who just wants to know why A and B are true and then wants to return his attention to geometric topology. The reader who wants to understand these results in the wider context of higher algebraic K-theory should follow Quillen [13, §6].

2. Some commutative algebra

For the rest of this note, R will always be a commutative ring with unit (this assumption is mostly made for convenience, to avoid disctinction between left and right modules). There are two finiteness conditions on a ring which will play an important role in the proofs.

Definition 2.1. A ring R is *noetherian* if each ideal $I \subset R$ is finitely generated.

Equivalently, R is noetherian if each submodule of a finitely generated R-module is again finitely generated [1, Proposition 6.5]. The following famous theorem of Hilbert is a standard result of commutative algebra.

Theorem 2.2 (Hilbert's basis theorem). If R is noetherian, the so are the polynomial ring R[t] and the Laurent polynomial ring $R[t^{\pm}]$.

The proof of the first assertion can be found in [1, Theorem 7.5], and this implies the second one by virtue of [1, Proposition 7.3] since $R[t^{\pm}]$ is a localization of R[t]. By induction, it follows that the ring

$$\mathbb{Z}[\mathbb{Z}^n] = \mathbb{Z}[\mathbb{Z}^{n-1}][t_n^{\pm}] = \mathbb{Z}[t_1^{\pm}, \dots, t_n^{\pm}]$$

is noetherian. We denote by

$$\mathbf{Mod}(R), \ \mathbf{Fin}(R), \ \mathbf{Proj}(R)$$

the categories of R-modules, finitely generated R-modules and projective finitely generated R-modules.

Definition 2.3. Let R be a ring and let $M \in \mathbf{Mod}(R)$ be an R-module. We say that the *projective dimension* of M is at most n, $\operatorname{projdim}_{R}(M) \leq n$, if there is a projective resolution

$$0 \to P_n \to \ldots \to P_0 \to M \to 0$$

of length n. A ring R is regular if $\operatorname{projdim}_R(M) < \infty$ for each R-module M.

Example 2.4. M is projective if and only if $\operatorname{projdim}_R(M) \leq 0$. If R is a principal ideal domain, then $\operatorname{projdim}_R(M) \leq 1$ for each R-module M. Hence principal ideal domains are regular.

Example 2.5. The rings $\mathbb{Z}/4$ and $\mathbb{Z}[\mathbb{Z}/n]$ are not regular.

Lemma 2.6. An *R*-module *M* is projective if and only if $\text{Ext}_R^1(M; N) = 0$ for all *R*-modules *N*.

Proof. If M is projective, then $0 \to M \xrightarrow{\text{id}} M \to 0$ is a projective resolution, which shows that $\text{Ext}^1_R(M; N) = 0$. Vice versa, assume $\text{Ext}^1(M; N) = 0$ for all N and let $f: N \to M$ be an epimorphism. The exact sequence

$$\operatorname{Hom}(M; N) \xrightarrow{f^{\circ}} \operatorname{Hom}(M; M) \to \operatorname{Ext}^{1}_{R}(M; \ker(f)) = 0$$

shows that f is split surjective and hence that M is projective.

Lemma 2.7. Let M be an R-module. The following are equivalent:

(1) There is a projective resolution

$$0 \to P_n \xrightarrow{a_n} P_{n-1} \to \ldots \to P_0 \xrightarrow{a_0} M \to 0$$

of length n.

(2) For each exact sequence

$$0 \to Q \to P_{n-1} \stackrel{d_{n-1}}{\to} \dots \to P_0 \stackrel{d_0}{\to} M \to 0$$

of *R*-modules with P_0, \ldots, P_{n-1} projective, the module *Q* is projective. (3) $\operatorname{Ext}_R^{n+1}(M; N) = 0$ for each *R*-module *N*.

Proof. The implications $(2) \Rightarrow (1) \Rightarrow (3)$ are clear. To show $(3) \rightarrow (2)$, consider an exact sequence as in (2) and put

$$M_k := \begin{cases} M & k = 0\\ \ker(d_{k-1}) = \operatorname{Im}(d_k) & 1 \le k \le n-1\\ Q & k = n. \end{cases}$$

By Lemma 2.6, we need to prove that $\operatorname{Ext}_{R}^{1}(M_{n}; N) = 0$ for each N. There are short exact sequences

$$0 \to M_k \to P_{k-1} \to M_{k-1} \to 0$$

which induce, for each *R*-module *N* and $p \in \mathbb{N}$, exact sequences

 $0 = \operatorname{Ext}_{R}^{p}(P_{k-1}; N) \to \operatorname{Ext}_{R}^{p}(M_{k}; N) \to \operatorname{Ext}_{R}^{p+1}(M_{k-1}; N) \to \operatorname{Ext}^{p+1}(P_{k-1}; N) = 0$ and isomorphism

$$\operatorname{Ext}^{1}(M_{n}; N)) \cong \operatorname{Ext}^{2}(M_{n-1}; N) \cong \ldots \cong \operatorname{Ext}^{n+1}_{R}(M_{0}; N) = 0.$$

Corollary 2.8. If R is regular and noetherian, then each finitely generated R-module admits a finite projective resolution, that is, a resolution of finite length by finitely generated projective R-modules. \Box

We need another famous theorem by Hilbert.

Theorem 2.9 (Hilbert's Syzygy theorem). If R is regular, then R[t] and $R[t^{\pm}]$ are regular.

Proof. Let M be an R[t]-module. We can view M, by restriction of scalars, as an R-module, together with an endomorphism $\varphi: M \to M$ coming from multiplication by t. The sequence

$$0 \to R[t] \otimes_R M \stackrel{t \otimes 1 - 1 \otimes \varphi}{\to} R[t] \otimes_R M \stackrel{p \otimes m \mapsto pm}{\to} M \to 0$$

is exact by a direct verification. For any R[t]-module N, we obtain exact sequences

$$\operatorname{Ext}_{R[t]}^{n}(R[t] \otimes_{R} M; N) \to \operatorname{Ext}_{R[t]}^{n+1}(M; N) \to \operatorname{Ext}_{R[t]}^{n+1}(R[t] \otimes_{R} M; N)$$

Because R[t] is free as an *R*-module, there is an isomorphism

$$\operatorname{Ext}_{R[t]}^{n}(R[t] \otimes_{R} M; N) \cong \operatorname{Ext}_{R}^{n}(M; N).$$

It follows that if $n > \operatorname{projdim}_{R}(M)$, then $\operatorname{Ext}_{R[t]}^{n+1}(M; N)$ for all R[t]-modules N. In other words $\operatorname{projdim}_{R[t]}M \leq n$.

The second part follows from the first and the fact that $R[t^{\pm}]$ is a flat R[t]-module. Let M be an $R[t^{\pm}]$ -module and let $(x_i)_i$ be a generating set of M, and let $M_1 \subset M$ be the R[t]-module generated by $(x_i)_i$. Then (because $R[t^{\pm}]$ is a flat R[t]-module), there is an isomorphism $M_1 \otimes_{R[t]} R[t^{\pm}] \cong M$. It follows that (again using flatness)

$$\operatorname{Ext}_{R[t^{\pm}]}^{n}(M;N) \cong \operatorname{Ext}_{R[t^{\pm}]}^{n}(M_{1} \otimes_{R[t]} R[t^{\pm}];N) = \operatorname{Ext}_{R[t]}^{n}(M_{1};N),$$

and so $\operatorname{projdim}_{R[t^{\pm}]}M \leq \operatorname{projdim}_{R[t]}M_1$.

The basis theorem and the Syzygy theorem together imply that $\mathbb{Z}[\mathbb{Z}^n]$ is regular noetherian.

3. Proof of the Grothendieck-Serre Theorem

We shall prove a more precise version:

Theorem 3.1. Let R be a ring and let $R \xrightarrow{i} R[t] \xrightarrow{j} R[t^{\pm}]$ be the inclusions. Then if R is regular noetherian, the induced maps

$$K_0(R) \xrightarrow{i_*} K_0(R[t]) \xrightarrow{j_*} K_0(R[t^{\pm}])$$

are isomorphisms.

Remark 3.2. Theorem 3.1 implies Theorem A by induction (using the basis and syzygy theorem in the induction step). In order to prove Theorem 3.1, it is enough to prove that i_* and j_* are surjective. This is because the map $r : R[t^{\pm}] \to R$, $t^{\pm} \mapsto 1$ is a right-inverse to $j \circ i$.

Lemma 3.3. If R is regular noetherian, then $j_* : K_0(R[t]) \to K_0(R[t^{\pm}])$ is surjective.

In the proof, we use the following simple observation: If

$$0 \to N_n \stackrel{d_n}{\to} N_{n-1} \to \ldots \to N_1 \stackrel{d_0}{\to} N_0 \to 0$$

is an exact sequence of projective R-modules, then

$$\sum_{i=0}^{n} (-1)^{i} [N_{i}] = 0 \in K_{0}(R).$$
(3.4)

To see this, one picks a split of d_0 to write $N_1 \cong \text{Im}(d_2) \oplus N_0$, observes that $\text{Im}(d_2)$ is projective and argues by induction.

Proof of Lemma 3.3. Let P be a finitely generated projective $R[t^{\pm}]$ -module. Since $R[t^{\pm}]$ is noetherian, we can write P as a quotient

$$P = R[t^{\pm}]^n / N,$$

where the submodule N is finitely generated. Hence we may write

$$N = \langle x_1, \ldots, x_r \rangle$$

where $x_i \in R[t^{\pm}]^n$ is a vector whose entries are Laurent polynomials. There is $s \gg 0$ such that $t^s x_i \in R[t]^n$ for all *i*. Since t^s is a unit in $R[t^{\pm}]$, it follows that

$$P = R[t^{\pm}]^n / N \stackrel{t^{s_{\cdot}}}{\cong} R[t^{\pm}]^n / t^s N = \frac{R[t^{\pm}]^n}{\langle t^s x_1, \dots, t^s x_r \rangle} \cong \frac{R[t]^n}{\langle t^s x_1, \dots, t^s x_r \rangle} \otimes_{R[t]} R[t^{\pm}].$$

Hence we can find a finitely generated R[t]-module M such that

$$P \cong M \otimes_{R[t]} R[t^{\pm}].$$

Because R[t] is regular noetherian, there is a finite projective resolution

 $0 \to Q_n \to \ldots \to Q_0 \to M \to 0$

by Corollary 2.8. Since $R[t^{\pm}]$ is a localization of R[t], the functor $-\otimes_{R[t]} R[t^{\pm}]$ is exact, and hence we get a short exact sequence

$$0 \to Q_n \otimes_{R[t]} R[t^{\pm}] \to \dots \to Q_0 \otimes_{R[t]} R[t^{\pm}] \to P \to 0$$
(3.5)

of projective $R[t^{\pm}]$ -modules. Apply (3.4) to the sequence (3.5) to obtain

$$[P] = \sum_{i=0}^{\infty} (-1)^{i} [Q_{i} \otimes_{R[t]} R[t^{\pm}]] = j_{*} \left(\sum_{i=0}^{\infty} (-1)^{i} [Q_{i}] \right).$$

For the proof that $i_*: K_0(R) \to K_0(R[t])$ is an isomorphism, we need to introduce graded rings.

Definition 3.6. A graded ring is a ring A, together with a decomposition

$$A = \bigoplus_{n \ge 0} A_n$$

such that $A_n A_m \subset A_{m+n}$. The ideal of elements of positive degree is

$$A_+ := \bigoplus_{n>0} A_n \subset A$$

(note that $A/A_+ \cong A_0$). An element $a \in A$ is homogeneous if $a \in A_n$ for some n. In that case, |a| := n is the degree of a.

Note that a commutative graded ring is a different thing than a "graded commutative ring". Let us briefly list some important examples of graded rings.

- An (ungraded) ring R considered as a graded ring with $R_0 := R$.
- If A is graded, the polynomial ring A[t] is graded, by declaring the degree of $t^k a$ to be n + k, when |a| = n.
- In particular, if R is ungraded, then R[t, s] is graded, by declaring |s| = |t| = 1.

Definition 3.7. Let A be a graded ring. A graded A-module is an A-module M, together with a decomposition

$$M = \bigoplus_{n \in \mathbb{Z}} M_n,$$

such that $A_m M_n \subset M_{m+n}$ for all m, n. A homomorphism $f: M \to N$ between graded modules is graded, if $f(M_n) \subset N_n$ for all n. Such an f can be written in the form $f = \bigoplus_n f_n$, with $f_n: M_n \to N_n$. A submodule $N \subset M$ of a graded module is graded if $N = \bigoplus_n N \cap M_n$. In that case, the quotient module M/N inherits a grading from that of M.

We define

$$\mathbf{Mod}^{\mathrm{gr}}(A), \ \mathbf{Fin}^{\mathrm{gr}}(A), \ \mathbf{Proj}^{\mathrm{gr}}(A)$$

as the categories of all graded A-modules and graded homomorphisms, and the full subcategories such that the underlying A-module is finitely generated (resp. projective). If M is a graded A-module, we define the shift M[n] as the graded A-module with underlying A-module M and grading defined by

$$M[n]_m := M_{m-n}$$

For a graded A-module M, we define the graded A_0 -module

$$T(M) := M/A_+M = M \otimes_A A_0$$

Lemma 3.8. Let A be a graded ring and let $M \in \operatorname{Fin}^{\operatorname{gr}}(A)$. Then

(1) M is generated by finitely many homogeneous elements.

(2) $M_n = 0$ for $n \ll 0$.

(3) If T(M) = 0, then M = 0.

Proof. The first claim is true, because any generating set of M contains a finite generating set. The minimum degree $n_0 \in \mathbb{Z}$ of an element of a homogeneous generating set has the property that $M_n = 0$ for $n < n_0$, showing claim (2). If $M \neq 0$, it contains a nonzero homogeneous element m of minimal degree, and $m \notin A_+M$.

Lemma 3.9. Let A be a graded ring and let $P \in \mathbf{Proj}^{\mathrm{gr}}(A)$. Then

- (1) Let $M \in \mathbf{Mod}^{\mathrm{gr}}(A)$ and let $f: M \to P$ be a surjective graded homomorphism. Then there is a graded homomorphism $g: P \to M$ with $f \circ g = \mathrm{id}$.
- (2) P is a direct summand of a finitely generated free graded A-module, i.e. a sum of graded modules of the form A[m].

Proof. For claim (1), write $f = \bigoplus_n f_n$, with $f_n : M_n \to P_n$. Let $\pi_n^P : P \to P_n$ and $\pi_n^M : M \to M_n$ be the projections and let $\iota_n : M_n \to M$ be the inclusion. Pick a split $h : P \to M$ of f of ungraded modules. We define

$$g = \bigoplus_{n} \pi_n^P \circ h \circ \iota_n : P \to M.$$

Then

$$f_n \circ g_n = f_n \circ \pi_n^P \circ h \circ \iota_n = \pi_n^M \circ f \circ h \circ \iota_n = \pi_n^M \circ \iota_n = \mathrm{id}_{M_n} \,.$$

For claim (2), use Lemma 3.8 to construct a graded surjection

$$\bigoplus_{i=1}^{\prime} A[j_i] \to P$$

and use part (1).

Lemma 3.10. Each $P \in \mathbf{Proj}^{\mathrm{gr}}(A)$ is of the form $P = M \otimes_{A_0} A$ for some $M \in \mathbf{Proj}^{\mathrm{gr}}(A_0)$.

Proof. The quotient map $f: P \to T(P)$ is a surjective homomorphism of graded A_0 -modules (P is an A_0 module by forgetting) and T(P) is projective. By Lemma 3.9 (1), there is a graded A_0 -module map $g: T(P) \to P$ with $f \circ g = \text{id.}$ It induces a homomorphism of graded A-modules

$$h: T(P) \otimes_{A_0} A \to P, \ h(x \otimes y) = g(x)y.$$

Once we can show that h is an isomorphism, the lemma follows. To see this, observe that $T(h) : T(T(P) \otimes_{A_0} A) = T(P) \to T(P)$ is the identity. Because T is right exact, it follows that

$$0 = \operatorname{coker}(T(h)) \cong T(\operatorname{coker}(h)).$$

Since coker(h) is a finitely generated graded A-module, it follows from Lemma 3.8 that coker(h) = 0, i.e. that h is surjective. On the other hand, since P is projective, there is a graded homomorphism $k : P \to T(P) \otimes_{A_0} A$ with $h \circ k = id$, by Lemma 3.9. Since T(h) is an isomorphism, so is T(k). From

$$\ker(h) \cong \operatorname{coker}(k)$$

and the right-exactness of T, we obtain

$$T(\ker(h)) = T(\operatorname{coker}(k)) \cong \operatorname{coker}(T(k)) = 0,$$

and another application of Lemma 3.8 proves that ker(h) = 0.

Lemma 3.11. Let A be a noetherian graded ring. Then the functor

$$-\otimes_{A[t]} A: \mathbf{Fin}^{\mathrm{gr}}(A[t]) \to \mathbf{Fin}(A)$$

(induced by the ungraded ring homomorphism $A[t] \rightarrow A, t \mapsto 1$) is exact and essentially surjective.

Proof. Right-exactness is clear. To prove left-exactness, we have to prove that if $N \subset M$ are finitely generated graded A[t]-modules, then the induced map $N \otimes_{A[t]} A \to M \otimes_{A[t]} A$ is injective. Because $M \otimes_{A[t]} A \cong M/(1-t)M$, we find that

$$\ker(N \otimes_{A[t]} A \to M \otimes_{A[t]} A) = \frac{N \cap (1-t)M}{(1-t)N}.$$

Thus to prove left-exactness, we have to verify that

$$(1-t)N = N \cap ((1-t)M).$$
 (3.12)

It is obvious that $(1-t)N \subset N \cap ((1-t)M)$. For the reverse inclusion, let $m \in M$ with $(1-t)m \in N$. To see that $m \in N$, write

$$m = m_i + m_{i+1} + \ldots + m_j \in M$$

as a sum of homogeneous elements $m_k \in M_k$. Then

$$(1-t)m = m_i + (m_{i+1} - tm_i) + \ldots \in N$$

implies $m_i, m_{i+1}, \ldots \in N$ and hence $m \in N$.

To show that $-\otimes_{A[t]} A$ is essentially surjective, let M be a finitely generated A-module, which can be written as

$$M = A^n / N$$

with a finitely generated submodule N (here we use that A is noetherian). Let $N = \langle x_1, \ldots, x_r \rangle$ and write $x_i = (x_{i1}, \ldots, x_{in})$ with $x_{ij} \in A$. For an arbitrary element $x \in A$, write

$$x = x_0 + \ldots + x_d \in A$$

as a sum of homogeneous elements and define the homogenized element as

$$x' := t^d x_0 + \ldots + t^0 x_d \in A[t]_d.$$

Let

$$N' := \langle x'_1, \dots, x'_r \rangle \subset A[t]^n;$$

this is a finitely generated submodule generated by homogeneous elements and hence a graded submodule. Define a finitely generated graded A[t]-module

$$M' := A[t]^n / N'$$

Then

$$M' \otimes_{A[t]} A \cong M,$$

and this finishes the proof.

The proof of Theorem 3.1 is completed by the following lemma.

Lemma 3.13. If R is regular noetherian, then the map $i_* : K_0(R) \to K_0(R[t])$ is surjective.

Proof. Let P be a projective finitely generated R[t]-module. By Lemma 3.11, there is a finitely generated graded R[t, s]-module M with

$$M \otimes_{R[t,s]} R[t] \cong P$$

(here we use the basis theorem to see that R[t] is noetherian). By the Syzygy theorem and basis theorem, R[t, s] is regular noetherian, and hence there is a finite projective resolution

$$0 \to Q_n \to \ldots \to Q_0 \to M \to 0$$

by graded projective R[t, s]-modules (use Lemma 3.9). By Lemma 3.11, the tensored sequence

$$0 \to Q_n \otimes_{R[t,s]} R[t] \to \ldots \to Q_0 \otimes_{R[t,s]} R[t] \to M \otimes_{R[t,s]} R[t] \cong P \to 0$$

is again a projective resolution. By Lemma 3.10, there are finitely generated projective *R*-modules N_j with $N_j \otimes_R R[t, s] \cong Q_j$. Therefore

$$Q_j \otimes_{R[t,s]} R[t] \cong N_j \otimes_R R[t,s] \otimes_{R[t,s]} R[t] \cong N_j \otimes_R R[t].$$

Apply (3.4) to conclude that

$$[P] = \sum_{j \ge 0} (-1)^j [N_j \otimes_R R[t]] \in \operatorname{Im}(j_*).$$

4. Proof of the Bass-Heller-Swan Theorem

Before we can state the version of Theorem B that we actually prove, let us recall a simple fact about $K_1(R)$. Suppose that P is a projective finitely generated R-module and $f: P \to P$ is an automorphism. Pick a complement Q, i.e. a finitely generated projective module such that $P \oplus Q \cong R^n$. The automorphism $f \oplus 1$ of R^n is represented by a matrix F in $\operatorname{GL}_n(R)$. By [11, Lemma 3.2], the class in $K_1(R)$ represented by F does not depend on the choice of P and the isomorphism. We denote this class by

$$[P, f] \in K_1(R)$$

The definitions are made up so that the following relations hold:

$$\begin{split} [P,fg] &= [P,f] + [P,g] \\ [P,1] &= 0 \\ [P_0 \oplus P_1, f_0 \oplus f_1] &= [P_0,f_0] + [P_1,f_1]. \end{split}$$

Now we define a homomorphism

$$\beta: K_0(R) \to K_1(R[t^{\pm}]),$$

by sending the class of a projective module P to $[P \otimes_R R[t^{\pm}], t] \in K_1(R[t^{\pm}])$. This could legitimately be called the *Bott map*, due to its similarity with the Bott map in complex *K*-theory. In fact, a large portion of the proof of Theorem 4.1 below is very similar to one of the standard proofs [2] of the Bott periodicity theorem. Furthermore, we let $\iota : K_0(R) \to K_0(R[t^{\pm}])$ be induced by the inclusion $R \to R[t^{\pm}]$. Here is the version of Theorem B that we actually prove.

Theorem 4.1. If R is regular noetherian, then $(\iota, \beta) : K_1(R) \oplus K_0(R) \to K_1(R[t^{\pm}])$ is surjective.

Remark 4.2. One can show that (ι, β) is in fact bijective (but one does not need to know this if one only wants to understand why $Wh(\mathbb{Z}^n) = 0$). In the special case of interest, it is fairly easy to prove.

Let us first demonstrate how to derive Theorem B from Theorem 4.1. Recall that if R is commutative, the determinant det : $\operatorname{GL}_n(R) \to R^{\times}$ induces a homomorphism

$$\det: K_1(R) \to R^{\times}$$

If R is a euclidean ring, det is an isomorphism. For example, it follows that $K_1(\mathbb{Z}) \to \{\pm 1\}$ is an isomorphism.

Lemma 4.3. The units in the group ring $\mathbb{Z}[\mathbb{Z}^n] = \mathbb{Z}[t_1^{\pm}, \ldots, t_n^{\pm}]$ are precisely the elements of the form $\pm t_1^{k_1} \cdots t_n^{k_k}$.

Proof. First consider the case n = 1. For $p = \sum_{i} a_i t^i \in \mathbb{Z}[t^{\pm}], p \neq 0$, define

$$\deg(p) := \max\{j | a_j \neq 0\} - \min\{j | a_j \neq 0\} \in \mathbb{N}_0.$$

It is easily checked that $\deg(pq) = \deg(p) + \deg(q)$, so that for a unit p, we must have $\deg(p) = 0$. This means $p = at^k$ for some $k, a \in \mathbb{Z}$, and the only possibility for a is ± 1 .

If $n \geq 2$ and $p = \sum_{g \in \mathbb{Z}^n} a_g g \in \mathbb{Z}[\mathbb{Z}^n]^{\times}$ is a unit, let $\operatorname{supp}(p) \subset \mathbb{Z}^n$ be the set of all g with $a_g \neq 0$. Under all coordinate projections $\mathbb{Z}^n \to \mathbb{Z}$, p maps to a unit. This shows that $\operatorname{supp}(p)$ maps to a singleton for each coordinate projection by the n = 1 case of the lemma. Hence $\operatorname{supp}(p)$ has a single element, so that p = ag with $g \in \mathbb{Z}^n$ and $a \in \mathbb{Z}$; but $a = \pm 1$ is the only possibility. \Box

Proposition 4.4. The homomorphism

$$\det: K_1(\mathbb{Z}[\mathbb{Z}^n]) \to \mathbb{Z}[\mathbb{Z}^n]^{\times} \cong \pm \mathbb{Z}^n$$

is an isomorphism. The Whitehead group $Wh(\mathbb{Z}^n)$ is trivial.

Proof. We prove the first claim by induction on n. The case n = 0 is clear since \mathbb{Z} is euclidean. For the induction step, we write $\mathbb{Z}[\mathbb{Z}^n] = \mathbb{Z}[\mathbb{Z}^{n-1}][t_n^{\pm}]$ and let $j : \mathbb{Z}[\mathbb{Z}^{n-1}] \to \mathbb{Z}[\mathbb{Z}^n]$ be the inclusion. The composition

$$\mathbb{Z} = K_0(\mathbb{Z}) \to K_0(\mathbb{Z}[\mathbb{Z}^{n-1}]) \stackrel{\beta}{\to} K_1(\mathbb{Z}[\mathbb{Z}^n])$$

sends 1 to $t_n \in \operatorname{GL}_1(\mathbb{Z}[\mathbb{Z}^n]) \to K_1(\mathbb{Z}[\mathbb{Z}^n])$. Together with the map $K_1(\mathbb{Z}[\mathbb{Z}^{n-1}]) \to K_1(\mathbb{Z}[\mathbb{Z}^n])$ induced by the inclusion, it defines

$$\alpha: K_1(\mathbb{Z}[\mathbb{Z}^{n-1}]) \oplus \mathbb{Z} \to K_1(\mathbb{Z}[\mathbb{Z}^n]).$$

Theorems A and 4.1 together show that α is surjective. The diagram

$$K_1(\mathbb{Z}[\mathbb{Z}^{n-1}]) \oplus \mathbb{Z} \xrightarrow{\alpha} K_1(\mathbb{Z}[\mathbb{Z}^n])$$

$$\bigvee_{\substack{\text{det } \oplus \text{ id} \\ (\pm \mathbb{Z}^{n-1}) \oplus \mathbb{Z} \xrightarrow{=} \pm \mathbb{Z}^n}} \pm \mathbb{Z}^n$$

commutes by inspection. The left vertical map is an isomorphism, by induction. By a diagram chase, α is injective, and so α is an isomorphism. Therefore, all maps in the diagram are isomorphisms. Furthermore, the composition

$$\pm \mathbb{Z}^n \xrightarrow{i} K_1(\mathbb{Z}[\mathbb{Z}^n]) \xrightarrow{\det} \pm 1\mathbb{Z}^n$$

is the identity. Since det is an isomorphism, i is surjective, and this shows that $Wh(\mathbb{Z}^n) = coker(i) = 0.$

Let us now turn to the proof of Theorem 4.1. To that end, we write $[n, B] \in K_1(R)$ for the class represented by $\operatorname{GL}_n(R)$.

Proposition 4.5. Each element $\mathbf{x} \in K_1(R[t^{\pm}])$ can be written as the sum of elements in the image of (ι, β) and elements of the form $[P_0, 1+tN_0] + [P_1, 1+t^{-1}N_1]$ with P_i projective and N_i nilpotent.

Proof. Start with an arbitrary $\mathbf{x} = [n, B] \in K_1(R[t^{\pm}])$. We will write $\mathbf{x} \equiv \mathbf{y}$ if $\mathbf{x} - \mathbf{y} \in \text{Im}(\iota, \beta)$. There is k so that $t^k B \in \text{GL}_n(R[t^{\pm}]) \cap \text{Mat}_{n,n}(R[t])$ (which is not the same as $\text{GL}_n(R[t])$). Then

$$[n, B] = [n, t^{-k}] + [n, t^k B] = -nk\beta(1) + [n, t^k B] \equiv [n, t^k B].$$

In other words, we may henceforth assume $B \in \operatorname{GL}_n(R[t^{\pm}]) \cap \operatorname{Mat}_{n,n}(R[t])$. Write

$$B = B_0 + B_1 t + \ldots + B_m t^m$$

with $B_m \in Mat_{n,n}(R)$. Now we use the Higman trick:

$$[n,B] = \begin{bmatrix} 2n, \begin{pmatrix} B \\ & 1 \end{pmatrix} \end{bmatrix} = \begin{bmatrix} 2n, \begin{pmatrix} B_0 + \dots + B_m t^m & -t^{m-1}B_m \\ & 1 \end{pmatrix} \end{bmatrix} = \begin{bmatrix} 2n, \begin{pmatrix} B_0 + \dots + B_{m-1}t^{m-1} & -t^{m-1}B_m \\ & t & 1 \end{pmatrix} \end{bmatrix}$$

by elementary row and column operations. The latter matrix is polynomial of degree $\leq \max(1, m - 1)$. Hence, as long as $m \geq 2$, we can reduce the degree by 1, at the price of enlarging the size of the matrices. Therefore

$$\mathbf{x} \equiv [n, B_0 + tB_1]$$

for $B_0, B_1 \in \operatorname{GL}_n(R)$ and some n. But setting t = 1 shows that $B_0 + B_1$ is invertible and so

$$[n, B_0 + tB_1] = [n, B_0 + B_1] + [n, (B_0 + B_1)^{-1}(B_0 + tB_1)] \equiv$$
$$\equiv [n, (B_0 + B_1)^{-1}(B_0 + B_1 + (t - 1)B_1)] =$$
$$= [n, 1 + (t - 1)(B_0 + B_1)^{-1}B_1] =: [n, 1 + (t - 1)A].$$

Claim 4.6. If $A \in Mat_{n,n}(R)$ is such that $1 + (t-1)A \in GL_n(R[t^{\pm}])$, then (1-A)A is nilpotent.

To prove the claim, write $(1 + (t-1)A)^{-1} = C_{-m}t^{-m} + \ldots + C_mt^m$ with $C_i \in Mat_{n,n}(R)$. The equation $(1 + (t-1)A)(1 + (t-1)A)^{-1} = 1$ can be written as

$$(1 - A)C_{-m} = 0$$

$$(1 - A)C_{1-m} + AC_{-m} = 0$$

$$\dots = 0$$

$$(1 - A)C_{-1} + AC_{-2} = 0$$

$$(1 - A)C_{0} + AC_{-1} = 1$$

$$(1 - A)C_{1} + AC_{0} = 0$$

$$\dots = 0$$

$$(1 - A)C_{m} + AC_{m-1} = 0$$

$$AC_{m} = 0.$$

From these equations, we read off that

$$-C_m = AC_{m-1} \Rightarrow A^2 C_{m-1} = 0, \dots, A^{m+1} C_0 = 0.$$

Working downwards and switching the roles of A and 1 - A, we obtain similarly

$$(1 - A)^m C_{-1} = 0.$$

Using $(1 - A)C_0 + AC_{-1} = 1$, we get

$$A^{m+1}(1-A)^{m+1} = A^{m+1}(1-A)^{m+1}(1-A)C_0 + A^{m+1}(1-A)^{m+1}AC_{-1} =$$

= $(1-A)^{m+2}A^{m+1}C_0 + A^{m+2}(1-A)^{m+1}C_{-1} = 0,$

showing the claim.

Claim 4.7. If $A \in Mat_{n,n}(R)$ is such that $1 + (t-1)A \in GL_n(R[t^{\pm}])$, then A = N + P, where P is an idempotent, N is nilpotent, and P and N commute.

By Claim 4.6, there is r with $A^r(1-A)^r = 0$. Write

$$1 = (x + (1 - x))^{2r} = p(x)x^{r} + q(x)(1 - x)^{r}$$

for some polynomials $p, q \in \mathbb{Z}[x]$. Put

$$f(x) := x - x^r p(x).$$

Because

$$f(x) = x(1 - x^{r-1}p(x)) = (x - 1)(1 - (1 - x)^{r-1}q(x)),$$

x and (x-1) divide f(x) and so we can write

$$f(x) = x(x-1)g(x)$$

for some $g \in \mathbb{Q}[x]$. A quick calculation shows that $g \in \mathbb{Z}[x]$. Now define

$$P := p(A)A^r.$$

Note that $1 - P = q(A)(1 - A)^r$. Because

$$P - P^{2} = P(1 - P) = p(A)q(A)A^{r}(1 - A)^{r} = 0,$$

 ${\cal P}$ is an idempotent matrix. Furthermore

$$N := A - P$$

is nilpotent since

$$N = f(A) = A(1 - A)g(A),$$

showing Claim 4.7. So far, we have seen that each element in $K_1(R[t^{\pm}])$ is the sum of an element in the image of (ι, β) and an element of the form

$$[n, 1 + (t - 1)(N + P)]$$

where $P \in \operatorname{Mat}_{n,n}(R)$ is an idempotent, $N \in \operatorname{Mat}_{n,n}(R)$ is nilpotent and NP = PN. Since $P^2 = P$, both $\operatorname{Im}(P)$ and $\operatorname{Im}(1 - P) = \ker(P)$ are projective and $\operatorname{Im}(P) \oplus \operatorname{Im}(1 - P) = R^n$. Thus

$$[n, 1 + (t-1)(N+P)] = [\operatorname{Im}(P), 1 + (t-1)(1+N)] + [\ker(P), 1 + (t-1)N].$$

Now calculate

$$[\ker(P), 1 + (t-1)N] = [\ker(P), (1-N) + tN] =$$
$$= [\ker(P), 1-N] + [\ker(P), 1 + t(1-N)^{-1}N] =$$
$$\equiv [\ker(P), 1 + t(1-N)^{-1}N]$$

and

$$[\operatorname{Im}(P), 1 + (t-1)(N+1)] = [\operatorname{Im}(P), t(N+1) - N] =$$

= [t] + [1 + N] + [Im(P), 1 - t^{-1}(N+1)^{-1}N] =
= [Im(P)1 - t^{-1}(N+1)^{-1}N].

This concludes the proof.

The proof of Theorem 4.1 is completed by the following result:

Proposition 4.8. Let R be a regular noetherian ring and let $N : P \to P$ be nilpotent endomorphism of a finitely generated projective R-module. Then

$$[P, 1+N] = 0 \in K_1(R).$$

Example 4.9. The following example shows that the regularity hypothesis in Proposition 4.8 cannot be dropped. Let $R = \mathbb{Z}/4$. The element $2 \in R$ is nilpotent. Then $\mathbf{x} = [1+2] = [-1] \in K_1(R)$. But under the determinant homomorphism, \mathbf{x} is mapped to the nontrivial element of $R^{\times} = \{1, -1\}$.

For the proof of Proposition 4.8, let us introduce the category $\operatorname{AutFin}(R)$ whose objects are *R*-modules *M*, together with automorphisms $f: M \to M$. A morphism $(M, f) \to (N, g)$ is a homomorphism $h: M \to N$ with gh = hf. Let $\operatorname{AutFin}(R) \subset$ $\operatorname{AutMod}(R)$ be the full subcategory of all objects (M, f) with *M* finitely generated and let $\operatorname{AutProj}(R) \subset \operatorname{AutFin}(R)$ be the full subcategory of all objects (P, f) with *p* projective. Warning: an epimorphism $(M, f) \to (P, g)$ where *P* is projective does not necessarily split.

Proposition 4.10. Let R be regular noetherian, let $(M, f) \in AutFin(R)$ and let

$$0 \to (P_n, g_n) \to \ldots \to (P_0, g_0) \to (M, f) \to 0$$

and

$$0 \to (Q_m, h_m) \to \ldots \to (Q_0, h_0) \to (M, f) \to 0$$

be two exact sequences with P_i, Q_i projective. Then

$$\sum_{i\geq 0} (-1)^{i} [P_i, g_i] = \sum_{i\geq 0} (-1)^{i} [Q_i, h_i] \in K_1(R).$$

Proof.

Claim 4.11. If

$$0 \to (P_n, g_n) \xrightarrow{d_n} \dots \xrightarrow{d_1} (P_0, g_0) \to 0$$

is exact with P_i projective, then $\sum_i (-1)^i [P_i, g_i] = 0 \in K_1(R)$.

Let us first consider the case n = 2. A splitting s of d_1 yields an isomorphism

$$(P_1, d_1) \cong \left(P_2 \oplus P_0, \begin{pmatrix} g_2 & * \\ & g_0 \end{pmatrix} \right)$$

By elementary row operations, one sees that

$$[P_1, g_1] = \begin{bmatrix} P_2 \oplus P_0, \begin{pmatrix} g_2 & * \\ & g_0 \end{pmatrix} \end{bmatrix} = \begin{bmatrix} P_2 \oplus P_0, \begin{pmatrix} g_2 & \\ & g_0 \end{pmatrix} \end{bmatrix} = [P_2, g_2] + [P_0, g_0]$$

as claimed. The case $n \ge 3$ is settled by induction: given

$$0 \to (P_n, g_n) \stackrel{d_n}{\to} \dots \stackrel{d_1}{\to} (P_0, g_0) \to 0$$

13

is exact with P_i projective, choose a splitting $s : P_0 \to P_1$ of d_1 . Then (P_1, g_1) is isomorphic, in **AutProj**(R), to

$$(P_1'\oplus P_0, \begin{pmatrix} g_1' & * \\ & g_0 \end{pmatrix}),$$

with $g'_1 := g_1|_{P'_1}$. Therefore

$$[P_1, g_1] = [P'_1, g'_1] + [P_0, g_0] \in K_1(R)$$

Since P'_1 is projective, we conclude $\sum_i (-1)^i [P_i, g_i] = 0$ by induction.

Claim 4.12. Suppose that

is a commutative diagram in $\operatorname{AutFin}(R)$ with exact rows and P_i , Q_i projective, then

$$\sum_{j=0}^{j} (-1)^{j} [P_j, g_j] = \sum_{j=0}^{j} (-1)^{j} [Q_j, h_j] \in K_1(R).$$

To show this claim, consider the mapping cylinder (M_*, m_*) of the chain map $f_* : (P_*, g_*) \to (Q_*, h_*)$ of chain complexes in **AutProj**(()R). The *j*th term of the mapping cylinder is $(M_j, m_j) = (P_j, g_j) \oplus (Q_{j-1}, h_{j-1})$. Since f_* is a quasiisomorphism, the mapping cylinder is exact. By Claim 4.11, we get

$$0 = \sum_{j} (-1)^{j} [M_{j}, m_{j}] = \sum_{j} (-1)^{j} [P_{j}, g_{j}] - \sum_{j} (-1)^{j} [Q_{j}, h_{j}],$$

as claimed.

The problem with the general case is that if P is projective, then epimorphisms in **AutProj**(()R) onto (P, g) do not have to split. Therefore, we cannot invoke the fundamental lemma of homological algebra to constract a chain equivalence between the two complexes, and Claim 4.11 is not yet enough. But we are able to construct a further projective resolution (K_*, k_*) of (M, f) which maps to both, (P_*, g_*) and (Q_*, h_*). The existence of such a resolution implies the Proposition. Let us see how to construct (K_*, k_*).

Claim 4.13. Let $(M, f) \in \operatorname{AutFin}(R)$. Then there is a projective module Q, an epimorphism $q: Q \to M$ and an automorphism g of Q such that qg = fq.

First pick an epimorphism $p: P \to M$ from a projective P. We can lift the automorphism $f \oplus f^{-1}$ of $M \oplus M$ to an automorphism of $P \oplus P$. To see this, write

$$\begin{pmatrix} f \\ & f^{-1} \end{pmatrix} = \begin{pmatrix} 1 & f \\ & 1 \end{pmatrix} \begin{pmatrix} 1 & \\ -f^{-1} & 1 \end{pmatrix} \begin{pmatrix} 1 & f \\ & 1 \end{pmatrix} \begin{pmatrix} & -1 \\ 1 & \end{pmatrix}$$

Since any *endomorphism* of M can be lifted to an endomorphism of P, it follows that $f \oplus f^{-1}$ can be lifted to an automorphism h of $P \oplus P$. Define $Q := P \oplus P$,

 $q := p \circ \text{pr}_1$ and g := h. By inspection, the diagram

$$P \oplus P \xrightarrow{p \circ \operatorname{pr}_1} M$$

$$\downarrow g \qquad \qquad \downarrow f$$

$$P \oplus P \xrightarrow{p \circ \operatorname{pr}_1} M$$

commutes, which shows the claim.

Claim 4.14. Let $b: (M, f) \to (N, g)$ be a morphism in $\operatorname{AutFin}(R)$ and let

$$0 \to (P_n, h_n) \to \ldots \to (P_0, h_0) \xrightarrow{a_0} (N, g) \to 0$$

be a finite resolution by objects in $\operatorname{AutProj}(R)$. Then there exists a finite resolution $(Q_*, k_*) \to (M, f)$ by objects in $\operatorname{AutProj}(R)$ and a chain map $(Q_*, k_*) \to (P_*, h_*)$ extending b.

Consider

$$(a_0, -b): (P_0, h_0) \oplus (M, f) \to (N, g);$$

this is surjective, and let (B, r) be its kernel. Since R is noetherian, B is finitely generated and we can find a projective module Q_0 with an automorphism k_0 and an epimorphism $(Q_0, k_0) \rightarrow (B, r)$. This construction yields a commutative square

$$\begin{array}{ccc} (Q_0,k_0) \longrightarrow (M,f) \\ & & \downarrow \\ (P_0,h_0) \longrightarrow (N,g). \end{array}$$

Proceeding in this manner, we get a partial projective resolution, which can be completed to a finite projective resolution because R is regular noetherian.

Claim 4.15. Under the assumptions of the proposition, there is a finite projective resolution (K_*, k_*) of (M, f) and two quasiisomorphisms $(K_*, k_*) \to (P_*, g_*)$ and $(K_*, k_*) \to (Q_*, h_*)$ covering the identity of (M, f).

To see this, we consider the diagonal $(M, f) \to (M \oplus M, f \oplus f)$ and apply the previous claim to the resolution $(P_* \oplus Q_*, g_* \oplus h_*) \to (M \oplus M, f \oplus f)$. The result is a resolution (K_*, k_*) of (M, f) with a map to $(P_* \oplus Q_*, g_* \oplus h_*)$ covering the diagonal. Composing with the two projections yields the desired map. \Box

Proof of 4.8. Let $f: P \to P$ be nilpotent of nilpotence index n (i.e. $f^n = 0$). We claim that $[P, 1 + f] = 0 \in K_1(R)$ and show this by induction on the nilpotence index. The induction beginning n = 1 is trivial. The following is a short exact sequence in **AutFin**(R):

$$0 \to (\operatorname{Im}(f), (1+f)) \to (P, 1+f) \to (P/\operatorname{Im}(f), 1+f) \to 0.$$

Claim 4.16. Let M be a finitely generated R-module and let $f: M \to M$ be nilpotent of nilpotence index n. Then there is a projective Q, a nilpotent endomorphism g of Q of nilpotence index n and a surjective $q: Q \to M$ with qg = fq.

To see this, let $p: P \to M$ be an epimorphism from a finitely generate projective module P and put $Q := P^n$. Define

$$q: Q \to M; q = p \circ (1 f f^2 \dots f^{n-1})$$

and

$$g = \begin{pmatrix} 0 & & & \\ 1 & 0 & & \\ & 1 & 0 & \\ & & \ddots & \ddots & \\ & & & 1 & 0 \end{pmatrix}.$$

Obviously $g^n = 0$ and qg = fq.

By Claim 4.16 and since ${\cal R}$ is regular noetherian, there is a finite projective resolution

$$0 \to (Q_m, 1+f_m) \to \ldots \to (Q_1, 1+f_1) \to (\operatorname{Im}(f), 1+f)$$

where each f_j is nilpotent of nilpotency index $\leq n-1$ (this is possible since $f|_{\text{Im}(f)}$ has nilpotency index $\leq n-1$). This yields a finite projective resolution

$$0 \to (Q_m, 1+f_m) \to \ldots \to (Q_1, 1+f_1) \to (P, 1+f) \to (P/\operatorname{Im}(f), 1) \to 0$$

(since f = 0 on $P/\operatorname{Im}(f)$), and

$$0 \to (Q_m, 1) \to \ldots \to (Q_1, 1) \to (P, 1) \to (P/\operatorname{Im}(f), 1) \to 0$$

is another finite projective resolution. It follows from Proposition 4.10 that

$$0 = [P,1] + \sum_{j \ge 1} (-1)^j [Q_j,1] = [P,1+f] + \sum_{j \ge 1} (-1)^j [Q_j,1+f_j].$$

By induction over the nilpotency index, $[Q_j, 1+f_j] = 0 \in K_1(R)$, and so [P, 1+f] = 0.

References

- M. F. Atiyah and I. G. Macdonald. Introduction to commutative algebra. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.
- [2] Michael Atiyah and Raoul Bott. On the periodicity theorem for complex vector bundles. Acta Math., 112:229-247, 1964.
- [3] H. Bass, A. Heller, and R. G. Swan. The Whitehead group of a polynomial extension. Inst. Hautes Études Sci. Publ. Math., (22):61–79, 1964.
- [4] Hyman Bass. Algebraic K-theory. W. A. Benjamin, Inc., New York-Amsterdam, 1968.
- [5] T. A. Chapman. Topological invariance of Whitehead torsion. Amer. J. Math., 96:488–497, 1974.
- [6] Steve Ferry. Geometric topology notes. Available at http://sites.math.rutgers.edu/ sferry/.
- [7] Graham. Higman. The units of group-rings. Proc. London Math. Soc. (2), 46:231–248, 1940.
- [8] Michel A. Kervaire. Le théorème de Barden-Mazur-Stallings. Comment. Math. Helv., 40:31– 42, 1965.
- [9] Robion C. Kirby and Laurence C. Siebenmann. Foundational essays on topological manifolds, smoothings, and triangulations. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1977. With notes by John Milnor and Michael Atiyah, Annals of Mathematics Studies, No. 88.
- [10] J. Milnor. Whitehead torsion. Bull. Amer. Math. Soc., 72:358–426, 1966.
- [11] John Milnor. Introduction to algebraic K-theory. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. Annals of Mathematics Studies, No. 72.
- [12] S. P. Novikov. Topological invariance of rational classes of Pontrjagin. Dokl. Akad. Nauk SSSR, 163:298–300, 1965.
- [13] D. Quillen. Higher algebraic K-theory. I. pages 85–147. Lecture Notes in Math., Vol. 341, 1973.
- [14] Jonathan Rosenberg. Algebraic K-theory and its applications, volume 147 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1994.

- [15] J.-P. Serre. Modules projectifs et espaces fibrés à fibre vectorielle. In Séminaire P. Dubreil, M.-L. Dubreil-Jacotin et C. Pisot, 1957/58, Fasc. 2, Exposé 23, page 18. Secrétariat mathématique, Paris, 1958.
- [16] C. T. C. Wall. Finiteness conditions for CW-complexes. Ann. of Math. (2), 81:56-69, 1965.
- [17] James E. West. Mapping Hilbert cube manifolds to ANR's: a solution of a conjecture of Borsuk. Ann. of Math. (2), 106(1):1–18, 1977.

 $E\text{-}mail\ address: \texttt{johannes.ebertQuni-muenster.de}$

MATHEMATISCHES INSTITUT DER WESTFÄLISCHEN WILHELMS-UNIVERSITÄT MÜNSTER, EINSTE-INSTR. 62, DE-48149 MÜNSTER, GERMANY