Loop groups and their representations

 Lie groups and Lie algebras: the classical theory. Lie groups, Lie algebras, Cartan matrix, root decomposition, example: A₂ and B₂, Dynkin diagrams, classification References: [1], [3],[4],[6], and many more

2. Central extensions of loop groups and loop algebras.

loop group, loop algebra, central extensions of loop algebra, central extension of loop group, universal extension of classical loop groups References: [4], [7],[8], [9, Chapter 4]

3. Affine Lie algebras and Kac-Moody algebras

generalized Cartan matrix, affine Lie algebra, Kac-Moody algebra, extended Weyl group, affine Dynkin diagrams and their classification, affine algebras as central extensions of loop algebras References: [4], [7],[8]

4. Representation theory: the classical theory.

finite dimensional representations of finite dimensional simple Lie algebras and their classification, highest weights, weight polytope, example: representations of \mathfrak{sl}_2 , tensor product of representations, tensor product for representations of A_2 and B_2 respectively References: [1], [3], [5], [6], and many more

5. Representation theory for the loop group.

Verma modules, construction of the highest weight representations, Weil modules, positive energy representations: construction and classification, decomposition series, Verlinde algebra References: [7],[8], [9]

6. Kac character formula and applications.

Weyl character formula, generalized Casimir operator, Kac character formula, a proof thereof, applications, especially the example of \mathfrak{sl}_2 References: [7], [9]

- 7. Fusion product via sheaves of coinvariants. References: [2]
- 8. Fusion product via von Neumann algebras. References: [10]

References

- [1] J. Frank Adams. *Lectures on Lie groups*. W. A. Benjamin, Inc., New York-Amsterdam, 1969.
- [2] Bojko Bakalov and Alexander Kirillov, Jr. *Lectures on tensor categories and modular functors*, volume 21 of *University Lecture Series*. American Mathematical Society, Providence, RI, 2001.
- [3] Roger Carter, Graeme Segal, and Ian Macdonald. *Lectures on Lie groups and Lie algebras,* volume 32 of *London Mathematical Society Student Texts.* Cambridge University Press, Cambridge, 1995. With a foreword by Martin Taylor.
- [4] Jürgen Fuchs and Christoph Schweigert. *Symmetries, Lie algebras and representations*. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge, 1997. A graduate course for physicists.
- [5] William Fulton and Joe Harris. *Representation theory*, volume 129 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 1991. A first course, Readings in Mathematics.
- [6] James E. Humphreys. *Introduction to Lie algebras and representation theory*, volume 9 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 1978. Second printing, revised.
- [7] Victor G. Kac. *Infinite-dimensional Lie algebras*. Cambridge University Press, Cambridge, third edition, 1990.
- [8] S. Kass, R. V. Moody, J. Patera, and R. Slansky. Affine Lie algebras, weight multiplicities, and branching rules. Vols. 1, 2, volume 9 of Los Alamos Series in Basic and Applied Sciences. University of California Press, Berkeley, CA, 1990.
- [9] Andrew Pressley and Graeme Segal. *Loop groups*. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 1986. Oxford Science Publications.
- [10] Antony Wassermann. Operator algebras and conformal field theory. III. Fusion of positive energy representations of LSU(N) using bounded operators. *Invent. Math.*, 133(3):467–538, 1998.