WHAT DOES THE CLASSIFYING SPACE OF A CATEGORY CLASSIFY ?

MICHAEL WEISS

Let \mathcal{C} be a small category. Contravariant functors from \mathcal{C} to the category of sets, and natural transformations between them, will be called \mathcal{C} -sets and \mathcal{C} -maps, respectively. The category of \mathcal{C} -sets shares many good properties with the category of sets. (In short, it is a topos. See [4] or [6]. Here we will not make any explicit use of this fact.) The \mathcal{C} -sets which are of the form $b \mapsto \operatorname{mor}_{\mathcal{C}}(b,c)$ for fixed $c \in \mathcal{C}$, and any isomorphic ones, are called representable. By the Yoneda lemma, the representable \mathcal{C} -sets form a full subcategory of the category of all \mathcal{C} -sets which is equivalent to \mathcal{C} .

We will be concerned with *sheaves* of C-sets on a topological space X. For such a sheaf, and $x \in X$, the *stalk* \mathscr{F}_x is again a C-set. It is the direct limit of the C-sets $\mathscr{F}(U)$ where U runs through the open neighborhoods of x.

Theorem 0.1. The classifying space BC classifies sheaves of C-sets with representable stalks.

Notation, terminology, clarifications. Let \mathscr{F} be any sheaf of \mathscr{C} -sets on X. We may regard \mathscr{F} as a contravariant functor $(c,U)\mapsto \mathscr{F}^{(c)}(U)$ in two variables (where $c\in \mathrm{ob}(\mathscr{C})$ and U is open in X). Specializing one of the variables, we obtain $\mathscr{F}^{(c)}$, a sheaf of sets on X, and $\mathscr{F}(U)$, a \mathscr{C} -set.

Let \mathscr{L} be any sheaf of sets on X. The espace étalé of \mathscr{L} , denoted $\operatorname{Sp\'e}(\mathscr{L})$, is the (disjoint) union of the stalks \mathscr{L}_x , suitably topologized. See [2, II.1,ex.1.13] for details. The sheaf \mathscr{L} can be identified with the sheaf of continuous (partial) sections of the projection

$$\operatorname{Sp\acute{e}}(\mathscr{L}) \to X$$
.

The projection $\operatorname{Sp\'e}(\mathscr{L}) \to X$ is an étale map alias $\operatorname{local\ homeomorphism}$. [But it happens frequently that X is Hausdorff while $\operatorname{Sp\'e}(\mathscr{L})$ is not.] The construction $\operatorname{Sp\'e}(\mathscr{L})$ leads to a good notion of $\operatorname{pullback}$ of sheaves: for a map $v\colon Y\to X$, the pullback $v^*\mathscr{L}$ is defined in such a way that $\operatorname{Sp\'e}(v^*\mathscr{L})=v^*\operatorname{Sp\'e}(\mathscr{L})$. More generally, for a sheaf \mathscr{F} of \mathscr{C} -sets on X and $v\colon Y\to X$, the pullback $v^*\mathscr{F}$ is defined in such a way that $\operatorname{Sp\'e}((v^*\mathscr{F})^{(c)})=v^*\operatorname{Sp\'e}(\mathscr{F}^{(c)})$.

Let \mathscr{F} and \mathscr{G} be sheaves of \mathscr{C} -sets on X, both with representable stalks. Let $e_0, e_1: X \to X \times [0,1]$ be given by $e_0(x) = (x,0)$ and $e_1(x) = (x,1)$. The sheaves \mathscr{F} and \mathscr{G} are *concordant* if there exists a sheaf of \mathscr{C} -sets \mathscr{H} on $X \times [0,1]$, again with representable stalks, such that $e_0^* \mathscr{H} \cong \mathscr{F}$ and $e_1^* \mathscr{H} \cong \mathscr{G}$.

The precise meaning of theorem 0.1 is as follows. Suppose that X has the homotopy type of a CW-space. There is a natural bijection from the homotopy set [X, BC] to the set of concordance classes of sheaves of C-sets on X with representable stalks.

Partially supported by the Royal Society.

1

Remark. Suppose that $\mathcal C$ is a group. To be more precise, suppose that $\mathcal C$ has just one object c and $\operatorname{mor}(c,c)$ is a group. Let $\mathscr F$ be a sheaf of $\mathcal C$ -sets on a space X. If the stalks of $\mathscr F$ are all representable, then the projection $\operatorname{Sp\acute{e}}(\mathscr F) \to X$ is a principal $\operatorname{mor}(c,c)$ -bundle. Indeed any choice of an open U and $s \in \mathscr F^{(c)}(U)$ determines a bundle chart

$$\operatorname{Sp\acute{e}}(\mathscr{F}|U) \cong \operatorname{mor}(c,c) \times U$$
.

In this situation, concordant sheaves of C-sets on X (with representable stalks) are isomorphic, because "concordant" implies "isomorphic" for principal mor(c,c)-bundles.

Remark. The question in the title undoubtedly has many correct answers and a few have already been given elsewhere. Moerdijk [6, Introd.] has a result like theorem 0.1 in which the representability condition on stalks is replaced by a weaker condition. (He also replaces \mathcal{C} by \mathcal{C}^{op} at that point, but for simplicity I undo that.) A \mathcal{C} -set S satisfies Moerdijk's condition if and only if every \mathcal{C} -map from a finitely presented \mathcal{C} -set to S factors through a representable \mathcal{C} -set. (A finitely presented \mathcal{C} -set T is described by finitely many generators $x_i \in T(c_i)$ and finitely many relations of the form $f_r^*(x_i) = g_r^*(x_j)$, where $f_r: b_r \to c_i$ and $g_r: b_r \to c_j$ are morphisms in \mathcal{C} .) Any retract of a representable \mathcal{C} -set satisfies Moerdijk's condition.

Moerdijk [6] takes the discussion much further by considering topological categories, which I have not attempted to do.

Another precursor of theorem 0.1 is due to tom Dieck (1972, unpublished). He used a notion of C-bundle defined in terms of a bundle atlas. His result was rediscovered in [5, thm 4.1.2].

1. The canonical sheaf on BC

We are going to construct a sheaf $\mathscr E$ of $\mathcal C$ -sets on $B\mathcal C$ which will eventually turn out to be "universal". Recall to begin with that $B\mathcal C$ is the geometric realization of the simplicial set whose n-simplices are the contravariant functors $[n] \to \mathcal C$, where [n] is the linearly ordered set $\{0,1,2,\ldots,n\}$. (There are historical reasons for insisting on *contravariant* functors $[n] \to \mathcal C$; the formulae for boundary operators look more familiar in the case where $\mathcal C$ is a group or monoid.) Now suppose that U is open in $B\mathcal C$ and c is an object of $\mathcal C$.

Definition 1.1. An element of $\mathscr{E}^{(c)}(U)$ is a "function" which to every $\alpha: [n]^{\mathrm{op}} \to \mathcal{C}$ and $x \in B[n]^{\mathrm{op}} \cong \Delta^n$ with $\alpha_* x \in U$ assigns a morphism $s(\alpha, x) : c \to \alpha(0)$ in \mathcal{C} . The function is required to be

- locally constant in the second variable, so that for $y \in \Delta^n$ sufficiently close to x, with $\alpha_* y \in U$, we have $s(\alpha, y) = s(\alpha, x)$;
- natural in the first variable. That is, for an order–preserving $g:[m] \to [n]$ and $y \in \Delta^m$, we have

$$s(\alpha, g_*y) = \alpha(0, g(0)) \circ s(\alpha g, y)$$

where $\alpha(0, g(0)): \alpha(g(0)) \to \alpha(0)$ is the morphism in \mathcal{C} induced by the unique morphism $0 \to g(0)$ in [n].

The contravariant dependence of $\mathscr{E}^{(c)}(U)$ on U and c is obvious. The sheaf property is also obvious. Because of the naturality condition, an element s of $\mathscr{E}^{(c)}(U)$ is determined by its values $s(\alpha,x)$ for nondegenerate $\alpha:[n]^{\mathrm{op}}\to\mathcal{C}$ and $x\in\Delta^n\setminus\partial\Delta^n$. Then α and x are determined by $\alpha_*x\in U$; in particular n is the dimension of the cell (in the canonical CW–decomposition of $B\mathcal{C}$) to which α_*x belongs. (Regarding cells, the convention used here is that the cells of a CW–space are pairwise disjoint, and each cell is homeomorphic to some euclidean space. This is in agreement with [1], for example.)

Lemma 1.2. Fix a nondegenerate $\beta: [m]^{\mathrm{op}} \to \mathcal{C}$ and $y \in \Delta^m \setminus \partial \Delta^m$. The stalk of \mathscr{E} at $\beta_* y$ is the contravariant functor $c \mapsto \mathrm{mor}(c, \beta(0))$.

Proof. Any point of $B\mathcal{C}$ can be uniquely written as α_*z where $\alpha:[n]^{\mathrm{op}}\to\mathcal{C}$ is nondegenerate and $z\in\Delta^n\setminus\partial\Delta^n$. If α_*z is sufficiently close to β_*y , then some degeneracy of β will be a face of α . That is, there are an order–preserving surjection $f:[k]\to[m]$ and an order–preserving injection $g:[k]\to[n]$ such that $\alpha g=\beta f$. And moreover, there will be $w\in\Delta^k$ such that $f_*w=y$ and z is close to g_*w . For s in the stalk of $\mathscr{E}^{(c)}$ at $\beta_*y\in B\mathcal{C}$, we then have

$$s(\alpha, z) = s(\alpha, g_* w) = \alpha(0, g(0)) \circ s(\alpha g, w) ,$$

$$s(\alpha g, w) = s(\beta f, w) = s(\beta, f_* w) = s(\beta, y) ,$$

so that $s(\alpha,z)=\alpha(0,g(0))\circ s(\beta,y)$. Hence s is determined by $s(\beta,y)\in \operatorname{mor}(c,\beta(0))$. To establish the existence of a germ s with prescribed value $s(\beta,y)$, we proceed differently. Suppose inductively that the values of s at points near $\beta_* y$ and in the (n-1)-skeleton of $B\mathcal{C}$ have already been determined consistently, for some fixed n>m. For an n-simplex $\alpha\colon [n]^{\operatorname{op}}\to \mathcal{C}$ we have an attaching map from $\partial\Delta^n$ to the (n-1)-skeleton of $B\mathcal{C}$. Hence $s(\alpha,x)$ is already determined for x in some open subset V of $\partial\Delta^n$. As a function on V, denoted informally s|V, it satisfies the continuity and naturality conditions of definition 1.1 (mutatis mutandis). We now have to find an open $W\subset\Delta^n$ such that $V=W\cap\partial\Delta^n$ and an extension of s|V from V to W. This is easy. For example, Δ^n can be identified with a cone on $\partial\Delta^n$ and W could then be defined as the cone on V minus the cone point. Then s|V has a unique extension from V to W.

For an object c of \mathcal{C} , let $(c \downarrow \mathcal{C})$ be the "under" category associated with c. The objects of $(c \downarrow \mathcal{C})$ are the morphisms in \mathcal{C} with source c, and the morphisms of $(c \downarrow \mathcal{C})$ are morphisms in \mathcal{C} under c. The classifying space $B(c \downarrow \mathcal{C})$ is contractible since $(c \downarrow \mathcal{C})$ has an initial object. The forgetful map $B(c \downarrow \mathcal{C}) \to B\mathcal{C}$ has a canonical factorization

$$B(c\downarrow\mathcal{C}) \xrightarrow{\lambda_c} \mathrm{Sp\acute{e}}(\mathscr{E}^{(c)}) \xrightarrow{\mathrm{proj.}} B\mathcal{C} \ .$$

Indeed, any point of $B\mathcal{C}$ can be uniquely written as α_*z where $\alpha\colon [n]^{\mathrm{op}}\to \mathcal{C}$ is nondegenerate and $z\in\Delta^n \smallsetminus \partial\Delta^n$. Lifting α_*z to $B(c\downarrow\mathcal{C})$ amounts to specifying a morphism $c\to\alpha(n)$ in \mathcal{C} ; lifting α_*z to $\mathrm{Sp\'e}(\mathscr{E}^{(c)})$ amounts to specifying a morphism $c\to\alpha(0)$ in \mathcal{C} . Clearly a morphism $c\to\alpha(n)$ determines a morphism $c\to\alpha(0)$ by composition with $\alpha(0,n)\colon\alpha(n)\to\alpha(0)$. The map λ_c will be useful in the proof of

Proposition 1.3. The space $Sp\acute{e}(\mathscr{E}^{(c)})$ is weakly contractible.

Proof. Let \bar{BC} be the fat realization of the nerve of C, obtained by ignoring the degeneracy operators. The quotient map $q:\bar{BC}\to BC$ is a quasifibration with

contractible fibers. To see this, note that the fat realization of any simplicial set Zcan be described as the ordinary realization of another simplicial set Z whose nsimplices are triples (k, f, x) where $x \in Z_k$ and $f: [n] \to [k]$ is an order-preserving surjection. The forgetful simplicial map $\bar{Z} \to Z$ is a Kan fibration with contractible fibers; hence the induced map of (lean) geometric realizations, $|Z| \to |Z|$, is a quasifibration with contractible fibers. See [3].

Let $E = \operatorname{Sp\acute{e}}(\mathscr{E}^{(c)})$, let $r: E \to B\mathcal{C}$ be the projection, and let $\bar{E} = q^*E$. In the pullback square

$$\begin{array}{ccc}
\bar{E} & \xrightarrow{\bar{r}} & \bar{B} \\
r^*q \downarrow & & \downarrow q \\
E & \xrightarrow{r} & B
\end{array}$$

 $F \xrightarrow{r^*q} \qquad \qquad \downarrow^q$ $E \xrightarrow{r} B$ the map q is a quasifibration with contractible fibers and r is a local homeomorphism. It follows that r^*q is a quasifibration with contractible fibers, and consequently a weak homotopy equivalence.

It remains to prove that \bar{E} is contractible, or equivalently, that the canonical map $\bar{\lambda}_c : \bar{B}(c \downarrow C) \to \bar{E}$, the fat version of λ_c , is a weak homotopy equivalence. Suppose therefore that Y is any finitely generated Δ -set (= "simplicial set without degeneracy operators") and let

$$f:|Y|\to \bar{E}$$

be any map. We want to show that, up to a homotopy, f lifts to $\bar{B}(c \downarrow C)$. The argument has two parts.

- (i) If $\bar{r}f:|Y|\to B$ is induced by a map of the underlying Δ -sets, then f admits a unique factorization through $B(c \downarrow C)$.
- (ii) Modulo iterated barycentric subdivision of |Y|, and a homotopy of f, the composition $\bar{r}f$ is indeed induced by a map of the underlying Δ -sets.

For the proof of (i), we may assume that Y is generated by a single n-simplex, so $|Y| = \Delta^n$. Suppose that $\bar{r}f: \Delta^n \to B\mathcal{C}$ is the characteristic map of an n-simplex $\alpha: [n]^{\mathrm{op}} \to \mathcal{C}$ in the nerve of \mathcal{C} . The extra information contained in f amounts to compatible morphisms $u_i: c \to \alpha(i)$ for $i = 0, 1, \ldots, n$; clearly all u_i are determined by u_n . Together, u_n and α determine an n-simplex in the nerve of $(c \downarrow \mathcal{C})$.

For the proof of (ii), we note that the first barycentric subdivision of BC can be described as BC' for another category C'. An object of C' is a simplex of the nerve of C; a morphism from an m-simplex α to an n-simplex β is an injective orderpreserving $v:[m] \to [n]$ with $v^*\beta = \alpha$. The functor $\mathcal{C}' \to \mathcal{C}$ given by $\alpha \mapsto \alpha(0)$ induces a Δ -map from the nerve of \mathcal{C} to the nerve of \mathcal{C}' , and then a map

$$\varphi_1: \bar{B}\mathcal{C} \to \bar{B}\mathcal{C}'$$
.

This map is not a homeomorphism. There is of course another (well-known) map $\varphi_0: \bar{B}\mathcal{C}' \to B\mathcal{C}$ which is a homeomorphism. What is important here is that φ_0 and φ_1 are homotopic in an obvious way, by a homotopy $(\varphi_t)_{t\in[0,1]}$. (Each track of the homotopy is a straight line segment, or a single point, in a simplex of $\bar{B}\mathcal{C}$.) The homotopy $(\varphi_t \varphi_0^{-1})_{t \in [0,1]}$, from the identity of $\bar{B}\mathcal{C}$ to $\varphi_1 \varphi_0^{-1}$, has a unique lift to a homotopy

$$(\psi_t : \bar{E} \times [0,1] \to \bar{E})_{t \in [0,1]}$$

with $\psi_0 = id$. (To verify this claim, compare the pullbacks of \bar{E} under the maps

$$\bar{B}\mathcal{C} \times [0,1] \xrightarrow{\varphi \varphi_0^{-1}} \bar{B}\mathcal{C} , \qquad \bar{B}\mathcal{C} \times [0,1] \xrightarrow{\text{proj.}} \bar{B}\mathcal{C} .$$

They are homeomorphic as spaces over $\bar{BC} \times [0,1]$.) We can similarly look at iterated barycentric subdivisions of \bar{BC} . They all have two canonical maps φ_0, φ_1 \bar{BC} , one being a homeomorphism and the other being simplicial, and these two maps are homotopic by a homotopy $(\varphi_t)_{t\in[0,1]}$. Again, the homotopy $(\varphi_t\varphi_0^{-1})_{t\in[0,1]}$ has a unique lift to a homotopy $(\psi_t:\bar{E}\times[0,1]\to\bar{E})_{t\in[0,1]}$ with $\psi_0=\mathrm{id}$. Coming back now to maps $|Y|\to\bar{E}$, any such map is homotopic to a map f such that $\bar{r}f$ is induced by a Δ -map from some iterated barycentric subdivision of Y to some iterated barycentric subdivision of the nerve of C. Compose f with ψ_1 from the above homotopy. Then $\bar{r}\psi_1 f$ is induced by a Δ -map from Y to the nerve of C. \Box

2. Resolutions

The previous section gives us a method to "convert" a map $f: X \to B\mathcal{C}$ into a sheaf of \mathcal{C} -sets on X with representable stalks, by $f \mapsto f^*\mathscr{E}_{\mathcal{C}}$. Going in the opposite direction is more difficult. From a sheaf \mathscr{F} of \mathcal{C} -sets on X, we shall construct a "resolution" $p_{\mathscr{F}}: X_{\mathscr{F}} \to X$ and a map $\pi_{\mathscr{F}}: X_{\mathscr{F}} \to B\mathcal{C}$. It turns out that $p_{\mathscr{F}}$ is a homotopy equivalence if \mathscr{F} has representable stalks and X is a CW-space. Then we can choose a homotopy inverse $p_{\mathscr{F}}^{-1}$ and obtain a map $\pi_{\mathscr{F}}p_{\mathscr{F}}^{-1}: X \to B\mathcal{C}$, well defined up to homotopy.

Let $\mathcal{O}(X)$ be the poset of open subsets of a space X, ordered by inclusion. Let \mathscr{F} be a sheaf of \mathcal{C} -sets on X. We can regard \mathscr{F} as a contravariant functor from $\mathcal{O}(X) \times \mathcal{C}$ to sets. The functor \mathscr{F} determines a transport category $\mathcal{T}_{\mathscr{F}}$ whose objects are the triples (U,c,s) consisting of an object U in $\mathcal{O}(X)$, an object c in \mathcal{C} , and $s \in \mathscr{F}^{(c)}(U)$. A morphism from (U,c,s) to (V,d,t) is a morphism $U \to V$ in $\mathcal{O}(X)$ together with a morphism $f:c \to d$ in \mathcal{C} such that $f^*(t)|U=s$. Let τ be the tautological functor (taking $U \in \mathcal{O}(X)$ to the space U) from $\mathcal{O}(X)$ to spaces, and let $\varphi:\mathcal{T}_{\mathscr{F}} \to \mathcal{O}(X)$ be the forgetful functor. Put

$$X_{\mathscr{F}} := \operatorname{hocolim} \, \tau \varphi$$
.

This comes with a canonical projection $p_{\mathscr{F}}: X_{\mathscr{F}} \to X$, induced by the obvious natural inclusions $\tau\varphi(U,c,s) \to X$. There is also a projection $X_{\mathscr{F}} \to B\mathcal{T}_{\mathscr{F}}$ which we can compose with the forgetful map $B\mathcal{T}_{\mathscr{F}} \to B\mathcal{C}$. This gives

$$\pi_{\mathscr{F}}: X_{\mathscr{F}} \to B\mathcal{C}$$
.

Proposition 2.1. If \mathscr{F} has representable stalks, then the projection $p_{\mathscr{F}}: X_{\mathscr{F}} \to X$ is a weak homotopy equivalence.

The proof relies on a few lemmas which in turn rely on the notion of a microfibration. Recall that a map $p: E \to B$ is a Serre fibration if it has the homotopy lifting property for homotopies $X \times [0,1] \to B$, with prescribed "initial" lift $X \to E$, where X is a CW-space. [It is enough to check this in all cases where X is a disk.] A map $p: E \to B$ is a Serre microfibration if, for any homotopy $h: X \times [0,1] \to B$ with prescribed initial lift $\bar{h}_0: X \to E$, there exist a neigborhood U of $X \times \{0\}$ in $X \times [0,1]$ and a map $\bar{h}: U \to E$ such that $p\bar{h} = h|U$ and $\bar{h}(x,0) = \bar{h}_0(x)$ for all $x \in X$. In that case the map \bar{h} is a microlift of h. [Again it is enough to check the micro-lifting property in all cases where X is a disk.]

Lemma 2.2. Let $p: E \to B$ be a Serre microfibration. If p has weakly contractible fibers, then it is a Serre fibration.

Notes on the proof. This is essentially due to G. Segal [7, A.2]. The hypotheses here are slightly more general, though. There is a short inductive argument as follows. The induction step consists in showing that if $p \colon E \to B$ is a Serre microfibration with contractible fibers, then so is the projection $p^I \colon E^I \to B^I$. Here I = [0,1], and the mapping spaces $E^I = \operatorname{map}(I,E)$ and $B^I = \operatorname{map}(I,B)$ come with the compactopen topology. The Serre microfibration property for p^I is obvious, so it is enough to establish the weak contractibility of the fibers of p^I . Suppose therefore given a map $\gamma\colon I \to B$ and a map $f\colon \mathbb{S}^n \times I \to E$ which covers γ , so that $pf(z,t) = \gamma(t)$ for $z\in \mathbb{S}^n$ and $t\in I$. We must extend f to a map $g\colon \mathbb{D}^{n+1}\times I \to E$ which covers γ . But that is easy: Use a sufficiently fine subdivision of I into subintervals $[a_r, a_{r+1}]$ so that partial extensions

$$g_r: \mathbb{D}^{n+1} \times [a_r, a_{r+1}] \to E$$

of f can be constructed, with $pg_r(z,t)=\gamma(t)$ for $z\in\mathbb{D}^{n+1}$ and $t\in[a_r,a_{r+1}]$. Then improve g_r if necessary, on a small neighborhood of $\mathbb{D}^{n+1}\times\{a_r\}$ in $\mathbb{D}^{n+1}\times[a_r,a_{r+1}]$, to ensure that $g_r(z,a_r)=g_{r-1}(z,a_r)$ for $z\in\mathbb{D}^{n+1}$.

The induction beginning consists in showing that p has the path lifting property. (That is, given a path $\gamma: I \to B$ and $a \in E$ with $p(a) = \gamma(0)$, there exists a path $\omega: I \to E$ with $p\omega = \gamma$ and $\omega(0) = a$.) But that is also easy.

Lemma 2.3. Let τ be the tautological functor from $\mathcal{O}(X)$ to spaces and let K be a compact subset of hocolim τ . Then there exist a finite full sub-poset $\mathcal{P} \subset \mathcal{O}(X)$ and a subfunctor κ of $\tau | \mathcal{P}$ with compact values such that $K \subset \text{hocolim } \kappa$.

Remarks. The fullness assumption means that $U, V \in \mathcal{P}$ and $U \subset V$ imply $U \leq V$ in \mathcal{P} . By a subfunctor κ of $\tau | \mathcal{P}$ is meant a selection of subspaces $\kappa(U) \subset \tau(U) = U$, one for each $U \in \mathcal{P}$, such that $\kappa(V) \subset \kappa(U)$ if $V \leq U$ in \mathcal{P} .

The lemma is closely related to an observation for which I am indebted to Larry Taylor: The mapping cylinder C of the inclusion of the open unit interval in the closed unit interval is not homeomorphic to a subset of $[0,1]^2$. This is easy to verify, although surprising. The two endpoints of the closed unit interval, viewed as elements of the mapping cylinder C, don't have countable neighborhood bases; hence C is not even metrizable. Equally surprising, and more to the point, is the following. Let K be a compact subset of C. Then there exists a compact subinterval L of the open unit interval such that K is contained in the mapping cylinder of the inclusion $L \to [0,1]$. For the proof, exhaust the open unit interval by an ascending sequence of compact subintervals L_i . Suppose if possible that for each i there exists $x_i \in K$ which is not contained in the mapping cylinder of the inclusion $L_i \to [0,1]$. Then the x_i form an infinite discrete closed subset of K, which contradicts the compactness of K.

Proof of lemma 2.3. The classifying space $B\mathcal{O}(X)$ is a simplicial complex. This has one n-simplex for each subset of $\mathcal{O}(X)$ of the form $\{U_0, U_1, \ldots, U_n\}$ where U_{i-1} is a proper subset of U_i , for $i \in \{1, 2, \ldots, n\}$. The image of C under the projection hocolim $\tau \to B\mathcal{O}(X)$ is contained in a compact simplicial subcomplex $B\mathcal{O}(X)$, and without loss of generality we can assume that the subcomplex has the form $B\mathcal{P}$ for a finite full sub-poset \mathcal{P} of $\mathcal{O}(X)$. For each simplex S of $B\mathcal{P}$, let $e(S) \subset B\mathcal{P}$ be the "cell" determined by S, so that e(S) is locally closed in $B\mathcal{P}$ and $B\mathcal{P}$ is the disjoint union (but not the coproduct in general) of the e(S) for the simplices S of

 $B\mathcal{P}$. Let U(S) be the smallest of the open sets corresponding to the vertices of S. The inverse image of e(S) for the projection

hocolim
$$\tau \longrightarrow B\mathcal{O}(X)$$

is identified with $e(S) \times U(S)$. Its intersection with K is contained in a subset of the form $e(S) \times L(S)$, where $L(S) \subset U(S)$ is compact. (This can be proved as in the remark just above.) Choose such an L(S) for every simplex S in $B\mathcal{P}$. For an element U of \mathcal{P} let

$$\kappa(U) := \bigcup_{S \text{ with } U(S) \subset U} L(S)$$

 $\kappa(U):=\bigcup_{S\text{ with }U(S)\subset U}L(S).$ Then $\kappa(V)\subset\kappa(U)$ for $V,U\in\mathcal{P}$ with $V\subset U,$ and each $\kappa(U)$ is compact.

Corollary 2.4. The projection $p_{\mathscr{R}}: X_{\mathscr{F}} \to X$ is a Serre microfibration.

Proof. Write $p = p_{\mathscr{F}}$. Let $q: X_{\mathscr{F}} \to B\mathcal{T}_{\mathscr{F}}$ be the standard projection (from the homotopy colimit to the classifying space of the indexing category). As we just discovered, the formula $y\mapsto (p(y),q(y))$ need not define an embedding of $X_{\mathscr{F}}$ in $X \times B\mathcal{T}_{\mathscr{F}}$, but it certainly defines an injective map and we can use that to label elements of $X_{\mathscr{F}}$. In particular, let

$$h: \mathbb{D}^i \times [0,1] \longrightarrow X$$

be a homotopy with an "initial lift" $H_0: \mathbb{D}^i \longrightarrow X_{\mathscr{F}}$, so that $h(z,0) = pH_0(z)$. We need to find $\varepsilon > 0$ and a map $H: \mathbb{D}^i \times [0,\varepsilon] \longrightarrow X_{\mathscr{F}}$ such that pH = h on $\mathbb{D}^i \times [0,1]$ and $H(z,0)=H_0(z)$ for $z\in\mathbb{D}^i$. The plan is to define H in such a way that

$$(pH(z,t), qH(z,t)) = (h(z,t), qH_0(z)),$$

for $(z,t) \in \mathbb{D}^i \times [0,\varepsilon]$, which means that $qH: \mathbb{D}^i \times [0,1] \longrightarrow B\mathcal{T}_{\mathscr{F}}$ is a constant homotopy. By lemma 2.3, the plan is sound, giving a well defined and continuous map $\mathbb{D}^i \times [0, \varepsilon] \longrightarrow X_{\mathscr{F}}$ for sufficiently small ε .

Lemma 2.5. The projection $p_{\mathscr{Z}}: X_{\mathscr{Z}} \longrightarrow X$ has contractible fibers.

Proof. The fiber over $x \in X$ is identified with the homotopy colimit of the (contravariant, set-valued) functor

$$(U,c)\mapsto \mathscr{F}^{(c)}(U)$$

where U runs through the open subsets of X containing x, and c runs through the objects of C. By a well-known Fubini principle for homotopy colimits, it is homotopy equivalent to the double homotopy colimit

$$\underset{c}{\operatorname{hocolim}} \quad \underset{U\ni x}{\operatorname{hocolim}} \quad \mathscr{F}^{(c)}(U).$$

In this expression the inside homotopy colimit is a homotopy colimit of sets (i.e., discrete spaces) taken over a directed poset, and therefore the canonical map

$$\underset{U\ni x}{\operatorname{hocolim}} \ \mathscr{F}^{(c)}(U) \longrightarrow \ \underset{U\ni x}{\operatorname{colim}} \ \mathscr{F}^{(c)}(U)$$

is a homotopy equivalence. Therefore

$$\underset{c}{\operatorname{hocolim}} \quad \underset{U \ni x}{\operatorname{hocolim}} \quad \mathscr{F}^{(c)}(U) \quad \simeq \quad \underset{c}{\operatorname{hocolim}} \quad \mathscr{F}^{(c)}_{x}$$

where $\mathscr{F}_{x}^{(c)}$ is the stalk of $\mathscr{F}^{(c)}$ at x. But the stalk functor \mathscr{F}_{x} is representable by assumption. The homotopy colimit of a representable functor is contractible.

Proof of proposition 2.1. Apply lemma 2.2 and note that a Serre fibration with weakly contractible fibers is a weak homotopy equivalence. \Box

3. Classification of sheaves up to concordance

Lemma 3.1. Let \mathscr{F}_0 and \mathscr{F}_1 be two sheaves of \mathcal{C} -sets on X, both with representable stalks. Let $g: \mathscr{F}_0 \to \mathscr{F}_1$ be a binatural transformation. Then \mathscr{F}_0 and \mathscr{F}_1 are concordant.

Proof. Let $e_0: X \to X \times I$ be given by $e_0(x) = (x,0)$ and let $p: X \times I \to X$ be the projection. For an object c in \mathcal{C} and an open subset U of $X \times [0,1]$, let $U_0 = e_0^{-1}(U)$ and let $\mathscr{G}^{(c)}(U)$ be the set of pairs $(s,t) \in \mathscr{F}_0(U_0) \times p^* \mathscr{F}_1(U)$ such that $gs = e_0^* t$. Now \mathscr{G} is a sheaf of \mathcal{C} -sets on $X \times I$ with representable stalks. Its restrictions to $X \times \{0\}$ and $X \times \{1\}$ are identified with \mathscr{F}_0 and \mathscr{F}_1 , respectively. \square

Corollary 3.2 (to proposition 2.1 and lemma 3.1.). Let \mathscr{F} be a sheaf of \mathcal{C} -sets on X with representable stalks. Suppose that X is a CW-space. Then

$$\pi_{\mathscr{F}}p_{\mathscr{F}}^{-1}:X\to B\mathcal{C}$$

is a classifying map for \mathscr{F} . That is, $(\pi_{\mathscr{F}}p_{\mathscr{F}}^{-1})^*\mathscr{E}$ is concordant to \mathscr{F} , with \mathscr{E} as in definition 1.1.

Proof. Abbreviate $p = p_{\mathscr{F}}$, $\pi = \pi_{\mathscr{F}}$. It is enough to show that the sheaves $\pi^*\mathscr{E}$ and $p^*\mathscr{E}$ on $X_{\mathscr{F}}$ are concordant. By lemma 3.1, it is then also enough to make a map from $\pi^*\mathscr{E}$ to $p^*\mathscr{F}$. That is what we will do, using the "étale" point of view. Therefore let $z \in X_{\mathscr{F}}$. We need to compare the stalk of \mathscr{F} at $p(z) \in X$ with the stalk of \mathscr{E} at $\pi(z) \in B\mathscr{C}$. The point z maps to some cell in $B\mathscr{T}_{\mathscr{F}}$ which corresponds to a nondegenerate diagram

$$(U_0, c_0) \leftarrow (U_1, c_1) \leftarrow \cdots \leftarrow (U_{k-1}, c_{k-1}) \leftarrow (U_k, c_k)$$

in $\mathcal{O}(X) \times \mathcal{C}$, with $p(z) \in U_k$, and an element $s_0 \in \mathscr{F}^{(c_0)}(U_0)$. The stalk of \mathscr{E} at $\pi(z)$ is then represented by the object c_0 . The germ of s_0 near p(z) amounts to a morphism from c_0 to the object which represents the stalk of \mathscr{F} at p(z); equivalently, by the Yoneda lemma, s_0 determines a \mathcal{C} -map from the stalk of \mathscr{E} at $\pi(z)$ to the stalk of \mathscr{F} at p(z). Letting z vary now, and selecting an object c in \mathscr{C} , we obtain a map over $X_{\mathscr{F}}$ from $\operatorname{Sp\acute{e}}(\pi^*\mathscr{E}^{(c)})$ to $\operatorname{Sp\acute{e}}(p^*\mathscr{F}^{(c)})$. This is continuous (verification left to the reader) and natural in c, and therefore amounts to a map between sheaves of \mathscr{C} -sets on $X_{\mathscr{F}}$, from $\pi^*\mathscr{E}$ to $p^*\mathscr{F}$.

Proof of theorem 0.1. Suppose that X is a CW-space. Let $g\colon X\to B\mathcal{C}$ be any map and put $\mathscr{F}=g^*\mathscr{E}$. We have to show that g is homotopic to πp^{-1} , where $\pi=\pi_{\mathscr{F}}$ and $p=p_{\mathscr{F}}$. We note that $X_{\mathscr{F}}$ also has the homotopy type of a CW-space since it is a homotopy colimit of open subsets of X (all of which have the homotopy type of CW-spaces). Hence p is a homotopy equivalence. Therefore, showing $g\simeq\pi p^{-1}$ amounts to showing that $gp\simeq\pi$.

Now recall that $X_{\mathscr{F}}$ was constructed as the homotopy colimit of a functor $\tau \varphi$ from a certain category $T_{\mathscr{F}}$ with objects (U,c,s) to the category of spaces. The maps $gp: X_{\mathscr{F}} \to B\mathcal{C}$ and $\pi: X_{\mathscr{F}} \to B\mathcal{C}$ both have a factorization of the following kind:

Here v is (in both cases) induced by a natural transformation from the functor $(U, c, s) \mapsto U$ to the functor $(U, c, s) \mapsto \operatorname{Sp\'e}(\mathscr{E}^{(c)})$, given by the maps

$$U \longrightarrow \operatorname{Sp\acute{e}}(\mathscr{E}^{(c)}) \quad ; \quad x \mapsto (x,s).$$

In the case of gp, the second map $w=w_0$ in the factorization is determined by the projections $\mathrm{Sp\acute{e}}(\mathscr{E}^{(c)})\to B\mathcal{C}$. In the case of π , the map $w=w_1$ is the composition of the projection to $B\mathcal{T}_\mathscr{F}$ and the forgetful map $B\mathcal{T}_\mathscr{F}\to B\mathcal{C}$.

Consequently it is now sufficient to show that w_0 and w_1 are weakly homotopic, which is to say, $w_0 f \simeq w_1 f$ for any map f from a CW-space to the common source of w_0 and w_1 . It is enough to check this for a particular f which is a weak equivalence. A good choice of such an f is the map

$$\underset{c}{\operatorname{hocolim}} \ B(c \downarrow \mathcal{C}) \longrightarrow \ \underset{c}{\operatorname{hocolim}} \ \operatorname{Sp\acute{e}}(\mathscr{E}^{(c)})$$

induced by the natural maps $\lambda_c \colon B(c \downarrow \mathcal{C}) \to \operatorname{Sp\'e}(\mathscr{E}^{(c)})$. By proposition 1.3, this f is indeed a weak homotopy equivalence. The maps $w_0 f$ and $w_1 f$ are easily seen to be homotopic. Indeed, each $(c \downarrow \mathcal{C})$ has two obvious functors two \mathcal{C} , one given by $(c \to d) \mapsto d$ and the other by $(c \to d) \mapsto c$. These are related by a natural transformation, which determines a homotopy $h^{(c)}$ between the induced maps $B(c \downarrow \mathcal{C}) \to B\mathcal{C}$. Integrating the homotopies $h^{(c)}$ one obtains a homotopy $w_0 f \simeq w_1 f$.

References

- 1. A. Dold, Lectures on algebraic topology, Grundlehren, Springer, 1972.
- 2. R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, Springer, 1977.
- 3. J.P.May, Simplicial objects in algebraic topology, Chicago Lectures in Math., Univ. of Chicago Press, 1967.
- 4. S. MacLane and I. Moerdijk, Sheaves in geometry and logic, Springer, 1992.
- I. Madsen and M. Weiss, The stable moduli space of Riemann surfaces: Mumford's conjecture, preprint, arXiv:math.AT/0212321, v3, 2002–2004.
- I. Moerdijk, Classifying spaces and classifying topoi, Lecture Notes in Math., vol. 1616, Springer, 1995.
- 7. G. B. Segal, Classifying spaces related to foliations, Topology 17 (1978), 367–382.

DEPT. OF MATHEMATICS, UNIVERSITY OF ABERDEEN, AB24 3UE *E-mail address*: m.weiss@maths.abdn.ac.uk