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Abstract
= SLy(§) where § is a finite extension of Q,. We suppose that the pro-p Iwahori subgroup

I of G is a Poincaré group of dimension d. Let k be a field containing the residue field of §.

In this article, we study the graded Ext-algebra E* = Exty,q(c) (k[G/1], k[G/I]). Its degree zero
piece E is the usual pro-p Iwahori-Hecke algebra H.

We study E? as an H-bimodule and deduce that for an irreducible admissible smooth representation
of G, we have H%(I,V) = 0 unless V is the trivial representation.

When

§ = Qp with p > 5, we have d = 3. In that case we describe E* as an H-bimodule and

give the structure as an algebra of the centralizer in E* of the center of H. We deduce results on the
values of the functor H*(I, _) which attaches to a (finite length) smooth k-representation V' of G its
cohomology with respect to I. We prove that H*(I,V) is always finite dimensional. Furthermore, if V'
is irreducible, then V' is supersingular if and only if H*(I,V) is a supersingular H-module.
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1 Introduction

Let § be a locally compact nonarchimedean field with residue characteristic p, and let G be the group of
S-rational points of a connected reductive group G over §. We suppose that G is §-split.

Let k be a field of characteristic p and let Mod(G) denote the category of all smooth representations
of G in k-vector spaces. For a general G and § this category is still poorly understood. One way of
approaching it consists in considering the Hecke algebra H of the pro-p Iwahori subgroup I C G. In this
case the natural left exact functor

b : Mod(G) — Mod(H)
V — V! = Homy)(X, V)

sends a nonzero representation onto a nonzero module. Its left adjoint is

t: Mod(H) — Mod!(G) € Mod(G)
M— Xy M.

Here X denotes the space of k-valued functions with compact support on G/I with the natural left action
of G. The functor t has values in the category Mod! (G) of all smooth k-representations of G generated by
their I-fixed vectors. This category, which a priori has no reason to be an abelian subcategory of Mod(G),
contains all irreducible representations. But in general t is not an equivalences of categories and little is
known about Mod! (G) and Mod(G) unless G = GLy(Q,) or G = SLy(Q,) ([Kozl1], [O111], [0S2], [Pas]).

The functor h, although left exact, is not right exact since p divides the pro-order of I. It is therefore
natural to consider the derived functor. In [Sch-DGA] the following result is shown: When § is a finite
extension of Q, and I is a torsion free pro-p group, there exists a derived version of the functors h and t
providing an equivalence between the derived category D(G) of smooth representations of G in k-vector
spaces and the derived category of differential graded modules over a certain differential graded pro-p
Iwahori-Hecke algebra H*®.

The article [OS3] opened up the study of the Hecke differential graded algebra H® by giving the first
results on its cohomology algebra E* := EXtK/Iod(G) (X, X). This is the pro-p Iwahori Hecke Ext-algebra
we refer to in the title of the current article. We suppose in this introduction that I is a torsion free
p-adic Lie group which forces § to be a finite extension of Q,. We denote by d the dimension of I as a
Poincaré group. The Ext algebra E* is supported in degrees 0 to d.

When G is almost simple and simply connected, the ideal JH which controls the supersingularity
(see §2.1) has finite codimension in H. We show that we have an isomorphism of H-bimodules

(1) EXtﬁ/Iod(G) (Xa X) = Xtriv @ IHJ((H/‘?H)\/)

where Yt is the trivial character of H and Inj((H/JH)V) is an injective envelope of the dual module
(H/JH)Y. When G = SLs, the center of H contains a polynomial algebra k[¢] and JH = (H. The large
injective module inside of Extﬁ/lod(g)(X, X)) is ¢-divisible for any £ € H which is a non-zero-divisor. This,
together with the decomposition (1), allows us to prove (Cor. 2.19) that given () a nonzero polynomial
in k[X], we have H(I,X/XQ(¢)) = 0 unless Q(1) = 0 in which case HY(I,X/XQ(¢)) = Xriv- But we
remark that every irreducible admissible representation of SLo(F) is a quotient X/XQ(() for some @ as
above and we prove:

Proposition. (Proposition 2.20). We have HY(I,V) = 0 for any irreducible admissible representation of
SLo(F) except when V is the trivial representation in which case Hd(I, kiriv) = Xtriv as an H-bimodule.



In Sections 3 and 4, we move on to the study of E' and E%! respectively. Here we fully use the
Frobenius reciprocity recalled in §2.2 which allows to identify E* with H*(I,X). We decompose the latter,
via the Shapiro isomorphism, as a direct sum

B el (1us )

where w ranges over w (defined at the beginning of Section 2, see also §2.4.1) and I, = I Nwlw™!.
We explain in §3.2 that we see elements of H!(I,,k) as triples. This is valid for G = SLa(F) with no
restriction on § and stems from the computation of the Frattini quotient of I,,. When [ is a Poincaré group
of dimension d, we use the duality between E' and E4~! (§14) to also express elements of H9 (I, k)
as triples in §4.1. When G = SL2(Q,), p > 5, Remark §3.2 points out that the triples of H'(I,,k) are
simply the elements in

Hom(Z,/pZy, k) x Hom((1 + pZp) /(1 + p°Zp), k) x Hom(Zy/pZy, k)
hence by duality the triples of H?(I,, k) are the elements in
Ly |y ®r, k X ((1 +pr)/(1 +p2Zp)) ®F, k x Ly | Py QF, k .

In this context, the full left action of H on the triples of E! and of E? can be found in §3.6 and §4.3 (the
proof of the most technical formulas is postponed to the appendix). The right action of H on the triples
can be deduced using the anti-involution J of E* (see §2.2.3 and Lemmas 3.7 and 4.1). We are especially
interested in the left and right action of the central element ( € H (which is fixed by J).

In Section 5 we study the k[(]-torsion on the left in certain graded pieces of E* when G = SLy(F), with
various restrictive conditions on § depending on the graded piece in question. Only for the computation
of the k[(]-torsion in E? do we use the explicit formulas for the action of ¢ hence we have to restrict
ourselves to G = SL2(Qy), p > 5.

Contemplating the formulas for the action of ¢ on E' and E? (still when G = SL2(Q,), p > 5)
emphasizes the role of the operators

f=C(-idg«-(—idg+ and g¢g:=(-idg+—idg+-C

as introduced in §6.1. The kernel of f is a k[¢*!]-bimodule. Describing its structure as an H-bimodule
requires the technical paragraph 3.7.3.2 (then see Propositions 6.8, 6.19 and Lemma 6.2). On the other
hand, as the centralizer in E* of (, the kernel of g is naturally a subalgebra of E*. We describe this kernel
precisely in §6.2.1 and §6.3.1 (and Lemma 6.2) and conclude in Proposition 8.1 that it actually coincides
with the centralizer Cg+(Z) of the whole center Z := Z(H) of H in E*. The product in this natural
subalgebra of E* is explicitly given in Section 8. (Note that the center of H is no longer central in E*).

Proposition 6.13 says that E? is, as an H-bimodule, isomorphic to the direct sum of the kernels of the
operators f and g (restricted to E?) and Proposition 6.10 says that it is also (essentially) the case for E*.
This allows us to completely determine the structure of E* as a left and right k[¢]-module (Proposition
7.2) and to establish results such as Proposition 7.6 where we study the k[(]-torsion on the left in spaces
of the form H*(1,X/XQ((¢)) for @ € k[X]. This in particular leads to the following theorem:

Theorem. (Theorem 7.11). Let G = SLa(Qp) with p # 2,3. For any representation of finite length in
Mod(G) we have:

i. The k-vector space H*(I,V) is finite dimensional;

i. if V is generated by its subspace of I-fized vectors V! and Q({)V! = 0 for some nonzero poly-
nomial Q € k[X], then the left H-module H*(I,V') is P(C)-torsion for the polynomial P(X) :=
Q(X)Q(5) X&),



The most interesting consequence of this theorem is that, under the same hypotheses, an irreducible
representation V' in Mod(G) is supersingular if and only if the left H-module H*(I, V) is supersingular
(this is Corollary 7.12 which uses the theorem in the case when @ = X). This strongly indicates that
the notion of supersingularity for general G can be extended to objects in the derived category D(G) by
introducing a theory of supports via the dg algebra H®. We hope to return to this in another paper.

In [OS2] §3.5 we studied the representation theoretic meaning of the localization H¢ of the Hecke
algebra in the central element (. Despite the fact that ¢ is no longer central in E* it turns out (Remark
7.7) that ¢No is a left and right Ore set in E*, so that the localization Ezf does exist. We will show
elsewhere that EZ‘ again is a Yoneda Ext-algebra and will investigate its meaning for the nonsupersingular
SL2(Qp)-representations.

After this paper was finished E. Bodon ([Bod]) gave in his thesis, building very much on the compu-
tational methods developed in the present paper, two further structural results in the case G = SL2(Q))
with p # 2, 3. He describes explicitly the full graded center of E*. Even more remarkably he shows that
the algebra E* as an algebra over H is finitely presented.

In forthcoming work of the second author with K. Ardakov we develop a general theory of central
spaces for a certain class of Grothendieck categories which refines the notion of the center of an abelian
category. It was shown in [AS] that the usual center of the category Mod(G) is very small. For example,
if G = SLy then this center is the group ring k[Z(G)] of the center of G. In contrast the central space in
this case is a projective variety over k which is a quotient of the affine variety Spec(Z(H)) by a relation
which is given by the annihilator ideal of the Z ®; Z-bimodule E*. The results of the present paper
allow to compute this ideal and therefore this projective variety explicitly. Therefore we strongly believe
that this bimodule and its support variety play a basic role for the computation of the central space of
Mod(G) for general groups G.

This collaboration was partially funded by the NSERC Discovery Grant of the first author and by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence
Strategy EXC 2044 —390685587, Mathematics Miinster: Dynamics—Geometry—Structure. Both authors
also acknowledge the support of PIMS at UBC Vancouver.

2 Notations, preliminaries and results on the top cohomology

Throughout the paper we fix a locally compact nonarchimedean field § (for now of any characteristic)
with ring of integers O, its maximal ideal 9, and a prime element 7. The residue field O /7O of § is F,
for some power g = p/ of the residue characteristic p. We choose the valuation valg on § normalized by
valg(m) =1 We let G := G(F) be the group of §-rational points of a connected reductive group G over §
which we always assume to be §-split. We will very soon specialize to the case when G is almost simple
and simply connected (starting Section 2.3) and in fact the core of this article (starting Section 3) will
focus on the case when G = SLp and § = Q, with p # 2, 3.

We fix an §-split maximal torus T in G, put 7 := T(J), and let 7° denote the maximal compact
subgroup of T" and T the pro-p Sylow subgroup of 7°. We also fix a chamber C' in the apartment of the
semisimple Bruhat-Tits building 2~ of G which corresponds to T. The stabilizer fPTC of C' contains an
Iwahori subgroup J. Its pro-p Sylow subgroup I is called the pro-p Iwahori subgroup. We have T'NJ = T°
and T NI = T. If N(T) is the normalizer of T in G, then we define the group W := N(T)/T*. In
particular, it contains Q := T°/T*!. The quotient W := N(T)/T° = W/Q is the extended affine Weyl
group. The finite Weyl group is Wy := N(T')/T. The length on W pulls back to a length function ¢ on
W (see [0S3] §2.1.4).

For any compact open subset A C G we let char4 denote the characteristic function of A.

The coefficient field for all representations in this paper is an arbitrary field k of characteristic p > 0.



For any open subgroup U C G we let Mod(U) denote the abelian category of smooth representations of
U in k-vector spaces.

2.1 The pro-p-Iwahori Hecke algebra

We consider the compact induction X := ind?(l) of the trivial I-representation. It can be seen as the
space of compactly supported functions G — k which are constant on the left cosets mod I. It lies in
Mod(G). For Y a compact subset of G which is right invariant under I, the characteristic function chary
is an element of X. Equivalently one may view X = k[G/I] as the k-vector space with basis the cosets
gl € G/I. The pro-p Iwahori-Hecke algebra is defined to be the k-algebra

H = Endk[G](X)OP .

We often will identify H, as a right H-module, via the map H — X! h +— (chary)h with the submodule
X! of I-fixed vectors in X. The Bruhat-Tits decomposition of G says that G is the disjoint union of the
double cosets Twl for w € W. Hence we have the [-equivariant decomposition

(2) X =8, qgpX(w) with X(w):= indf*1(1) ,

where the latter denotes the subspace of those functions in X which are supported on the double coset
Iwl. In particular, we have X(w)! = kr,, where 7, := chary,; and hence H = D peiikTw as a k-vector
space.

The defining (braid and quadratic) relations of H are recalled in [OS3] §2.2. They ensure in particular
that we have a well defined trivial character of H denoted by Yy and defined by ([OS3] §2.2.2):

(3) Xtriv : Tw — 0, T — 1, for any w € W with £(w) > 1 and w € W with £(w) = 0.

To define the notion of supersingularity for H-modules, we refer to [OS3] §2.3. Recall that there is a
a central subalgebra Z9(H) of H which is isomorphic to the affine semigroup algebra k[X%™(T)], where
Xdom(T) denotes the semigroup of all dominant cocharacters of 7. The cocharacters A € X%™(T) \
(—Xdom(T)) generate a proper ideal of k[X %™ (T)], the image of which in Z°(H) is denoted by J. We
call an H-module M supersingular if any element in M is annihilated by a power of J.

2.2 The Ext-algebra
We refer to [OS3] §3. We form the graded Ext-algebra

E* = EXtK/IOd(G) (X.7 X)Op
over k with the multiplication being the (opposite of the) Yoneda product. Obviously
H := E° = Hompjeq(c) (X, X)P

is the usual pro-p Iwahori-Hecke algebra over k. By using Frobenius reciprocity for compact induction
and the fact that the restriction functor from Mod(G) to Mod([) preserves injective objects we obtain
the identification

(4) E* = Extigoq)(X, X)% = H'(1,X) .

The only part of the multiplicative structure on E* which is still directly visible on the cohomology
H*(I,X) is the right multiplication by elements in E° = H, which is functorially induced by the right



action of H on X. In [OS3], we made the full multiplicative structure visible on H*(I,X). We recall that

for * = 0 the above identification is given by H = X! 7+ (charj)T.
Noting that the cohomology of profinite groups commutes with arbitrary sums, we obtain from the
I-equivariant decomposition (2) a decomposition of vector spaces

(5) H*(I,X) =&, wH" (I, X(w)) .

For w € W, we let I, := I Nwlw™! (see [OS3] §2.1.5). We call Shapiro isomorphism and denote by Shy,
the composite map

H*(Iy,evw)
e

(6) Shy, : H*(I, X (w)) 25 H* (I, X(w)) H* (I, k)

where ev,, : X(w) — k, f — f(w) (see also [OS3] §3.2).

2.2.1 The cup product

Recall from [OS3] §3.3 that there is a naive product structure on the cohomology H* (I, X). By multiplying
maps we obtain the G-equivariant map X @ X — X, f ® f' — ff’. It gives rise to the cup product

(7) HY(I,X) @) H(I,X) — H*(1,X)

which has the property that H*(I,X(v)) U H?(I,X(w)) = 0 whenever v # w. On the other hand, since
evy (ff) = evy(f) evy(f') and since the cup product is functorial and commutes with cohomological
restriction maps, we have the commutative diagrams

(8) HY(I, X (w)) @ HI (I, X (w)) —= H* (I, X(w))
Shy, ®Shwl lShw

Hi(Iy, k) @k H (L, k) Hit (1, k)

(@]

for any w € W, where the bottom row is the usual cup product on the cohomology algebra H* (I, k). In
particular, the cup product (7) is anticommutative.

2.2.2 The Yoneda product

The Yoneda product in E* ([OS3] §4.2) satisfies the following property:

(9) HY(I,X(v)) - H (I, X (w)) € H* (I, indPT 11 (1)) for v,w € W.

The product of a € H'(I,X(v)) by b € H(I,X(w)) is explicitly described in [0S3] Prop. 5.3. We record
here the following results.

Proposition 2.1. Let v,w € W and a € HY(I,X(v)), b€ HI (I, X(w)).
—if L(vw) = L(v) + (w), then
(10) a-b=(a 1y)U(1y-b) € H(I,X(vw)) ;

—ifl(v) =1 and £(vw) = L(w) — 1, then a - b lies in H' (I, X(vw)) @ Docro/m HH (I, X (ww)). If
furthermore G is semisimple and simply connected, then

(11) a-b—(a-7y)U(7y-b) € HY(I,X(vw)) .

Proof. The first point is [OS3] Cor. 5.5. We prove the second point in §9.1 of the Appendix. O



2.2.3 Anti-involution

We refer to [OS3] §6. The graded algebra E* is equipped with an involutive anti-automorphism. It is
defined the following way. For w € W, we have I,,-1 = w™'I,w and a linear isomorphism (w™!), :
Hi (L, k) 5 H(I,-1,k) , for all i > 0. Via the Shapiro isomorphism (6), this induces the linear isomor-
phism J,:

(12) HY (I, X (w)) b Hi(I,X(w™))
Shwl nghwl
Hi(Ip, k) (“’;)* Hi(Iy 1, k)

Summing over all w € W, the maps (Jw) ey induce a linear isomorphism

g:H(I,X) = H'(I,X) .

and it is proved in [OS3] Prop. 6.1 that J is an anti-automorphism of the graded algebra E*. Restricted
to E° = H, the map J coincides with the anti-involution 7, — 7,-1 for any g € G of the algebra H.

We may twist the action of H on a left, resp. right, module Y by J and thus obtain the right, resp.
left module Y9, resp. 7Y, with the twisted action of H given by (y, h) + J(h)y, resp. (h,y) — yd(h). If Y
is an H-bimodule, then we may define the twisted H-bimodule Y9 the obvious way and we recall that
(Y d)V = 3d(yV)d ([0S3] Rmk. 7.1), where (—)¥ = Homy(—, k).

2.2.4 Filtrations
Let i > 0. We define on E* two filtrations:

e a decreasing filtration (F"E"), >0 where F"E* := D, i z(w)>nlL[i(I, X(w));

e an increasing filtration (F, E*),>o where F,,E* := DB i Z(w)<n];[i(I, X(w)).

When i = 0, we will often write F" H (resp. F,, H) instead of F"E" (resp. F,, E?). Recall that (F"H),>0
is a filtration of H as an H-bimodule.

Moreover, F, E* is an algebra filtration, which means that F,E'-F,F’ C Fn+mE”j . This follows

from (9) together with the fact ([OS3] Cor. 2.5-ii and Remark 2.10) that

= Tvwl if ((vw) = L(v) + L(w),

(13) Ivl - Twl _
g U((v’)<€(v)+€(w) IU,I lf E(U’U)) < f(?)) + E(U])

2.2.5 Duality

Recall that, given a vector space Y, we denote by Y the dual space YV := Homy (Y, k) of Y. For Y a
vector space which decomposes into a direct sum Y = @ ey Yw, we denote by Y/ the so-called finite
dual of Y which is defined to be the image in Y =[] Y, of & Y. .

In this paragraph, we always assume that the pro-p Iwahori group I is a torsion free p-adic Lie
group. This forces the field § to be a finite extension of Q, with p > 5. Then I, as well as every subgroup
I, for w € W, is a Poincaré group of dimension d where d is the dimension of G as a p-adic Lie group.
It implies that H(I, k) is one-dimensional. Let n : H%(I,k) = k a fixed isomorphism (we will make a
specific choice for n when G := SL2(Q)), p # 2,3 in §3.2.3). Furthermore the Ext-algebra is supported in



degrees 0 to d. We refer to [0S3] §7.2. There is a duality between its i*® and d — i*" pieces ([0S3] §7.2.4)
which we recall here. Let § € XV be the linear map given by 8§ := 9eG/1Vg It is easy tg check that
8 : X — k is G-equivariant when k is endowed with the trivial action of G. We denote by 8* := H*(I,8)
the maps induced on cohomology. By [OS3] Prop. 7.18, the map

A" E' = HY(I,X) — H"(1,X)" = (E)Y
a— 1a(b) :==n08%aUb)

induces an injective homomorphism of H-bimodules E* — (3(E4~"))V with image (¢(E4)3)V:/. Here
we consider (as in §2.2.3) the twisted H-bimodule ¢(E4~%)3 namely the space E?~" with the action of
H on b € E4~ given by (7,b,7') + d(7') - b- J(7) for 7,7' € H. The anti-involution J was introduced in
§2.2.3. We still denote by A’ the isomorphism

(14) Al B — ((EHIHVT

Recall that the choice of 77 defines naturally a basis for £, namely, as in [0S3] §8, we single out the
unique element ¢, € H%(I,X(w)) such that (see also Rmk. 7.4 loc. cit.)

(15) 10 8%(puw) = n o corest o Shy,(¢y) = 1.

2.2.6 Automorphisms of the pair (G, X)

For U a locally compact and totally disconnected group let Mod(U) be the abelian category of smooth
U-representations in k-vector spaces. It has enough injective objects.

We consider now a continuous group homomorphism ¢ : U — U between two such groups. Any object
M in Mod(U) can be viewed via £ as an object £*M in Mod(U’). An equivariant map f : M — M’ between
an object M in Mod(U) and an object M’ in Mod(U’) is, by definition, a morphism f : £&*M — M’ in
Mod(U"). In other words f : M — M’ is a k-linear map such that f(£(¢")m) = ¢'f(m) for any m € M
and g’ € U’. We observe the following: Let M = I}, and M’ = I3, be injective resolutions in Mod(U)
and Mod(U"), respectively. Then £*M = £*I%, is a resolution in Mod(U’) and f extends to a unique

homotopy class of maps of resolutions {*Z3, i> 73, in Mod(U’). This means that we may derive f to a

map between any appropriate cohomological functors on Mod(U) and Mod(U’).
We will apply this in the following two contexts. First suppose that U and U’ are profinite groups.
Then f extends to a map on cohomology

& ) H(UM) — HU' M) .
Secondly, let U and U’ be general again. For any further object L in Mod(U) we obtain natural maps
(& 1) : Extiyoqqy (L M) — Extygoqqun (€L, M)
(@ — Tyli) — (€T3 — €T3 li) 25 73, 0)
and, in particular,
&= (& ida)" : Extygoqqn (Ly M) — Extyyoqqon (€L, £ M) .

The latter map is evidently compatible with the Yoneda product, since in the derived category it is simply
the composition product. Now suppose that £ and f are isomorphisms. Then we have the “conjugation”
homomorphism

Extfvlod(U)(M, M) — Extfv[od(U,)(M’, M)

(@3 5 Tyli]) — (T 5 ezl £ ez i) 25 13000) |



which again is compatible with the Yoneda product.

We now return to our group G' and suppose given an automorphism ¢ : G — G with the property
that £(I) = I. It induces the G-equivariant bijection X : £&*X — X which sends gI to ¢~ '(g)I. We
therefore obtain the k-linear graded bijections

Te:E* S E*  and  T¢: H(I,X) = H*(I,X)

which correspond to each other under the identification (4). The left hand one is an algebra automorphism.
Both are involutions provided we have 2 = idg. In terms of elements of X as functions we have X (f) =
fo&. This immediately implies that I'¢ is compatible with the cup product (7) on H*(/, X). In the following
we list further properties, but for which we assume in addition that £(7°) = T. Then {(N(T)) = N(T),

so that & induces an automorphism & of w.
1. For all w € W, I'¢ induces a map
(16) H*(I,X(w)) — H*(I,X(§"(w))) -
Since £(Iy) = I¢(w) we correspondingly have a map
(17) H* (L, X(w)) — H* (L1, X(€H (w))) -

2. Because evg-1(y) 0X|x(w) = €Vw, the above maps are compatible with the Shapiro isomorphism in
the sense that the following diagram

(18)
Shy
rest * evy
(1 X (1)) Pl H* (T, X(w)) HLwev) H* (I, k)
(16)\L , (17)l J{
reST .. H*(Ie—1 ()€Y —1 (1)) x
H(1,X (6 () —— o B (I3, X( 7 (w))) — 20 B (T ), K)
She—1 ()

commutes. Its horizontal arrows are the Shapiro isomorphisms (6) and the right hand side vertical

arrow is induced by the isomorphism T¢—1(, % I,.

3. T'¢ commutes with J defined in (12); more precisely, each diagram

(19) H*(I,X(w)) — > H*(I, X(w™"))

(16)l i(lﬁ)

H(I,X(§7H(w))) —— H*(I,X(¢H(w) ™))

1s commutative.

4. We have noted already the compatibility of I'¢ with the cup product on H*(I,X). It now holds in
the more precise form of the commutativity of the diagrams

U

(20) H(I,X(w)) @, H (I, X(w))
(16)®(16)\L \L(lG)
H(I,X (6 (w))) @ HI(I,X(6 (w))) —= H* (I, X (¢ (w))).

H™I(I, X (w))
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2.3 The top cohomology E? when G is almost simple simply connected

Without extra conditions on G or on §, we have the following. The ideal J (§2.1) generates a two-sided
ideal JH in H. Recall that we denote by V'V the k-linear dual of a k-vector space V. We consider the
obvious inclusion of H-bimodules

(H/3H)Y — I(H/3H)") = J#H/3"H)" .

m

Lemma 2.2. e I[((H/JH)V) is an injective H-module on the left and on the right.

o If furthermore G is semisimple, then [((H/JH)V) is an injective hull of (H/JH)Y as a left as well
as a right H-module.

Proof. The following argument arose from a discussion with K. Ardakov. The other case being entirely
analogous we prove the statement as left H-modules.

Step1: We show that the left H-module I((H/JH)") is injective. By Baer’s criterion it suffices to
consider test diagrams of the form

c
L — H

y

I((H/3H)Y)

where L C H is a left ideal. The ring H being noetherian the left ideal L is finitely generated. Hence the
image of a is contained in (H/J*H)" for any sufficiently large a. The homomorphism then must factorize
through a homomorphism & : L/J°L — (H/J*H)". Furthermore, since the ideal JH in the noetherian
ring H is centrally generated it has the Artin-Rees property (cf. [MCR] Prop. 4.2.6). This implies that
we find an integer b > a such that J°H N L C J*L. This reduces us to finding the broken arrow in the
diagram
L/3HNL— H/3°H
/

pr /

N
~

/4
(H/3°H)V.

We note that the horizontal arrow is injective and that this is a diagram of H/J® H-modules. So it suffices
to show that that the H/J?H-module (H/J"H)" is injective. But the computation

Hom 30 (M, (H/3H)") = Homy (H/3"H ® /3051 M, k) = Homy (M, k)

shows that these functors are exact in the H/J*H-module M.

Step 2: Assume that the group G is semisimple. Then H/J™H is finite dimensional over k for any
m > 1. We show that the inclusion (H/JH)"Y C I((H/JH)Y) is essential, i.e., that any nonzero H-
submodule Y of I((H/JH)") has nonzero intersection with (H/JH)V. It, of course, suffices to consider the
case when Y is a cyclic module. We then have Y C (H/J™H)V for some large m. Let Y+ C H/J™H be the
orthogonal complement of Y. Suppose that YN (H/JH)" = 0. This means that Y- +JH/J"H = H/J"H

11



But JH/J™H is contained in the Jacobson radical of H/J™H. Hence the Nakayama lemma implies that
Y+ = H/3™H, which gives rise to the contradiction that Y = 0. O

Remark 2.3. The anti-involution g : H — H yields an isomorphism of H-bimodules H =JH. By [0S3]
Remark 6.3, it preserves the central ideal J, as well as the central ideal J" for any m > 1. Therefore,
we have an isomorphism of H-bimodules H/J™H = J(H/3™H)?. By [0S3] Remark 7.1, we also have
(H/3™H)Y =3((H/3H))")?.

Until the end of this paragraph, we assume as in §2.2.5 that the pro-p Iwahori group I is torsion free.
Therefore it is a Poincaré group of dimension d. The map 8 : H4(I,X) — k was introduced in §2.2.5.
Assume also that G is almost simple and simply connected. Then in [OS3] §8, we studied E? using the
isomorphism

(21) EY S (IR0

recalled in (14). (Notice that some of the results there are true under weaker hypotheses than the ones
of the current context). By Prop. 8.6 loc. cit., we have an isomorphism of H-bimodules

(22) E? 2 ker(8%) @ Xtriv-

Proposition 2.4. Suppose that G is almost simple and simply connected. Then we have an isomorphism
of H-bimodules
ker(8) = | J(H/3™H)".

m

In particular, ker(8%) is an injective hull of the left (resp. right) H-module (H/JH)Y and is supersingular
as a left (resp. right) H-module.

Proof. In fact, via (21), we have the isomorphism ker(8%) = (¢ ker(x4riv)?)"*/ where (ker(xsriv))"*/ is the
image of (E°)"+f in the natural restriction map (E°)Y — (ker(xsri»))". This gives the alternate description
of ker(8%) as an H-bimodule:

(23) I (ker(89))? = U(ker(xtrw)/FmH Nker(Xeriv))".

Recall indeed that G being semisimple, H/F™H is a finite dimensional vector space. On the other hand,
the character Xy is not supersingular ([OS3] Remark 2.12.iv and Lemma 2.13) and therefore we have
J™H + ker(x¢riv) = H for any m > 1. Hence

(24) U(H/ﬁmH)v = U(ker(Xtriv)/JmH N ker(Xtriv))v

m m

But, since G is almost simple simply connected, [OS3] Lemma 2.14 says that
I™H Nker(xiriv) = 3™ - ker(Xiriv) € F™H C ker(Xriv) for any m > 1

(the left equality coming from J™H + ker(x¢riw) = H). Furthermore, the braid relations imply that
Fim[ C (FIH)™.

Fact 2.5. There is a j > 1 such that FIH C JH.

12



Proof. By a finite base extension of k£ we may assume that F, C k. Then any simple supersingular H-
module is a character ([OS2] Lemma 3.8). But any supersingular character of H must vanish on 7, for
at least one simple affine reflection s. There is a sufficiently large integer r > 1 such that in a reduced
decomposition of an element w of length > r every simple affine reflection occurs. This implies that F" H
is contained in the intersection R of all the supersingular characters.

But R/JH is the Jacobson radical of the artinian ring H/JH. In any artinian ring the Jacobson
radical is nilpotent. Hence we find an n > 1 such that R™ C JH. Now take j := nr. OJ

The fact implies that F/™H C J™H for any m > 1. It follows that the two filtrations J™H Nker(X¢riv)
and F™H N ker(xriv) of ker(xyriy) are cofinal. Hence, the right hand sides of (23) and of (24) are
isomorphic and we have ?(ker(84))3 = |, (H/3J™H)" as H-bimodules. Now using Remark 2.3:

ker(8%) = | J(H/3™H)"

m

as H-bimodules and by Lemma 2.2 we have proved that ker(8?) is an injective hull of the left (resp. right)
H-module (H/JH)".
O

2.4 The pro-p-Iwahori Hecke algebra of SL,
For §2.4.1-2.4.6 we refer to [OS2] §3.

2.4.1 Root datum

To fix ideas we consider I = (1;293? 1 fzm) (by abuse of notation, here and later in this paragraph, all

matrices are understood to have determinant one). We let T C G be the torus of diagonal matrices, T°
its maximal compact subgroup, T its maximal pro-p subgroup, and N(T) the normalizer of T in G.
We choose the positive root with respect to T to be a((é t91 )) := t?, which corresponds to the Borel
subgroup of upper triangular matrices. The affine Weyl group W sits in the short exact sequence

0—Q=T%T" — W = N(T)/T" — W = N(T)/T° — 0 .

Let sg := 84 := (91 [1)), 81 1= (?r *76_1 ), and 0 := (g W(,)l ), such that sps; = 6. The images of sg and s; in
W are the two reflections corresponding to the two vertices of the standard edge fixed by [ in the tree of
G. They generate W, i.e., we have W = (s, 51) = 62Usgf” (by abuse of notation we do not distinguish
in the notation between a matrix and its image in W or WN/) We let £ denote the length function on W

corresponding to these generators as well as its pull-back to W. One has
(0% = |2i] and {(s00") = |1 — 2i].

Remark 2.6. Consider SL3(F) as a subgroup of GL2(§). Then the matrix w := (2 }) normalizes I;

furthermore, s1 = wsow L.

2.4.2 Generators and relations

The characteristic functions 7, := chary,; of the double cosets Iwl form a k-basis of H when w ranges
over W. Let e := — Zweﬂ T.. The relations in H are

(25) ToTw = Tow  whenever £(w) + £(v) = £(wv) and
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(26) 72 = —ey7, for i =0, 1.

Si

The elements 7, 7., for w € Q and i = 0,1, generate H as a k-algebra. Note that the k-algebra k[Q]
identifies naturally with a subalgebra of H via w — 7.
The trivial character of H (see (3)) may be defined by

(27) Xtriv : Ts — 0, 7, — 1, for s € {sp,s1} and w € Q.

The sign character Xgign of H, which can be introduced in general as in [OS3] §2.2.2, is easy to describe
in the current context when G = SLo:

(28) Xsign : Ts — —1, 7, — 1, for s € {sg,s1} and w €

2.4.3 The involution t

There is an involutive automorphism t of H satisfying

(29) (7s) = —e1 — 75 for s € {so,s1} and (7,) = 7, for w €
(see [OS1] §4.8). For € = 0, 1, the following sequence of left H-modules is exact:
(30) 0— Hr,, — H — H(1s,) — 0

(see the remark after the proof of [OS2] Prop. 3.54).

For a left (resp. right) H-module M, we denote by tM (resp. M) the H-module on the space M with
the action of H twisted by L.

2.4.4 The central element (
We refer to [0S2] §3.2.2. Consider the element

(31) ¢:= (7'80 +e1)(7s, +e1) + Ts1Tsg = (75 + 61)(7'80 +e1) + TsoTs1+

Notice that §(¢) = ¢ and that x4riv(() = Xsign(¢) = 1. The element ( is central in H, and the subalgebra
k[C] of H generated by ( is the algebra of polynomials in the variable {. Furthermore, ¢ is not a zero
divisor in H and the k-algebra H/H( is finite dimensional (see for example [OS2] Lemma 1.3). We
will denote by H. the algebra obtained by localizing H in ¢. The anti-involution J extends to H;. The
involution ¢ also fixes ¢ and induces an involutive automorphism of H.

For € =0, 1, define H, to be the subalgebra of H generated by 75, 7, w € 2. The following result is
[OS2] Cor. 3.4.

Lemma 2.7. Let € =0 or 1; the morphism of (H, k[C])-bimodules

H @pkl(] © He®pk[(] — H
1®1 — 1
1®1 > Ts_.

is an isomorphism. In particular, H is a free and finitely generated k[C]-module of rank 4(q — 1).

Fact 2.8. Suppose that Fy, C k and that p # 2 or § = Q,. Then for V an irreducible quotient of
Xey/Xei(¢ — 1) we have VI = x4 or VI Xsign @S a left H-module.
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Proof. A basis of Hey/Hei(¢ — 1) is given by the image in the quotient of

L(7—80)7—3151a Tso L(TS1)ela L(TSO)617 Tso€1

(compare with Lemma 2.7). The elements ((75,)7s,e1 and 74,1(7s, )e1 support respectively the charac-
ters X¢riv and Xsign. This follows from using repeatedly (7s,)7s,e1 + U(7s,)Ts0e1 = (—C + 1)e; = 0 in
Hey/He (¢ — 1) and likewise 74, L(7s, )e1 + 75, U(7sy)e1 = 0 in Hey/He (¢ — 1). Then it is easy to see that
in the resulting quotient, (75, )e; and 74 e; support respectively the characters xrip and Xxsign. S0 we
have an exact sequence of left H-modules

(32) 0 = Xtriv ® Xsign —7 Hel/Hel(C - 1) — Xtriv D Xsign — 0.

All the modules in question are annihilated by ¢ — 1 so they are H¢-modules. Suppose furthermore
that F, C k and that § = Q, or p # 2. We may apply [O52] Thm. 3.33 which ensures that the functor
X ®p — is exact on (32), provides an exact sequence of G representations

0—-X QR Xtriv e X RH Xsign — Xel/Xel(C - 1) —+ X RH Xtriv e X RH Xsign —0

and that for x € {Xsign, Xtriv } We have (X®@ g X)I = v and therefore X®rx is an irreducible representation
of G. Therefore any irreducible quotient of Xe;/Xe (¢ —1) is isomorphic to X ®g X¢riv OF X @ H Xsign. U

Remark 2.9. After localizing (30) in ¢ we get an exact sequence of left H--modules
(33) 0 — Hers, — He — Hel(1s,) — 0.

Notice that the map h +— (_1h7'51767'35 splits the inclusion H¢7,, — H; because (7s, = 75 Ts,_ Ts,
(compare with the proof of [OS2] Lemma 3.30). So we have Hy = Her,, @ Heu(Tg,) as left He-modules.

Remark 2.10. The element ¢ depends on the choice of the uniformizer w. Let u € O*. We verify that
if we pick um as a uniformizer, the new corresponding central element (, is

(34) Cu = Tw, 1 (Tso + €1)(Tsy + €1) + Tw, Ts1 Tso = Tw,, (Tsy + €1) (75 +€1) + Tw,-1Ts0Ts1

where w, is the element (“61 2) T' € Q. Of course we have ¢ = (1. A system of generators of the center
Z of H as a k-vector space is given by the set of all {, for u ranging over a system of representatives of
(O/9MM)* (to which one has to add 7 if p = 2) (see [0S2] (24) in Remark 3.5).

We have the formula: (y; Cuy = Cuyu, € for any ug, ug € O*. In particular

(35) CuCu1=C* and (pC(=¢2.

These identities ensure that the localized algebra H¢ does not depend on the choice of the uniformizer.

2.4.5 Supersingularity

In the current context where G = SLo, the ideal J introduced in §2.1 is the central ideal (k[(]. Following
the definition introduced in that paragraph, an H-module M is called supersingular if any element in M
is annihilated by a power of (.

Remark 2.11. Let u € O*. From (35), one easily deduces that an element in M is annihilated by a
power of ( if and only if it is annihilated by a power of (,. Therefore, even if { does depend on the choice
of a uniformizer, the notion of supersingularity does not.
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2.4.6 Idempotents

The element ey is a central idempotent in H. More generally, to any k-character A : Q — k™ of €, we
associate the following idempotent in H:

(36) ey = — Z Mw™ D7, .
weN

Note that J(ey) = ey-1 and e\, = 7€) = A(w)ey, for any w € Q. We parameterize €2 by the isomorphism
(O/M* = Q

(37) U Wy = ([1‘]071 [2]) T,

where [u] is a lift in O for v € (O/M)*, and we pick the multiplicative Teichmiiller lift.

Remark 2.12. Given a homomorphism of groups A : (O/9M)* — k>, we may consider the character
A Q — kX obtained via composition with the inverse of (37) and the corresponding idempotent as in
(36). We will then use the shortcut ey to denote the latter. This will be used in the following context:

If ¢ = p we have the homomorphism id : (O/9M)* = F S, k*, which will play an important role
later on. For m € Z, we will consider the idempotent element

(38) eigm € k[Q]
with the above convention. When m = 0 this is consistent with the notation e; in §2.4.2.

Suppose for a moment that F, C k. Then all simple modules of k[€2] are one dimensional. The set O of
all k-characters of 2 has cardinality ¢ — 1 which is prime to p. This implies that the family {e)}\ € Qisa
family of orthogonal idempotents with sum equal to 1. It gives the ring decomposition k[Q2] =[], LY
Let T := {{\, A1} : X € Q} denote the set of sp-orbits in Q. To y € I’ we attach the element ey 1= extey-1
(resp. ey = ey) if v = {A\, A7} with X # A~! (resp. v = {\}). Using the braid relations, one sees that
e is a central idempotent in H and we have the ring decomposition H = H'yEF He,. If ¢ = p then the
idempotent

(39) €qo 1= €id + €iq-1

will be of particular importance (see (38)).

2.4.7 Certain H-modules

For later purposes we construct in this section certain families of H-modules. The reader may skip this
at first reading coming back to it only when needed. We fix a homomorphism of k-algebras x : H — R
as well as an element z € Z(R) in the center of R. Let My(R) denote, as usual, the algebra of 2 by 2
matrices over R. We also fix a character p :  — k*. With these choices we define the matrices

Moi= (L 0) = (02000 ) and M s= (TG ) forwe

It is straightforward to check that these matrices satisfy the relations
M? = Z MyM; , M,M; = M;M,_—1 , and MM, = M, .
we

Hence we obtain a k-algebra homomorphism kg : H — Ms(R) by sending 75, to M; and 7, to M,. By
using this homomorphism to equip the left R-module R & R with a right H-module structure we obtain
an (R, H)-bimodule denoted by (R & R)[k, z, .
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2.4.8 Frobenius extensions

The space Homy,(H, k[(]) is naturally an H-bimodule via (h, A, h') — A(hLh).

Proposition 2.13. We have an isomorphism of H-bimodules

Proof. The first isomorphism is given by the map v : H — H. From Lemma 2.7 we know that H is a free
k[¢]-module with basis the set of all 7, for w ranging over the set

(40)

w, wsp, ws1, wsps1 when w € €.

We define in Homy(H, k[¢]) the dual basis, namely for each z € (40), we define the map A, €
Homy,¢ (H, k[¢]) which sends each 7, with y € (40) to 0 except A, (7:) = 1 € k[¢]. We check that

(41)

Asosy (7—7—,) = Asps, (L(T/>T)

which ensures that

(42)

[ WH — Homy o (H, k[(])
T f(T)(77) i= Asgsy (77)

defines a homomorphism of H-bimodules.

Let w,w’ € W and 7 := 7y, 7' := Ty . Since Ags, is k[(]-linear it is enough to verify (41) when
w,w’ € (40). And in fact it is easy to see that both sides of (41) are then zero except possibly in
the following cases. Let w,w’ € Q. The verifications below rely on the quadratic formulas (26) and the
expression ¢ = (7s, + €1)(7s; +€1) + Ts, Ty = (Ts; + €1)(Tsy + €1) + TsyTs, - We spell out a few of them.

o If w=wsgand v = w'sy, we have Agys, (T7) = Agysy (Tww—1Tsos, ) Which is equal to 1 if w = w’ and

to 0 otherwise.
We have Agys, ((T')7) = —Aspsy (Twrw—1(Tsy + €1)Ts0) = —Assy (Trw—1(C = (Ts,01 + €1) = Tsgs,)) =
Asosy (Turw—150s, ) Which is also equal to 1 if w = w’ and to 0 otherwise.

If w = ws; and w’ = w'sg, we easily check that both Ag s, (77) and Ag,s, (((7')7)are equal to —1 if
w = w’ and to 0 otherwise.

If w=wsp and w' = w'sps1, we have Ag s, (T7) = —Agysy (Tww—1€1Ts0s;) = —Asgs, (€17s0s; ) Which is
equal to 1.

We compute
Aspsy (L(T/)T) = Asgsy (Twrw(Tso +€1)(Tsy +€1)Ts) = Asgsy (Twrw(C — Tsys0)Ts0)

= Nsos1 (Twrwe1Tsis0) = Nsgsr (€1Ts150) = _A5081(Z TuTs1s0)
u€S?

which is equal to 1 (see the previous case).
If w = wsps1 and w’ = w'sq, we check that Agys, (777) = Agys, (U(7')7) = 1.

If w=ws; and W' = W'sps1, we have Agys, (T7') = Aspsy (Tww—1Ts1s081) = Nsgsy (Tww—1¢Ts,) = 0. We
have ASOS1 (L(T/)T> - Asosl (Tw’w(Tso + 61)(7—81 + 61)751) =0.

o If w=wsps; and w' = w'sg, we have likewise Ags, (T77) = Agys, (L(7")7) = 0.
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/ / / :
o If w=wsps1 and w' = w'sps1, we have Ag s, (T7") = Asysy (Tww Tsosisosr) = Nsosy (Tww (Tsgsy ) Which
is equal to ¢ if ' = w™! and to 0 otherwise. We have

Ao (UT)7T) = gy (Tures(Tso +€1) (Ts; +€1)Tsps1) = Asgsy (T (€= Tors0) Tsos1) = Aoy (Tareo (CTsgss —
Ce17s,)) which is also equal to ¢ if w’ = w™! and to 0 otherwise.

To prove that (42) is surjective, we verify the following. We have
a) —Tsy - Nspsy = As, -
b) (s, +€1) - Aspsy = Asy-
¢) —(7s; +e1)Tsp - Aspsy = A1
d) for all w € (40) and w € Q, we have Ay, - 7,1 = Ay

Property d) is immediate. The other properties are easily verified by evaluating explicitly the left hand side
at all elements of the form 7, for w € (40). For example — (75, +€1)7sy - Aspsy (Tw) = —Asgs, (Tw (Ts; +€1)Tsp)
which we already computed above is equal to 1 if w =1 and to 0 otherwise.

Once it is proved that (42) is surjective, the injectivity is immediate since both spaces are free k[(]-
modules of the same rank. O

Using a free resolution of any arbitrary left (resp. right) k[(]-module, and since H is finitely generated
free hence projective over k[(], it follows immediately:

Corollary 2.14. Let M be a left, resp. right, k[(]-module. We have an isomorphism of left, resp. right,
H-modules

H @y M = WH @pe) M = Homy o) (H, M) resp. M ®Qpe) H = M Q) Ho = Homy ) (H, M) .

Proof. For the left hand isomorphisms note that tH (resp. Ht) is naturally isomorphic to H as an
(H, k[¢])-bimodule (resp as a (k[(], H)-bimodule) since t fixes . O

Corollary 2.15. For a € k, the finite dimensional k-algebra H/({ — a)H is Frobenius.

Proof. The isomorphism of H-bimodules (42) clearly factors through an isomomorphism of H/({ —a)H-
bimodules

(43) (H/(C = a)H) = Homye) (H/(¢ — a)H, k[C]/(¢ — a)) = Homy (H/(C — a)H, k) .

0
2.4.9 Finite duals
We consider the finite dual HYf of H (see §2.2.5) with basis (Twr) ey defined to be the dual of (1), 57-

When I is a Poincaré group of dimension d, we have an isomorphism between E?¢ and the twisted H-
bimodule ¢(HY'7)? given by (14). In §2.2.5, just like in[OS3] §8, we denoted by ¢,, the element of E?
corresponding to 7,, and we computed in Prop. 8.2 loc. cit that the structure of H-bimodule of 3(H vof )3
is given by the following formulas. Let w € W, w € Omega and s € {sp, s1}.

(44) T T =T s T Tar = Tonws
(45) 7Y 7y = Tars — T e if L(ws) = 4(w) — 1, . Taly — €1 Toh %f (sw) = b(w) — 1,
0 if (ws) = l(w) + 1, if {(sw) = l(w) + 1.



Remark 2.16. For all w € W with length > 1, there is a unique € € {0,1} such that £(scw) = £(w) — 1.
We let ¥y, == T, - oy = Gs.0 — €1 - O From the formulas above we get ¢ - 1y, = s, s if £(w) > 3
and ¢ - ¢, = 0 if £(w) = 1,2. So the subspace ¥ generated by the 1, is of {-torsion and contained in
ker(8?). We show that this subspace is in fact equal to ker(8¢). First of all we recall from the proof of
[0S3] Prop. 8.6 that E? = ker(8%) @ ke - ¢1. Then we notice that ¥ is stable under the left action of
7o forw € Q. SoW =e; - VD (1 —ep) ¥, and it is enough to show that (1 —e1) - ¥ = (1 — e1) - B¢
and e; -V P ke -1 = €1 - E®. The first identity is true because, for w € W, there exists n € {0,1}
such that £(s,w) = f(w) + 1 and (1 —e1) - ¢y, = (1 —€1) - ¢S;1w. To prove the second identity, we let
we W. If £(w) =0, then e1 -y = €1 - ¢1. If £(w) > 1, let € € {0,1} such that ¢(scw) = ¢(w) — 1. Then
€1 Gy = €1 s — €1 Yy lies in e; - U @ key - ¢1 by induction on f(w).

Let m > 1. The restriction map HY»/ — (F™H)V+ is a homomorphism of H-bimodules and makes
the finite dual (F™H)V-f of F™H a quotient of the H-bimodule HY>/. Furthermore, (F™H/F™ 1 H)V
identifies with the sub-H-bimodule of (F™H)Yf of the linear forms which are trivial on F™+1H. We
consider the linear map defined by

FMH/F™ M H — 3(FmH/F™ L H)V)?
(46) Tw > T | pmpy for w € W such that l(w) =m

By the above formulas, it is an isomorphism of H-bimodules.

2.4.10 The equivalence of categories

When G = SLy(Q,), the functors H(I,_) and X ®p _ are quasi-inverse equivalences between the
category Mod/! (@) of all smooth representations generated by their I-fixed vectors and the category of
left H-modules. In particular, H(I, _) is exact in Mod!(G). (See [0S2] Prop. 3.25).

2.5 On some values of the functor H%(I,_) when G = SL,

We assume that G = SLg and that I is torsion free and therefore a Poincaré group of dimension d. It
follows, in particular, that p > 5. By (22) and Proposition 2.4 we have

Ed = ker(Sd) 2] Xtriv

as H-bimodules where ker(8%) = |J - (H/¢("H)". As a left or right H-module, ker(8?) is an injective
envelope of (H/CH)V. Being injective, this is a ¢-divisible module on the left, resp. right, for any ¢ € H
which is a non-zero-divisor. For example, we know that H is free over k[(] (Lemma 2.7) so Q(({) is a
non-zero-divisor for any nonzero polynomial Q(X) € k[X]. If furthermore X¢iv(§) # 0, then the whole
space E? is ¢-divisible. Recall that yiu(¢) = 1.

Remark 2.17. Yy is the only nontrivial finite dimensional quotient of E¢ as a left or right H-module.

Proof. Since ker(8%) is left and right (-torsion, a finite dimensional quotient of ker(8¢) as a left, resp. right,
module is annihilated by a power ¢ of ¢ from the left, resp. right. But ker(8§%)-¢™ = (™ -ker(8¢) = ker(8%)
since ker(8¢) is ¢-divisible. Therefore any finite dimensional module quotient of ker(8%) is zero. O

Recall that H%(I, —) is a right exact functor which commutes with arbitrary direct sums. By choosing
a free presentation of an arbitrary left H-module M this easily implies the formula

HYI,X @y M)~ EY®y M.

This is an isomorphism of left H-modules.
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Proposition 2.18. Let G = SLy(J). For any non-zero-divisor §& € H such that § is central in H and
Xtriv(€) # 0, we have HY(I,X /X&) = 0.

Proof. Using the equality X/X¢ =X @y H/HE we compute

HYI,X/X¢) = E' @y H/HE = xypin @5 H/HE ® ker(8%) @y H/HE
= k/Xtriv(€)k @ ker(8%) / ker(89)€ = 0 .

O]

Corollary 2.19. Let Q(X) € k[X] be a nonzero polynomial. Then H(I,X/XQ(¢)) = 0, resp. = Xiriv
as an H-bimodule, if Q(1) # 0, resp. Q(1) = 0.

Proof. For the second part of the result, we simply notice that xiri, @y H/HQ(() = Xtriv as a left H-
module. Therefore, proceeding as above, we obtain an isomorphism of left H-modules H%(I,X/XQ(()) =
Xtriv- By Remark 2.17 this is an isomorphism of H-bimodules because H%(I,X/XQ(¢)) is a one-dimensional

quotient of E9, ]

Proposition 2.20. We have HY(I,V) = 0 for any irreducible admissible representation of G := SLa(F)
except when V = ki 18 the trivial representation in which case:

H d(I  Ktriv) = Xtriv as an H-bimodule.

Proof. The case when V = ky,, is the trivial representation of G is a particular case of [OS3] Prop.
8.4.i. For the rest of the proof we therefore assume that V 2 k. We first make we the following
observations. Let k/k denote an algebraic closure of k. Then the scalar extension Vi := k ®; V is a
smooth G-representation over k.

e Since H%(I,—) commutes with arbitrary direct sums we have H(I, V) = HY(I, V) @4 k.
e Since V' is admissible Endygoq(c) (V) is finite dimensional over k.

e The G-representation Vj, is of finite length with each irreducible constituent being admissible and
not isomorphic to ki, ([HV] Thm. 111.4.1)-2), which needs the previous point as input).

By an argument with the exact cohomology sequence these observations reduce us to proving our assertion
over k. In fact, all we need in the following is that F, C k.

Given an irreducible admissible representation V of G, the space V! is finite dimensional. Let Q € k[X]
denote the minimum polynomial of ¢ on V! so that Q(¢)V! = 0. We claim that V is a quotient
representation of X /XQ(¢). For this we choose a nonzero vector vg € V!, which gives rise to the surjective
G-equivariant map X — V sending gI to gug. It restricts to the map H — V! sending char; to vy. But
(¢1)Q(C) = 9Q(C) — gQ(C)up = 0. It follows that the initial map factors over X/XQ(().

If Q(1) # 0, then we have HY(I,X/XQ(¢)) = 0, but H%(I,V) being a quotient of that space is
also zero. It remains to treat the case (1) = 0. Then we can choose the above vector vy so that
(¢ — 1wy = 0 and M := Huy is a simple H-submodule of V. Since ¢ is the identity on M, it follows
from [0S2] Thm. 3.33 that X ®y M is an irreducible G-representation with (X @y M)! = M. The
inclusion M C V' induces a nonzero map X ®y M — V which by irreducibility must be an isomorphism.
It follows that V = X @y V! and that V! is a simple H-module. Hence there is a unique v € I" such
that VI = e, V! (notation in §2.4.6). It further follows that H(I,V) = HYI,X @y V!) = B4 @y VI =
Xeriv @1 VI @ ker(8%) @y VI = x4rip @5 V7, the latter equality since ker(8¢) is divisible by ¢ — 1.

o If 5 {1}, then the idempotent e satisfies xsrin(e) = 0, so HY(I,V) = {0}.
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e If v = {1}, then we use Fact 2.8 to deduce that VI = y.;, or VI = Xsign- If A= Xsign, then
Xeriv @1 VI = {0} because Xtriv(Tso) = 0 and xsign(7s,) = —1. If V! = Xtriv, then by [OV] Lemma
2.25 we know that X @p VI 2 kyip $0 V = kipin.

O]

Remark 2.21. Let z € H be a central element H. Then J(z) is also a central element and from the

isomorphism A? : E¢ =N (EY9)V:S (see (14)) we deduce that z centralizes the elements of the H-bimodule
E? namely z - ¢ = ¢ - z for any ¢ € E?. In particular the left and the right actions on E? of the central
element ¢ € H coincide.

Lemma 2.22. The kernel of the (left or right) action of ( on E? is isomorphic to (H/CH) as an
H-bimodule.

Proof. By (22) and Proposition 2.4, we have E¢ = Uns1 (H/C"H)Y @ Xtriv as H-bimodules. Recall that
Xtriv(¢) = 1. The kernel of the action of ¢ on Un21 (H/C"H)Y & Xtriv is isomorphic to the H-bimodule
(H/CH)Y which, by (43), is isomorphic to ((H/CH). O

3 Formulas for the left action of H on E' when G = SLy(Q,), p # 2,3

There is no hypothesis on § and G = SLa(F) in §3.1 —§3.5 with the exception that we assume p # 2 from
§3.2 on.

3.1 Conjugation by w

Recall the matrix @ := (2 }) (Remark 2.6) which normalizes the Iwahori subgroup J and its pro-p Sylow
I as well as the torus 7. We apply Section 2.2.6 to the following automorphism of the pair (G, X):

(47) £:G—G, g—wlgw and X:X —X, fr— fof (resp. gl — wgw 'I).
It gives rise to the involutive automorphism
(48) T, =T¢: E* = H*(I,X) — E* = H*(I,X)

which is multiplicative for the Yoneda product as well as the cup product. It has all the properties listed
in Section 2.2.6. In the following we sometimes abbreviate ®w := www ™! for any w € W. We need the
following additional fact. Recall that ¢, € H%(I, X (w)) was defined in (15).

Lemma 3.1. Assume I is a Poincaré group of dimension d. For w € W we have
(49) Fw(d)w) = Gww-1 -
Proof. We recall from (18) that we have the commutative diagram

cores

HIL X (w)) 222 H(I,, k) 2= H(], k)

Shw,

HUL X(%w) 22 51y, ) 5 H(1, 1)
where @, = (w™!)* is the conjugation operator given on cocycles by sending ¢ to c(w™!_w). We will

prove that the operator @, on H%(I, k) is the identity. For this we follow the same idea as in [0S3] §7.2.3
and [Koz2] Thm. 7.1.
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For any m > 1 we have the open subgroup Kcm = ( gumt1 om

Since coresfc’m : HY (Ko m, k) = HY(I, k) is an isomorphism ([OS3] Rmk. 7.3) and @, commutes with
corestriction we are reduced to showing that the operator w, on H d(Kcym, k) is the identity. But for m
large enough the pro-p group K¢, is uniform by [OS3] Cor. 7.8 and Rmk. 7.10. So by [Laz] V.2.2.6.3
and V.2.2.7.2, the one dimensional k-vector space H%(K¢ m,k) is the maximal exterior power (via the
cup product) of the d-dimensional k-vector space H I(qu,k). Conjugation commuting with the cup
product, the action of @, on H( K¢y, k) is the determinant of w, on H'(K¢ m, k). The latter is the
dual of the Frattini quotient (K¢ )s. This reduces us further to showing that the determinant of w,

on (K¢m)e is equal to 1. For this we consider the subgroups U, ;= (g1 0), Uk = (§™"), and

m . (14" 0
T '_( 0 1+Mmm™

( LM oM™ ) of I. It is normalized by .

) of K¢ m. According to [OS3] Cor. 7.9 multiplication gives an isomorphism

Usp o1/ (U )P 5 T /(TP 5 U /(U (Koym)a -

One easily checks that w, restricts to an involutive isomorphism U, . /(U )P = W} /(W})P. These
are IFp-vector spaces of dimension equal to [§ : Qp]. Hence the determinant of w, on U, /(W )P X
Wh/(UH)P is equal to (—1)5@] On the other hand, for m large enough, the logarithm induces an
isomorphism T™/(T™)P = 1 + 7"O/(1 + 7™O)P = 7O /pr™O = O/pO with respect to which w,
corresponds to multiplication by —1. Hence its determinant on this factor is again equal to (—1)[3:(@1’}. O

3.2 Elements of E' as triples

From now on we assume p # 2 unless it is specifically stated otherwise.

3.2.1 Definition

We refer to the notation introduced in §2.4.1. We introduce the following subsets of w:
WO = {we W, {(sow) = £(w) + 1} and
W= {weW, {(siw) = {(w) + 1}.

Note that the intersection of these two subsets coincides with the set = T9/T! of all elements in W
with length 0. Recall as in [OS2, 3.3], we define for m > 0 the subgroups

(50) I, = (;ﬁﬁ 14?931) and I =wlio = o Lo = (30 20

of I and recall that

+ : 7o
(51) Ly = IAwhyt = ) T EW
I[(w) if w e Wt

We abbreviate h! := H(I,X) and h'(w) := H' (I, X (w)) for w € W. Recall the Shapiro isomorphism
hY(w) = HY (I, k) = Hom((Iy)e, k) (§2.2) where (I,,)e denotes the Frattini quotient of I, ([0S2] §3.8).
By [052] Prop. 3.62 we have isomorphisms

(L) — O/ x (1+9M) /(1 + MO (1 4 m)P x O/M
for any w € w (depending on a choice of a prime element in 9t). More precisely, when w € wo
(Lo — O/ x (14 M) /(1 4+ M) (14 9MP x O/
(52) ( oz Y ) mod ®(I,,) — (z mod M, 1+ w2 mod (1 + M) (1 + M)?, y mod M)

wl)+ly 14
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and when w € W
(Ig_(w))<1> = O/M x (1+ 93?)/(1 + gﬁé(w)Jrl)(l LN x O/M

(53) (147;293 7&[4(::;/) mod ®(I,,) — (z mod M, 1 + 7z mod (1 + M@+1) (1 + 9P, y mod IM).

By applying Hom(_, k) and using the Shapiro isomorphism we deduce, for any w € W, a decomposition

Al (w) = ht (w) ® hj(w) @ hl (w)

such that .
h- (w) left factor
h¢(w) = Hom | middle factor, k
hl (w) right factor

For any element ¢ € h!(w) we write this decomposition as

Shy(c) = (¢7, % ¢*) with

(54) ¢t € Hom(9D/M, k) and ® € Hom((1 + M) /(1 + M) (1 + )P, k) .
We will often denote by
(55) (e, cM)w

the element in h'(w) which has image the triple (¢~,c% ¢*) € H'(I,,k) via the Shapiro isomorphism
(with ¢® implicitly equal to 0 when £(w) = 0).

Remark 3.2. When § = Q, and p # 2, we have 1 + p?Z, = (1 + pZ,)P since log : 1 + pZ, =N DPZp.
Therefore, when ¢(w) > 1, the identifications (52) and (53) become:
(Iw)e = (IZU;))@ — Zy[pZy x (1 +pr)/(1 +p2Zp) X Lp[pZLy

(56) (pﬁifflz 1j_’pt) mod ®(I,,) — (2 mod pZy, 1 + px mod 1 + p*Z,, y mod pZ,) when w € wo

(in particular, for w € WP, £(w) > 1 we have resﬁ1 (Shy, (0, ¢t)s,) = Shy((0,c, ¢t),) and

(Iw)a = (Iyy)e — Zp/pLy x (1 +pLp) /(1 +p*Ly) x Ly/pLy
(57) <1;§w pff;g) mod ®(I,) — (2 mod pZy,, 1+ px mod 1 + p2Zp, y mod pZ,) when w € Wt

(in particular, for w € Wi, ¢(w) > 1 we have resﬁ0 (Shg, (¢, %, 0)s,) = Shyy(c™, %, 0),). When £(w) = 0,

we have (Iy)e = Io — Zp/pZy X Zyp/DZp.
Notation 3.3. For any subset U C W we have the k-subspaces
hL(U) i= @yevhl (w), h{(U) == Gpevhi(w), and bl (U) = Gperhl (w)

of hl. We also let hl (U) := bl (U) & ht (U) and h*(U) := h{(U) & h(U). The subsets of most interest
to us are:

W= {w € W : ((scw) = £(w) + 1} for € € {0,1} as defined above, and,
Weodd .= Ly € W€ £(w) is odd},

Weeven .— fuy € W€ : £(w) is even},

/We,-i-e’l)en — We,even \ Q0.
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We also define, for k£ > 0 and € € {0, 1}:

WEF = {we W : l(w) >k}
Wwetzk = {w e W l(sew) = L(w) + 1 and ¢(w) > k} for e € {0,1}.

3.2.2 Triples and conjugation by w

Lemma 3.4. Letw € W and (c™, % ¢ty € R (w). Its image by the map Ty, of conjugation by w defined
in (48) is
(e, = ) w1 € W (www™?)

and if w € WE, then www—1 € Wi,

Proof. See Remark (2.6) for the second claim. By definition of the triples and by commutativity of
diagram (18), the first claim follows directly from the observation that the matrices

1+mz wtwy — 147t z +
( mz 14wt € Iﬁ(w) and W Hly 14 € Ié(w)

are conjugate to each other via w.

3.2.3 Triples and cup product
Suppose § = Qp, p # 2,3. We introduce the isomorphism

(58) v 14 pZy/1 —i—pzZpi)Zp/pr, 1+ px — x mod pZ, .
We choose and fix elements with the following constraints
(59) « € Zp/pZp \ {0}, o =1"Y«), c€Hom(Z,/pZ,, k) such that c(x) =1, c’:=ct

When ¢(w) > 0, the dimension of the Frattini quotient of I,, is 3, namely the dimension of I,, as
a p-adic manifold. By [KS] Cor. 1.8 this means that I,, is uniform. Therefore, the algebra H*(I,, k) is
the exterior power (via the cup product) of the 3-dimensional k-vector space H'(I,,k). In particular,
(c,0,0)s, U (0,c% 0)s, U (0,0,c)s, is a nonzero element of H3(I,X(s0)) and its image via

Is
0
cores;

Shg
H3(1,X(s0)) —% H3(I,,, k) H3(I,k)

is a nonzero element of the one dimensional vector space H3(I,k) (see [0S3] Rmk. 7.3). We choose the

isomorphism 7 : H3(I, k) = k sending that element to 1. As in §2.2.5, this choice of 7 yields a choice of
a basis (¢w),, 57 of H(I,X) which is dual to (7,) _= via (14). By definition, we have

weW
(€,0,0)5, U (0,¢",0)5, U (0,0,¢)55 = ¢s, -
Lemma 3.5. For any w € W with {(w) > 1, we have

(60) (€,0,0) U (0,¢%,0) U (0,0,¢)w = ¢u
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Proof. By definition (15) of ¢,,, it is enough to prove that
cores™™ o Shy, ((€,0,0), U (0,¢%,0) U (0,0, ¢)y) = coress™ oShy, ((c,0,0)s U (0, 0)5 U (0,0, ¢)s, )-

e First suppose that w € WL Recall (see [0S3] §3.3), that the Shapiro isomorphism commutes with the
cup product. We compute that Coresﬁf’o o Shy, ((c, 0,0), U (0,¢%,0), U (0,0, c)w) is equal to

coresI [Shy (€, 0,0)4) U Shy, ((0,¢°,0)y) UShy ((0,0,¢)y)]
:coresf [reSI (Shy, ((€,0,0)s,) UShg, ((0,¢",0)5,)) UShy ((0,0,¢),)] by Remark 3.2
= Shs, ((c, 0,0)s,) U Shy, ((0,¢°,0)4,) U Coresi“0 [She, ((0, ,c)w)] by the projection formula ([OS3] §4.6)
=Shy, ((c,0,0)s,) UShy, ((0,¢°,0)s,) UShg, ((0,0,¢)s,) by [0S2] Lemma 3.68-iv.
=Shy, ((€,0,0)s, U (0,¢°,0)5, U (0,0,¢)s,) = Shy, (#s)

which proves the expected statement after applying coresﬁso.
o If w € WO, we conjugate by @ using I', (see (48)):
Fw((C7 07 O)w U (Oa C07 O)w U (07 07 C)w)
—(0,0,¢) pwm—1 U (0,€°,0) pww—1 U (€,0,0) pww—1 by (20) and Lemma 3.4
=(¢,0,0) -1 U (0,¢%,0) pym—1 U (0,0,€) mwmw—1 by anticommutativity of U
= ppww-1 sSince www '€ w!
=T(dw) by (49)
which concludes the proof since ', is bijective. O

Ezample 3.6. The subalgebra H*(I,X(1)) of E*:

- H%(I,X(1)) has dimension 1,

(7, X(1)
- H3(I,X(1)) has dimension 1 with basis ¢ which satisfies 7(¢1) = 1.
- HY(I1,X(1)

)
)
) has dimension 2 and basis (c,0,0); and (0,0, c)q,
)

H?(I,X(1)) is dual to H'(I,X(1)) via the cup product. We denote by (e,0,0); and (0,0, «); the
dual of the basis of H'(I,X(1)) given above, it satisfies by definition:

— (06,0,0)1 U (C,0,0)l = (C,0,0)l U (06,0,0)1 = ¢ = (0,0, 06)1 U (0,0,C)l = (0,0,C)l U (0,0, 0()1,
while

— (C,0,0)l U (0,0,C)l = (0,0,C)l U (C, 0,0)1 =0.

3.3 Image of a triple under the anti-involution J

Let ¢ € h'(w) seen as a triple (¢, ", c¢"), as in (54). Its image by J is an element in h'(w™!) whose
image by the Shapiro isomorphism is given by (see (12))

(Shy e)(w_w™) : [-1 — k.
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Lemma 3.7. Let w € W and ¢ = (¢=,°, ¢ty € Al (w).
If {(w) is even then

(61) d(c) = (¢ (W), &, e (u™)) .
If £(w) is odd then
(62) d(e) = (—cF(w2), =", = (W)

where u € (O/IM)* is such that w;lw lies in the subgroup of W generated by so and s1.

Proof. Notice that the intersection of 2 and of the subgroup of w generated by so and s; is equal to
{£1}, therefore u? is determined by w.

o If w = wy(sps1)" then I,-1 = I} and for X = ( Itre ¥ ) € I,1 we have wXw™! =

2Ny 14t
147z 2"y —1 _ [ 147wz [u]72x2"y
Wu ( rz 14mt ) WYu = [u?mz 147t S0

Shy,—1 (H(C)) = (C_ (ug—)v CO’ C+(u_2—))w*1 .

o If w = wy(s150)", then I,-1 = I, and for X = (ﬁg” fi:g) € I,1 we have wXw™! =
1+7mx gy -1 _ 1+mz [u] ™2y
Wu <7T1+2”z 1+71't> Wy = ([u]27r1+2"z 1+t ) SO
Shy, 1 (3(e)) = (e~ (1), & ¢ (™)) .

o If w = wy(s180)"s1, then I,-1 = 1'2+n+1 and for X = < Lhre ¥ ) € I,1 we have wXw™ ! =

m2t2ny 14wt
1+t —z -1 _ 1+t —[u] =22
Wu <—7T2+2ny 1+ﬂ'x> Wy = (—7r2+2” [u]?y 147z S0

Shy-1(d(c)) = (—c+(u*2_), _Cov _Ci(UQ—))wfl'

o If w = wy(sos1)"s0, then I,,-1 = I, and for X = (H” w2t

TZ 1+t
14wt —lt+2ny -1 _ 14wt —mlt2n(y] =22
Wy ( —my 147wz Wy = = —7[u)?y 1+mx S0

y) € I, we have wXw™! =

Shy,-1(d(c)) = (_C—‘r(U_Q*)? _Cov _C_(UQ*))wfl'

3.4 Action of 7, on E' for w € Q

Let w € W, w € T9/T" and ¢ € hi(w) for some i > 0. By [0S3] Prop. 5.6, the left action of 7, on ¢
corresponds to the following transformation, where again we identify ¢ with its image in H*(I,,, k) by the
Shapiro isomorphism:

(63) hi(w) > B (ww)
wx(c)=c w’l .
Hi(Ly, k)~ gier, k)




In other words, for w € €, we have 7, - ¢ € h'(ww) and
(64) Shyw (7w + €) = wi Shy(c) .
Using ¢- 7, = J(7,-1 - d(c)), we also obtain c- 7, € h*(ww) and
(65) Shyw(c - 7w) = Shy(c) .
Now we suppose i = 1. We identify ¢ € h'(w) with a triple (¢7,c%, ¢), as in (54). For v € (O/9M)*
and (2Y) € I, we have w1 (2 ¥)w, = <[u]gfgz [u}:y> and therefore
(66) T - (€7, ¢ = (w2 2), & ¢t (1? ))wpw € R wew) .
In particular,
(67) T (¢, M)y = (¢, 0, ¢M) g2y, € R (s%w)
for s € {s¢,s1} since s* = w_1. For the right action, it follows from (65) that

(68) (c_,co,c+)w T, = (c_,co,ch)wwu € hl(wwu) .

3.5 Action of the idempotents e,

For A: Q — k* and w € W, recall that we defined the idempotent ey € k[€2] (see (36)) and that, for any
w € Q we have ey, = T,e) = A(w)ey.

Lemma 3.8. Let A\, i: Q — kX, w € W. We consider an element ¢ € hi(w) with image ¢y, € H'(Ly, k)
by the Shapiro isomorphism. We have

ex-c=c-e, if and only if ¢, = p(wrww)Aw ™) wi(ey)  for any w € Q.
Proof. The element e, - ¢ lies in @yeqH* (I, X(ww)) and its component in H*(I, X(ww)) is
—AMw™1) Shyy, (wiew).
The element c - e, lies in @eqH'(I,X (wt)) and its component in H'(I, X (wt)) = H'(I, X(wtww)) is
—u(t™1) Sh} (cw) = —p(w™ N (wt™ ™ Hw) Sh;tlw,lw (cw)-
1, -1

These two elements are equal if and only if for any w € Q we have M\(w ™ w.cy = p(w™ w™tw)ey,. O

In the same context as in the lemma, we suppose that i = 1. Then we may see the image in H'(I,,, k)
by the Shapiro isomorphism of ¢ € h'(w) as a (¢7,c?, c¢t) as in (54). For u € (O/9M)*, we know from the
calculation that gave (66) that

wus (¢, 0, c) = (¢ (w2 2), &0, ¢ (W L)) € H (L, k).

If £(w) is even, then the conjugation of u by w is equal to p and therefore ey - ¢ = ¢ - ¢, if and only if
¢ = A (wy) wuy(c) for any u € (OD/9M)*. So

(69) (£(w)even): ey-c=c-e,ifand only if ¢ @ = pA(w,)c° for any u € (O/9M)*.



If /(w) is odd, then the conjugation of p by w is equal to p~! and therefore ey - ¢ = c - e, if and only if

cw = (1) " Hwy) wi(e) for any u € (OD/M)* which is equivalent to
e = () wa)e (w2 )

(70) (U(w) odd): ey-c=c-e,if and only if ¢ @ = (uA)~H(wy)c° for any u € (O/9M)*.
¢ = () w)et ).

An important special case of the above is the following. Suppose that ¢ = p; for any m € Z and w € W
we then have

(71) (¢, e eiam = € pnyeez + (€70,0)w F €,y + (0, 0)w € ey - (0,0,

3.6 Action of H on F' when G =SLy(Q,), p # 2,3

In this whole subsection, G = SL(Q,) with p # 2,3. We also choose 7 = p. This is required in the
proof of Lemma 9.1 which is used in the proof of Proposition 3.9. The isomorphism ¢ was introduced in
(58). The following proposition is proved in §9.3. Together with (66), it gives the explicit left action of
H on E' when G = SLy(Q,) with p # 2,3.

Proposition 3.9. Let w € W and (¢, ey € R (w).
7—50 : (C_v covc+)w -

((07 _COJ _C_)S()w sz S AW/O, E(UJ) Z ].,
e1 - (—c = —cM)w +eia - (0,—2¢76,0) + (0,0, —¢ g if w E W with lw) > 2,
c

e1 - (—c=, =% —cM)w +eq - (0,—2¢7¢, L),
F g2 (0,0,¢7)w + (0,0, =7 )spw if we W with f(w) = 1.
7o, - (7,0, M)y =
(=, =, 0) 51w if we Wt l(w) > 1,
e1-(—c = —cM)y +eq-1 - (0,2¢71,0)y + (—¢7,0,0)5,00  if w E WO with £(w) > 2,
e1-(—c, = —cM)y +eq-1 - (=1, 2¢T1,0)y,

+ €iq-2 - (C+7Oa O)w + (—C+, 07 0)slw lf’w S WO with E(w) = 1.
TSO ' (C_, 07 c+)w - (07 07 _c_)sow fOT’ w € Q
T - (¢7,0,¢M)y = (—¢7,0,0)5,0, for w € Q.

In these formulas, we use the notation ejqm as introduced in (38) for m € Z. Recall, using (66), that
for (d=,d°,d"),, € h'(w), the component in h'(w,w) of ejgm - (d=,d°,d "), € Ducrx h!(w,w) is given by
(72) —id™ () 7, - (d7,d%,dT ) = —uT(d T (u0), d0(2), dT (4P 2))wyw -

Corollary 3.10. Let w € W, w € Q, and (¢=,°, ¢y € hi(w).

C : (C_7O7C+)w =
(C_, 0, 0)s1sow + (0, 0, C+)soslw +e1- (0, 0, _C_)sow +er- (—C+, 0, 0)slw +e1- (C_> 0, C+)w-
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¢ (c_,co,c+)w =
(™, 0)sy50w + €id - (0, —2¢T1,0) 50w
+eiq - (0,2¢72,0) 550 + (0,0, M) sps1w
(™, 0) 550w + €id - (0, —2¢T1,0) 50
+ e+ (0,2¢74,0) 5,0 + €342 - (0,0, =) s, + (0,0, ¢T) 51w
(™, 0)sy 50w + €id - (0, —2¢T 1, ™) g0
+eq2 - (0,0, =) ggw + (0,0, ¢ )spsyw + €1 - (—¢1,0,0) 5,0

¢ (c_,co,c+)w =
(0, cM)spsyw + €1q-1 + (0,2¢7¢,0) 5700
+€q-1 - (07 —2c7, O)SOw + (Cia 0, 0)3130111
0, e sosyw + eiq-1 - (0,2¢7¢,0) 5,0
+eq-1 (0, —2¢7¢,0) 50w + €59-2 - (—€7,0,0) 50w + (¢7,0,0) 5, 50w
(0, cM)spsyw + €1q-1 - (=% 71,271, 0) 50
+eq-2 - (—¢7,0,0)50 + (¢7,0,0)s;50w + €1+ (0,0, =€) sgw

\

The decreasing filtration (F™FE'),,>; was introduced in §2.2.4.

Corollary 3.11. We have ¢ - E' D F3E!

ifw € WO, l(w) > 3,
if we WO, lw) =2,

if w e s19).

ifwe W?, f(w) >3,
if we Wt lw) =2,

if w e sof2.

Proof. Tt is easy to see that ¢ - E' contains hL (W023) and hi(WNfl’fz?’). Noticing that it also contains
h(W*24), we deduce that it contains bt (W1#23) and hY (W0*23). But for ¢ as above and w € Q, we
have ¢ - (0, CO’ O)SOw = (0, CO» 0)808180w +eq-1- (_COL_la 0, 0)8180w = (0, CO, 0)8081800-) +(¢eq-1- (—Cob_la 0,0)

50 (0,c%,0) 505,500 € ¢ - B! and likewise we would obtain (0, c?,0)s,sys,0 € ¢ - EL.

Using the anti-involution J, we would obtain the explicit right action of H on E'. For example, using

(c™,0,¢M)1-¢=3(¢-J((c™,0,c¢")1)) =3(C - (¢7,0,¢T)1) we can compute:

(C_a 07 C+)1 : C :(C_a Oa 0)8081 + (0’ 07 C+)5150

(73) + €,q-2 (c™,0, 0)30 + €42 (0,0, C+)51 + €,q-2 (¢7,0,0); + €42 (0,0, C+)1.

We give now further partial results on the right action of H on E'.

Lemma 3.12. Let v,w € W such that £(w) > 1 and (=, 0, ct), € hi(v).
i. Suppose £(v) + €(w) = L(vw). Then (¢, ¢y T = {

ii. In the case when v € {sg, s1} and {(vw) = £(w) — 1 we have:

(¢, 0)pw ifvw e Wl,
(0, ¢Mpw  if vw € wo.

(0, &, 0)sg - Tw = —€1 - (O,co, 0)w — €q-1 - (COL_I,O,O)M

(Oa CO: 0)81 Ty = —€1° (0, CO> O)w + €iq - (07 0, COL_l)w

29



Proof. i. Using (68), we see that we may restrict the proof to the case when v belongs to the set
{(si51-4)", s1(s381-9)" : i = 0,1, n > 0}. We treat the case v € W. First suppose v = (sps1)". Then,
using Lemma 3.7, (67) and Proposition 3.9:

(6_7 CO7C+)1} *Tsg = 3(7—351 ’ (C_v CO,C+)U_1) = 3(7—50 ) (0_7007 c+)s%v—1)

=3((0, =, —c*)salv_l) = (¢, % 0)us -
Next suppose that v = sp(s150)". Then

(C_,CO, C+)v *Tsy = 3(7—81_1 ’ (_C+7 _Coa _C_)v_l) =

I(rs, - (—cT, =, —C7 ) g2p-1) = H((cf,co,O)sl_%,l) = (¢, ,0)ys,-

This is enough to conclude the proof when v € Wl by induction on ¢/(w).
ii. We treat the case v = sy and suppose first that w = sg. Then, using (62), Proposition 3.9, (67)
and (70)

(0,¢%,0)s * 7o = =3(7,=1 - (0,¢%,0) =1) = =3 (75, - (0,¢”,0)5)
== ((07 6070)50 €1+ ( OvCOL_l)So ) eid)
=—e1-(0,c%,0) -1 —eq-1 - (=" 71, 0,0),,-1

)

= —e1-(0,c°,0)s, — (0‘100)50.

|

For w = spw with w € Q, apply 7, on the right to the above formula and use (68). For general w such
that ¢(spw) = £(w) — 1, apply Tortw OB the right to the above formula and use Point i.
O

The increasing filtration (F,,El),>o was defined in §2.2.4.
Lemma 3.13. If w € ), we have
¢ (e7,0,¢M)y—(c7,0,¢M)y-¢ = (0,0, spsyw+ (7, 0,0) 5,500 — (0,0, 1)y 500 — (€7,0,0) 95,0 mod FLE
If w e Wl of length > 1
C- (c_,co,c+)w — (c_,co,c+)w ¢ =(0,0,¢) g5 — (¢7,0,0) 555, mod Fg(w)HEl
If w e wo of length > 1
(e, M) — (7, M- ¢ = (¢7,0,0) 5500 — (0,0, M), 5000 mod F@(w)HEl

Proof. We use Cor. 3.10. Recall from (68) that (¢, c?, ct)yw = (¢7, 2, M), for w € Q. So it is enough
to prove the lemma for w = 1 and for w of the form (SeS1—€)"Se Or (ses1—¢)™ where € € {0,1}. By (73)
we have

C-(c7,0,¢M)1 = (¢7,0,¢M)1 - ¢ = (0,0, )8y + (¢7,0,0)5,5 — (¢7,0,0)505 — (0,0, M), 5, mod FyEL.
Now for w = (s¢s1)™ with n > 1 we have

C- (¢, M) = (0, ¢ )sysyw mod Fo i EY and

¢ (e, ey = (¢7,%0),, 5901 mod oy B
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Since J preserves Fy,,1E" we have, using (61):

g((ci7 CO? 0)518011}*1) = (677 CO? O)wsosl = (0—7 CO? O)Soslw mod FQTL-HEl

which gives the expected formula. Using J, we then obtain the expected result for w = (s150)". Likewise
we treat the case w = (sps1)"so with n > 0. We have

¢- (c*,co,ch)w = (O,CO,C+)5051w mod F2n+2E1

and

(ci’ CO? C+)w : C = H(C : (_CJrv _607 _ci)w—l)
= J((0, -, —C )sosyu-1) = (c_,cO,O)wSlSO = (c_,co,O)SOSIw mod F2n+2E1

which gives the expected result for w = (sps1)"sp and similarly we would treat the case w = (s1s9)"s1. O

3.7 Sub-H-bimodules of E!
3.7.1 The H-bimodule F'H

In this paragraph 3.7.1, there is no condition on § (in fact we may even have p = 2).
The elements z; := 7, € F1H satisfy the relations:

1) 75,2 = —e1x; = x;Ts, for i € {0,1};
2) 1,1 = ;7,1 for i € {0,1} and w € Q;
3) TsoT1 = xoTs, and Ts, T = T1Ts,-

Given any H-bimodule M, a pair of elements xg,x; € M which satisfy the relations 1) - 3) will be
called an F'H-pair in M. The F'H-pair in M form a k-vector subspace of M x M.

Ezample 3.14. For any £ > 0 the elements 7, (7s,7s, ) and 7s, (75,75, )¢ form an F!H-pair in F1H.

Lemma 3.15. i. Given an F*H-pair (xo,x1) € M x M, there is a unique H-bimodule homomorphism
f(xo,x1) : FlH - M SatZSfyZ’l'Lg

f(:co,:m)(TSO) = o, and f(xo,xl)(Tsl) =Ty .

it. The map f v (f(7s,), f(7s,)) yields a bijection between the space of all H-bimodule homomorphism
FYH — M and the space of all F*H-pairs in M. The inverse map is given by (xo, 1) J(@o,1)-

Proof. As a right H-module, we have F*H = 75 H @ 75, H and 75, H ~ H/(7s, + e1)H for i = 0,1. Let
(xo,x1) € M x M satisfying x;(7s, + e1) = 0 for ¢« = 0,1. There is a unique homomorphism of right
H-modules

f:F'H — M such that f(7s,) = o and f(7s,) = 21 .

We prove that f is a homomorphism of H-bimodules if and only if xq, 1 is an F'' H-pair in M. The direct
implication is clear. Now suppose that zo,x1 € M satisfy the relations 1) - 3). Let w € W. We want to
show that the maps 7 +— 7, - f(7) and 7 — f(7,7) are equal. Since they are both homomorphisms of
right H-modules, it is enough to show that they coincide at 75, for i = 0, 1, namely that 7,z; = f(77s,)-
We proceed by induction on ¢(w). Using relations 2), it is easy to check that this equality holds when w
has length 0. Now let w € W with length > 1.
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- If u ;= ws| !, has length < £(w) we have:

TwTi = TuTsy_;Ti = TuT1—iTs;, DYy 3)

= f(TuTsy_;)Ts; = f(TuTs;_,Ts;) = f(TwTs;) by induction and then right H-equivariance.

- Otherwise, v := ws; ! has length < £(w) and we have
Twdi = TyTs; Ty = —TpXi€1 by 1) and 2)
= —f(7u7s;)e1 by induction

= f(—mTs,e1) = f(ro72) = f(TwTs,) by right H-equivariance.

The map f(4,,.,) of the Lemma is the map f studied above. O

Remark 3.16. For any F'!H-pair (z¢,71) in M we have im(f(gy,21)) € {m € M : (m = m(}.

3.7.2 F!'H-pairs in E'
In this paragraph we assume that § = Q, with p > 5 and that = = p.

Lemma 3.17. The F1H-pairs (zg,71) in E' which are contained in ht(so) @ hl(s1) ® h1(Q) are given
by

2o = —(0,c°,0)5y — eiqg-1 - (°¢71,0,0)1  and x1:= (0,c",0)5, — eiq - (0,0,% 1),
where ¢ runs over the 1-dimensional k-vector space Hom((1 + pZy) /(1 + p*Zy), k).

Proof. To check that the pairs (zg, 1) in the assertion are indeed F'' H-pairs is an explicit computation
based on the formulas in Sections 3.4 and 3.6.

As noted in Remark 3.16, an element which satisfies the relations 1), 2) and 3) commutes with the
action of (. We determine the elements in h'(sp) @ hl(s1) ® k() which commute with the action of (.
Let x be such an element. Since the elements in the assertion of the lemma do commute with the action
of ¢, we may assume that x is of the form

7= (65,0, oo + (7,0, )y + (5,0, ¢ € B (50) @ (1) @ (%)
weN

By Lemma 3.13, we know that
Crx—z- (= (07 0, 03_)808180 - (00_7 0, 0)505150 + (cl_v 0, 0)515051 - (07 0, CT)818081 mod FQEl :

Therefore we have ¢; =cf =c¢ =c¢; =0and z =Y, (cs,0,¢f), € R1(Q). By Lemma 3.13 again,

C-x—x-(= Z ( 0 0, C soslw + (C;a 0, 0)81800.) - (07 0, CI)slsow - (C;7 0, 0)soslw> mod FlEl
weN

and therefore z = 0. This proves that the only elements in E! which are contained in h!(so)®h!(s1)®h ()
and commute with the action of ¢ are given by the formulas announced in the lemma. Therefore, these
are also the only F!H-pairs (zg,21) in hl(so) @ hl(s1) @ hH(Q). O

In the following we choose ¢ € Hom((1 + pZ,)/(1 + p*Zy), k) as in §3.2.3 and let (xg,x;) be the
corresponding F' H-pair in E' of Lemma 3.17. Recall that the H-bimodule homomorphism Jxo,x1) Was
introduced in Lemma 3.15.
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Proposition 3.18. i. For 7, € FYH we have

(0,c%,0), ifwe WO and l(w) > 2,

—(0,¢°,0)y if we W and 6(w) > 2,
f(xO,Xl)(TU)> = 0 0,—1 ; —

(0,¢”,0)s,0 — €ia - (0,0,c”t7), if w=s1w € 514,

—(0,¢%0) 500 — €3q-1 - (€%71,0,0),,  if w = spw € $p<2.

ii. The H-bimodule homomorphism f(x x) : F'H — E' is injective.

<.

iwi. The image of f(x, x,) i contained in the centralizer of C.

. 30 fixpsr) = ~Fxom) © 8-

V. T'm 0 fixox1) (Tw) = fixox1) (Towwem—1) for any 7y, € F'H.

Proof. i. For w € ) we have by definition that f(xo,)q)(Tsiw) = X;T,. Hence the last two equalities follow
directly from (68).

For the first two equalities we first consider the cases w = sgs; and w = s18g. By the left H-
equivariance of f(x, ;) we have

Tso - X1 if w = spsq,

f(xo,x1)<7—w) - {

Tsy - X0 if w = s150.

Using Prop. 3.9 one easily checks that 4, - x1 = —(0,¢°,0),, and 7, - x9 = (0,¢°,0),,. The assertion for
a general w follows from this by using again the left H-equivariance together with the following general
observation. For any v,w € W such that ¢(v) + ¢(w) = ¢(vw) and ¢(w) > 1 we have, by (66) and Prop.
3.9:
Ty - (07007 O)w = (07 (_1)“0)00’ O)Uw .

ii. It is immediate from i. that the set { f(x, x,)(7w) }werin is a k-basis of im(f(x, x,))-

iii. This is obvious, as noted in Remark 3.16.

iv. We first check that J(x;) = —7,2 - x; holds true. The case i = 1 being analogous we only compute

H(XO) = _3((07 Coa 0)80) - 3((COL_1a 0, 0)1)3(eid_1)
=(0,¢%0) -1 — (c".7%,0,0); - elq by Lemma 3.7
= (0,c",0)325, — €41 - (c”71,0,0)1 by (66) and (68)
= 7,2 (0,¢%,0)5y — €q-1 - (c*7,0,0)1 by (67)

-1
S0

S

0 0,—-1
=72 (0,¢7,0)s) + T2659-1 - (€707, 0,0)1 by —ejq-1 =72 - €541

= —ng - X0 -
For a general w € W'=Z! we have 7, = Ts;T4—1,, and we deduce that
7

3(f(xo,x1)(7—w)) = 3(X'L : Ts,_lw) = H(Ts_lw) : 3(X7f) = _Tw_lsiTs? ’ Xi = - w*lsi_l : Xi

7 i

= _f(xo,xl)(’rwfl) = _f(xo,xl)(g(Tw))

using left H-equivariance in the fifth equality.
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v. Lemma 3.4 easily implies that I, (x;) = x1_;. For a general w € we have wwwm ! € Wil=1

and we deduce that

Lo (fixo.x1) (Tw)) = T (i - Tsi—lw) =T (x;) - Fw(Tsi—lw) = Xli Tty

= X1—q ’7'81—1

w1 = f(X(),X1) (Twwwfl)
using in the second equality that ' is multiplicative (cf. §2.2.6). O

In Prop. 6.3 we will see that the inclusion in part ii. of the above proposition, in fact, is an equality.
This, in particular, shows that there are no nonzero F! H-pairs in E! \ im( fixox1))-

Remark 3.19. Recalling that e, was introduced in (39) we have

(1 - e’Yo) ’ im(f(xo,xl)) = im(f(xo,xl)) ) (1 - 6’70) = (1 - e’yo) ’ im(f(xo,xl)) ) (1 - 670) = (1 - 6’70) ) h(lJ(/W/) :

Proof. Since 1 — e, is central in H it also must centralize im(f(x, x,))- Recall that e, = eiq + e;q-1. The
last equality then is immediate from Prop. 3.18-i. O

3.7.3 An H:-bimodule inside E!

3.7.3.1 A left H-bimodule inside E' Let M be any H-bimodule. To give a homomorphism of left
(or right) H-modules f : H — M simply means to give any element = € M as the image = = f(1). We
state a simple sufficient condition on x such that the corresponding f extends to the localization H..

Lemma 3.20. Let x € M be such that ( -x-( = x. Then
Hi — M
Clr e fo(CTlr) =72 ¢, resp. o f () :=C a7, fori>0and T € H,
1s a well defined homomorphism of left, resp. right, H-modules; its image is contained in the space
{fyeM:Cy C=y}
Proof. Easy exercise. O
Assume that § = Q, with p > 5 and that 7 = p. We will apply the above lemma to the bimodule E'.

Lemma 3.21. The elements x € E' which satisfy ¢ -z - ¢ = x and lie in h'(1) © e;qh(s0) @ eiqh! (5150)
with 75, - & = 0, resp. in h*(1) ® e;y-1h'(s1) & e;q-1h (sos1) with 75, - x =0, are

2T :=(0,0,¢7)1 — eiq - (0,2¢71,0)5, — €iq - (0,0, ) gy 50, TESD.
x” = (c,0,0)1 +eq-1-(0,2¢7¢,0)5, —€39-1 - (¢7,0,0) 505,
where ¢ and ¢~ run over the 1-dimensional k-vector space Hom(Zp/pr7 k).
Proof. We treat the first case, the other one being analogous. Consider any
z=(c",0,¢")1+ea (b7,0% 0T +ea- (d,d% dV)s,s,
such that 75, - x = 0. Using Prop. 3.9 we compute
0="Tsy T =Ts - (c7,0,¢M)1 + €iq-1Tso * (b_,bo,b'k)s0 +eq-1Ts (d_,do,d+)8130
= (0,0, —¢ sy + €1q-1 - (—e1- (b7,0%,0T) g 4+ €ia - (0, =207, 8% ) gy + €142 - (0,0,67 )5, — (0,0, b7)2)
—e9-1 - (0, d°, d™ )sos1s0
= (0,0, =¢7 )5y — €sq-1 - (0,0,07) 2 — &q-1 - (0,d°,d7 )sgs1s0 -
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It follows that ¢~ = b~ = d® = d~ = 0 and hence that
(74) T = (0, 0, C+)1 + €iq - (0, bo, b+)30 + €iq - (0, 0, d+)5150 .
Now we assume in addition that ¢ -z - { = x. From Cor. 3.10 we deduce that
C X = C . <07 07 C+)1 + eidC : (07 b07 b+)$0 + eidc : (07 07 d+)51$0
= (0, 0, C+)8081 —eé1r- (C+7 0, 0)81 +er- (07 0, C+)1 + €id (07 bo’ b+)808180
—eiq - (0,2d%1,0) 508150 + €ia - (0,2d 7, 0)s25, + €ia - (0,0, dt)y .
Using Lemma 3.7, Cor. 3.10, Section 3.4, and (71) we compute
(75) (0,0,¢M)sps - € = —e€ia - (0,2¢71,0)508150 — €ia * (0,2¢72,0)5, + €1+ (¢7,0,0)5, + (0,0,¢1);
—e1-(c7,0,0), - ¢ = —e1-(0,0,¢M) g5 — €1+ (cT,0,0)s,
eid - (0,2d74,0) 2, - ¢ = —€ia - (0,2d7 1, 0) 505150
€1 (07 07 C+)1 : C = €1 - (O,O,C+)5150
€id - (07 07 d+)1 : C = €iqd * (07 07 d+)8150
eia - (0, bO: b+)808180 (= —éiq - (0, bo? 0)(8180)28(2) +eia - (0, 20", O)(8051)2 +eia - (0,0, b+)80
—éiq - (0, 2d+ba 0)sos1s0 - ¢ = €id * (0, 2d+L? O)(s1so)253 )

Comparing the sum of these equations with (74) shows that dt = —ct, b = —2¢T4, and b+ = 0. We
conclude that z = z. O

We now choose ¢t := ¢~ := ¢ € Hom(Z,/pZy, k) as in §3.2.3 and let (x*,x~) be the corresponding
elements of Lemma 3.21. By Lemma 3.20 they give rise to the left H-module homomorphisms

(76) fxx  He — B

Remark 3.22. 1. We have I'5(¢) = (. Hence I';; extends to an automorphism of H. The multiplica-
tivity of I'w, the formula I';;(e)) = ey-1, and Lemma 3.4 then imply that

I'pofytr =fx-ol'w and T'go fy- = fy+ ol'n
and, in particular, I (xT) = x~.
2. Here and in the subsequent points let = and 2 be as in Lemma 3.21. We compute
(") =3((0,0,¢7)1) = 3((0,2¢71,0)s,) - d(eia) = 3((0,0, ¢ )sy50) - I(esa)
0,0,¢%)1 + (0,2¢, 0),-1 - €g-1 — (0,0, ¢ )sos1 - €q-1 by Lemma 3.7

= (

=(0,0,c¢")1 +e5q - (0,2cTy, 0)-1 — €ia (0,0,cM)sys, by (66) and (68)
= (0,0,¢")1 + eiatgz - (0, 2¢71,0)s, — €ia - (0,0,¢ )05, by (67)
(0,0,c¢M)1 —eiq - (0,2¢71,0)5, — €1q - (0,0,¢)gps; by —€idT2 = €id
=27 +eq- (0,0, cJ“)SIS0 —eiq - (0,0, c+)8051

(1 — ejq — €idTsys,) - © 7 by Prop. 3.9

=(1—eq—eql)-a".

and similarly
J@7)=(1—eq-1 —eq-10) -z~ .
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Lemma 3.23. 1. For any u € FY we have 2" -7, = u™?1,, - 2T and 2~ - 7, = u’7,, - 2.
2. We have % - 75y = 75y -2t =0 and = - 75, = 75, -2~ = 0.
3. We have
T UTsy) = —€q-2 -2 and
- _ -
Tsy) = —€3q2 - " .
while, for xT and x~ as above,
xt o Ury) = —Tw_ UTsy) X - ¢ and
- _ +
X U Tsy) = —Tw UTsy) X" - C .

where we recall that the involution v was introduced in (29).

Proof. 1. For any u € F; we compute using (66) and (68)
o7, = (0,0,¢7)1 - T, —eia - (0,2¢71,0)sy - T, — €id - (0,0,¢ )y 50 - Twn
=(0,0,¢)w, —€id - (0,2¢74,0) 1, = eia - (0,0,¢ w5150
=u 27, - (0,0,¢M); — eiat,—1 - (0, 2¢t1,0)50 — U 2€ia T, - (0,0, ¢ )5 50
= u 27, - (0,0,¢7); —uteiq - (0,2¢71,0)s, — u%eiqTi, - (0,0, ¢ ) gy
= u 27, - (0,0,¢"); —u 1, eid - (0,2¢71,0)sy — u 2eiaTi, - (0,0, ) g0
= u*27'wu Lzt
and, by an analogous computation (or by applying Remark 3.22-1), we obtain 2~ - 7, = u?7,, - 1~.
2. For the identity 74, - 7 = 0, see Lemma 3.21. Now we compute:
1 =3 (1s,) - I(xT)) = IT2Tso - (27 + €4(0,0,c¢M)sy50 — €ia - (0,0,¢)s0s,)) by Remark 3.22-2
= 3(7—53 (TSO -zt + €ig—1Tso (Ov 0, c+)5150 — €iq-1Tso (O,O,C+)5031))
=0 by Lemma 3.21 and Prop. 3.9
We obtain the analogous statements for £~ using Remark 3.22-1.
3. The first identities easily come from Points 1 and 2. We treat the second equation of the last statement.
The first one can either be established by an analogous computation or by applying Remark 3.22-1 to

the second equation. Both sides of the second equation lie in the sub-H-bimodule ker(¢ - idg1 -¢ — idg1)
of E' on which left multiplication by ( is injective. Hence we may instead check the equation

—( X (1sg te1) =Tw,  (Ts +e1) xT .
For the left hand side we first have, using Lemma 3.12 and Point 1:
x - (7o +e1) = (¢7,0,0)50 + €9-1 - (0,2¢£,0) 5,59 — €39-1 - (€7,0,0) 505150 + €1q-2 - T~
=(c7,0,0)5, + €59-1 - (0,2¢£,0) 5,50 — €39-1 - (¢7,0,0) 505150 + €9-2 - (¢,0,0)1
and then by Cor. 3.10
—C -x - (7'50 + 61) - eid*Q . (C_a 07 0)3130 - (C_, 0, 0)510-)71
+eq-1-(¢,0,0)5 +€1-(0,0,¢7 )1 —€q-2 - (¢,0,0)s,5,
= _(C_¢O70)81w71 +€g-1 - (C_, 0, 0)50 ter- (07 0, C_)l .
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For the right hand side we first compute using Prop. 3.9
Toys2 cat = —(c",0,0)50_, + €q-1 - (¢1,0,0)5,
+

€1-T =¢€1- (Oa 07 C+)1

and then see, by adding up, that it coincides with the above computation for the left hand side when
+ — i =
ct=c =c O

Lemma 3.24. The maps fy+ and fy— defined in (76) induce an injective homomorphism of left H-

modules
fE=fr
%

H¢/H¢tsy © He/Hs, E!

the tmage of which is contained in the kernel of the endomorphism ( -idg1 - —idga .

Proof. By Lemma 3.23-2, the map is well defined. By definition of x*Tand x~, the last statement of
the lemma is clear. We prove that the map is the injective. We first observe that it suffices to check
the injectivity of the restriction of f* to H/Hts, @ H/Hts,. The elements 7, with w € W such that
l(wsg) = l(w) + 1 form a k-basis of H/HTs,; they are of the form w = w(sps1)™ or = ws1(sps1)™ with
m >0 and w € Q. Using (66) and Prop. 3.9 we obtain

-(0,0,¢"); € Fy (0,0, ?f w=wlsos)™,
Fy(c™,0,0) if w = wsi(s0s1)™,

and
7w (0,,0)5, = (0, (=)™, 0) s, € hO(W) for any w as above,
and —
F[(w)_QEl + h(W) for any w as above with m > 1,
Tweid - (0,0, )s150 € { Fieig-1 - (¢7,0,0)5, + hE (W) if w = wsy,
F;; €id - (0, 0, C+)w5130 if w=uw.
It follows that
£*(0,0, 0)u + Fyuy—2 " + h(W) if w = w(s0s1)™ with m > 1,
(77 roxt e k*(c,0,0)w + Fyy—o B + hO(W) N ?f w = ws1(sps1)™ with m > 1,
k*(c,0,0)y + kX e;q-1(c,0,0)s, —I—hO(W) if w=wsy,
kE*(0,0,¢)y + k*eiq(0,0,¢)ws, sy + hO(W) if w=w.

Similarly the elements 7, with w € W such that l(wsy) = l(w) + 1 form a k-basis of H/HTg,; they are
of the form w = w(s159)™ or = wsp(s180)™ with m > 0 and w € Q. In this case we obtain

k> (c,0,0)w + Fypy—2 B + hO(W) if w=w(s150)™ with m > 1,

E*(0,0, ¢)w + Fyu)— SJEl + hl(W) if w = wsg(s180)™ with m > 1,
(78) Tw X € N '

E*(0,0,¢)y + k™ eiq - (0,0,¢)s, + h{(W) if w = ws,

k*(c,0,0)y + kXeg1 - (€,0,0)ws0s, + hAW) if w = w.

(
*(c,0,0
By comparing the lists (77) and (78) we easily see that the elements

{10 - xT U (wsp) = b(w) + 1} U {7 - x~ : L(wsy) = £(w) + 1}

in E! are k-linearly independent even in E'/ h(l](W) O
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3.7.3.2 Structure of H--bimodule on H:/H:7o® H¢/H¢Ts,. In this paragraph, the only condition
on § is that it has residue field F,,. Recall the involution ¢ of H defined in (29).

We consider the homomorphism of k-algebras x : H — H given by the composition of the involution
t : H — H and the inclusion H — H¢, the element —7, (™' € Z(H¢) in the center of H; and
the character p : Q — k*,w, + u®. Recall that as in Remark 2.12, we may refer to the idempotent
corresponding to the latter as e;;2 instead of e,. As in §2.4.7, this yields a homomorphism of k-algebras
ko : H — M>(H¢) and an (HO H)-bimodule structure on He & H, denoted by (He & He)[k, —7w_ 1, ]
where h € H acts on (¢67,07) € He @ H¢ via

((cT,07),h) — (07,07 )ka(h) .

We consider the composite map g o t”!. Again, it is a homomorphism of algebras H — Ma(H,) and it
yields an (H¢, H)-bimodule structure on H; & H; denoted by (H ® H¢)*. We spell out below the action
on (o%,07) € He ® H¢ of the generators ((7s, ), UTs, ), T, for u € F)S of H

(0+,0_)L(7-SO) = (—O‘+6id2 — U_Tw_lt(Tsl)C_l,O)
(79) (0%, 07 )Urey) 1= (0, =0 eq—2 — 0 7, U7y )¢ )
(0t 07 )70, = (u_20+7wu,u20_7'wu) .

One easily checks that
o (759, 0)L(7s,) = (0,75, )t(7s,) = O,
o (Tsy, 0)U(Tsy) = —€;4-2(Ts, 0) and (0, 75, )U(7s,) = —€;42(0, 75, ), and lastly
o (75y,0)7, = u_szgl(TSO,O) and (0, 7s,)Tw, = u27'w;1(0,7'51).
Hence this bimodule structure passes to the quotient (H¢/HTs, & He/HeTs,)*.
Remark 3.25. In (H¢/H¢7s, ® He/HeTs, )™, we have
(80) 7o,(1,0) = (1,0)75, =0 and 74, (1,0) = (0,0)75, =0 .
The only non obvious statement is for the right actions. We prove it in the first case (it is actually a

computation in (H & H¢)*):

(1,0)75, = —(1,0)t(7sy) — (1,0)e1 = (e;q2,0) +Z (1,0)7w,
= (e;q2,0) + Z(U_QTwu; = (e;42,0) — (€;,42,0) =0 .

Lemma 3.26. For any 0 € (H¢/Hrsy, ® He/Hets,)® we have (o( = o In particular, (H¢/HeTsy &
H¢/Hets,)E is an (He, He)-bimodule.

Proof. Tt suffices to show that ((1,0)¢ = (1,0) and ¢(0,1)¢ = (0,1). Here and in the following we write
= and =, for greater clarity, if an equality holds in o € (H¢/H¢7s, ® He/HeTs,)™ and (He & He)™,
respectively. We give the computation in the first case:

¢(1,0)¢ = ¢(1,0)1(7s; )1(7s,) by (80)
= ((1,0)(0, =7, Tse )¢ H)1(7s0)
= (1, 0)(7e_, U7s0)C 17—w71L(7—81)C_170) = C(L(TSO)L(T&)C_zaO)
C( ( )70)EC(C_1a0):(1?0) :

38



Lemma 3.27. We have an isomorphism of right H:-modules
B He /e He @ He /7o He — (He/Hergy ® He /Hersy )™

sending (1,0) and (0,1) to (1,0) and (0, 1), respectively. In particular, (H¢/H¢Tsy ® He/Hets,)E s a free
E[¢T']-module of rank 4(p — 1) on the left and on the right.

Proof. That the rule given to define 3 yields a well defined module homomorphism is immediate from
the fact that (1,0)7s, = (0,1)75, = 0 (see (80)). To check the bijectivity we start by observing that, as a
consequence of Lemma 2.7, a k-basis of H¢ /75, H¢ as well as H¢/HT, is given by

(7w, 1§ €Z,u €FS Y UL, \(7s,_,) 1 j € Zyu € F}

where we use the involution (29) of H. It follows that H¢ /75 He @ H¢ /75, He and (He /Hersy ®@ He /HeTs, ) *
both have the k-basis

{(CjTUJu70)7 (Cijul’(Tsl)?O)’ (07Ciju)7 (0, Ciju UTs)): JEZue F;}
The image under S of this set is
{u*2(C*iju,O), —u*Z(O, C*jflwauL(TSO)),u2(0,C*iju), —UQ(CijilTwiuL(Tsl),O) 1jE€ZL,u€ IF'qX}

which is a basis for (H¢/Hrs, ® He/HeTs, )™
The k[¢*)-modules He/HTs, ® He /HeTs, and He /75, He @ He /75, H are free k[¢*1]-modules of rank
4(p — 1) (respectively on the left and on the right). The last statement follows.
O

3.7.3.3 On im(f*). In this paragraph we assume that § = Qp with p > 5 and that = = p.
Proposition 3.28. The map f* in Lemma 3.2/ yields an injective homomorphism of H-bimodules
(H¢/Hersy ® He/Heryy )™ — B

which we still denote by f*. Its image im(fT) is contained in the kernel of the endomorphism ¢ -idg -C —
idg1 and is a sub-H-bimodule of E* on which ¢ acts invertibly from the left and the right. Furthermore,
im(f*) is a free k[¢T']-module of rank 4(p — 1) on the left and on the right.

Proof. From Lemma 3.24 we know that

FE=f i +f e
H¢/Heroy @ He/Hery, ——25—2 4 B

is an injective homomorphism of left H-modules the image of which is contained in the kernel of the
endomorphism ¢ - idg:1 -¢ — idg1. The right H-equivariance of

+
(He/Hersy ® He/Here)* 2 B

is immediately seen by comparing the definition (79) with Lemma 3.23. The last statement follows directly
from Lemma 3.27 O

In Prop. 6.8 we will see that the image of f* coincides in fact with the kernel of ¢ -idg1 -¢ — idg1.
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Remark 3.29. 1. It follows from Remark 3.22-1 that the diagram

+
(H¢/Hcrsy ® He/Hersy )™ m
(U+7U_)'—>(Fw(0_),1“w(0+))l s

+

(He/Heryy ® He/Hero )t~ p1
is commutative.
2. The maps
8o : He/Hersy —> He/HeTgg, ho— h(1 — eiq — e5aC ")
61 He/Hersy — He/Hems  h— h(1 — eq-1 — eq-1¢ 1)

are well defined isomorphisms of left H-modules.

Note that on the component H¢(1 — eiq)/H¢Tsy (1 — eiq) (vesp. He(1 — eq-1)/Hems, (1 — e54-1)), the
map dg (resp. 1) is the identity map. On Heeiq/H¢Tsyeiq (vesp. Heeyg—1/HeTs €,4-1), the map dg
(resp. 61) is the multiplication by ¢ =1

Consider

Jad 3
(81) (H¢/Hetsy ® He/Hers, )™ <= He /7o He @ He 7o, He = (He/HeToy @ He/HeTay )™
We have

fFoBo(@@d) (ot o) = fFopB(d(0"),d(07))
=x"-J(cT)+x" -J(07) since f* o B is right H-equivariant .

(82) IEF:=Bo(I®J)o (5D ).

frogt(ot, o) =x"-J(ot(1 - elq — (™)) +x .3( “(1— ey —eg1CY)
X" (1= ~ ¢ N30 +x (1 - ea — e HI07)
(1—eiq —e€al) xT-3(07)+ (1 —ey-1 —ey-1¢) - x - J(0~ )by Lemma 3.23-1
=3d(x")-d(c") +3d(x7) - d(0c7) by Remark 3.22-2
J

(oF - xT+o7 - x7)=3(fF(07,07)) .

It follows that the diagram

fi
(H¢/Herey @ He/Hers, )= — B!

| i la

!
(H¢/Herey @ He/Here, )= —— B!

is commutative.
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4 Formulas for the left action of H on E4! when G = SLy(Q,), p # 2,3

For the moment, G = SLs(§) and I is a Poincaré group of dimension d (hence p > 5).

4.1 Elements of E4 ! as triples

Recall (see (14)) the isomorphism of H-bimodules A4t : Fd=1 — d((EY)V:/), The left action of h € H
on o € I((EY)V:F)d = B is given by

(83) (hya) = a(d(h)) .
The anti-involution J on E4~! corresponds to the transformation

(BT — (BN
(84) a+— aod.

Proof. We prove that for ap € E?! we have A%"1(J(ag)) = A4 ap) o g in (BN, Let g € (EY)V/.
By definition of A%"! we have

(A (ag) 0 J](B) = 1o 8% agUJ(B)) =n o8I (d(an) UB)) by [0S3] Rmk. 6.2
= 108%J(ap) UB) by [0S3] Cor. 7.17
= AT ((0)))(B) -
O

We will abbreviate h¢= (w) = HI¥1(I,X(w)) for w € W and will identify it with hl(w)" C
I((EYV-/)3. Recall from (54) that an element ¢ in hl(w) C E' may be seen as a triple (¢7,c?, c¢),
with

¢t € Hom(D/M, k) and ¢ € Hom((1 + M) /(1 + M) (1 4 m)P, k)

For a given finite dimensional F,-vector space V, the k-dual of Homp,(V, k) identifies canonically with
V ®p, k so we will see an element « of (h'(w))" as a triple

(85) (@, a’ a), € O/Mer, kx ((1+M)/(1+ M1+ MP) @p, k x O/M @5, k

such that a(c) = ¢ (a™) + () + ¢ (at) . We still denote by (a~,a’,a™),, the image of this element
in h%1(w) via the inverse of A%~! and then we have

(86) (@™, o’ M), U(c™, cMy = (¢ (@) + () + ¢ (™)) ¢u

where ¢,, € h%(w) was defined in §2.2.5. Since J respects the cup product and since J(¢,) = dy,—1 ([0S3]
Rmk. 6.2 and (8.2)), we obtain from Lemma 3.7 the following result:

Lemma 4.1. Let w € W and o = (a=,a% at), € ki t(w).
If 6(w) is even then

(87) J(a) = (%o, a’ u?a™), 1.
If {(w) is odd then
(88) J(a) = (—u?a™, —a® —u"2a7),, 1.

where u € (O /IMN)* is such that w;lw lies in the subgroup ofw generated by so and s1.
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From (20), (49) and Lemma 3.4 we obtain:
Lemma 4.2. Let w € W and (a=,a% a*), € hi=Y(w). Its image by conjugation by w defined in (48) is

Fw((af,ao,aJr)w) = (cﬁ, —ao,of)wwwa S h2(www71) .

In the next lemma we refer to the notation in §3.2.3.

Lemma 4.3. Assume G = SL2(Qp), p # 2,3. For w € W, l(w) > 1 we have

(0,°,0), = —(c,0,0) U (0,0, ¢),
(89) (0,0,0) = (0,¢%,0) U (0,0,¢),
(0,0, %) = (c,0,0), U (0,c%,0), .

Proof. By definition, (0, a%,0),, is the unique element in h%(w) such that

1708%((0,°,0), U (0,¢°,0)y) = () = 1,
1n08%4((0,a% 0), U (c,0,0),) =0,
108%((0,0°,0), U (0,0,¢),) =0,

namely (0, o®,0), U (0,c%, 0)y = ¢y while (0,«°,0), U (c,0,0), = (0, 0), U (0,0,c), = 0. By (60),
we obtain the first formula of the lemma. The other formulas are obtained similarly.
O
For any subset U C W we define as in §3.2 the k-subspaces
W U) o= Buwerh® H(w), W (U) == Buwevhi "(w), and h{H(U) = Guerh ' (w)
of h*=1. We also let h41(U) := k@Y (U) @ hiﬁl(U).
4.2 Left action of 7, on E4 ! for w € Q

Let w € W. The action of 7., on the left on an element a € h%'(w) C E%! was given at the beginning
of §3.4. Here we make this action explicit when « is given by a triple

o= (",0% ") € (W ()" CI(B)) = Bt

as in (85). For u € (O/9M)*, we compute 7, - & € hl(w,w). For ¢ = (¢7,c, ¢)y,w € h(wyw) we have
(Twn - @)(e) = ™ (u2a™) + () + ¢ (u=2a™) (see (66)) therefore

(90) Ty - (@7, 00 a)y = (W2a™, %, u2a™ )y, 0
In particular, for s € {sg, s1} we have (compare with (67))
(91) Ts2 * (O‘_)O‘Oaa—’—)w = (Oé_,OéO,Oé+)82w :
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Remark 4.4. Using (83) and the formulas in §3.5, we have for w € W and o = (a=,a’ at), € kY (w):
a” = p N wy)a (w2 )

(92) (U(w) even)): ex-a=a-e, ifand only if { a° = p~ A (wy)a® for any u € (O/9M)*
at = p A\ wy)at (u? ).

and

a” = pAwy)a (u2 )
93 l(w)odd)): ey -a=a-e, if and only if a® = pA(wy)a® for any u € (O/9M)*.
m
at = pA(wy)at(u? ).

4.3 Left action of H on E? when G = SLy(Q,), p # 2,3

Suppose that G = SLa(Q,), p # 2,3 and m = p. Then d = 3. The isomorphism ¢ was defined in (58). The
following proposition is proved in §9.4. Together with (90), these formulas give the left action of H on
E2.

Proposition 4.5. Let w € W, w € Q and o = (a=,a% a™), € (ht(w))Y seen as an element of E. We
have:

(—art,0,0) 500 if we WO with £(w) > 1
e1- (—am,—a% —at)y + e - (20(a),0,0)y + (—at, —a0,0)sw  if w € W with f(w) > 2,
e1- (—a7,—a% —at)y, +eia - (2e(a?), =7 (ah),0)u
Fege - (at,0,0), 4+ (—a™, 0,000 if we W with {(w) =
Ts; - (7,0,
(0,0, =™ ) syw if we W with £(w) > 1
—e1 - (a7,a% a)y +eg-1 - (0,0, —20(a®))y + (0, —a®, —a7 )50 ifw € WO with £(w) > 2
—e1- (a™,a a)y +eg-1- (0,07 a™), —2u(a®))y
+eg-2 (0,0, )w + (0,0, = ) sy if we WO with f(w) =
T - (@7,0,aT), = (—a™,0,0) 500
7 - (@7,0,a™), = (0,0, —a ) gy0-

Corollary 4.6. Let w € W, w € Q and on = (a=,a% a™)y, € (hH(w))Y seen as an element of E?.

C‘(Oéi,0,0é+)w - (aia070)5081w+(0707a+)8180w +€1 ( )Sow +€1 (O,O,—a7)31w+€1‘(a7,0,a+)w.
(a77070)8081w + (0707a+)8150w +€1 ( (0% 7070)80’11}

+ -1+ (0,0, —20(a®)) sy + €39-2 - (0,0, —a )5, if w € 5092,
(a0, 0)5051w + (0,0, )5150w +er- (0,0, —a7 ) 5w

+eiq - (2e(a?),0,0)s ow +€q2 - (—a7,0,0,)sow if w € 510
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(@™,0,0)s505,w + (0 0,c )5180w + e;q-1 - (0,0, _2L(0‘0))51w

teq-1 - (0, (a"') (o ))SOw +€jg-2 - (0,0, - +)SOw if we Wl; l(w) = 2,
(0,0, )818010 + (a 0, )8081w +éeid - ( v(a ) 0 O)Sow .

+eid - (—20(a%), 07 (@), 0) 510 + €192 - (7, 0,0) 5,0 ifweW?, f(w) =2,

(a_a 0, O)S()slw + (07 0407 a+)5150w

+eiq-1 - (0,0, =20(a®)) sy + €39-1 - (0,0,20(a®)) 50w if w € W, L(w) > 3,
(07 07 OdJr)slsow + (aia Qop, O)soslw

+eiq - (2u(a®),0, 0)sow + €id - (—2u(a?),0,0) 40 if we WY, f(w) > 3.

5 k[(]-torsion in E* when G = SLy(Q,), p # 2,3

In this whole section G' = SLy(F).

A) Without any assumption on §, we know that E° is a free left (resp. right) k[¢]-module (Lemma
2.7). Therefore it is k[(]-torsion free on the left (resp. right).

B) Here we suppose that the group I is torsion free and its dimension as a Poincaré group is d. We
study the k[(]-torsion in E¢. We know by Remark 2.21 that the left and right actions of ¢ on E¢ coincide.
Recall that we have the following isomorphism of H-bimodules

(94) PR ker(Sd) D Xtriv

and by Proposition 2.4, we have ker(8¢) 2 J, (H/¢™H )" as H-bimodules. Therefore E< is the direct sum
of its one-dimensional subspace of (¢ — 1)-torsion and of its subspace ker(8%) of (-torsion. This applies
in particular when G' = SL2(Q)), p # 2,3 and d = 3.

C) We study the k[¢]-torsion in E!.
Lemma 5.1. Suppose that G = SLy(F).

i Suppose that p # 2. For any P € k[X] such that P(0) # 0 there is no left (resp. right) P(()-torsion
in E1L.

ii. If § = Qp, given any 0 # P € k[X], there is no left (resp. right) P({)-torsion in E1.

Proof. Let 0 # P € k[X]. Suppose that we know that (X/XP(¢))! = H/HP((). Then the exact sequence

of (G, H)-bimodules 0 — X PO x X/XP(¢) — 0 induces the long exact sequence of H-bimodules

0 gt 29,

E' - HY(I,X/XP(()) = E? -
In particular, there is no right P(¢)-torsion in E'. Since P(¢) -c = J(d(c) - P(¢)) for any ¢ € E*, there is
no left P({)-torsion in E' either.

i. For any field extension &'/k and any V € Mod(G) we have (V ®j k')! = VI @4 k'. Therefore we
may assume that Fy C k (and that p # 2). Suppose that P(0) # 0. Then H/HP(¢) is an Hg-module.
Hence by [0S2] Thm. 3.33 we know that (X/XP(¢))! = H/HP(().

ii. Suppose § = Qp. Then (X/XP(¢))! = H/HP(C) (see §2.4.10). O
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D) Here we suppose that the group I is torsion free and its dimension as a Poincaré group is d. We study
the k[¢]-torsion subspace in E4~1,

Let i € {0,...,d} and £ > 1. Recall that the left action of ¢ on I((E?)V+¥)? = E9= is given by (¢, ¢) —
©(¢-—) : E' — k. In particular, coker(¢’- : E' — E%) = {0} implies ker(¢’- : E4~" — E4%) = {0}.
We explore the converse implication in the lemma below where we refer to the decreasing filtration
(F™E%),,>0 introduced in §2.2.4.

Lemma 5.2. Suppose that G = SLa(§) and I is a Poincaré group of dimension d. Let i € {0,...,d}.
Suppose that there is m > 0 such that ¢¢ - E* D F™E", then we have an isomorphism of H-bimodules:
Ker(C'-: B — B4 2 3(( /! 1YY

In particular, ker(¢t : B4 — E91) =0 if and only if coker(¢’-: E* — E') = 0. The same statements
are valid for the right action of Ct.

Proof. The kernel of the left action of ¢¢ on 9((E")V-F)? is the space of all ¢ € (E*)V"/ which are trivial
on ¢’ E'. Suppose that there is m > 0 such that ¢¢- E? D F™E’. Then any ¢ € (E")Y which is trivial
on ¢+ E' lies in (EY)Vf. Therefore, the kernel of the right action of ¢¢ on 4((E?)V-f)? is the space of all

€ (E")Y which are trivial on ¢¢- E*, namely ker(-¢* : 4((E¥)V-/)d = I(EH)V-N)3) =3((E1/¢t-EHVY . O

Remark 5.3. It is easy to check that ¢¢- E0 > ¢¢- F1EY = F2*F1E0. So we recover ker(¢- : B — EY) =
J((H/C'H)V)? which is isomorphic to (H/C‘H)V. (compare with B) above).

Using Corollary 3.11 we obtain immediately:
Corollary 5.4. Suppose that G = SLy(Q,), p # 2,3. We have an isomorphism of H-bimodules:

ker(¢C-: E* — E%) = 9((E'/¢- EM)V)?
Remark 5.5. We will see in Proposition 6.15 that this space is nontrivial.

Lemma 5.6. Suppose that G = SLy(Q,), p # 2,3 and m = p. There is no left (resp. right) P(()-torsion
in E? for any P € k[X] with P(0) # 0.

Proof. We may prove the assertion after a base extension of k. Hence it suffices to consider the case
P(X) = X —a for some a € k*. As in the proof of Lemma 5.1, it is enough to prove that there is no left
(¢ — a)-torsion in E? or equivalently that there is no right (¢ — a)-torsion in (E1')Y+/ (see (14)). We prove
that for a given m > 1, we have
((—a)-E'+F"E' = E'
By our assumption that 7 = p, we may use the formulas of Cor. 3.10.
o Ifwe WP f(w)>2, wehave (C—a)- (¢, 0)yp = (¢, 0)s 800 — a- (¢, P, 0)y and if £(w) > 1,
we have (( —a)-(¢7,0,0)y = (¢7,0,0)s,50w — @ (€7,0,0)q.
So by induction hl_(/VIV/MZl) +h{ (WO’QQ) C (¢ —a)-E'4+ F™E". Using conjugation by @, we have
proved hL (WO621) 4 pl(W¢=2) 4+ h}r(WMZl) C(¢—a) E'+F"EL

o Ifwe WO ¢(w) >3, we have (C—a)-(0,0,c")y € (0,0, M) sosyw — a(0,0, c‘*‘)w—i—h(l)(WQQ) therefore
Rt (WhHEzh) 4 pl (VVO 21y C (¢ —a) - E' + F™E! by induction and conjugation by .

So at this point we have hl(W€>2) + hi(Wbl) (C—a)-E'+ FmEL
e But if £(w) = 1 we have (¢ — a)(0,c°,0)y € —a(0, 0,0, + hi(W22) + bl (WD)
so h§(W)+hL (WY C (¢ —a)- E' + FMEL
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e Lastly, ( —,0,c ) €(C—a) (¢7,0,0)5p5,0+ (C—a)- (0,O,c+)5130w+hé(W)+h}E(W~/E21) for w € Q.
So hi(W) + L (W) C (¢ —a) - E* + FME".

O]

6 Structure of E' and F? when G = SLy(Q,), p # 2,3

6.1 Preliminaries
We define the following endomorphisms of H-bimodules of E*:
f=C-idg«-(—idg+:c—(-c-(—c

and
g:=C(-idg« —idg«-C:c—~(-c—c-(.

We will restrict them to the graded pieces E* and will then use the notation f; and g;. The following
remarks are easy to check. Here G = SLy(g).

Remark 6.1. i. f and g commute. In fact,
fog=(C+1) idp- ¢~ ¢ idp- (P +1) =go f.
ii. It is clear that the left (resp. right) action of ¢ on ker(f) induces a bijective map. Hence ker(f) is
naturally a H-bimodule.
iii. We have the following inclusions of subalgebras of E*:
ker(g) C ker(f) +ker(g) € E* .
We have indeed ker(f)-ker(f) C ker(g) as well as ker(f)-ker(g) C ker(f) and ker(g)-ker(f) C ker(f).
iv. The spaces ker(f) and ker(g) are stable by conjugation by w (see (48) and use that I'(¢) = ().
v. The spaces ker(f) and ker(g) are stable by J (use that J(¢) = ().
Lemma 6.2. Suppose G = SLa(§F). We have
i. ker(fo) = {0} and ker(go) = EV .

i. If I is a Poincaré group of dimension d, then ker(gq) = E? and ker(fq) = Xiriv as a left (resp.
right) H-module.

iii. Suppose that p # 2 or § = Qp. Then ker(fi) Nker(g1) = {0}.
iv. Suppose that § = Q, with p # 2,3. Assume m = p. Then ker(f2) Nker(g2) = {0}.

Proof. The first point is clear, using in particular the freeness of H as a k[(]-module. For the second
point: we saw in §5B) that ¢ centralizes the elements in £, therefore ker(g;) = E? and the kernel of f4
coincides with the kernel of the action of (2 — 1 on E?. But E? is the direct sum of its one-dimensional
subspace of (¢ — 1)-torsion and of its subspace of (-torsion. So ker(fy) coincides with the subspace of
(¢ — 1)-torsion and is isomorphic to xriy as a left (resp. right) H-module.

The last two points come from the fact that for any ¢ the space ker(f;) Nker(g;) is contained in the
¢%? — 1 torsion space in E'. But for i = 1,2 and under the respective hypotheses, this torsion space is
trivial by Lemmas 5.1 and 5.6. O
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6.2 Structure of E!

We suppose that G = SLy(Q,) with p # 2,3 and we choose m = p. Here we focus on the graded piece E!
and work with the endomorphisms of H-bimodules

fir=Cidpm-(—idgr:c—=(C-c-(—c
and

g1:=C-idgr —idgr1-C:c—=(-c—c-C.
6.2.1 On ker(g1)

In Prop. 3.18 we established the injectivity of the H-bimodule homomorphism
(95) foxoxy) : FTH — ker(g1) .

Proposition 6.3. Assume G = SLy(Q)p) with p # 2,3 and m = p. The map (95) is bijective, so ker(g;)
is isomorphic to F*H as an H-bimodule. In particular, as a left (resp. right) k[(]-module, ker(gy) is free
of rank 4(p — 1).

Proof. It is immediate from Prop. 3.18-i that E' = im( fixox1)) @ hi(W). Therefore we only need to

check that g1 is injective on hl (W). From §2.2.4 we know that, for n > 0, we have
¢-F,E'+ F,E'-( C F,oE' and hence gi(F,FE')C F,2E".
But Lemma 3.13 tells us that modulo Fg(w)+1E1 we have
(0,0, spsyw — (€7,0,0) 505 if w e Whiz1,

gl((c_>07c+)w) = (0_7070)8150111 - (0707 C+)S1sow if we WO,ZZI,
(0, 0, C+)soslw + (Cia 0, 0)3150w - (Ci, 0, 0)soslw - (07 0, C+)slsow itw=we.

This shows that g1 is injective on hl (W). O

Remark 6.4. The above proposition implies in particular that ker(gy) is the centralizer in E' of the full
center Z of H.

6.2.2 On ker(f;)
In Prop. 3.28 we introduced and established the injectivity of the H -bimodule homomorphism
(96) = (He/Hersy  He/Hers, )™ — ker(fr) -

To show that this map is actually also surjective we need to introduce the vector subspace U C E! with
basis

(97) z:=¢€q-(0,0,¢)1-e4-1, e€iq-(0,0,¢)s -€q =1 Ty,

Y :=eq-1-(c,0,0)1 - €iq, €4-1-(c,0,0)s - €iq-1 =Y+ Tsy-

Temporarily we put
U= U +im(fixx,)) + im(f*) .

But note that im(f(x,x,)) + im(f*) = im( f(xox;)) @ im(f*) by Lemma 6.2-iii.
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Lemma 6.5. We have:
a) (x-7sy) Ts; =0 and (y - 7sy) - Ty = 0;
b) x 75, =0 and y- 75, =0;
c) Top  T=0=75, - (x-7Ts,) and 75, -y =0=175, - (Y - Tsy);
d) Tsy X =Y Tsg + €1q-1Ts, [t (1), Tsg -y = T - T, + €iaTsy * fx—(1);
e) (T —x = eqTsgs, * fxt (1) + 2€id * fixox1)(Tso)s
) Cy—y=eq-17s5 * fx- (1) +2e9-1 f(x0,x1)(781)7’
g9) ©-(—x,y- ¢ —y €im(fxyx,)) S im(f*);
h) (2 7Ts)) - Tso = @, (Y Tsg) - Ty — ¥ € IM(f(xgxy)) © IM(fF);
Q) Ty (2 7sy) =y € I (fig ) BIM(FE), Tog - (Y- To) — 2 € I(fxg xp))  IM(fF);
j) W is a sub-H-bimodule of E*.
Proof. a) is obvious. For the subsequent computations it is useful to note that we have
(98) z=eiq-(0,0,¢)1, x-75;, = e€iq-(0,0,¢)s,, y=¢€,q-1-(c,0,0)1, y-Tsy = €;q4-1 - (¢,0,0)5, .

We also recall that im(fx, «,)) ® im(f*) is a sub-H-bimodule of E*.

Points b), c), d), e), and f) are a straightforward computation based on the formulas in Prop. 3.9.
Point g) follows from e) and f) by applying J. By b) we have x - { = (z - 7s,) - s, and y - ¢ = (Y - Ty ) * Tsy
hence h) follows from g). i) follows from d) and h). j) follows from a) - d), h), and 1). O

Remark 6.6. By direct calculation, we have
¢ (x- 7'31) C—(x- 7'81) = —eiq - ((0, 2CL,0)(8081)2 + (0, 20L70)5031) ~eig = —(C+ 1eyq - (0, 2CL,0)SOS1 - €id-
Lemma 6.7. We have E' = im(f(x, x,)) ® im(f*) & U = ker(g1) & im(f*) & V.

Proof. We remind the reader of the following consequences of (66) which we will silently use in the
following:

eid - (0,0,¢)u,w = u ey - (0,0,¢)yy and ey-1-(c,0,0)u,w = ueyg-1-(c,0,0)y,

for any w € W and u € IF¥. We also recall, using (69) and (70) that

z=-eiq-(0,0,¢)1, y=ey-1-(c,0,0)1, - 75, =eiq-(0,0,¢)s,, Y- Ty = €59-1 - (c,0,0)s, -
Prop. 3.18-i tells us that

(i) = B (WZ2) & (@, k((0, €1, 0)s10, — v esa - (0,0, €)1))
(99) ® (B,,crx k((0, ct,0) 0w, + uejq-1 - (¢,0,0)1))
= hé(Wezz) @ (EB%F; k((O, ct,0)syw, — uilx)) @ (@ueF; k((O, ct,0)sow, + uy))

This implies

(100) U2 im(fixg xr) @ bz ® ky = AW @ kz @ ky .
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Next we observe that, by Lemma 3.12, we have
(0,0,¢)y = (0,0,¢)1 -7y and ejq-(0,0,¢)y =2 -7y forany w e WO, and
(c,0,0)y = (c,0,0)1 -7y and ey-1-(c,0,0)y =y -7, forany we wl.
Furthermore, Prop. 3.9 implies
Tw * (07 0, C)l
—Tw - (¢,0,0)

Tw * (Ca 07 0)1
—7w - (0,0,c)

Tw-x  if w=(sps1)™ with m >0,

(0,0,¢)y = { and ejq-(0,0,¢)y = {
1

—Tw -y if w=(sps1)"™sp with m >0,

Tw-y  if w=(s150)"™ with m >0,

(c,0,0)y = { and ey-1-(c,0,0), = {
1

—Tw -« if w= (s150)™s; with m > 0.
It follows, recalling that il is a sub-H-bimodule of E' (Lemma 6.5-j), that

(101) H - (k(0,0,¢)1 ® k(c,0,0)1) - H D ARL(W) @ hL (W)  and
(102) UDH-U-HD ey 1h' (W)@ eghl (W) .
By looking at the definition of x* and using (100) and (102) we see that (0,0, c)1, (c,0,0); € £k So (101)

implies that AL (W) & hl (W) C 4, and together with (100) we obtain 4 = E'.
It remains to check that

(103) B N (im( fxg %)) B IM(f5)) = 0.

If 2 = rx + roy + r3xts, + 14Yy7s, € U with r; € k is an arbitrary element then ejq - 2z - ¢,g-1 = 2,
€iq—1 %" €id = T2y, €id " 2" €id = T3T - Ts,, and e;g—1 - 2 - €;q—1 = T4y - Ts,. Hence it suffices to show that none
of the elements x, y, x - 75, ¥ - Ts, is contained in im(f(x, x,)) ® im(f *+). Obviously we need to check this
only for = - 75, and y - 75,. First notice using (98) and (70) that

z-Ts; = eid - (0,0,¢)s, - €id, Y- Tsy = €5q-1(€,0,0)5, - €591
Therefore we only need to study

€id * (im(f(xo,xl)) + lm(fi)) “eid D egq-1- (im(f(XO,xl)) + lm(f:t)) " €iq—1

and show that it does not contain z - 75, and y - 75,. We focus on the case of z - 7,,, the case of y - 74,
being analogous. It is immediate from Prop. 3.18 that ejq - im(f(xyx,)) * €id = €id - hé(ﬁfﬂzl) - eiq- Now
assume that

T T = Yxox1 T yi € €id - (im(f(xo,xl)) & lm(fi)) " €id -

Applying the operator (- — - ( — 1 on both sides and using Remark 6.6, we have

(C+ 1) TR = (42 - 1)‘3/X0,x1

where z := —ejq - (0,2¢t,0)50s; - €1d = —fxo,x1(€idTsps;) by Prop. 3.18-i. So both z and yx,x, lie in
im(f(xy,x,))- Recall that f(x, x,) induces an isomorphism between F 'H and im( f(xo,x:)) hence the latter
is a free k[¢(]-module. The identity above therefore implies that z = ({ — 1) - yx, x,- This is impossible
because eiq7sys, & (( — 1)F1H.

This concludes the proof of the first equality of Lemma 6.7. The second equality then follows from
Prop. 6.3. 0
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Proposition 6.8. Suppose G = SLa(Q,) with p # 2,3 and m = p. We have:
i. The map f* described in (96) is bijective;

. frogr=giofi =0 on E'.
In particular (cf. Remark 8.29), as a left (resp. right) k[¢T']-module, ker(f1) is free of rank 4(p — 1).
Proof. By [0S2] Remark 3.2.ii we have

: 171,0>1
T(ss1)2w if we Wht=t,

T(s150)2w ifwe WO’Kzl.

(TwC = C27—w = {

We deduce that

fi (f(xo,xl)(Tw)) = f(xo,xl)(<27—w) - f(xo,xl)(Tw)

= {f(XO’Xl)(T(SOSﬂ?w) - f(xo,xl)(Tw) ifwe ?17421’
f(x07x1)(7-(8180)2w) — f(xO,Xl)(T’u}) if w e WoL=1

and, using Prop. 3.18-i, see that

(0, €4,0)(sgs,)2w + Fiuy 3B if w € WHEL,

104 . c ~
(104) F1foco 1) () {k‘X(O,CL, 0)(s150)2w T+ Fruw)r3 B! ifw e w1,

On the other hand we observe that

file)=C-z-C—x=-¢eiq-(0,0,¢)sys, by Lemma 6.5-i and Prop. 3.9
= —é€iq - (0,2¢t,0)555,50 — €id - (0,2¢t,0)s5, by (75)
€ F3E'N im(f(xg,x1)) by Prop. 3.18-i

and, by an analogous computation, fi(y) € F3E! N im(f(qu)) as well. By Prop. 2.1 we conclude that
f1(0) C FyE' Nim(fixe xy)) = F4E' Nker(g1) using Prop. 6.3. This together with (104) shows that fi is
injective on im(f(x,x,)) © V. Lemma 6.7 then implies that im(f*) = ker(f1), which establishes Point i
of the proposition. Furthermore, we have fi(ker(g1)) C ker(g;) since fi and g; commute (Remark 6.1-i).
The fact that fi(0) C ker(gi) then shows, again invoking Lemma 6.7, that fi(E') C ker(g;) which
amounts to our assertion ii. O

Remark 6.9. (1 —e.,) - ker(f1) = (1 —e,) - hL(W).

Proof. We deduce from Cor. 3.10 that left multiplication by ¢ preserves (1 — e,,) - A (W) as well as

RL(W) - (1 — e,); for the latter use in addition that e,, centralizes hi(W) by (71). Applying J, which

preserves hl (W) by Lemma 3.7, one sees that also right multiplication by ¢ preserves (1 — e,,) - hL(W).
We now compute

(1 —eyy) - ker(f1) = (1 — eq) - im(f*) by Prop. 6.8
=(l-e)H x N+ (1—-e)H -x"- N
=H(l—ey) x N+ H1-ey) x"- N
=H(1—ey)(c,0,0); - N+ H(1 —ey) - (0,0,¢)1 - ¢V
= (1 —ey)H - (€,0,0); - N+ (1 —eyg)H - (0,0,¢)1 - ¢V
— (1 —ey) - R (W) - N+ (1 =) - KL (W) - ¢N by (66) and Prop. 3.9
C (1 —ey)-hh (W) by the initial consideration.
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Since (1 — ey,) - ¥ = 0 we conclude from Lemma 6.7 the right hand equality in

(1= e30)  hO(W) @ (1 — ey - RL(W) = (1 = eq9) - B = (1 — €4y) - im(fixgxy)) @ (1 — €5) - im(f) .

The left hand summands are equal by Remark 3.19, of the right hand summands one contains the other
by the above calculation since im(f*) = ker(f;). Hence the right hand summands must be equal as
well. O

6.2.3 Structure of E! as an H-bimodule.

Recall the central idempotent e, = ejq + €;4-1 in H.
Proposition 6.10. Let G = SLy(Q)) with p # 2,3 and assume m = p. We have the following.

1. As an H-bimodule, E' sits in an exact sequence of the form
0 — ker(f1) ® ker(g1) — E* — E'/ker(f;) ® ker(g1) — 0
where E'/ker(f1) ® ker(g1) is a 4-dimensional H-bimodule.

2. As a left (resp. right) H-module, E*/ ker(f1) @ker(g1) is isomorphic to the direct sum of two copies
of a simple 2-dimensional left (resp. right) H-module on which ¢ and e, act by 1.

3. El/ker(g1) is an H¢-bimodule.

Proof. The first assertion follows from Lemma 6.7 and Prop. 6.8-i. As observed before we trivially have
fi(ker(g1)) C ker(gr). Hence f; induces a well defined endomorphism of E'/ker(g;). But Prop. 6.8-ii
implies that this latter map is actually the zero map. It follows that z = ¢ - z - ( mod ker(g;) for any
z € E', which implies the third assertion.

It remains to determine the module structure of the 4-dimensional quotient E'/ker(f;) @ ker(g)
which has as a k-basis the cosets of x, y, x - 75, and y - 75,. Obviously e,, acts by 1 on these elements
from the left and the right. It follows from Lemma 6.5 that ¢ acts by 1 from the left and the right on this
quotient. The same lemma also implies that z and z - 75, generate a 2-dimensional right H-submodule in
E1/ker(f1)@ker(g1). It is necessarily a simple module because the only one-dimensional modules on which
ey, acts by 1 are supersingular, namely annihilated by ¢ (see (26)). Correspondingly one sees that y and
Y-Ts, generate another 2-dimensional simple right H-submodule in E'/ ker(f;)@ker(g;). It is easy to check
that these two simple right modules are isomorphic to each other via the map x — y-75,, 275, +— y. This
proves in particular that E'/ker(f1) + ker(g1) is semisimple isotypic as a right H-module, and therefore
also as a left H-module using . O

6.3 Structure of E?

We still assume that G = SL2(Q)) with p # 2,3 and that m = p. Here we focus on the graded piece E?
and work with the endomorphisms of H-bimodules

for=C-idge-(—idge:c—(-¢c-(—c and go:=(-idgz—idge-C:c—(-c—c-(
as introduced in §6.1. By Prop. 6.10 we have an exact sequence of H-bimodules
0 — ker(f1) @ ker(g1) — E' — E'/(ker(f;) ® ker(g1)) — 0

where E'/(ker(f1)@ker(gy)) is a 4-dimensional H-bimodule. Passing to duals, this gives an exact sequence
of H-bimodules

0— (El/(ker(fl) @ ker(g1)))Y — (El)v — (ker(f1) @ ker(g1))Y — 0 .
We define the sub- H-bimodules
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(BN}, ={g € (EY)Y : {ker(g1) = 0} and (E)g, = { € (E')" : {|ker(f1) = 0}.

Then

(E)Y = (BN}, + (BY)y, and (BN} N (EYy, = (B'/(ker(f1) ® ker(g1)))" .

Lemma 6.11. The composed map
(BN = (BY)Y — (ker(f1) @ ker(g1))"
18 injective.
Proof. We have to prove, for m > 1, that
ker(f1) + ker(gy) + F"E' = E' .

Because of Lemma 6.7 this boils down to proving that z, - 7s,, y, ¥ - 7, all lie in im(f(x,x;)) @im(fH) @
F™MEL. Since y = I'y(x) it is enough to prove this for z = eiq - (0,0,¢); and x - 75, = ejq - (0,0,¢)s,
By Lemma 6.5-¢) we know that (" -z — z and (" -z - 75, — @ - 75, lie in ker(f;) + ker(g1) for any
m > 1. But, using Cor. 3.10, we have (" -z = €;q¢("™ - (0,0,¢)1 = eiq - (0,0,¢)(ss,)m € F?"E1 and then
(M7 = eid - (0,0,€)(s0s)m sy € F?m=1E1 by applying J and using Prop. 3.9. O

We put Ky, := (B n(EY)}, and Ky = (E")"/ N (E')y, . Because of Lemma 6.11 we have
Ky @Ky C (E1)Y>1. Since Ky, and K, inject into ker(f1)" and ker(g1)", respectively, we have -n-¢ =17
forne Ky and (-n=mn-(fornec K.

Lemma 6.12. (EY)Y/ = Ky, @ K.

Proof. Let ¢ € (EY)Y:/. We claim that there exists a linear map n € K, such that Nker(gr) = Elker(gr)-
This implies that { —n € Ky,.

e Suppose £ = £(1 — e4,). Then we can see £ as an element in ((1 — e4,)E1)Y/. Since (1 — eqy) B! =

(1 — eyy) ker(f1) @ (1 — e4,) ker(g1) where (1 — eqy) ker(f1) = (1 — e4,)hl (W) by Remark 6.9 and

(1 — ey ker(g1) = (1 — e4,)hd(W) by Remark 3.19 and Prop. 6.3, we may define 1 to be zero on
(1 - e’YO) ker(fl) and n’(l—ewo)ker(gl) = €|(1—eﬁ,o)ker(g1)-

e Suppose £ = (1—e4,)€ey,. Then we can see € as an element in (e, E1(1—e,)) " Since e, ker(g1)(1—
e~,) = 0 by Remark 3.19 and Prop. 6.3, the linear form ¢ is already in Ky, .

e Now suppose § = e ,e,,. We may consider separately two cases, namely { = ejgfeiq and & =
eia€e;q-1 (the other cases following by conjugation by w). We treat the first case, the second one
being similar. If £ = ejqfeiq, then we can see ¢ as a linear map on e;qEle;q (recall that we are
working in the H-bimodule (E')Y). By Lemma 6.7 and (97) we have

eiaBleiq = eiq(ker(f1) @ ker(g1))eiq @ keiq(0,0,¢)s, -
Define the linear map 1 : E* — k by
77|81d ker(f1)eiq ‘= 0, 77|6’1d ker(g1)eiq *— 5‘eid ker(g1)eiq? and
+oo
77(€id(07 07 c)81> = Z §(€id (Oa QCL7 O)(sosl)j) )

J=1
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which is well defined because £ € ( El)v,f' From (71) we have
6idEleid = eidh(l)(Weven) + eidhi(w()dd) ‘

It remains to check that n € (E')Vf. Since hé(W@) is contained in ker(g;) by Prop. 3.18, we
only need to check that 7 is trivial on ejq - h}r(W‘)dd’ZZm) for m large enough. From Cor. 3.10 we
deduce that ("1 -2 75, = (" eig - (0,0,¢)5, = —eiq(0,2¢t,0) (505, )m+1 — €id - (0,0, €)(55,)ms, for
any m > 0. Hence

€id * (0, 0, C)(sosl)mso

= (" w7 —eia - (0,260, 0) (505, )me

= —eq-(0,0,¢)s, — (Cm'H X Ty — T Tey) — €id - (0,2¢¢,0) (5,5, )ym+1
(s0s1)

= —eiq (0,0,¢)s, — O _ )¢ 7 — ) 75, — e1a - (0,262, 0) (g, )t
j=0

m
€ ker(fl) — €id - (07 07 C)Sl + (ZC )eld (0 2c O) *Ts; — €id - (07 2CL7 0)(8051)m+1
§=0
by Lemma 6.5-¢)
m
= ker(f1) — eiq - (0,0,¢)s, + (ZC Jeid - (0,2¢t,0) 505, — €id - (0,2¢,0) (505, ym+1
j=0
by Lemma 3.12-i

= ker(f1) — eiq - (0,0,¢)s, + Zeld (0,2¢¢,0) (ssp)i 1 — €id - (0,2€,0) (505 ym+1)

7=0
by Cor. 3.10
=ker(f1) —eq - (0,0,c Zeld (0,2¢1,0) (505,)) -
j=1
Since 7 is zero on ker(f1) it follows that
n(eia-(0,0, C)(sos1)mso) = n(—eia-(0,0,¢)s, +Z eia(0, 2c, 0)(5051)j) = —( Z eia*(0, 2c, O)(sos1)j)'
j=1 j=m+1
An analogous computation gives
77(€id ) (Ovovc)(slso)ms1) = (eld (O 0,c Zeld 0, 2ce, 0)(5051) ) - é-( Z €id - (072(:[’7 0)(3051)j)'
j=1 j=m+1

Both are zero for m large enough.

Recall from (14) that we have an isomorphism of H-bimodules

(105) E? =5 3((EYY 1,
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Proposition 6.13. Suppose G = SLy(Q)) with p # 2,3 and m = p. Via the isomorphism (105), we have
ker(f2) =2 Ky, and ker(go) = Ky, and as H-bimodules

E? = ker(f2) @ ker(go).
In particular, foo gy = goo fo =0.

Proof. Let us denote the isomorphism (105) temporarily by j. We had observed already that (n¢ = n
for n € Ky, and ¢(n = n¢ for n € Ky, It follows that j=1(Ky,) C ker(fz) and j=}(Ky,) C ker(gz). We
also know from Lemma 6.2-iv that ker(f2) N ker(g2) = {0}. Therefore, our assertion is a consequence of
Lemma 6.12. O

From Lemma 6.2-i-ii, Propositions 6.8-ii and 6.13 we get:
Corollary 6.14. Under the same assumptions, we have fog=go f =0 on E*.

In the following two sections we determine the H-bimodule structure of the two summands ker(gs)
and ker(f2).
6.3.1 On ker(g2)

The surjective restriction map (E')Y — ker(g;)" induces the injective map of H-bimodules
ker(g2) 2= (Ky,)? — I(ker(g1)¥)? .

We have to determine the image of this map. From Prop. 3.18-1 we know that h(l)(W@) C ker(g1) C

h§(W) @ h'(Q). Hence the decreasing filtration

ker(g1) ifn=1,

"k = s
er(gl) {hé(W£>n) ifn>2

is well defined as well as the corresponding finite dual

ker(g1)""/ := | ] (ker(g1)/F" ker(g1))" .

n>1

If ¢ € (EY)Y'/ satisfies (|F"E' = 0 for some n > 2 then obviously & ker(g) [F" ker(g1) = 0 and hence
§|ker(qr) € ker(g1)¥. Vice versa, let n € ker(g1)"/ such that n|F"ker(g1) = 0 for some n > 2. We
first choose an extension 7 of 7 to h(l)(V[N/) @ h1 () and then extend 7 further to ij on E! by setting
ﬁ\hi(WeZl) := 0. Then clearly |F"E' = 0, i.e., ij € (E')V>/. This shows that our 7 has an extension in
(EY)V+f. By Prop. 6.13 it then must also have an extension & € (E')Y+f which satisfies ker(sr) = 0, 1.,
§ € K,,. We see that the above restriction map induces an isomorphism of H-bimodules

(106) ker(ga) = (K, )? — I (ker(g1)"/)? .

Proposition 6.15. Suppose G = SL2(Q,) with p # 2,3 and m = p. The space ker(gz) is the subspace of
C-torsion in E? on the left and on the right. We have an isomorphism of H-bimodules

(107) ker(gp) = (F'H)" = | J(F'H/¢"F'H)" .

n>1

In particular, ker(g2) is k[C]-divisible.
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Proof. Prop. 3.18-i makes it directly visible that the isomorphism of H-bimodules F'H 2 ker(g;) in
Prop. 6.3 respects the filtrations on both sides. Combined with (106) we therefore obtain an isomorphism
of H-bimodules

ker(go) = I((F'H)")! = (((F' H)!) T = (F H)"

where the last isomorphism is induced by J : H — H. Since (" - F'H = F?>"*1H for n > 1 by [0S2]
Remark 3.2.ii, we also have
ker(g) = | J(F'H/C"F'H)Y .

n>1

In particular, this makes visible that ker(gs) is ¢-torsion. On the other hand ker(f2) does not contain any
left or right (-torsion since it is an H¢-bimodule. It therefore follows from Prop. 6.13 that ker(go) is the
full subspace of left (or right) ¢-torsion in E2. By Lemma 2.7 F1 H is a finitely generated free k[¢]-module.
Hence | J,,» (FTH/¢"FYH)Y 2 k[ /k[¢] @) F*H noncanonically as a k[¢]-module, which shows that
ker(ge) is k[(]-divisible. O

Corollary 6.16. Under the same assumptions, we have ker(f1) - ker(ga) = 0 = ker(gz2) - ker(f1).
Proof. Let a € ker(f1) and b € ker(ge). By Prop. 6.15 we find an m > 1 such that ("™ -b=0=05-(™.
Thena-b=¢"-a-("-b=0=0b-C"-a- (™. O

6.3.2 On ker(f2)
We proceed in a way which is entirely analogous to section §3.7.3. Consider the following elements of E?:

at = (0,0,0)1 —eiq - (0,07 e, 0)5, = (,0,0)7 — (0,¢7 ¢, 0), - €54-1 and
a~ :=(0,0,00)1 + e;q-1 - (0, T, 0)s; = (0,0, )1 + (0, U a 0)s, - €id

where « is chosen as in (59) (see also (93)). It is easy to verify that
(108) Ja’)=a" and J(a)=a"
using Lemma 4.1 and (91). In order to check that a® lies in ker(fy) we compute

at . ¢

J(¢-(a)) =3¢ a")

J((x,0,0)s,s, +€1- (0,0, —x)s, + €1 (x,0,0)1) by Cor. 4.6

= (0,0,0)5,5, + (01,0,0)5;1 ~e1+ (,0,0)1 - e;1 by Lemma 4.1
=(0,0,0)5,50 + Tw_y - (¢,0,0)5, - €1 + (x,0,0)1 - €1 by (91)

= (,0,0)5,5) + €592 - (,0,0)5, + €542 - (x,0,0)1 by (92) and (93).

Hence

C- at - ¢=¢- ((0(, 0, 0)8180 +€q2 (“7070)81 t €2 (0(7 0, O)1>
= (2,0,0)1 + i - (0,671 (1), 0) 24, + €42 (=, 0,0) 2
+ eid2 . (06, O, 0)808% + eid2 . (_(X, O, O, )5051 + eid2 . ((X, O, 0)5051 by COI‘. 46
= (O(,0,0)l + eiq - (0, L_l((X),O)S%SO
= (“3070)1 — €id - (07 L_l(a)70)50 by (91)
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Using Lemma 4.2 we notice that I',(a®t) = a~. Hence Remark 6.1-iv implies that also a~ € ker(f3). As
in Lemma 3.20 we therefore have the homomorphism of left H:-modules

(109) He o He 270 er(fy)

sending (1,0) and (0,1) to a* and a™, respectively.
Remark 6.17. Let w € W with ¢(w) > 1. From Proposition 4.5 we obtain

0 if w!ew!
Tw-at =4(0,0,—x), if wl e WO, ((w) odd
(x,0,0), if w™t € WO, ¢(w) even

(110) and
0 if w' e WO
Tw-a =4 (—a,0,0), ifwle wh, ¢(w) odd
(0,0,&),,  if w™t € W, £(w) even .
Lemma 6.18. 1. For any u € F} we have a™ -7, = u™?7,, -a® and a™ - 71,, = u’n,, -a".
2. We have at -1y, =75p-a” =0 anda 75, =7, a2 =0.
3. We have
at - u(rs,) = 7w UTs,) @ - ¢ and
a - U7gy) = —Tw_, UTs,) - C .

Proof. 1. Using using (66), (68) we compute:

at -7, = (1 ((00,0)1 4 eia - (0,07, 0) 1))
= J((u 2,0, 0),-1+ utea - (0,07 e 0)30—1)
= (2,0,0)y, —u (0,07 e, 0)5, - €541
=02 (1, - (,0,0)1 — T eiq - (0,071, 0),)

= u_27wu cat

and, by an analogous computation (or by conjugation by ), we obtain the second claim of Point 1.
2. Point 2 follows from (110) and (108).
3. We check the first identity. Since a—,at € ker(f3), we may as well check the following

(111) —C-at (15, +e1) = (780_1 +e)-a .
For the left hand side, we have using Lemma 4.1, Prop. 4.5, (91) and (92),(93)

at - (1g, +e1) =3((7s; +e1) ((,0,0)_, — eiq - (0, T, 0)551))
= 3((0707 70()51_1 +er- (“7070)1) = (“’0’0)81 + €42 ((Xa 070)1
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and then using Corollary 4.6:

—Coa (o) = ~(000,0) 0 + e (0,0,00,2 + €42+ (0,0, )y — e+ (60,0, ),
= —(a,0,0)851 +e1-(0,0,00); .
For the right hand side we have, using Remark 6.17:
s ca” = (—q, 0,0)851, e1-a =e1-(0,0,x)1 .
By adding up, we see that (111) holds. O
By Lemma 6.18-2, the map (109) factors through a homomorphism of left H:-modules

Sat T a—
(112) HC/HCTSO @HC/HCTsl Jr4) ker(fg) .

Proposition 6.19. Suppose G = SL2(Qy,) with p # 2,3 and m = p. The map (112) induces an isomor-
phism of H-bimodules

(113) (He/Hcrey ® He/Hers, )™ = ker(fa)

Proof. We need to verify that the map is bijective and right H-equivariant. We may compare with the
proof of Proposition 3.28. Just like in that proof, the right H-equivariance is seen by comparing the
definition (79) with Lemma 6.18.

Concerning the injectivity we first observe that it suffices to check the injectivity of the restriction of
the map to H/HTs, ® H/HTs,. The elements 7, with w € W such that ¢(wsg) = ¢(w) 4+ 1 from a k-basis
of H/Hrg,; they are of the form w = w(sps1)™ or = ws1(sps1)™ with m > 0 and w € Q. Using (90) and
(110), we see that

E*(x,0,0)y if w = w(sps1)™ with m > 1,
(114) Tw-a € E*(0,0, &) if w = ws1(sps1)™ with m >0,
EX(0t,0,0) + kXeq(0, 07 e, ,0)s,  if w = w.

Similarly the elements 7, with w € W such that £(ws;) = £(w) + 1 form a k-basis of H/Hrs,; they are
of the form w = w(s180)™ or = wsp(s180)™ with m > 0 and w € Q. In this case we obtain

E*(0,0, ) if w = w(s1s0)™ with m > 1,
(115) Tw- & €9 k™(x,0,0) if w = wsp(s150)™ with m > 0,
EX(0,0, &) + kX eq-1(0, 071, ¢,0)5,  if w = w.

By comparing the lists (114) and (115) we easily see that the elements
{10 -at : l(wsg) = L(w) + 1} U {7y -a~ : L(wsy) = L(w) + 1}

in E? are k-linearly independent. This concludes the proof of the injectivity. For the surjectivity, we
gather the following arguments:

- A basis for ker(g1) is given by the set of all f(y, x,)(Tw), w € W, {(w) > 1. These elements are spelled
out in Proposition 3.18. From these formulas, we see that an element in ker(fs) lies necessarily in
the space h3 (W*=2) + h2(s1Q) + h%(s0Q) + h2(Q).
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~ From (114) and (115), we deduce that h2 (W1421) —i—hi(Wo’ezl) =>
is contained in the image of the map of the proposition.

— .a— .at
weW £(w)>1 kTyw-a~ +kry-a

— So it is contained in ker(fy) which is invariant under J. Therefore by Lemma 4.1, the whole
space h3 (W*21) is contained in ker(fs).

— But this map is also right H-equivariant. So for w € W with length > 1, the elements a®-7,,-1 =
J(tw-at) and a= - 7,,-1 = J(7, - @) also lie in this image (see (108)). Therefore the whole
space h3 (W*21) is contained in the image of the map.

- The component in
R%(Q) 4 hE(519) + h*(s09)
of ker(fo) is spanned by all 7, - a™ and 7, -a~ for w € Q.

To verify this statement we notice, using the third lines of (114) and (115), that it is equivalent
to saying that the component in h3(s12) + h%(s0€2) of ker(fz) is zero. But the latter follows easily
from the formulas for fix, x,)(Se7w), w € ©, € = 0,1 given in Proposition 3.18.

- We have proved that ker(fz) = hi(WﬁZl) ®DyecqkTw-a” k7, -at and this space is contained
in the image of the map.

O
Corollary 6.20. Suppose G = SL2(Q),) with p # 2,3 and 7™ = p.
i. The H¢-bimodules ker(f1) and ker(fs) are isomorphic.
ii. ker(fy) is a free k[¢*']-module of rank 4(p — 1) on the left and on the right.
Proof. Combine Propositions 6.8 and 6.19. O

Remark 6.21. 1. It follows from I';;(a™) = a~ (see also Remark 6.1-iv) that the diagram

(113)
(HC/HCTSO D HC/HCT&)i — ker(f2)

(O’+,O')'—>(Fw(0')7rw(0'+))i ll‘w
4 (113)
(H¢/Hersg © He/Hemsy )™ — ker(f2)
is commutative.
2. It follows from (108) (see also Remark 6.1-v) that the diagram

(113)
(HC/HCTSO D HC/HCT&)i — ker(f2)

ﬁ0(3®3)l iﬂ
(113)
(H¢/Hcrsy ® He/Hersy ) — ker(fa)

is commutative. Compare with Remark 3.29-2. The maps in the diagram are all bijective.
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7 On the left H-module H*(I,V) when G = SLy(Q,) with p # 2,3 and V
is of finite length

We suppose that G = SLa(Qp) with p # 2,3. The goal of this section is to investigate the cohomology
H*(1,V) = Extyyq(q) (X, V) for any finite length representation V' in Mod(G).

Remark 7.1. Recall that our assumption on G guarantees that the pro-p Iwahori subgroup I has
cohomological dimension 3. We therefore have H(I,V) = 0 for i > 4 and any V in Mod(G).

In a first step we fix a nonzero polynomial @) € k[X]| and consider the smooth G-representation
X/XQ(C¢). Since H is free over k[(] (Lemma 2.7), right multiplication by Q(¢) induces an injective map
on X! and therefore on X. So we have the short exact sequence of smooth G-representations

0—X -2 x s X/XQ(¢) = 0

Hence we obtain the long exact cohomology sequence (of H-bimodules)

Q) Q©)

(116) 0— E° /5 B — (X/XQ(0) — E' =5 EY — HY(1,X/XQ(C))

Q) Q©)

— E? =25 B2 — H*(1,X/XQ(C)) — E* =25 B3 — H3(1,X/XQ(¢)) — 0

and therefore the short exact sequences

(117) 0= E/EQ(C) — HI(I,X/XQ(C)) —s ker(E+! 29, gir1y ¢

Note that all three terms in these short exact sequences are annihilated by Q(¢) from the right. Next we

collect in the following proposition what we have proved in the previous sections about E* as a left or a
right k[¢]-module.

Proposition 7.2. As left or right k[C]-modules we have the following isomorphisms (for 2. and 3. we
need T =p):

1. H= k[g]‘l(p—l)’.

2. E' = R[(FA0D @ k(A

3. B2 = KGR0 @ (KICH)/H)

4 P =k (k[cil]/k[g])4(p_1) with ¢ acting by 1 on the summand k.

Proof. 1. See Lemma 2.7.
4. According to (22) and Prop. 2.4 we have

B~k | JH/H)Y  as H-bimodules.

m>1

Using 1. we obtain

U ey = (| klel/emii)) 0 = (| (=

Cm
m>1 m2>1 m>1

KICI/RICHY) 7Y = (k[CH k1) P

3. By Propositions 6.13 and 6.15 and Corollary 6.20, we have E? = A ® B with A = k[¢F1]4P—1)
and B & Um21(F1H/CmF1H)V, the latter even as an H-bimodule. But F'H is of finite codimension
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in H. Hence the elementary divisor theorem implies that also F'H 2 k[¢]*®~1). Therefore the same

computation as in the proof of 4. above shows that B = (k[¢*!]/k[¢ ]) P,
2. According to Propositions 6.10, 6.3, and 6.8 the H-bimodule E! has the two sub-H-bimodules
A :=ker(f1) and B := ker(g;) which have the following properties:

a. A® B C E! with E'/(A @ B) being 4-dimensional;
b. A= k[¢F* D) and B = F'H = k[¢]*®—1 as left or as right k[¢]-modules;
. E'/B is a k[¢*']-module;

o

d. ¢ acts on E'/A @ B from the left and from the right by 1.

We give the argument for the left k[(]-action, the other case being entirely analogous. Again the elemen-
tary divisor theorem implies that E'/A as a k[¢]-module is of the form E'/A = F @ D with F being free
of rank 4(p — 1) and D being finite dimensional. Since the natural map D — E'/A @ B is injective
must act by 1 on D. Suppose that D = 0. Then we have the short exact sequence 0 =+ A — E' — F — 0
which splits since F is free. We therefore assume in the following that D # 0, and we let D C E! de-
note the preimage of D in E'. Then ¢ acts bijectively on D which therefore is a k[¢*']-module, which
contains the free k[¢(*!]-module A with a finite dimensional quotient. Applying this time the elemen-
tary divisor theorem to the k[¢*']-module D we see that it must be of the form D = F' @ D’ with
F' = k[¢*)*P=1) and finite dimensional D’. This D’ then is a k[¢]-submodule of E' on which ¢ acts by
1 so that (¢ —1)D’ = 0. It therefore follows from Lemma 5.1.ii that D’ = 0. Hence we have a short exact
sequence 0 — F — E' — F — 0, which also must split. O

Lemma 7.3. The multiplication by Q(C) on k[¢] and on k[¢*] has zero kernel and a finite dimensional
cokernel whereas on k[CT']/k[C] it has a finite dimensional kernel and zero cokernel.

Proof. The only part of the statement which might not be entirely obvious is the surjectivity of the
multiplication on k[¢*1]/k[¢]. This is clear if Q(¢) is a power of (. We therefore assume that Q(() is

prime to ¢. But then k[¢]/Q(C)k[¢] = k[¢H]/Q(O)k[CH]. =

In the three next statements we assume in addition that = = p.

Corollary 7.4. The multiplication by Q(C) from the right on E* has finite dimensional kernel and
cokernel.

Using (117) we deduce the following result.
Corollary 7.5. The k-vector space H*(I,X/XQ(()) is finite dimensional.

Next we consider the left k[(]-action on H*(I,X/XQ(()). For this we introduce the polynomial
P(X) == Q(X)Q(5) X 5.
Proposition 7.6. H*(I,X/XQ(()) is left P(C)-torsion.

Proof. We start with the following observation. By Corollary 6.14, we know that for any = € E*, we have
¢-x-(—x € ker(g). We deduce, for any m > 0 and 0 < i < m, that ("™ -z -¢* = ("™ - 2 mod ker(g). We
choose m to be 2deg(Q) which is > deg(P). The coefficients of the polynomial P = > " ja; X" satisfy
am—; = a; for any i. For x € E*, we have

P) - z—C" x- Zalg” x—ZaZCm x- CZ—ZazC’ x—ZaZCm . 2 mod ker(g)

(118) = Z a;iC' - x — Z am—iC™ " 2z = 0 mod ker(g) .

i=0 =0
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Now we prove the proposition. Because of the exact sequences (117) it suffices to show that E*/E*Q(()

and ker(E* 90, E*) are left P({)-torsion. Obviously both modules are annihilated by P({) from

the right. That ker(FE* @) E*) is of left P(()-torsion follows from the above observation: suppose

7-Q(¢) =0, then - P(¢) = 0 and P(C) - x € ker(g) so P(¢)* -z = P(¢) -z - P(¢) = 0. Now let z € E*.
From (118), we deduce that P({)? -2 — (™P(¢)-x-P(¢) = P({) -z - P({) — (™ -z - P(¢)? so

P(Q)?-x=(("P)-x+ P(C) -2 =™ -z P() - P(O) € E*- Q(Q).
This shows that E*/E*Q(() is left P(¢)-torsion. O

Remark 7.7. The formula (118) actually holds true for any nonzero polynomial P(X) € k[X] with the
property that X™P(%) = P(X) for some integer m > deg(P). It shows that, for any « € E* and any

j > 1, we have
P) -2 =¢" - x- P(¢) mod ker(g)

and symmetrically

z- P(¢)! = P(¢) -z - ¢™ mod ker(g) .

This easily implies that the multiplicative subset {P(¢)" : n > 0} of H = E° satisfies the left and right
Ore conditions inside the full algebra E*. Therefore the corresponding classical ring of fractions E;(C)

exists. This applies in particular to P(X) = X so that H is part of the larger ring Ezf We will come
back to these localizations elsewhere.

Lemma 7.8. 1. ModI(G) is closed under the formation of subrepresentations and quotient represen-
tations.

ii. The functor V.—s V1 is exact on Mod! (G).

Proof. i. For quotient representations the assertion is obvious. For a subrepresentation U of a represen-
tation V in Mod!(G) we consider the commutative diagram

00— Xy Ul —= Xy VIl —= Xy (V/U)!

A

0 U |4 V/U 0.

The upper horizontal row is exact by the left exactness of the functor (—)! and the fact that X is
projective as a (right) H-module (cf. the proof of [OS52] Prop. 3.25). By the equivalence of categories in
§2.4.10 the middle and right perpendicular arrows are isomorphisms. Hence the left one is an isomorphism
as well. This shows that U lies in Mod!(G).

ii. This a consequence of the equivalence of categories in §2.4.10. 0

Lemma 7.9. The G-representation X/XQ(() is of finite length. Furthermore, the following sets of
isomorphism classes of G-representations coincide:

a. irreducible smooth G-representations V. such that Q(¢)V! = 0;
b. irreducible quotient representations of X/XQ(();

c. irreducible subquotient representations of X/XQ(().
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Proof. First of all we have, by Lemma 7.8, that (X/XQ(¢))! = H/HQ((). This is finite dimensional over
k by Prop. 7.2.1 and hence is an H-module of finite length. The equivalence of categories in §2.4.10 then
implies that X/XQ(() is of finite length.

Also by Lemma 7.8 the H-module V!, for any irreducible subquotient V of X /XQ(¢), is a subquotient
of H/HQ((¢) and hence satisfies Q(¢)V! = 0. On the other hand consider any irreducible smooth G-
representation V such that Q(¢)V! = 0. By the equivalence of categories V! is a simple H-module. We
therefore have a surjection H — V!, which factors over H/HQ({) and then gives rise to a surjection
X/XQ) =Xoyg HHQ() » Xeyg VI =V. O

Remark 7.10. As pointed out in the proof of the previous lemma the H-module V7 is finite dimensional
for any irreducible smooth G-representation V. Hence there always is a nonzero polynomial @ € k[X]
such that Q(¢)V! = 0.

Combining all of the above we may now establish in a second step our main result.

Theorem 7.11. Let G = SL2(Q),) with p # 2,3. For any representation V' of finite length in Mod(G)
we have:

i. The k-vector space H*(I1,V) is finite dimensional;

i. Assume m = p. If V lies in Mod! (G) and Q(C)V! = 0 for some nonzero polynomial Q € k[X], then
the left H-module H*(I1,V) is P(C)-torsion for the polynomial P(X) = Q(X)Q(+)X (@),

Proof. Let Q(¢) € k[¢] \ {0} and U a subquotient representation of X/XQ(¢). We show by downwards
induction w.r.t. the cohomology degree i = 3,...,0 that H*(I,U) is a finite dimensional left H-module
which, when 7 = p, is of P(()-torsion.

e Here i = 3. First assume that U is irreducible. According to Lemma 7.9 we have a surjection
X/XQ(¢) — U. Because of the bound 3 for the cohomological dimension of I this surjection induces a
surjection H3(I,X/XQ(¢)) — H3(I,U). By Cor. 7.5 and Prop. 7.6, the left H-module H?(I,U) is finite
dimensional and, when 7 = p, of P({)-torsion. By another induction it is easy to see that the result still
holds when U is a subquotient representation of X /XQ(¢).

e Assume the statement is true at rank 7 for 1 <7 < 3.

Consider again first the case of an irreducible subquotient of X/XQ(¢). We call it V' and write it
as part of an exact sequence 0 — U — X/XQ(¢) — V — 0, which gives rise to an exact sequence of
H-modules

H™NI,X/XQ(¢)) — HYI,V) — H'(I,U) .

By induction and by Cor. 7.5 and Prop. 7.6, it follows that H*~1(I,V) is finite dimensional and P(()-
torsion when 7 = p. As above it is then easy to see that the result still holds when V is any subquotient
representation of X/XQ(().

Now we turn to the proof of the assertion of the Theorem. By a straightforward induction using
the long exact cohomology sequence as well as Lemma 7.8 (for ii.) we may assume that V is irre-
ducible. According to Remark 7.10 and Lemma 7.9, there is a nonzero polynomial Q({) and a surjection
X/XQ(¢) - V. So V is a quotient of X/XQ(¢) and the above result applies.

O

Over an algebraically closed field k& we refer to [OV] §5 for the notion of an irreducible admissible
supercuspidal representation. Note that for our group G every irreducible representation is admissible as
a consequence of the equivalence of categories in §2.4.10. We extend this notion as follows to arbitrary
k. Let V be an irreducible representation in Mod(G). By this equivalence of categories V! is a finite
dimensional H-module. Hence, if k& denotes an algebraic closure of k, the base extension k ®; V is still
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generated by its I-fixed vectors and (ko V) =k QK V1 is a finite dimensional k ®; H-module. The
equivalence of categories over k therefore implies that k®j V is a representation of finite length of G over

k. We will call V' supersingular if all irreducible constituents of k ®;, V are supersingular in the sense of
[OV] §5.

Corollary 7.12. Let G = SLy(Qp) with p # 2,3. An irreducible representation V' in Mod(G) is super-
singular if and only if the left H-module H*(1,V') is supersingular.

Proof. Tt is shown in [OV] Thm. 5.3 that, when k is algebraically closed, an irreducible (admissible)
representation Vp in Mod(G) is supersingular if and only V{ is (-torsion, namely if and only V{ is
supersingular. Hence V is supersingular if and only if Vi is (-torsion for all irreducible constituents V; of
k ® V. By Lemma 7.8 the latter is equivalent to (k ®; V)! being (-torsion hence to V! being ¢-torsion,
i.e., being supersingular (see §2.4.5). But by the equivalence of categories in §2.4.10 the H-module V! is
simple. If it is (-torsion it must satisfy (V! = 0. So we apply Thm. 7.11.ii with Q := X to see that then
all of H*(I, V) is (-torsion and hence supersingular. O

We remind the reader that in Prop. 2.20 we had determined for which irreducible representations V'
the top cohomology H?(I, V) vanishes.

8 The commutator in £* of the center of H when G = SLy(Q,), p # 2,3

We assume in this section that G = SL2(Q)), p # 2,3 and m = p. Recall that we denote by Z the center
of H. In this section we consider the subalgebra

Cp(Z)={&€FE", 2-E=E-2 YzeZ}
of E*. We are going to describe the product in this algebra. We denote by Cp:(Z) its i*! graded piece.
Proposition 8.1. Cg-(Z) coincides with the commutator of ¢ in E*, namely with ker(g):
Cp-(Z)={&€E", (-&=&-(}.
Proof. As H-bimodules, we have

ker(go) = H, ker(g) = F'H, and ker(go) = (F1H)V" = U (F*H/"F'H)Y

n>1

(see Propositions 6.3 and 6.15). So these spaces are contained in Cg+(Z). Lastly we explained in Remark
2.21 (see also §5B)) that the elements of Z centralize the elements of E? = ker(g3). O

We recall some notations and results from §2.4.9, §6.2.1 and §6.3.1:

e Cpo(Z)=H,

e We have an isomorphism of H-bimodules fi, x,) : F YH — Cpi(Z). We keep track of its inverse
(119) f(;}hxﬂ Cp(Z) = F'H, .

e We have an isomorphism of H-bimodules (see (106))
(120) Cr2(Z) = H(F H)"T )

and we denote by o the preimage of 7,)| 1y by this map for w € W, ¢(w) > 1. The set of all these
o s forms a basis of Cp2(Z).
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e Cps(Z) =2 I(HY/) as H-bimodules. As in §2.4.9, the element in E? corresponding to 7,/ is denoted
by du.

Remark 8.2. Let w € W with £(w) > 1, w € Q. Using formulas (45), we obtain immediately

if we We with £(w) > 1,
o, oG, ifwe W= with £(w) Z
if w e W€ with ¢(w)

if {(w)
oy, ifwe W with f(w) > 3.

Remark 8.3. i. We have o, U f (Tw) = 0p,ww for all v,w € W with l(v),L(w) > 1.

(x0,x1)

— In particular, using (49) and Proposition 3.18-v we see that the image of &, by conjugation
by w is «*

www 1"
— Using Proposition 3.18-iv and recalling by [OS3] (89) (8.2) that J(¢w) = ¢,—1, we deduce (see
also [OS3] Rmk. 6.2) that J(oc;,) = —ocf 1.

ii. Recall that the element «° € 1 + pZ,/1 + p*Z, was chosen in (59). For w € W with £(w) > 1,
there is a unique element in ker(go) which, when seen as a linear form in (E')Y"f, coincides with
(0,%,0), if w € wo (resp. —(0,00,0),, if w € Wl) on ker(gy) (see Lemma 6.12 and Proposition
6.13). By Proposition 3.18-i, this element is o . By definition, it is zero on ker(fi).

When w € W, the element o —(0, a2, 0),, is an element of ker(f2) which coincides with —(0, &, 0),,
on ker(f1). But Remark 6.9 implies that (1 — e, ) - (0, ®,0),, is trivial on ker(f;). Therefore, and
by conjugation by w (Lemma 4.2),

(121) ot — (0,02, 0), € ey, - ker(f2) if w e WP
o, + (0,02, 0), € €y, - ker(fo) if w e W .

8.1 The product (Cpi(Z2),Cp(Z)) = Cp2(2)

Recall using (46) that we have a homomorphism of H-bimodules

(122) F'H — d(F*H/F*H)V)?
V. i =
s Twlrig i {(w)
0 if £(w) > 2

which is trivial on F?H. Identifying (F'H/F?H)V with the sub-H-bimodule of the linear forms in
(FYH)V>f which are trivial on F2H, we obtain a homomorphism of H-bimodules

F'Hoy F'H — J(FYH/F?H)V)? — I((F1H)V-T)?
(123) o ~T Tylpg i l(w) =
0 if {(w) > 2
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Remark 8.4. Let v,w € W with length > 1, w,w’ € Q and € € {0,1}. Using (45), we see that the map
above has the following outputs:

Tws. @ Turs, — €1 'Ts\i\pH = Ts\£|F1H'61
Twse @ Tw'si_e 77 0
and

Ty @ Ty — 0 if £(v) > 2 or {(w) > 2.

We see that (123) is a symmetric bilinear map onto a 2-dimensional k-vector space.

Proposition 8.5. Assume that G = SL2(Q,), p # 2,3 and m = p. We have a commutative diagram of
H-bimodules

Yoneda product

(124) Cp(Z2) ®u Cp(2) Cr2(2)
(119)@(119)lg (120)ig
(123)
F'Hoyg F'H I((FLH)V-TY

Proof. Because of the isomorphism (119), the H-bimodule Cz1 (Z)® g Cri(Z) is generated by the elements
of the form f(;(l)’xl)(TSE)®f(;})’xl)(Tsé) = x.®%, for €, € {0,1}. Therefore, using Remark 8.2, it is enough
to prove that

Xe X1—e =0 and X - Xe = €1 - o, .

We verify these identities now. In the calculations below, we use formulas (66), (68), (69) the definition

of the idempotents (36), Proposition 3.9, Lemma 3.12-i and Proposition 2.1.

e First we check that

xp-x1 = — ((0,¢°,0)5, + g1 - (c%7,0,0)1) - ((0,¢%,0)5, — (0,0,c% 1)1 - eyq-1)
=—1(0,c%0)s - (0,°,0), + (0,¢%0)5, - (0,0,%1)q - €41
— €iq-1 - (c®71,0,0); - (0,c%,0),, + €ig-1 - (c®71,0,0); - (0,0,c%71); - €ig-1
=—((0,¢,0)5 - Ts; UTs - (0,€°,0)5,) + ((0,€%,0)5, UTsy - (0,0,c%71)1) - eyq1
—eiq-1 - ((€%710,0)1 - 7, U(0,¢%,0),) + eq-1 - ((€2:71,0,0)1 U (0,0,c% 7)) - eq1
= (0,cY, 0)sps, U (0, cY, 0)sps1 + €59-1 ((c%1,0,0); U (0,0,c% 1)) - €iq-1
= 0 by Example 3.6.

Likewise, by conjugation by w (see Proposition 3.18-v) we have x; - x¢9 = 0.
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e Next we compute

xg - %0 = [(0,¢%,0),, + €iq-1 - (c®.71,0,0)1] - [(0,c°,0),, + -1 - (c®1,0,0)4]
= (0,¢",0), - (0,¢%, 0)5+
(O,CO,O)SO (c%71,0,0)1 - g + €ig-1 - (c®.71,0,0); - (0, Y, 0)s, (using (69))
=(0,¢%,0)5 - (0,¢%,0)5p — Y (u](0,€% 0)s * T, Uiy - (€”271,0,0),]

ueFé
_1[(COL_1) O) O)wu . TSO U Twu (07 CO, O)So])
= (O,CO,O) 0 C 0 30 + Z 0 C 0 Sowu (07 07 COL_I)SOwu]
uEFX

= ul(€®,0,0) 0w, U (0,€°,0) 50, ] -

ueF?

But by (11), there exists 7,2 € H?(I,X(s3)) such that (see Lemma 3.12-ii)

(07 Coa 0)50 ) (07 Cov 0)50 = [(07 CO) 0)50 “Too U Tsg (07 CO’ 0)50] + ’752
= [(_61 ’ (07007 0)50 — G-t (Cobil’ 0, O)So)
U ((07 _C(]’ 0)50 et (07 0, COL71)80 ’ eid)] + Vs2
::_{(61‘(070070)80)LJ((O707COL71)S 'eKD]
+[(eq1 - (€%71,0,0)50) U ((0,€%,0)s, '61)]
—[(eg1 - (c%71,0,0)5) U ((0 0,e% )sg - €ia)] + 2
0

=- Z (0, C070)wu80) U ( Z (0 0,¢c )Sowv)]
u€lFy vEF)
+ [ Z U_l(cob_ly 0,0)w,s0) U ( Z (0, c’, 0)sow, )]
u€Fy veEF)

- [(e'd_1 ) (COL_170’ 0)50) U ((0, 0, COL_I)SO : €id)] + '73(2]
= - Z 0 c 0 sowu (anacob—l)sowu

u€Fy

+ Z ~1,0,0) )sowu U (Oacoao)swu

uEFX
- [(eid_l ’ (COL_170a0)80) ((0 0, c _1)80 : eid)] + ’758 ’

So
x0 - X0 = —[(eq-1 - (€°071,0,0)5,) U ((0,0,c% 1), - €1a)] + Vs2
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Compute that
(eq-1 - ("71,0,0)5,) U ((0,0,¢% 1), - i)

= ( Z u_l(COL_l, 0, O)wuso) U ( Z U_l(o> O¢COL_1)Sowv)

uelFy vEF)

= ( Z IU’il(COLil? 0,0)w,s0) U ( Z 0(070700['71)“}’1180)
ueFy veFy

= (€%70,0)u,5 U(0,0,¢% sy == D (0,0%,0)0,5 by (89)
u€lFy u€lFy

=e1-(0,0°,0)5, = —€1 - o} by (121) .

S0

Since xg and ocf; both lie in the kernel of the left action of (75, +e1) (Remark 8.2) we obtain directly,
using the formulas of Prop. 4.5, that V2 = 0. So as expected Xg - Xg = e - o5,. The same result is

valid with s; instead of sy by conjugation by w (Remark 8.3 and proof of Proposition 3.18-v which
says that 'y, (x9) = x1).

O]
8.2 The products (Cgi(Z),Cgs-i(Z)) — Cps(Z) for i = 1,2
For 7 € F'H, we have the homomorphisms of left, resp. right, H-modules
L, :%H 5 3F'HY, h—sh-7=3(r)h and R,:9H? - 3(F'H) hws 1-h=hi(r)
which by pullback give homomorphisms of right, resp. left, H-modules
L A(FHE)YY - 3(HYY, aw— aoL, and R':Y(F'H)V)Y -9HY)Y, a—aoR,

such that Lj, (o) =z - (Li(y - @) and R}, (o) = (Ri(a-x)) -y for v,y € H and o € I(FYH)V). We
therefore have natural homomorphisms of H-bimodules

F'HeuI(FTH)V)Y? — I(HV)I
r@a — —Li(a) = —a(3(r))
3((F1H)V)3®F1H N H(HV)B
a®T — —Ri(a) = —a(_3(r))
which respectively induce homomorphisms of H-bimodules
(125) F'H @y d(F*H)-? — 3(HV-)?
(126) WFHY Y oy F'H — 3(HY)

Proposition 8.6. Assume that G = SLa(Q)), p # 2,3 and m = p. We have commutative diagrams of
H-bimodules

Yoneda product

(127) Cp1(Z) ®@u Cp2(2) Cps(Z) = E3
(119)®(120)l5 ElAS(See (14))
FUH @y Y(F H)" ) — 2 HHVT)?
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Yoneda product

(128) Crp2(Z)®u Cp(Z)
(120)@(119)%
I(F*H)Y Y @y F1H

Cps(Z) = B3
EiA3(see (14))

(126) W

Both these Yoneda product maps have image ker(83), namely the space of (-torsion in E3.
Proof. Preliminary observations:

A) For s € {so,s1} and w € W, £(w) > 1, the map (125) sends 75 ® 7./ |p1g to —75 - 7 € I(HV-)T |
and (126) sends 7./ |1y ® 75 to —7 - 75 € I(HVT)T .

B) By Remark 6.1-iii, we have ker(g1) - ker(fa) C ker(f3) and likewise ker(f2) - ker(g1) C ker(f3). But
ker(f3) is a one dimensional vector space with basis e - ¢1 and supporting the character x4, of H
(Lemma 6.2). Therefore, ey - ker(g1) - ker(fa) = {0} and e - ker(f2) - ker(g1) = {0} for any A # 1.

We now turn to the proof of the commutativity of the diagrams. The left H-module Cg1(Z) is generated

by xo and x;. Hence, and observation A) and (45) above, it is enough to prove, for € € {0,1} and w € W,
l(w) > 1:

w

X '(X* = —T qb — _¢S€w+el'¢w ifw€wlfe
€ Se w 0 iwaWE

T R St
v R N if wteWwe .
Using Remark 2.16, these identities show that the Yoneda product maps have image ker(83).

By the proof of Proposition 3.18-iv, we know that J(x.) = —7,2 - Xc and this is equal to —x. - 72
(since f(x,x;)) 18 @ homomorphism of H-bimodules). By Remark 8.3-i we have, that J(oc,) = —o _;.
Lastly, J(¢w) = ¢,—1 by [OS3] (8.2). Since § is an anti-involution of the graded algebra E*, it is therefore
enough to prove the first identity above (namely we focus on the commutativity of (127)).

e Suppose w € W€ with ¢(w) > 1. Then by Remark 8.2 we have o, = (75, + e1) - Cx:_lw_ But
Xe - (75, + €1) = 0. Therefore x - o, = 0.

e Suppose w € W€ with {(w) > 1. We know from (121) that

*

€ (0,0°0)y + €4 - ker(fa) ife=1

{oc; € —(0,a°,0)y + €y - ker(fo) ife=0
(xw

so by observation B) above, we have
N {—xe (0,00,0), ife=0
xc - (0,02,0), ife=1.
Therefore, when € = 0 we compute, using Proposition 2.1 and Lemma 3.12-i,
xg - oy, =((0,¢%,0)50 + eq-1 - (c%7,0,0)1) - (0,02, 0),
0,¢",0)5, - (0,0, 0)y + €59-1 - [(€?71,0,0)1 - 7 U (0, &%, 0),]

( [

(0,°,0)s, - (0,0%,0)y + €591 - [(€2:71,0,0), U (0, o, 0)4]
(

[

0,c%,0)s, - (0,a°,0),
(0, c’, 0)so - Tw U sy - (0, oco,())w] + o Psgw Where fu, € k.
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Now using Lemma 3.12-ii, Proposition 4.5, and (90), we compute
(0,€°,0)50 * 7w U Ty - (0, °,0)yy
= (e1-(0,¢%0)y) U (er - (0,a%0)w) — (eg-1 - (c%7,0,0)0) U (eia - (2e(a”),0,0)y)
= Z (0, c’, 0)w,w U (0, o, 0)w,w] — | Z U_l(cob_la()?())wuw U U(2L(a0)> 0,0)w,w]

u,vE]F;< quE]F;;

= Z (0,€°, 0w U (0, &, 0) ] — | Z (c”7,0,0)w,w U (20(a?),0,0),u]
u€Fy u€Fy

= [Z ¢wuw] - 2[ Z d)wuw] =e1 - u by (86)
u€Fy u€Fy

So xq - (XZJ = e Py + de)sow' But (Tso + 61) : (61 CQuw + Nw@bsow) = €1 - ¢sow + twel - Qbsow
(see (45)) and x¢ being in the kernel of 7, + €1, we obtain p,, = —1. Therefore, as expected,
X0 - Xy = €1 G — Psqw = —Ts, - Pw- The case when € = 1 may then be obtained by conjugation by
w ((49), the proof of Proposition 3.18-v which says that I'y,(x0) = x1), and 8.3-i).

O]

Remark 8.7. For w € W with length 1 and € € {0,1} the map (125) satisfies:

0 ifwe we
—y  ifw e Wi

where 1, was defined in Remark 2.16.

Together with Remark 8.4 and using Propositions 8.5 and 8.6, this completely describes the triple
Yoneda product C1(Z2) @y Cpi(Z) @ Cpi (Z) — Cps(Z) = E? with image the subspace kej - ¢, ® ke -
s, C ker(83).

9 Appendix

9.1 Proof of Proposition 2.1

This proposition is written in the general context of G := G(F) being the group of F-rational points
of a connected reductive group G over § which we assume to be §-split. The first point was proved
in [OS3] Cor. 5.5. To prove the second point, we recall some notations of [OS3]. The affine Coxeter
system (Wysy,Sars) attached to G was introduced in §2.1.3 loc. cit. Recall that We s is a subgroup of
W = Ng(T)/T° and that W = Na(T)/T° (sce §2).

The action of 7, where w € W has length zero is given in [OS3] Prop. 5.6 (it is the same formula
as (63)). Using this formula together with (9), we see that it is enough to prove the second point of
Proposition 2.1 in the case when v is a lift in N(T)/T" of s € Syfy. For s € Sqzf, we pick the element
ns € N(T) as defined in §2.1.6 loc. cit. and let v := nyT"'. Recall that each s € S,fs corresponds to an
affine simple root of the form (o, b). As in (2.13) loc. cit., the corresponding cocharacter & carves out
the finite subgroup &([Fy]) = {a([z]),z € F)} of T°, where [_] : F} — O denotes the multiplicative
Teichmiiller lift. By (2.18) loc. cit., we have

nsIn;' T =10 UzquX zo(r[2)a([z)n; ' T CTU | Ia([2))ns' T =10 Uwed([FqX] Twn 'l

2€Fy

)
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where z,(7[2]) € I is defined in loc. cit. (2.14). We choose a lift v € N(T) of w € W. Because of the
condition on the length (namely £(vw) = ¢(w) — 1), we know that Iwl = In; ' Ingil and therefore

(129) ndwl = IngdI U | J 2a(x"[2])a([2])n;  IngiT
zEF;

C InabI U | J Ta([2)w] = InabI U Uwea([lﬁ‘x})lwwl :
q
zEF;

This shows a result which is more precise than the one announced in Proposition 2.1. Namely, when
v =n,T", we have
a-be H(L,X(ww) o @ HMYI,X(wi)) .
wea([Fg])
Let w € &([Fy]) and u, := wi. We study the component ¢, of a-b in H"*(I,X(uy)). We have
ng Tu,I N IWwI = n;  (Twwl Nnglwl). From (129) we obtain that

ng 'Tu, I N Il = U ny lzq (V2] a([2])ng Hngbl = U L.ng taa (70[2))ug I
2€F; a([z])=w 2€F; ,a([2])=w
The second identity comes from the fact that I,, = I, -1 is normalized by J by Cor. 2.5-iii. and from
(2.7) in Lemma 2.2 (still in [OS3]). Now suppose that G s semisimple and simply connected, then by
the proof of Lemma 2.8 loc. cit., the map & is injective. Therefore there is a unique 2z € F; such that

a([z]) = w and
ng Tu,I O Tl = Iy ng tae (70[2])uu I

To apply the formula of Prop. 5.3 of [0S3], we need to study the double cosets I,,_\ (ng * Tu, N TwI)/I 1.
But from Lemma 5.2 loc. cit. and the above identity, we obtain immediately:

ng g, N Iwl = Insns_lxa(ﬂh[z})uwfu;1

Let h := n;'zq(7[2]))u,. We have u,h~ Thul! = z4(7[2]) "InsIn; toa(792]). Since x4 (79[2]) € I
normalizes I, and since I, C I5 (Lemma 2.2 [oc. cit.), we obtain:
L, Nugh ™ Thuyt = TN wlw™ N (2o (7 [2]) nsdng tza(7[2]))
= 2o(mV[2])) T zo (70 [2]) Nwlvw ™t = I, Nwlw™t = [, NI, =1, = I,,
By Remark 5.4 loc. cit., it implies that the component of a-b —a - 7, Uy, - b in H (I, X (u,)) is zero.

So
a-b—a-TyUTy, -be HT(I,X(nsw)).

This concludes the proof. We add the computation of this element. Using Lemma 2.2 and Lemma 5.2-i
loc. cit., we obtain the following. Let u := nsw. We have n;llnsu') C I, ,wl therefore ns_lfnsu') INIwl =
I, wl and L, \(ny'Tun IwI)/I,-1 is made of only one double coset I, wTI,-1. We have I = I, and
I, Nuw 1Iwu = nstns while I Nuw ™ wu™t = I, and wlut Nuw™Hwu™ ' = ng Ly,n; . So, by Prop.
5.3 loc. cit., the component ¢, in H (I, X (ngw)) of a - b is given by

Ing
Shy, i (Cnow) = COI‘eS?SlwnS (resns - (Shns (a)) U (nS* Shw(b))).
In particular if G is semisimple and simply connected, then the image by Sh,,_; of the element

a-b—a-1pyUTy, - b,

70



which lies in H* (I, X(ng)), is

cores?;jzngl(resins el (Shy, (@) U (ns« Shw(b)))

] —1
— coresy* ™ (res
nsw

9.2 Computation of some transfer maps

We use notations introduced in §2.4.1 and §3.2, see in particular Remark 3.2.

Lemma 9.1. Suppose p # 2 and G = SLy(F). Let w € W with length m := {(w) which we suppose > 1.
Let s € {so,s1} be the unique element such that {(sw) = l(w) — 1.

i. Suppose T # Qp. If m > 2 or m =1 and q # 3, then the transfer map (Isy)o — (slys o is the
zero map.

ii. Suppose that § = Q. If m > 2 or m =1 and p # 3 then the transfer map (Isy)e — (sLys™V)e is

147z vy 1 1+7%Zp 722y . .
( "z 1+7rt) = (0 ply) mod <ﬂm+1zp 14722, if s = 5o
14mz 71y 10 14722, 7Ly o
( re 14nt )7 (p7rz 1) mod w32, 14727, if s = s1.

Proof. Compare with [OS2, Prop. 3.65]. We let m := ¢(w). By conjugation by w, it is enough to treat
the case of the transfer map (I,) _;)a — (s0l,,5; ") in both the proofs of i. and ii. We denote this map
by tr. Recall that when s = sg, then I, = I, and I, = ;;_1 where

_ (1+m M

I 50—777—1551 = ( mm 1+fm) :

m—1 *

(5’ 1)+

By the Iwahori factorization of Int_l, it suffices to compute the transfer of elements of the form (4, ¢),

(5 L21), and (3Y) of I} ;. Let S C O be a set of representatives for the cosets in O/9. Then the
matrices ((1) ll’), for b € S, form a set of representatives in the right cosets solnfbsal\lgfl.

. 9) € sol,s5 ", which is normal in I}, we have

_ b\ — by b2 — -1
() =TT D GO (370 =TT (M o) mod @(solysg?)
beS besS

- Since (

where @(sofn_lsal) denotes the Frattini subgroup of SOI;Lsal. From [OS2, Prop. 3.62] we get

— -1 -1 — 7-1e—l — [ 1+mm o2
[s0L80 " s0Lmsg | = solIm, I]sg —< o1 g+t ) SO

(305755 o = O /ML ¢ (14 M/((1 -+ L)1+ IMPP) x /M2,
In this isomorphism the above element corresponds to

(gn™v mod M H(l + br™v) mod (1 + M™ ) (1 4+ MP, —a™v Z b* mod M?)
b b
= (0, 1+ 7™ bmod (1+M™ ) (14+M)P, —x™v Y b mod M?) .
b b
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The zero coordinate comes from the fact that for any choice of § we have ¢9n™ C IMM™+1,

View b — b and b — b? as Fg-valued characters of the group F; of order prime to p. By the
orthogonality relation for characters the sum ZbeF; b, resp. Zbqux b2, vanishes if and only if the
respective character is nontrivial if and only if ¢ # 2, resp. ¢ # 2,3. Since we assume p #* 2 the
second component is zero whereas the last component is zero if either m > 2, or m =1 and ¢ # 3.

- For t € 1 + 90, the element (0 .21 ) again lies in sol;5, " so we have

(52 =TT (5,2 (7)) =TL(4 ) mod a(sumsy ).

besS besS

The above element seen in (sol,, s, D corresponds to

(0, t9 mod (1+ 9™ )(L+M)P, (¢! —1)> " bmod M?) .

Since t? is a pth power, the second component is zero. The last component is zero since ¢ # 2.

- To Compute tr((§ %)), where u E 9, we follow the argument of the proof of [0S2, Lemma 3.40.i.a)].
Let U(M ((1) ) and U(D) := ( 9). Since I, = = U(D)sol,,5, " we obtain the commutative
dlagram ([ W] Cor 1.5. 8)

H'(sol, 89t k)~ HYI}_, k) or dually U(D)e U(M) e
\Lres ires \L i
H' (U (M), k) === H'(U(D), k). (I3-D)e —= (s0lpsg e

The upper right horizontal arrow is the transfer map U(O)e — U(M)g and it coincides with the
gth power map g — ¢¢ ([Hup] Lemma IV.2.1). So we study the image of u € O under the map
O — M,z gz. If § # Qp, then we have ¢O C IM2. Therefore tr(({ %)) = 0 mod ®(sol,s5"). If

§ = Qp, then tr(((l)%)) ((l)plu) mod CID(SOI;LSEI).

Under the hypotheses p # 2, and m > 2 or m = 1 and g # 3 we have proved: if § # Q,, then the transfer
map (It e — (sol,s5")e is trivial; if § = Q,, then the image of

1+mx y _ 10 1+7z 0 1 Lﬂ +
( Mz 1+7rt) - (ﬁﬂi 1 0 (l+mz)~1 0 1+1 e I -1

by the transfer map (I;7_|)e — (sol;55 e is ((l)ply) mod ®(sol;,55"). O

9.3 Proof of Proposition 3.9

Here G = SL2(Qp) with p # 2,3 and 7 = p. Let w € W with length m := £(w). For s € {sg,s1} we
compute the action of 75 on an element ¢ € H'(I, X(w)) seen as a triple (¢7,c’, ct),. Using Lemma 3.4
and knowing that the map (48) of conjugation by w is compatible with the Yoneda product hence the
action of H, it is enough to prove the formulas for s = sy. We recall the following result from [OS3] Prop.
5.6. There we worked with n,, (instead of the matrices s; of the current article) where ng, = so (but
ns, = 7). Recall so = (% §). We have either £(sow) = £(w) + 1 and 7, - ¢ € hl(sow) with

(130) Shsyw(Tse - €) = res?olwso (50* Shw(c)) ,
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or {(spw) = f(w) — 1 and

(131) Ton €= Ysow T O Yow € bl (s0w) & €D h' (ww)
weN weN
with
—1
(132) Shsgw(Vsow) = COI”es?SOIZSO (so* Shw(c)) and
(133) Sy (Vo) = (S0wy ((1) O ) s071), Shy(c) -

A) Case when ((sow) = £(w) + 1. It means that w € W°, I, = I." and Iy, = ma1- We compute the
composite map H' (I} k) 2% H'(solfsyt k) —= HY (I, k). Let X = (1‘;” p{f;f) € I, Then

sy X sg = (*1?%9 1;’;1), Its image in (I;})e (see (52)) corresponds to

(=y,1 = p2,0) = (=y, 1 +pt,0) € Zy/pZy x (1 + pZp) /(1 + p*Zy) X Zp/DLyp -
This proves that Shgy, (7, - ) is given by (y,1 + pz, z) = —c (y) — °(1 + pz), namely
0

Tso - €= (0, —c”, —¢ )spw if m >1

and if m = 0 then 74, - ¢ = (0,0, —¢ ) squw-
B) Now suppose {(sow) = £(w) — 1. Then 7y, - ¢ has a component s, € h!(spw) and a component
Zuemg Yoouw € Bpeq b (ww). Recall that w, was defined in (37).

1) We compute ZueF; Youw € Bpeq b (ww).
In fact, for all u € F7, we compute the elements ¢, € H Y(I,,, k) defined by

e ct D> Yuw= P Shyly(en) € E B (waw)
ueFy u€elFy u€eFy

namely €, = Shy,w(Ywew) — (Wu )« Shy(€).
Recall 1, =1, = (lzgf” f)erZZ’;) for any w € Q. Compute sow;, * <(1) [“]171 ) sal = (7@] (1)) wy,. Therefore,
by (133)

Shiio (o) — (60)+ Shun(€) : X > (). Sha(@) ((y 8) 7 X (L §) X7

for any X := (1;590 {JZ&) € I,,. We have

—1
1.0 1.0 -1 _ 1+pz—p™ylu] Py -1
(—[uJ 1) X (—[ul 1> X = <pz+p<x—t>[u}—pmmu21 1+pt+pmy[u}> X
Via (57) the image of this element in (I,,)s corresponds to
(2x[u] —pmfly[u]z, 1 —p"y[ul],0) € Zy,/pZ, x (1 —i—pr)/(l —|—pZZp) X Ly | PLyy.

So for u € F, we just computed that Shy,,w (Yw,w) — (Wu)« Shy (c) is the element &, in Hom(/,, k) sending
X el, to

()e Sha(e)((22f] — p™y[ul®, 1 — p™y[u], 0)) = Shy(e) (2] — p™ 1y, 1 — pylu], 0)
= (2z[u] ™ = p™y) 4+ (1 — py[u))
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If m =1, then €, sends X onto (see notation (58)):
[u]=12670(1 + pz) — [ "2 ([ul?y) — ]~ (yful?).

Using (72) we see that its preimage by Shy,. is the component in h!(w,w) of eiq - (0, —2¢7¢,0), + €542 -
(0,0,¢ ) + €iq - (0,0, 1)y so when m = 1, we have

Z Ywyw = —€1° (C_v Coa C+)w +eid - (07 _QC_Lv COL_l)w =+ €92 (Ov 07 c_)w-
u€F,

If m > 2, then the only remaining component of &, is X ~— [u]712¢™¢(1 + px) so we obtain

Z Veouw = —€1 - (€7, &, w4 eiq - (0,—2¢71,0)y.
u€ly

—1
2) We compute sy € hl(sow). By (132) we have Shgyw(Vsow) = coresz)(fzso (80* Shw(c)). By Lemma

st s
9.1, the composite map (Is,u)a LN (solwsal)q> SLEEN (Iy)e is

(2,14 pz,y) = (=y,0,0) € Zy/pZy x (1 + pZy) /(1 + p°Zp) x Zy/DZy

This shows that vs,w = (0,0, —¢ ™) squw-

9.4 Proof of Proposition 4.5

Let w € W and o = (o, a% o)y, € hl(w)Y c I((EY)V/)J. We suppose that s = sg, the case s = s
following by conjugation by w (by the map (48) which is compatible with the Yoneda product).

e Suppose that {(sow) = {(w)+ 1. By (9) we know that T = (T, - —) has support in h!(sy 'w).

Let ¢ = (¢, °, C+)salw € h'(sytw). We compute (7881 -a)(c) = a(rs, - ¢). By Proposition 3.9, the
component in hl(w) of 7y, - ¢ is (0,0, —¢™),. Therefore (7'861 ~a)(c) = a((0,0,—c")y) = —c (at)
and 71 -0 = (—at,0,0) -1, . Using (91), it gives 75, - @ = (—a™,0,0)syuw-

salw
e Suppose that ¢(spw) = ¢(w) — 1. By Proposition 2.1 (or (9)) we know that Tl = a(Ts, - —) has
support in 2! (sy w) @ D cq b (ww).
— Compute its component in (h!'(sy w))V:
We compute (ngl ca)(c) = a1, - ¢) for ¢ = (c_,co,c+)sa1w € hl(sy'w) with &® = 0 if

{(w) = 1. By Proposition 3.9, the element 7y, - ¢ lies in h'(w) and is equal to (0, =%, —¢™ ).
Therefore (Tsal -a)(c) = —(ag) — ¢~ (at), and the component in (h'(sy w))" of T ols
(—at, —ao,O)So_lw if {(w) > 2 and (—a+,0,0)80_1w if /(w) = 1. Using (91), the component in

(R (sow))Y of 7¢, - a is (—a™, —ap, 0)syw if £(w) > 2 and (—at,0,0)s,, if £(w) = 1.

— Compute the component ZuE]F; Buyw 1 Duery (hY (wyw))Y of Tl
The component in (h'(w))Y of (7,,-1 et @) is 7, -1 * Bu,w- We therefore compute (7,,! -
Buyw)(€) = aTsyTw, - €) for ¢ = (¢, ct),, € h(w). By Proposition 3.9 and the definition of
the idempotents (36) (see also (2.12)), the component in h'(w) of 75,7, - ¢ = Too1Tsg " C 18

(e, M) +u1(0,2¢7¢,0), if £(w) > 2,
(e, M) +u0,2¢7 0, =)y +u™2(0,0,—c7 )y if L(w) =1.
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Therefore

a(TSOTwu c) =

c (™) 4+ (%) 4 ct(at) + u12c1(a?) if {(w) > 2,
c () + @) 4+ ct(at) +u 2 (a®) —u P at) —u2c (at) ifl(w)=1.
So
Bwuw —
T - (@7, 0% o)y +utr,, - (20(a),0,0), if {(w) > 2,
Ty - (a7, 0% M)y +utry, - (20(a), = (a™),0)y —u27,, - (aF,0,0), if {(w)=1
and
> Buw =
u€Fy
—e1- (a7, a% a)y — e - (2e(a?),0,0)4 if {(w) > 2,
—e1 - (a7,a% a)y — e (2(a®), =7 HaT),0)y + €42 - (@7,0,0),, if L(w) =1
The component in &, px (b (wyw))Y of 74, - v is
Ts% : Z Bwuw -
u€Fy
—e1 - (a7, a% a)y +eiq - (2e(a?),0,0)4 if {(w) > 2,
—e1 - (a7,a% a)y, +ea - (2u(a®), = Ha™),0)y + 42 - (@7,0,0),, if L(w) =1.
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