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In this exposition we consider a conjecture of B. Gross
on the Artin L-series L(M,s) of a representation M of
the galois group T = Gal(@/@) , which may be viewed as the
zero dimensional case of Beilinson's general conjecture on mo-
tivic L-series. The conjecture gives a K-theoretic interpre-
tation of the transcendental nature of the values of L(M,s)
at the integral places s = n € Z . Included are those places
where the L-series vanishes. In this case the "value" is meant
to be the first non-vanishing coefficient in the Taylor ex-

pansion and is denoted by L(M,n)* .

For example, let F be a finite algebraic number field and
let X = Spec F . Then X gives rise_to a representation ﬁ(X)
of T , namely E°(X ® 0,0) = QHom(F,Q) . The associated L-se-
ries LEH(X),s) is in this case the Dedekind zeta function
;F(s) of F . We consider the following two groups, which we

denote as cohomology groups:
1 =
Hy(X,@(n)) = K, . (F) ® @,

Hy (Xp, R(n)) =[T] (2r1)* 'm 1%

)



+ .
Here o runs through Hom(F,C) and [ ] means the fixed
module under complex conjugation acting on Hom(F,C) and
(2ﬂi)n—1ﬂz. By a theorem of Borel we have a canonical isomor-
phism
1 ~ 1
rD H HA(XIQ(H)) %IR—) HD(X]R’ ]R(n))-

Both IR -vectorspaces are equipped with canonical "Q-structures",
the left side with the Q-subspace VQ = Hl(X,Q(n)) and the
right side with the Q-subspace W¢ = [T;T(Zﬂi)n_1Q]+ . The

n-th regulator cx(1-n) of . F is defined to be the determinant
of the linear map ) with respect to a Q-basis of VQ and

of WQ . It is determined up to a rational number, i.e.

cX(1'-n)EIR X Q% .

The Gross conjecture for the representation ﬁ(k) (which in

this case has been proven by Borel) then says that for n > 1,
-n)= -n)* *
cx(1 n)_cF(1 n)* mod @

For an arbitrary Artin L-series L(M,s) the conjecture
is formulated in quite the same way, just that X = Spec (F)

has to be replaced by an "Artin motive", which produces the

representation M . The main purpose of this exposition is,
to give a presentation of Beilinson's proof of the Gross con-

jecture in the case of Dirichlet L-series.

The exposition is divided into two parts. The first part
is rather independent of the general Beilinson theory and may
serve as an elementary introduction into the general set up.
It comprises the explanation of the absolute cohomology, the
Deligne cohomology and the higher regulators of Artin motives,
and it describes the link of these concepts with the values of
Artin L-series. The main result of this part is the verifi-

cation of the Gross conjecture for Dirichlet L-series. This

verification is obtained by elementary arguments up to a theo-
rem on the explicit description of the regulator map ry o

the proof of which is subject to the second part. I have tried
to write the~first part in such a way that it may serve as a

basis for a student's seminar.



The second part is devoted to a presentation of Beilinson's
proof of the theorem mentioned above, which describes the higher
regulator map r, by means of the polylogarithm function. The
case n = 2 has been proven before by S. Bloch, by means of the

dilogarithm. This proof was an initial point for the emergence
of the general conjecture. The proof for n > 2 is very diffi-
cult and makes use of the full generality of Beilinson's theory.
Based on a first version,‘which was incomplete and partially
also incorrect, this part has been rewritten by M. Rapoport and
P. Schneider. So the presentation of the proof is essentially
due to them. Unfortunately, we were not able to understand the
claim (7.0.2) in Beilinson's paper [3] (see the "crucial lemma"

(2.4)), so that there remains a serious gap in the proof.

- Besidesof the above mentioned co-authors I am grateful to
Ch. Deninger, U. Jannsen, G. Tamme and K. Wingberg for many

helpful discussions.



Part I

Regulators and Values of Artin L-series

§1. Regulators for Algebraic Number Fields

The theory which we shall develop is based on a canonical homo-

morphism

r: X, 4(€) > R (n-1)
which is given for each n > 1 , where R (n-1) = (Zni)n_112.
When n = 1 , then K1(¢) = €*, and r is the homomorphism

cC* > R , zp log |zl
In the general case the definition of the map r relies on the
following three facts (see [20]).
1). We have a canonical homomorphism
+ +
K (€C) = m_(BGL (C -+ H_(BGL (C = H (GL(C),Z ),
q( ) q( (@) q( (c)) q( (C) )

the Hurewicz-map.

2). We have a canonical pairing
HY(GL(O), R (n-1)) x H_(GL(®),Z) —3 R (n-1) .

3). 1In the continuous cohomology Hé of the topological group
GL(€) with coefficients in TR (n-1) we have canonically con-

structed "Borel regulator elements"

bynoq = YD) M, ) € men(@), R (n-1)) 1) .

) These elements yield an identification

* = pAf
HC(GL(Q),IQ) AI{(V1,V3,V5,...)
of the continuous cohomology with the free exterior algebra
=i
generated by the cohomology classes Von-1 = (zni)n b2n—1 of

degree 2n-1 (see [12] and [6])




which are invariant under the involution induced by complex
conjugation on GL(C) and R (n-1). For the definition of

Yy and b we refer the reader to Rapoport [20],

u
2n-1 ' 2n-1
§1. We denote the image of b2n—1 under the canonical map

2n

12" (6L(0), R (n-1)) - #2%(GL(0), R (n-1))

also by b and obtain our homomorphism r now as the

2n-1

composite of
<b2n_1,->

Kon-1(€) » Hy ,(GL(C),Z) ————— R (n-1).

It is called the "Borel regulator map".

Now let F be a finite algebraic number field, let 0

be the ring of integers in F and let

X = Spec(F) , X ==Spec(OF) ; X(€) = Hom(F,C) .
Any complex imbedding o: F » € induces a map
Oy K2n-1(F) > Kzn_1(c) by functoriality and we obtain a
homomorphism
X(c)
K2n_1(F) g Kzn_»] (c) 14 a H ("'Ia*(a)l"')uex(c) 14

which is functorial in F . We consider the composite homo-

morphism

X(C) r xX(c)

Kypoq (F) » K, (@) R (n-1) .

The complex conjugation acts on X(€) , on Kzn_1(¢) and
on 1R (n-1) , and thus on the middle and the right group.
r is compatible with this action. Indicating the fixed mo-

dule by [ ]+ , we obtain a canonical homomorphism

. : 5 _ X(C) 4+
rD : K21’1"'1(F) []R (n-1) ] r
and, as composite with K2n-1(0F) - K2n—1(F) ’
. R o X(€) 4+
- T ot K2n-1(OF) [R (n-1) 1




This homomorphism is called the n-th regulator map. We have

two fundamental theorems about these maps:

(1.1) Theorem (Dirichlet's unit theorem): For n = 1 , the
map rp together with the diagonal map Z _*IQ(NH induces
an isomorphism

(X, (0) 8 m) 8 R 3 RX(O) .
(1.2) Theorem (Borel): For n > 1 the map ry induces an

isomorphism

~ X(C) .+ 2)
Kypoq (F) ® R > [R(n-1) ]

For the proof of theorem (1.2) we refer the reader to [5]
and [6].

We now reformulate these results in the language of

Beilinson. We set

Hp (X @(n)):= K, . (00) ® @ , H(X,Q(n)) := () 0 .

Kon-1

For the reader who is familiar with the general Beilinson
theoryrwe”;emark,”thgt’this designation is justified‘by_the
fact that the Adams operator wk acts on K2n-1(oF) ® @ as

1 . n
multiplication by k because of r owk = k"r and (1.2).

From this and frdm K2n(0F)®Q = 0 follows also Hi(xz,m(n))
=0 for i+ 1. We set on the other hand

1% (x(€) ,¢/R (n))*

1(X(@) ,R (n-1) 7" = [R (a-1)X( @7+

Hp (Xp SR (n) :

regarding that ¢ = R (n-1) ® R (n) . We then obtain a re-
gulator map

rp: Hy(Xy ,0(n) » H)(Xp R (n))

between the "absolute cohomology" Hl and the

2
) We remark that Ki(OF) ® Q = Ki(F) ® ¢ for i > 1 . This

is a consequence of the localization sequence and of the fact
that the K-groups of the finite residue class fields of OF
are finite groups.



"Deligne cohomology" H; . In [20] (see also the

appendix to §2 of [2])it is shown that this map coincides with
the regulator map that has been defined by Beilinson quite
generally for arbitrary Grothendieck motives over number fields.

From Dirichlet's and Borel's theorem we obtain

(1.3) Theorem: The regulator map ry induces isomorphisms

1 ~ 1 . o
(HA(XZZ ;R(1)) 8 Q) @ R - HD(X]R,IRH)) for n = 1,

(Hy (X,@(n)) ® R Y H)(Xp,R(n))  for n > 1.

We have formulated the above situation for schemes X =
Spec(F) , but it clearly extends to arbitrary zero-dimensional
varieties X over @ , i.e. to finite disjoint unions of
schemes Spec(F) . The regulator map rp is functorial in a
twofold sense. Namely, let H(X) denote one of the groups
Hl(XZZ /Q(n)) , Hl(X,Q(n)) ’ H;(XI{,ZR(n)). A morphism

p: X » Y

of O-dimensional varieties over @ induces then two
homomorphisms
Px
H(X) = H(Y) ,
p*
where p* = H(p) . In the case H = lefthe map Py is-in-
duced by the usual transfer

tr 1(X) - K

: K2n- 2n—1(Y)

of K-theory. In the case H = H;' the map p, is induced

by the homomorphism

X(cC) Y(C)

Px ¢ R (n) - IR (n) ’

which associates to a function f: X(C) - IR (n) the function

(pxE) (y) = X £ (x)
| x€p_1(y)
on Y(C) . If; in particular, p: X -» X 1is an automorphism,
then p, and p* are mutually inverse automorphisms of H(X).

Quite generally the maps Px and p* commute with the regula-
tor map.



The central result in this exposition is an explicit
description of the regulator map rp for n > 1 , in the case
that F 1is the field Q(“N)_ of the N-th roots of unity
and X = Spec(F) . This description is obtained by the poly-
logarithm function which is defined for all complex s and =z

with |z| < 1 by the convergent power series
k

™M 8

LS(Z) =

:N‘IN
[0

k=1

It extends to a function which is defined, and holomorphic
in both variables, for all s and 2z in the region C-[1,®)
(cf£ [18]). For ¢ € uN—{1}cF and n > 1 we set

Ln(C) = (OO-ILn(a‘E)IO")a:F_)C

X(C)

Viewing this as an element of (C/IR (n)) , we have

(1.4) Theorem: For each n > 1 we have a map of G-sets

1
€ uN—{1} ~ Hy (X,0(n))

such that for ¢ € uN—{1} ’

rv(en(c)) = Ln(c) .

We shall see in part II, §1, that this theorem yields a
complete and explicit description of the regulator map for
X = Spec(Q(uy)) .

-The proof of theorem (1.4) is difficult and uses the full
generality of Beilinson's theory of absolute cohomology,
Deligne cohomology and regulator map. We shall give a presen-
tation of it in part II of this exposition. The consequences
for the values of Dirichlet L-series, however, to which this

part is devoted, will be obtained by elementary methods.




§2. Regulators for Artin Motives

Let k be a finite algebraic number field, k an algebraic
closure and T = Gal(EIk) the absolute galois group of k. Let
X be a zero-dimensional variety over k , i.e. a finite dis-
joint union of schemes Spec(F), where F is a finite field ex-
tension. Then X gives rise to a representation of T , namely

HO = HO(R,0) = 9 0 '

where X = X ﬁ<i and no(i) denotes the set of connected com-

ponents of X 3

). To this representation belongs an Artin L-
series, which is nothing but the zeta function of F .. It is
our purpose to study arbitrary Artin L-series and relate them
to regulators. For this reason we view the situation of §1 as
attached to the representation H(X) and refine it now by re-
placing ~H(X) by a representation which is associated to an

arbitrary Artin motive. By this we mean the following.

Let E be a finite algebraic number field. An Artin motive

0ver~~kWHwith'coefficientS‘in“”E"“iS“a'pair'““
M= (X,p) ,

where X 1is a zero-dimensional variety over k and p is a

I-homomorphism .

p: H(X) ® E » H(X) © E

m_(X)
with p2 = p of the E~vector space H(X) ® E =E ° . We set
in particular |
e EX = (X ’ ld)
To each Artin motive M = (X,p) we associate the E-vector space

3) Each connected component of X consists of one point only. If
X = Spéc(F), thenwe obtain a bijection

o xk) = Hom (F,k) 5 (X)),
which associates to a k-rational point of X the connected com-
ponent of the associated point of the scheme X. Note however,

that T acts on X(k) from the left and on ﬂo(i) from the right.



m ()
H(M) := p(H(X)®E) = pE ,
which is a representation of T with coefficients in E . We
have in particular “o(i)
H(EX) = H(X)®QE = E

A morghism between two Artin motives with coefficients in

£ (er) - (qu)
is an E?iinear“Féhomomorphism
@: H(EY) -» H(EX)

with pow = ¢ cq . In this way the Artin motives over k with

coefficients in E form an abelian category
_ 40
M = Mk(E) .

Note, that we have let ¢ and f go into opposite directions.
In this way the functor

v]c:-»M , X EX ,

from the category Vi of zero-dimensional varieties over k
to the category M is covariant, thus giving the motives the
character of "spaces". This convention coincides with that of
Beilinson [3] and Jannsen [14]. It is however opposite to that
of [ 9] . We remark, that
Hom, (EX,EY) = Homy .(H(EY),H(EX)) S cE’(XxY) @ E ,
M. B ) ,F m
.where . _ nO(XxY)
CH (XxY) = Z
is the free abelian group over the set nO(XxY) of connected
components of XxY , i.e. the group of (zero-codimensional)

cycles on XxY. In fact, we have
T (XxY) r

cH® (xxY) @ E = (7 ° ) @E 2 Hom_ . (H(EY),H(EX))

E, T

by associating to a function f: WO(XXY) = 1To (X) x Ty (Y) » Z the map

T_(Y) T_(X)
E ° - E° ,
(g:m (¥)=B) b (J:im_(X)-E), F(X)= T £(X,¥)g(y)
_ yEnO(Y)
WO(X) - - -
Since H(EX) = E has the canonical basis x, ,-x € X,

we have canonically




H(EX) .

I

HomE(H(EX),E)

Therefore to each Artin motive M (X,p) , there is associated

the dual Artin motive

1\\’/1 = (ng) ’

5 being the dual map of p: H(EX) - H(EX)

The functor M b H(M) is contravariant and yields an equi-

valence
H: M 5 RepE(I‘)O

between the category of Artin motives over k with coeffi-
cients in E and the opposite category of the category
RepE(P) of finite dimensional representations of T = Gal(k|k)
over E . One should however not identify M with RepE(F)o;
an Artin motive is not simply a representation of I' , but it
is determined by the selection of a direct summand of a re-

presentation H(X) ® E

We are now going to associate to every Artin motive coho-

mology groups Hl and H; as follows. Let

o)
H: Vi VecCD
be any contravariant functor on the category Vi

sional varieties over k into the category of Q-vector spaces,

of O-dimen-

which sends sums into products and associates to a morphism

f: X » Y functorially two homomorphisms
f*
H(Y) e—H(X) .
f*

where f* = H(f) and f*eof, =1 if f is an isomorphism.
Let

H(EX) := H(X)®E .
To every morphism - .

f € Hom, (EX,EY) = CH® (XxY) ®F

we -associate two homomorphisms
f*

H(EY) «<—2ZH (EX)
- f
as follows. Thée group *
o ﬂo(XxY)
CH (XxY)®E = E = I I E

Z€WO(XxY)




acts on
H(E(XxY)) = T] H(EZ)
Zem_ (XxY)
o
componentwise by scalar multiplication, so that £ yields an
endomorphism fuUu of H(E(XxY)). The maps f* and £, are

then defined as the composites of

pr§®1 fu : pr, @1
H(EY) —=—— H(E(XxY)) T H(E(XxY)) ——— H(EX)
pr2*®1 7§r?®1

If ¢: X > Y 1is a morphism in Vi and f = graph(y) ® 1 €

CHO(XxY) ® E , then it is éasy to see that

£f* = o* ® 1 r L = o0, ® 1 .

We may now extend the functor #H from the category -Vi to
the category M of Artin motives M = (X,p) , by setting

H(M) := p*H(EX)

We apply this to the functors H(X)"5“H1(X,Q(n)) "and H(X) =
'H;(XIR ,R (n)) :

(2.1) Definition: Let M = (X,p) be an Artin motive over k

:With'ddéfficiénfé“iﬁ“’Eh:‘Théhri§Mhi§mahwidémpdtéht in the ring
jEndM(EX), and we set '

H)(M,Q(n)) = P*Hy (EX,0(n))

S CHR(Mp,@(n) = pRER(EXp R (). oo e

‘The first group is an E-vector space and the second a free
R ® E-module. The E-vectorspaces Hl(MZ&'Q(n)) are defined
in the same way starting from the functor H(X) = Hl(Xz:,Q(n)).

As an immediate consequence of theorem (1.3) we obtain the
first part of Beilinson's conjectures for arbitrary Artin mo- -

tives over k:

(2.2) Theorem: If M = (X,p) is an Artin motive over k with

coefficients in E , then the regulator map ) for X 1in-

duces isomorphisms
;- _ v
rp : (Hg My ,0(1)) @ HOOT)eR 3 1) (M, R(1)) for n = 1

H;(MR,IR(n)) for n > 1

X

ry : Hl‘(M, 0(n)) ® R
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From the regulator maps rp we obtain regulators of the
motive M as follows. If E 1is a ring, A an E-algebra and
V an A-module, then an E-structure (or E-lattice) of V is

a free E-submodule VE of finite rank such that

V=V, ®A.
E E
Now to any isomorphism )
f : V>V

of A-modules V,V' which are endowed with E-structures VE

and Vé we associate the regulator, which is the element
R(f) € A*x/Ex*
given by the determinant of the matrix associated to f after

the choice of an E-basis of VE and Vé .

We apply this to the maps rp of theorem (2.2), which are
isomorphisms of free IR ® E-modules. Both sides are equipped
with a canonical E-structure, the left side with

Hl(MZ&’Q(1)) ® H(M)P for n=1 and Hl(M,Q(n)) for n > 1,
:and.the right side with - . - . L.
H (M ,@(n=1)) := p* (8 (X, ,@ -1))8E),

. regarding that

HO(X ,0(n-1)) = [p@m-1)*(®)7 X(@

e [R(-1)""""1 —H (X]R,IR(n))

(2.3) Definition: We denote the regulator of the isomorphism

rp with respect to these two E-structures by
544m_,wm~wawnnm“,‘,WWCM(1-n)qem(nz® E)*/E* .. .

~and call it the n-th regulator of the motive M .

§3. L-series of Artin Motives

We are now going to explain the second and third part of
Beilinson's conjectures,concerning the values of L-series,
here for the case of algebraic number fields. The third con-

jecture is identical with a conjecture, previously posed by




 B. Gross [12] (which, for s=0 , is in turn Stark's coﬁjecture
(see [25])).

We consider an Artin motive M = (X,p) over k with co-
efficients in the finite algebraic number field E; M yields
a representation

o : T » Aut_(H(M))

of the absolute galois group I = Gal(k|k) on the finite di-
mensional E-vector space H(M) . For every o € Hom(E,C) we ob-
tain a complex representation

o o

? + T oAt M), B = mM) e

’

to which we associate the IL-series

o Lm%,s) =T7 det(1—p°(w%1)az(;g)“'s;(H(M)O)I/*)
Here %»'runs over éﬁ: finite primes of k ahd () is an
relement in a decomposition group E&”C"F“““over Ay that is -
mapped onto the Frobenius4automorphism in Fg/Ig, Iéf being
'the inertia group in Fg ). ‘ :

To the Artin motive M we associate the L-series of M

_ o
L(M,s) = (...,L(M r$)r-2) setom(E,T)

'This is a merbmorphic function on € with values in C 8 E.

'To be precise, every o € Hom(E,C) induces a homomorphism

O, tC®E->C , z®ap z-(ca) .

‘We obtain in this way a decomposition € ® E =T;T¢ and the
L-series L(M,s) € C ® E is defined by

o L(M,5) = LM ,s) .

Our aim is to study the values of L(M,s) at the integral
points s =m < O . The order dm(M) of L(Mg,s) at s = m is
independent of ¢ and is given by

4 - . .

) We stress that we have put wg1 and not ¢, in the definition
of L(MG,S). So L(Mo,s) is not the usual Artin L-series of
H(M)0 but of the dual of H(M)0 .

11 |
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e T ;
z dimEH(M) s - dimEH(M) 4 for m=0
leo r
d (M) = < ¥ dim_H(M) % for m<O even
m [oo E
% ¥ Ty
£ dimgH (M) S+ = dimg (H(M) /H(M) €) for m<O 0dd.
foo |
L complex real

This is well known (see [25], CH O, §6) and follows from the
functional equation of L(Mg,s), which shows that only the T'-
factors contribute to the order.

On the other hand, we have the following explicit descrip-

tion of the cohomology group H;(an,ﬂl(n)):

(3.1) Proposition: Let M = (X,p) be an Artin motive with co-

efficients in E . Then, canonically
(

r
(D M) §) @ R for n odd,

1 ~ | oo
H (M, R (n)) & | 8 T "
PR ' W (B BM) () & @D HM)/HM) L8)®IR for n even,
|oo -]
complex real

C
where 4 runs over the infinite primes of k and Q% cTl =

Gal(klk) is a decomposition group over g .

Proof: Let S = Spec(k). The morphism X = S yields a map
X(¢) -» s(¢)

and we let X((E)S be the fibre over s € S(C) = Hom(k,C). We
fix an extension s: k 2 € of s: k= C . Then s induces a
bijection '

x(k) > X(€), , x b sox . i
The idempotent p induces endomorphisms p* of H(EX):=EX(k)
and ﬁ(EX):= EX(Q:)~S

have a commutative diagram

as described in §2. By functoriality we

X(C)g E*} pX (k)

o) |5

- _
F(Og 5 x(®)

where (S*f)(x) = f£(Sox)
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Let now ,g be an infinite prime of k and let s, : k -» €

¢

be an imbedding defining 4 . Then

Hy(Mp R (n) = p*(IR (n-1)* (1" @ £) = pr[e¥(@gm (n-1)1" =
' X(e) X(C) =
O X s ¢ R(n-1)1" & Dp*[(E  HeE  %)oR (n-1)1".
| | oo
é%al gémplex

Let ,% be real and let s = s% and consider the commuta-

tive diagram

X(C) ~ . n=-1 =
E S & R (n-1) s*®1/(2mi) N EX(k) & R
p* p*l
X(C) ~ . n-1 =
E S @ Rn-1) s*®1/(27mi) EX(k) ® R .

Since complex conjugation on X((I:)s corresponds to the action
of thi non—tfivial element ¢ in Fg on X(k) under the
map so : X(k) - X(C)S » we see that the complex conjugation
on the left side of the diagram corresponds to the action of

(-1)n—1wg on the right side. Regarding that the two maps p*

are compatible with these actions, and that p*EX(k) = H(M)
as %f—modules we obtain
g
X(e) n-1 H(M) °®@R, n odd

p*[E  ° @ R (n-1)1T=(p*eX¥)) (1) ‘or- T
' H(M)/H(M)ng,n even

&

Let now A be a complex prime and let s = s§ , S: k> C

where the exponent (_1)n—1 denotes the eigenspace of ¢ with

eigenvalue (_1)n—1 .

be the pair of conjugate imbeddings defining g - onsider the

homomorphism

X(C) X(C)= gy 1=1 =
(E SeE ) @ R(n-1) SX8MQ2m) L X(K) o p

given by
s*(f + g) = 2(8% + (-1)"7"5%g) .

The fixed‘module of complex conjugation on the left side is

X(C)S and

given by the elements %(f + f), where f € E
f(x) = f(x) . Since s*(%(f + f)) = S*f = fos , we see that
the restriction of the map s* ® 1/(2ﬂi)n—1 to this fixed

module yields an isomorphism
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X(C) X(¢)- =
[((E SeE S)yewrm-11T 2% g Rr.
Applying as above the maps p* we obtain
X(c) X(¢) - =
p*[ (E 5o E %) @ R (n-1) 12 (p*eXK)yer = um) @ R.

Inserting these results into the above direct composition of

H;(MI{,Il(n)) we obtain the assertion of the proposition. o

Comparing proposition (3.1) with the results on the pole
order of the L-function L(M,s) at s = 1-n , and applying
theorem (2.2) we obtain the second part of Beilinson's con-

jectures for arbitrary Artin motives:

(3.2) Theorem: For every n > 1 we have

e 1
ords=1_nL(M,s) = dlmEHA(MZZ’Q(n))'

We now consider the first non-vanishing coefficient a,
in the Taylor series expansion
d _, () d__q (M)+1
L(M,s) = ao(s - (1-n)) +a1(s - (1-n)) +...

at the point s = 1-n . This coefficient is an element of
(C ® E)* = T;TG* , where o© € Hom(E,C) . We denote it by

L(M,1-n)* = lim LM,s)

d
s->1-n (s-(1-n)) n-1

(M)

and call it briefly the "value" of L(M,s) at s = 1-n . For
this value we now have, as a special case of the last part of

Beilinson's general conjecture:
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Conjecture (Gross): For every n > 1 we have in
(@ ® E)*/EX °) ,

CM(1—n)'= L(M,17-n)* mod E*

where M is the dual motive of M .

For the trivial motive, i.e. for the Dedekind zeta function
t(k,s) , this conjecture has been proven by A. Borel (see [5]).
When H;(MI{,Ei(n)) = 0 , then L(M,1-n) # O by theorem
(3.2) and the conjecture is a special case of Deligne's con-

jecture [8 ] on the "critical" values of motivic L-series.
Here it says that

L(M,1-n) € E¥X < (C @ E)* ,

and this is in fact true by the results of Siegel [22]. For
these algebraic values we have further going conjectures and
results. For example, let G = Gal(Q(ui)IQ) be the galois

group of the 2-th cyclotomic field. %§§ 8 : G5 (zZ/)* be

the canonical isomorphism and let M be the Artin motive

with character
8t : g - (Z /0)* e Q(u£_1) c Ql , 1 even.

For the values L(M(l),1—n) with n = i mod(2-1) we then

obtain an interpretation as multiplicative Euler characteri-

stics in %-adic cohomology (cf [1])

. . . 4y Jt1
J

S. Lichtenbaum has proposed conjectures that predict formulas

5). We remark, that the imbedding E l@ig C ® E becomes the
map av (...,0a,...) after the identification

o€Hom (E,C)

C ® E =TOT<I:"_.
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of this type in a most general frame (see [161).

Of particular interest is the case s = 0 , for which the
conjecture goes back to H. Stark [25] . Wwhen M is the tri-
vial motive ESpec(k) then L(M,s) is the Dedekind zeta
function ¢(k,s) of k . At s =1 it has a simple pole with
residue

c(k,1)* =
where h 1is the class number, e the number of roots of unity

in k and R the regulator of k . This is the classical
class number formula. Transforming this formula from s = 1 to

s = O via the functional equation we get

=-2
£(k,00* = - 2R

R mod Q* = R(rD)-

So for the trivial motive and s = O our conjecture is a di-
rect consequence of the class number formula. If the character
of H(M) has rational values, then the Stark conjecture has
been proven by Tate (see [25]). There is no proof, however,

for an arbitrary Artin motive.

The main purpose of this exposition is to present Beilin-
son's proof of the Gross conjecture for the Dirichlet L-series
at the points s = 1-n < O . The method does not apply to the
case s = 0 for which we have fortunately a classical proof
of Dirichlet(see [25]).

§4. Dirichlet L-series

. Let X: Z/NZ - € be a Dirichlet character, and let £
be the conductor, so that X comes from a primitive

character "x' mod £ . The link between the Dirichlet I—series
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L(Xx,s) = X X Re(s) > 1 ,

) 14
and the regulators is given by the polylogarithm function :
© k

L (z) = x Eg
k=1 k

’

which we have introduced in §1. The function
_ 2mix
Zs(x) = L_(e )

extends for s # 1 from (0,1) to a continous function on R/Z

(see [18] Lemma 7) and we set
L(x,s) = = y(a) L (2
a€Z /N s'N

For this function we have the following (see [15], CH. I. §2)

(4.1) Lemma: For all s € ¢-{1} we have

N e ,s) = TTO - x@ps Hes ey, s) .
plIN
p/f

Proof: By a straightforward power series computation one proves,

that for m > 0 ,
s-1

Ls(z) = m n? Ls(w) .
W =2
For the function ZS;IR/Z » € this implies
m-1
(*) Lox) =m® x g (B
v=0
(i.e. Ks(x) is a distribution of weight s-1). If f and

N have the same prime factors, then the function x:E/N -»C
factors through the function x': Z/f - € and our formula
is a direct consequence of (¥*)

It will now suffice to prove the formula for the case
N =pf , (p,f) = 1 . We have

S x(a)£_(3)

a€Z /N

NS e (x,s)

L o xxe &)

bez/f x€7Z/N
x=b (f)



Now X(x) = X'(b) for x = bmod £ and (x,p) = 1, whereas

x(a) = 0 1if a = pc for some c . Hence
Nes) = 5 T s e (& -n®T T xae B,
b€z /£ x€7Z /N a€Z /N
x=b (f) a=pc

Applying (*) for m = p to the first sum and making in
the second the change of variables a = pc where c¢ € Z/f

we obtain

leogs) = 5 x e ® - et e 1 pen®
bEZ /£ c€EZ/E
= (1 - x" P ex ), q.e.d. o

The Dirichlet L-series may now be expressed by the poly-
logarithm as follows.

(4.2) Proposition: For all s € C-{1} we have

-

L(X,s) = g(x,s)2(X,s) ,

where - -5
1 ,N,s-1 1-x'!
g(XrS) = T(X) (f)s T—r X (p)ps_1 ’
: : pIN1-x"(p)p
pff
T(x) being the Gauss sum
£-1 .
(x) = T X(a)eZﬂla/f .
a=0

Proof: Since both sides are holomorphic in s , it will
suffice to consider the case Re(s) > 1 . We first assume that

X is primitive, i.e. f£ =N . Then, for k > 1 ,

e21T1ak/N

I x(a) = T(x)Xx (k).

a€#% /N
If (k,N) =1 , this follows from x(a) = x(ak)x(k) , and if
(k,N) # 1, then both sides are zero. Now dividing both sides

by k° and summing over k > 1 , we get

z X(a) Ls(eZWla/N) = T(X)L()'er) .
" a€Z /N
Since Ls(ez“la/N) = zs(g), this is the desired formula for

the case that ¥ 1is primitive. In the general case we have

18
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L(X,s) = T1 (1-x"(p)p 2)L(X',s)
pPIN
ptf
= T(1) TT (=x"(ep °)L(x",s).
X' pIN
P
pyf
The proposition follows now from (4.1). o

The generalized Bernoulli numbers Bn X are defined by
14

the expansion
£
r x(a)
a=1

z =) n
z Bn
n=0

a
e _
efz-1

lN

s

X

They are connected with the ordinary Bernoulli numbers
B € Q0 by '
n n a-f

1X(a)f Bn(—f_) ’

-1
Bn,x T f a

H-lf ™M Fh

n
where B _(x) = X (l?)B.xn
T . Tn'T jop 1771
mial (cf [13]). For the values of the L-series L(x,s) at

is the n-th Bernoulli polyno-

the negative integers we now obtain:

(4.3) Theorem: For. n > 1 we have:

(i) If x(-1) # (-1)™ 1, then
B
L(X,1-n)=-~Eéx £ 0 .
n-1

(ii) If X(-?)
L'(x,1-n)

|
~—~

1
-
~—

, then L(x,1-n) = 0 and

I
F
o)
>
o]
+
O

where

Proof: It is well known (cf [13]) that

B
n
L(x,1-n) = - n'X
for every n > 1 , and B, y +# O precisely, when

x(-=1) # (-1)n_1 . So assume x{(-1) = (_1)n-1 . The functional

equation for the Dirichlet L-series may be written

L(x,s) = 2208 LG 1ss)

2i F(s)cosg(s—ﬁ)




with 8§ = 0 or 1 according x(-1) =1 or -1 (cf [13],
p. 104). Since ¥(-1) = (—1)n_1, n-§ must be odd and there-
fore
cos T 1—2—6 _ (_1)(1—n—6)/2 _ i1-n—6‘ 1
n-

(-1)
_ (n-1)1 '
and L(x,n) *# O, as is well known. Expanding now each term

I'(s) has a simple pole at s = 1-n with residue

in the functional equation in a Laurent series at s = 1-n,

we see that

' _ (X) 2w, 1- (n=-1)! -
L' (x,1-n) = ;.a () 7 = n—?.1ln—6 L(X,n)
i (-1) i
_ 1t(x) (n-1)! fn—1L(-
= — X,n) *= O
2 (oriyn? -

Inserting the result of proposition (4.2) for s = n we ob-

tain the desired formula. o

-We now consider a character ¥X: (Z/N)* - E* that takes
values in the multiplicative group of a finite algebraic
number field E and extend it by O to Z/N. We associate
to X an Artin motive over @ with values in E as follows.

Let F ¥‘Q(u&) , ﬁN the group of N-th roots of unity, and
let G = Gal(F|Q) . The right action of G on X = Spec(F)
induces a left actionon _ .. _ o
T (X) T_(X)

H(X) = B°(X,0) =0 ° and H(EX) = H(X)®E = E °

thus an identification

E[G] = EndE,F(H(EX)).

~

Via the canonical isomorphism G = (Z/N)* we may view X

as a character of G , and we consider in- E[G]. the element

-1
e=zX()T,
o X rec R
which acts on H(EX) = {f: ﬂO(X) - E} by
(e £) (X) = I o £(RD .
TEG

_1 . . ,
pX = ¥ eX is an idempotent in EndE,r(H(EX)) and therefore

defines an Artin motive
M = (X,pX)
over @ with coefficients in E . We denote this motive by

[x] and call ita Dirichlet motive.

20




We assume F < @ . We then have a homomorphism I' =
Gal(2|9) ¥ ¢ and a distinguished point x € Spec(F @ @) (the
kernel of F @ Q » @ , a®b » ab) by which we get a %ijection
Gfimgi),T - XT , of right G-sets. Associating to a function
f:m#i)éE: the element f f(§T_1)T € E[G] we obtain an iso-
morphism T (%)

H(EX) = E © € g[G] .

This is an isomorphism of left I'-modules, if we let o0 € T act
on E[G] as multiplication by w(o) from the left. Therefore
the endomorphism pX of H(EX) becomes after the identifica-
tion with E[G] 3just multiplication of E[G] by the element
1 -1 1 . .

¥G %)< (1)t = ¥G eX € E[G] . The associated representation of

' is the 1-dimensional subspace

E{G] = E
eX [G] ex

of E[G] on which T acts via the character ¥ . So the re-
presentation associated with the Dirichlet motive [x] is
r -G 5 E*

We now consider the L-series

L([xl,s) = ('-"L(XO’S)"")0€H0m(E,¢)

'of the Dirichlet motive. On the other hand we set

a
L([x]l,s) = = zs(ﬁ)e x(a) € € ® E,
aez /N
_ 1 : n a-f
Bn,[x] T f E x(@) £7B (=) € E ,
a=1 _ -1 -n
a(lx) = Lﬁ%lli N e g S =), £ € E.
pIN 1-x'(p)p
n plf
_ n n-i . _ .
Here Bn(x) = iEO (i)Bix € Q[x] 4is the n-th Bernoulli

polynomial, £ the conductor of x , and ¥' the associated
primitive character.
The homomorphisms o,: C 8 E-C, z ® ¢ » z0oe ,

0 € Hom(E,C), yield the identification

C®E=]]c,
g

21



by which the subspace E =1 ® E< € ® E becomes the image
of E~» J[Cc, er (...,06,...). After this identification

we have with the notions of theorem (4.3)

ooy 2(x%,8),000)

2([x1,s) .

o€Hom(E,C) '
'Bn,[X] = (""Bn,xo' ..... )OEHom(E,Q) ,
a(lxl) = (..., ax%,..... ) seHom (E,C) -

We may therefore reformulate theorem (4.3) as follows

(4.4) Theorem: Let n > 1 . Then in € ® E we have

B
(i) L([x],1-n) = -—EL%ll £ 0 if x(-1) = (-1)°7]
(11) If x(-1) = (-1)™ ', then L([x]1,1-n) = O and

L'([x],1-n) = ELLXl%:TQ([x],n) + 0
(27i)

with a([x]) Ee EcCcE®C .

§5. Regulators of Dirichlet Motives

Let again F = Q(uN) , where now N >.1 . Let G =

Gal(F|Q),X = Spec(F), e_ = % X_1(T)T € E[G] and
X tec

L([xl,s) = £ 2 (&

) ® x(a) mod E*
s N
a€EZ/N

In the preceding paragraph we have explicitely computed the
values of the L-series L([x]l,s) at s = 1-n of the Dirich-
let motive [x] = ([X],%E e_ ) . By means of theorem (1.4) we

X
now determine the regulators c[X](1-n) .

(5.1) Theorem: The n-th regulator c[X](1-n) € (Ei@ E) */E*,

n > 1 , of the Dirichlet motive [x] is given by



if x(=1)#(-1)

|
-

(l) C[X](1_n)
1

(ii) c (1-n)
[x] (27i)

n-1

Proof: We first determine explicitely the E-structure of

HY (D] g /R (0)) = e (H) (X, R(n) ) 9E) .

Since G acts on X and X(C€) from the right, the elements
T € G act on

X(e) X(¢)]+

H;(X]R,]R(n)) ® E = [C/R (n) ® E]T = [C/R(n) ® E

by 1* from the left (see §1, p. 4). Directly from the defi-

nition (see §2) we see that the endomorphism
1 1
* .
eX : HD(X]R,]R(n)) ® E » HD(XIR'IR(n)) ® E

is given by
e* = ¥ T* @ X—1
TEG
We choose a primitive N-th root of unity ¢ and we let

(t) .

a: F > @

be the imbedding determined by o7 = ezwl/N

. We may then con-
sider the bijection of G-sets G - X(C€C) , T » o oT, and the

induced isomorphism of left E[G] modules

a*: EX(C) SE[G] , (f: X(€) » E) b X f(aT—1)T .
T
Complex conjugagion on X(C) corresponds then to multipli-

cation with c € G, c: ¢ ~» C_1 , the action of Tt*¥ on Ex(m)
becomes multiplication by 1t and the operator e* on EX(G)

becomes multiplication by eX = ZX-1(T)T € E[G] . We have

e E[G] = Ee
X X
and

e 1T =71 = |
X eX X(a)eX

if a € (Z/N)* corresponds to T € G under (Z/N)* =G .
In particular

e c =ce = -1)e
X X><()X

n-1

2 (Ix "1,n) mod E* , if x(-1)=(-1)""",
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By the above identifications we obtain a commutative diagram

r
1 [ a* +
Hy (X,2(n))@E — Hy(Xp /R (n)) @ E — [C/R(n) @ E[G]]

ex ex 1 ® e
X X

r
1 D 1 o* +
H, ([x],2(n)) — Hy([x]1 /R (n)) —> [C/R (n) ® E e_]
A D R ~ X
The action of complex conjugation on C/R (n) ® E eX is multi-
plication by (—1)n—1x(—1) , since it is multiplication by
-1 on ¢/R(n) ¥ R(n-1) and by x(-1) on Ee,
Therefore [C/IR (n) ® E eX]+ = 0 and thus
n-1

1-n) =1 , if -1 -1
C[X]( n) if x(=1) % (-1)
Assume x(-1) = (—.1)n~1 . Then the E-structure of

[C/R (n) @ E eX]+ = ¢/R (n)8E e =R (n-1) @ E e

is the 1-dimensional E-vectorspace 271)" 'p @ E e with
basis wX = (27ri)n—1 @ eX . (Working with C/IR (n) %n place
of R (n-1) we have to interpret 27i as 27mi mod R(n)). In
order to determine the regulator c[X](1—n) we must choose
a basis element n of the 1-dimensional E-structure

Hl([x],Q(n)) of Hl([X],Q(n)) ®© IR . If after this choice

a*rD(nX) = an , a € (R® E)* ,

then c[X](1-n) = a mod E*¥ . Now theorem (1.4) yields the ele-
ment en(g) € Hl(X,Q(n)) and we set

n, = eX(e (2)) € Hy([x],0(n))

(Note that N is assumed to be >1 , so that ¢ € uN4{1}).
By (1.4) we have

rplen(2)) = L (@) = (eevy LLGT),ees) o0 € (C/R (n)

X(C).

From this we obtain the desired result

1
) (2m1i)
once we héVe shown that nX + O . For this it suffices to
show that

c[X](1—n) = - 2([x—1],n) mod E¥* ;

2(Ix "n) = = L (e2™aygy 7T (a)
a€Z/N
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is #0 considered as an element of @/R (n) @ E. By (4.4) we
have, that 2([X_1],n) + 0 as an element in € @ E . Therefore

it suffices to show that 2([x_1],n) € R(n-1) ® Ec C®E

2mia/N

Now for each summand Ln( e ) ® X_1(a) we have

L (e2ﬂia/N 2ﬂi(—a)/N) ® X_1("a)=

. ) © X ' (a) +L_(e

L (2™ gy (@) + x TN (2N 6 xTTa) =

2mia/N 2mia/N 1

(L, (e ) ® X (-1l (e M e x @ .

2mia/N

2ﬂla/N) we have

) @ x (=1L (e
I =x(-1)L = (-1)2"TL and hence L € R (n-1) € € . From this

follows &([x '1,n) € R (n-1) ® E cC®E. o

For the term L = Ln(e

Regarding that [X—1] is the dual motive [&] of [x], we
obtain from the above theorem and from proposition (4.4) the
result, that the Gross conjecture (which is the third part
of Beilinson's conjectures) holds true for Dirichlet motives,
if we take into account, that the case n = 1 and the case

X = 1 has been established by Dirichlet and Borel:

(5.2) Theorem: For every Dirichlet motive [x] over @ with

coefficients in E and every n > 1 we have

c[§](1—n) = L([x],1-n)* mod E* .
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