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Abstract

This note is an informal report on the joint paper [4] of the author
with Jeffrey Giansiracusa, which grew out of the attempt to understand
the topology of the moduli stack of stable curves. The main result is the
construction of a map from the moduli stack to a certain infinite loop
space, which is surjective on homology in a certain range. This shows the
existence of a lot of torsion classes in the homology of Mgn. We give a
geometric description of some of the new torsion classes. Also, we give
a new proof of an (old) theorem computing the second homology of the
moduli stack.

The moduli space Mg,n of stable n-pointed curves of genus g is a compacti-
fication of the moduli space Mg,n of smooth n-pointed curves. One adds a
boundary ∂Mg,n which contains singular curves of a certain type, namely stable
ones. A singular curve C with n marked distinct smooth points p1, . . . , pn is
called stable if all singularities are ordinary double points and if there is only
a finite number of automorphisms of C which fix the pi. Strictly speaking, due
to the presence of automorphisms, one must study Mg,n as a stack and not as
a space.
There is a coarse moduli space M

coarse

g,n , which is the topological space usually
referred to as the moduli space. There are two things to say about this coarse
moduli space. First of all, the rational homology H∗(M

coarse

g,n ; Q) is isomorphic
to the rational homology of the stack Mg,n (a concept explained below). Also,
M

coarse

g,n it is a projective variety of complex dimension 3g− 3+n and its singu-
larities are of a very mild type (quotients of domains in a complex vector space
by a finite group action).
It follows that M

coarse

g,n is a rational homology manifold, in other words, Poincaré
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duality with rational coefficients holds. However, if one wants to study topolog-
ical invariants finer than rational homology, one is forced to consider the stack
Mg,n. For example, the integral homology of the coarse moduli space is not
well-behaved at all.

A few words on stacks

Let us say a few words about stacks and how they can be studied by methods of
algebraic topology. We will mainly consider stacks in the category of complex
manifolds. As an excellent first introduction into the subject we recommend
[8]; he only treats differentiable stacks, but almost all ideas carry over without
much change. By definition, a stack is a very abstract object (”a lax sheaf of
groupoids on the site of complex manifolds”), so let us discuss a relatively simple
example, which helps to clarify the concept. We consider the stack Mg,n, the
moduli stack of smooth n-pointed curves of genus g (alias Riemann surfaces).
Let X be a complex manifold. We have to say what the groupoid Mg,n(X) is.
An object is a triple (E, π, j), where E is a complex manifold, π : E → X is
a proper, surjective holomorphic submersion all of whose fibers are connected
Riemann surfaces of genus g. The last piece of data is a holomorphic embedding
j : X×{1, . . . , n} → E such that π◦j is the projection onto X. If we forget about
the complex structures, then Ehresmann’s fibration theorem tells us that π is a
differentiable fiber bundle with structure group Diff(Fg, (p1, . . . , pn)). However,
the complex structures on the fibers π−1(x) can vary with x. Experience shows
that this is the appropriate notion of a holomorphic family of Riemann surfaces.
An isomorphism in the category Mg,n(X) is the obvious thing: a biholomor-
phic map of the total spaces which commutes with the bundle maps and the
embeddings.
Given a holomorphic map f : Y → X, we obtain a functor f∗ : Mg,n(X) →
Mg,n(Y ). For two composable morphisms f1, f2, we do not quite have an equal-
ity (f2 ◦ f1)∗ = f∗2 ◦ f∗1 , but only up to ”2-isomorphism”. Finally, we can glue
objects once we have a covering of a complex manifold and objects with suitably
coherent isomorphisms on intersections.
It is a standard remark that the stack Mg,n is not representable, i.e. that there
does not exists a manifold M such that for any X, the groupoid Mg,n(X) is
equivalent to the set of holomorphic maps X → M . However, in a certain precise
sense, Mg,n is not too far from being representable. The statement is formal, but
the proof is not - it relies on Teichmüller theory (or geometric invariant theory,
for those who like schemes). Let Tg,n be the Teichmüller space of n-pointed
Riemann surfaces of genus g; it is a complex 3g − 3 + n-dimensional complex
manifold which is homeomorphic to C3g−3+n. Over Tg,n, there is a universal
family of Riemann surfaces, which gives an object in Mg,n(Tg,n) which is, by
abstract nonsense, a morphism of stacks p : Tg,n → Mg,n. This is an ”atlas”.
The meaning of this phrase is that, whenever we have a complex manifold X
and an object in Mg,n(X) (alias a map f : X → Mg,n), then we can find
an open covering (Ui)i∈I of X, such that the restriction f |Ui admits a lift to
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Tg,n. This is not hard to show (if and only if one knows Teichmüller theory):
Tg,n is a classifying space for objects in Mg,n with an additional piece of data: a
homotopical trivialization of the underlying fiber bundle. For a general family of
Riemann surfaces, such trivializations locally exist (by Ehresmann’s theorem).
The atlas φ : Tg,n → Mg,n has some additional properties which qualify the
stack Mg,n as a complex-analytic Deligne-Mumford stack or as a complex orbifold
(which means the same).
To define the stack Mg,n, we take not only holomorphic submersions as in the
definition of Mg,n, but also suitably defined families of stable curves. This is
also a Deligne-Mumford stack, but the construction of the atlas is far more
technical as in the case of Mg,n. The reader is advised to consult either [3] and
[9] (for an algebraic construction) or [14] for a differential-geometric perspective.

Homotopy theory of stacks

How do we extract homotopy theoretic information out of a stack? The fol-
lowing method makes sense in a more general situation, namely if we deal with
topological stacks. Such a topological stack is a lax sheaf of groupoids on the
site of topological spaces which admits an atlas (defined similarly as before).
Let Stackscpl be the category of complex-analytic stacks and Stackstop be the
category of topological stacks. Given the very definition of a stack, one expects a
functor Stackstop → Stackscpl, but that does not happen. Let X be a topological
stack. Of course, we can restrict the sheaf defining X to the subcategory of com-
plex manifolds, but there is no reason why there should exist a complex-analytic
atlas! Instead, there is a functor φ : Stackscpl → Stackstop which extends the
”underlying topological space functor” from complex manifolds to spaces. This
is defined using an atlas, but it is a canonical construction whose result does
not depend on that choice. However, given an analytic stack X, it may be very
hard to describe the sheaf φ(X) explicitly. There are also differentiable stacks
and similar remarks apply to this notion.

Given an atlas X0 → X of a topological stack, the pullback X1 := X0 ×X X0 is
again a space and there are suitable maps which define a topological groupoid
X with object space X0 and morphism space X1. If X = X//G is a quotient
stack, then we obtain the translation groupoid of the group action G y X.
The following definition seems to be folklore.

Definition 0.1. Let X be a topological stack and let X be the groupoid arising
from an atlas of X. Then the homotopy type Ho(X) of the stack X is the
homotopy type of BX.

This definition has the obvious disadvantage that it is not clear that Ho(X) is
independent of the choice of the atlas. But in fact, it is.

Theorem 0.2. The homotopy type Ho(X) does not depend on the choice of the
atlas. Moreover, it extends to a functor from the category of topological stacks
to the homotopy category of spaces.
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The proof can be found in [4] and it is built on ideas from [12]. The second
sentence is a quite strong statement, because it asserts that two different atlases
do not merely give homotopy equivalent classifying spaces but also that all
homotopy equivalences arising from different choices are mutually compatible.
If X = X//G is a global quotient stack, then the homotopy type is the Borel-
construction:

Ho(X//G) = EG×G X.

A special case is the moduli space Mg,n, because the it is equivalent to the
quotient of the Teichmüller space by the mapping class group1 Γn

g . Because the
Tg,n is contractible, we conclude that Ho(Mg,n) = BΓn

g .
One can show that the homotopy type has the right (co)homology groups -
there is a natural definition of the cohomology of a stack in terms of homological
algebra and the result is that this homology is the same as the homology of the
homotopy type. However, this remark does not apply to any homotopy-invariant
functor, for example not to complex K-theory. Any good notion of complex K-
theory should satisfy K(X//G) = KG(X) if G is a compact Lie group. But it is
well-known that KG(X) and K(EG×G X) are usually not isomorphic, see [2].

Pontrjagin-Thom maps

Let f : Mm → Nn be a proper smooth map of smooth manifolds, of codimension
d = n − m (which can be negative). The normal bundle is the stable vector
bundle ν(f) := f∗TN − TM of virtual dimension d on M . As a stable vector
bundle, it has a Thom spectrum Mν(f). The Pontrjagin-Thom construction
yields a stable homotopy class

PTf : Σ∞N+ → Mν(f).

These Pontrjagin-Thom maps can be used to define umkehr maps in cohomology,
once the normal bundle ν(f) is oriented. One defines f as the composition

H∗(M) ∼= H∗(Σ∞M+) ∼= H∗+d(Mν(f)) → H∗+d(Σ∞N+) = H∗+d(N).

If we want to define umkehr maps also in the context of stacks, we need to con-
struct Pontrjagin-Thom maps in the category of stacks. The problem is that
the Whitney embedding theorem does not hold for stacks. But one can find
a way around and we can define the Pontrjagin-Thom map if f : X → Y is a
representable proper map between complex-analytic stacks and Y satisfies some
mild technical conditions (this condition is satisfied for all orbifolds).

1This notation is traditional in the theory of mapping class groups. The group usually
denoted by Γg.n is closely related, but different.
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0.1 Homotopy theory of smooth moduli spaces

The Pontrjagin-Thom construction played a crucial role in the modern homo-
topy theory of the moduli space Mg,n which was developed by Tillmann, Madsen
and Weiss [10], [11]. They studied the universal surface bundle2 π : Mg,1 →
Mg,0. The stable normal bundle ν(π) can be identified with the inverse of the
vertical tangent bundle Tvπ; the classifying map of Tvπ is a map Mg,1 → BU(1).
Thus the Pontrjagin-Thom construction yields a map

α : Mg → Ω∞BU(1)−L.

The main theorem of [11] is that α induces an isomorphism in integral homology
in degrees k ≤ (g − 2)/2. A crucial ingredient of the proof is Harer’s stability
theorem [6] which says that Hk(Mg; Z) does not depend on g if k ≤ (g − 2)/2.
We will see below (see 0.4) that the homology of Mg,n does not satisfy any kind
of stability. Therefore we cannot expect a result as elegant as the Madsen-Weiss
theorem for Mg,n.

The surjectivity theorem

There are several natural morphisms between the moduli stacks of stable curves.
Namely, there are maps

1. ξg,n : Mg−1,n+2 → Mg,n

2. θh,k : Mh,k+1 ×Mg−h,n−k+1 → Mg,n,

3. π : Mg,n+1 → Mg,n

4. σ∗ : Mg,n → Mg,n;σ ∈ Σn,

given by: identifying two smooth points to a node (1 and 2), forgetting the
last point (3) or permuting the n marked points (4). These morphisms are
representable morphisms of complex-analytic stacks; ξ and θh,k are proper im-
mersions of codimension 1 and π can be interpreted as the universal family of
stable curves (it has codimension −1). We are particularly interested in the
morphisms ξ and θh,k and study their Pontrjagin-Thom maps. The normal
bundles of these morphisms are easy to describe.
There are certain natural complex line bundles on Mg,n: if (C, p1, . . . , pn) is an
n-pointed stable curve, then pi is a smooth point and hence TpiC is defined;
this gives line bundles Li → Mg,n, i = 1, . . . , n.
The normal bundle of ξ is Ln+1 ⊗ Ln+2 and the normal bundle of θh,k is
Lk+1 ⊗ Ln−k+1 (exterior tensor product). The morphism ξ is Σ2-invariant and
therefore induces ξ̃ : Mg−1,n+2//Σ2 → Mg,n.

Let now N(2) ⊂ U(2) be the normalizer of the standard maximal torus; there
is a homomorphism N(2) → U(1) which multiplies the nonzero matrix entries.

2The case n > 0 can easily be reduced to n = 0 using Harer stability.
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This induces a line bundle V → BN(2). The normal bundle of ξ̃ admits a
bundle map and thus we obtain

PTξ̃ : Ho(Mg,n) → Ω∞Σ∞BN(2)V .

Similarly, the normal bundle of θh,0 admits a bundle map to the universal line
bundle L → BU(1) and we obtain

PTθh,0 : Ho(Mg,n) → Ω∞Σ∞BU(1)L.

The main result of [4] is the following.

Theorem 0.3. The map PTξ̃ induces an epimorphism in homology with field
coefficients in degrees k ≤ (g − 2)/4.
The map PTθh,0 induces an epimorphism in homology with field coefficients in
degrees i ≤ (g − 2)/2(h + 1).

The proof is based on the Harer-Ivanov stability theorem for the homology of
the mapping class groups, on the Barratt-Priddy-Quillen theorem relating sym-
metric groups to infinite loop spaces and on the computation of the homology
of the infinite loop space of the suspension spectrum of a space X in terms of
the homology of X and the Dyer-Lashof algebra.
In section ?? below we will discuss the geometric meaning of some of the torsion
classes provided by this theorem.
There is an important family of subrings R∗(Mg,n) ⊂ H∗(Mg,n; Q), the tau-
tological rings, which is the smallest system of subalgebras which contain the
classes c1(Li) and which are closed under pullback and umkehr homomorphisms
by the natural maps. It is easy to see that the Pontrjagin-Thom maps above
map rational cohomology into the tautological ring. Therefore we can consider
the cohomology classes induced by the Pontrjagin-Thom maps as an integral
refinement of the tautological rings

The low-dimensional homology groups of Mg

In this section, we present a short proof of the following theorem, which was
first proven by Arbarello and Cornalba [1].

Theorem 0.4. If g > 4, then H2(Mg; Z) is a free Abelian group of rank 2+[g/2].

Arbarello and Cornalba showed used methods from algebraic geometry and their
argument showed the apparently sharper result that any complex line bundle on
Mg has a unique holomorphic structure. But the classical fact that π1(Mg) = 0
and an easy Hodge-theoretic argument shows that Theorem 0.4 implies that as
well.
The proof of 0.4 is based on the differential-topological notion of a Lefschetz
fibration. In this framework, it is also easy to see that π1(Mg) = 0, using Dehn’s
theorem that Dehn twists generate the mapping class group. Consider the stack
Mg as a differentiable stack. It quite difficult to describe this differentiable stack
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explicitly as a sheaf because a family of stable curves is not a bundle and when
we pull back a family with an arbitrary smooth map, the resulting space be-
comes highly singular.
But ”up to concordance”, the differentiable stack Mg is not too hard to under-
stand. The notion of Lefschetz fibration is an old one in algebraic geometry, I
learnt the following formulation from [5].

Definition 0.5. A Lefschetz fibration is a tuple (p, S, U, L, q), where p : Ek+2 →
Bk is a smooth map, S ⊂ E is the subset of critical points of p and it is a
submanifold of real codimension 4. One requires that p|S is an immersion with
normal crossings. The normal bundle U of S in E is endowed with a complex
structure and an embedding j : U → E as a tubular neighborhood; L → S is
a complex line bundle, endowed with an immersion i : L → B. q : U → L is
a nondegenerate quadratic form and p ◦ j = i ◦ q. Finally, the fibers of p are
oriented, connected stable surfaces.

For all x ∈ B, the nodes of the fiber p−1(x) are the points of S ∩ p−1(x). Any
component of S has a type i ∈ {0, 1, . . . [g/2]} (g is the genus of the fibers).
Namely, a node can either be nonseparating (i = 0) or it can separate the sur-
face into two parts of genus h and g − h (if h ≤ g − h, the type is h).
One can show that for any smooth manifold B, the set of concordance classes of
Lefschetz fibrations is in bijection with the set of homotopy classes [B; Ho(Mg].
Details will appear elsewhere.
A Lefschetz fibration over a 1-manifold is nothing else than an oriented surface
bundle; Lefschetz fibrations over oriented surfaces are also not hard to describe.
If F is a surface of genus g and c ⊂ F a simple closed curve of type i (this is
defined analogously to the type of a node), then there exists a Lefschetz fibra-
tion p : E → D2 such that S consists of a single point s, p(s) = 0 of type i and
the restriction E|S1 → S1 is an oriented surface bundle whose monodromy is the
Dehn twist around the curve c. If E → B is a Lefschetz fibration over a surface,
then it is determined by the isomorphism class of the surface bundle E|B\p(S)

and by the monodromies around the points of p(S).

Now we are ready for the proof of Theorem 0.4. We use the oriented bordism
group Ω2(Mg) of Lefschetz fibrations, which is isomorphic to H2(Mg; Z). We
will establish an exact sequence

0 // Ω2(Mg) // Ω2(Mg)
δ // Z[g/2]+1 // 0. (0.6)

The homomorphism δ is obtained by counting the singularities of a Lefschetz
fibration, according to their type and with a sign which stems from orientation
issues. This is invariant under oriented bordism.
To show that δ is surjective, we need to construct a Lefschetz fibration on an
oriented surface with a single singularity of prescribed type. Take a Lefschetz
fibration E → D2 with a singularity of type i. The surface bundle E|S1 is null-
bordant in Mg, because H1(Mg; Z) = 0 for g > 3; this is a classical theorem by
Powell [13]. Now take any nullbordism and glue in E. The result is a Lefschetz
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fibration with a single singularity.
An old theorem of Harer [7] states that Ω2(Mg; Z) ∼= Z if g > 4; an isomor-
phism is given by the following procedure: Take a ∈ Ω2(Mg), which can be
represented by an oriented closed surface M and a surface bundle E → M .
The signature of the oriented 4-manifold E is divisible by 4 and the assignment
[E → M ] 7→ 1

4sign(E) is an isomorphism. It follows immediately that the map
Ω2(Mg) → Ω2(Mg) induced by the inclusion is injective: if a surface bundle
E → B is nullbordant when considered as a Lefschetz fibration, the manifold E
is nullbordant and hence has signature 0. This show exactness of the sequence
0.6 on the left.
Exactness in the middle is shown by a simple surgery argument. If E → M is
a Lefschetz fibration with δ(E → M) = 0, then the singular points of S of type
i occur in pairs with opposite sign. If s1, s2 is such a pair, then we can cut out
small discs in M around p(s1) and p(s2). The restriction of E to the boundary
of any of the two discs is a surface bundle and both are isomorphic (but the base
has opposite orientations). Thus they are concordant as bundles over a cylinder.
This cylinder can be glued in in and we obtain a new Lefschetz fibration, with
the number of singularities reduced by 2. It represents the same bordism class
as the original Lefschetz fibration. This finishes the proof of Theorem 0.4.

Remark 0.7. The components of δ give cohomology classes δi ∈ H2(Mg; Z).
They are related to our Pontrjagin-Thom maps as follows. Set i = 0, the other
cases are similar. The Thom class of V is an element u ∈ H2(BN(2)V ; Z); it
is suspended to u′ ∈ H2(Ω∞Σ∞BN(2)V ; Z). The class PT∗

ξ̃
u′ is precisely δ0.

An interesting class in H3(Mg; F2)

Theorem 0.3 states that the map Mg,n → Ω∞Σ∞BN(2)V induces a surjec-
tion in homology with field coefficients. Equivalently, the map in cohomology
with field coefficients is injective. Here we describe one of the torsion classes
in H3(Mg,n; F2) geometrically. It is not hard to see that H∗(BN(2); F2) ∼=
bF2[x1, x2, w]/(w3 = 0), where xi is the image of (mod 2 reduction of) the Chern
class ci ∈ H(BU(2); F2) under the map induced from the inclusion N(2) ⊂ U(2).
The class wıH1(BN(2); F2) comes from BN(2) → Bπ0(N(2)) = BZ/2. Fur-
thermore, the Euler class of the vector bundle V is x1 + w2. The Thom iso-
morphism is an isomorphism th : H∗(BN(2)) ∼= H∗+2(BN(2)V ). Therefore,
H3(BN(2)V ; F2) ∼= F2 and th(w) is a generator.
There is an (injective) homomorphism (of graded vector spaces, not of rings)
σ : H∗(BN(2)V ; F2) → H∗(Ω∞Σ∞BN(2)V ; F2), the cohomology suspension,
and we want to describe PT∗

x̃i
σ(th(w)) ∈ H3(Mg,n; F2). By 0.3, this is nonzero

(if g ≥ 14. By the universal coefficient theorem and by 0.4, H3(Mg,n; F2) ∼=
Hom(H3(Mg,n; Z); F2), and the latter is isomorphic to Hom(Ω3(Mg,n); F2).
Assume that B is a closed oriented 3-manifold and that p : E → B is a Lef-
schetz fibration which represents an element in Ω3(Mg,n). Let S ⊂ E be the
singular locus, a 1-dimensional submanifold and let S0 ⊂ S be the open and
closed subspace of singular points which are of type 0. Clearly, S0 is a disjoint
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union of a finite number of circles C1, . . . Ck. On any circle Ci, there is a twofold
covering qi : C̃i → Ci. Namely, for any x ∈ Ci, there exists a neighborhood
U ⊂ p−1(p(x)) such that U \x has precisely two components. These components
are the elements of the fiber q−1

i (x).
Recall that there are exactly two equivalence classes of twofold coverings on a
circle. Let ai = 1 if qi is nontrivial and ai = 0 if it is trivial. Define

λ(E → B) :=
k∑

i=1

ai ∈ F2.

It is not hard to see that this is an additive bordism-invariant λ : Ω3(Mg,n) → F2

and hence a cohomology class λ′ ∈ H3(Mg,n; F2). More or less by unwinding
the definitions, one can show that

λ′ = PT∗
ξ̃
σ(th(w)).
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