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A mmmﬁnwcsm task in algebraic number theory is the study of the values of
various complex L-functions (Dedekind zeta function, Artin L-function, Hasse-
Weil L-function ...) at integer points. It has often turned out that these values
are essentially rational numbers (see [7]). Therefore it is of course a fundamen-
tal problem to give arithmetic interpretations of these numbers. One possibility
of attack on this problem seems to be the following: First interpolate these
rational numbers by a p-adic L-function and then relate . this function to the
characteristic power series of an “Iwasawa- module” which is naturally as-
sociated with the underlying arithmetic problem. But this ?omgd is extremely
difficult and has been fully established only in special cases (recent work of
Mazur/Wiles concerning the “main conjecture” in cyclotomic Iwasawa Enon
-For this reason, we pursue in this paper the much simpler problem of calculat-
ing, up to a p-adic unit, the values of the above mentioned characteristic power
series at integer points. A considerable body of work has already been done in
this direction. Of course, the results we obtain contain much of this earlier
iolﬁ and also are compatible with w=o€= noEno::nm about the correspond-
ing values of the complex L-functions. )

Let X be a proper smooth scheme over an mﬁm_un:o number mw_a k; let k/k
be an algebraic closure of k, X:=X x k, and G,:=Gal(k/k) the m,cmoEH Galois
group of k. Obviously H%(X,Z) is a G,-module finitely generated and free over
Z. 1t defines by duality an algebraic torus T(X) over k (for example, T(Spec(k))
is the multiplicative group G, over k). In Part II of this paper we shall define
and study the Iwasawa h.?nnconm of an arbitrary algebraic torus T over k. In"
the case T=T(X) they should be viewed as the O-dimensional Iwasawa IL-
functions of X, because they depend only on the 0-cohomology of X. Their
complex m:&omcn is the O-dimensional L-function of X in the sense of Serre
[32], which is nothing else but the Artin L-function (in the sense of (6] which
differs slightly from -the original o:mv associated with the amnnommsnm:od of G,
on H(X,Q).

*  This e<o_,w was partially done, while the author was supported E\ DFG.
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It is well known that the Picard group scheme of X/k exists and that its
connected component 4(X) is.an abelian variety over k. The Iwasawa theory
of an arbitrary abelian variety over k was initiated by Mazur [17]. We shall
continue this work (in our context) in Part III of this paper. In particular, we
shall discuss in detail a version of the conjecture of Birch and Swinnerton-
Dyer for the Iwasawa L-functions of abelian varieties. For A(X) we get in this
way the 1-dimensional Iwasawa L-functions of X (see also the reasoning in
[17], p. 190); their complex analogue is the Hasse-Weil L-function of A(X),
respectively, the 1-dimensional L-function of X in the sense of Serre.

In order to make the parallelism between T(X) and A(X) completely clear,
we give the following equivalent description. Let f: X —Spec(k) be the struc-
ture morphism, and let R?f, G, denote the higher direct images of the sheaf
represented by the multiplicative group G,, over X with respect to the global
fppf-topologies. Then T(X) represents f, G, =R°f, G, On the other hand
the Picard group scheme of X/k represents R!f, G,,. The status of the sheaves
Rf G, for g=2 is not quite clear. They are not representable in general, but
nevertheless they should be important for a theory of higher-dimensional
Iwasawa L-functions of X.

Finally I want to thank J. Coates, M. Raynaud, and B. Mazur for several
helpful conversations. I am especially indebted to J. Coates for his interest and
eficouragement. :
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1. Preliminaries
§ 1. Notations and Conventions

For an abelian group M, let TorM be the torsion subgroup and My,
:=M/TorM, let DivM be the maximal divisible subgroup and My,
:=M/DivM. We use the same notation for a homomorphism f: M— N be-
tween .abelian groups, e.g. fr,. denotes the induced map M ,— Ny, . Further-
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more, f is called a quasi-isomorphism, if it has finite kernel and cokernel. Put
M, :={aeM: na=0} for nelN and M(p):={) M, for any prime number p. If

M is finite, 4% M denotes the number of o_an:”m in M.

For a Z -module M, let M*:=Hom, (M, Q,/Z,) be the Pontrjagin dual of
M. We say the Z,-torsiof~module M is of cofinite type if M* is a finitely
generated Z -module; in this case put corank M: Hamnwﬁ. M*,

For a commutative ring R with unit, let R* be the group of invertible
elements in R. We denote by | |, resp.’| > the usual real, resp.’ p-adic, absolute
value. o

Throughout the paper, k is a finite extension of @, k an algebraic closure of
k, G,:=Gal(k/k) the absolute Galois group of k, and o the ring of integers in k.
For any prime p of k, let mu be the completion of k at p. If p is a finite prime
then 6, denotes the ring of integers in Nm: o, the Henselization of o at p, and k,
the quotient field of o,. .

By an S-group scheme 4 we always mean a commutative group scheme
locally of finite presentation over the scheme S. The kernel %,: =ker(% —">%)
of multiplication by neN is again an S-group scheme. For a prime number p, -
let %(p) be the ind-S-group scheme QQYHEQX,. Furthermore, G, s denotes
the multiplicative group scheme over S; put p,g:=ker (G,,s— G,,s) and
t@&m“":lgti.\m. - .

For the convenience of the reader we shall explain now in more detail our
conventions concerning topology and cohomology. For any quasi-compact and

pcmmm-mnﬁmaﬁoamnroaomﬁ.m.mmmmuovémnosman:r,o ..o-o§:m"5anm:mmos
S: S , :

N ?i site of all schemes locally of finite presentation over S with the fppf- .
topology; C

8,y site of all quasi-finite flat schemes of finite presentation over S with the

Jopf-topology; v .
(in both cases coverings are ,wsa‘oo:é families of flat 'morphisms)

mam:nommzoﬁm_nmorﬁcmmmebmmmawo:ﬁmao:o<2m§§:ﬁﬁ.&m
topology ; : .

(coverings are surjective families of morphisms). We have canonical morphisms
of sites
n a
Sy prf Stpas > Ser-

The direct image functor m, between the corresponding categories of abelian
sheaves is exact; similarly o is left exact and commutes with pseudofiltered
direct limits. . : .

We denote by H'(S,.), resp. H.,(S,.), the cohomology groups of abelian
sheaves on §,, ., resp. S,,. They commute with pseudofiltered direct limits of
sheaves; they also commute with certain projective limits of schemes (see
SGA4VILS.8 and [11], p. 172). o

Let % be an S-group scheme. It represents an abelian sheaf on each of the
three sites which we denote by

Ys,,., €sp. & resp. G .,

IStoar
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if necessary. A sequence of S-group schemes is called exact if the correspond-
ing sequence of abelian sheaves on Spps 18 Xact. According to a theorem of
Grothendieck we have R'¢,% =0 for i>0 and therefore H(S,%)=H.,(S, %) for
i>0if ¢ is smooth over S. As a further consequence we get that

0-%;5, % s, G0
is exact if
0-%—>% —9%,-0
is a short exact sequence of S-group schemes with ¢ smooth over S.
We emphasize that we have =, (lim¥% piiSsppr) = UM G s although, in

general, n, does not commute with direct limits. If f: T—S is a morphism of
quasi-compact and quasi-separated schemes then the inverse image functor f*

(for each of the three sites) is exact and commutes with direct limits. In the

case that f or the structure morphism % — S is a morphism in the site S. we
have
\*AQE.VHAQ WA T),1.

By cd,S we always mean the cohomological p-dimension of §,,. Finally, if §
* =Spec(R) is affine we usually replace S by R in our notations. As a good
reference for all questions concerning cohomology we recommend [22].

§2. Arithmetic Homology

We fix for the rest of this paper an odd prime number p. Put k,:=k(p,») and

k,:=k(u@)= ] k,; let o, resp. o, denote the ring of integers in k,, resp. k.
neN i
For the Galois group G:=Gal(k,/k) we have the canonical decomposition

G=Ix4

with I':=Gal(k/k,) and 4:=Gal(k/k). The order d:=#4 of 4 divides p—1,
and I is isomorphic (as-topological group) to the additive group of p-adic
integers. The action of G on u(p) is given by the © cyclotomic” character

K:G—Z;
which induces a canonical isomorphism
r—=—1+p°z,

for a certain ecIN. We fix the topological generator y: =x"1(1+p%of I'.

Our arithmetic homology groups will be modules over the completed group
ring Z,[I']- Therefore, we first review some of the results in the theory of this
modules (see [13]). Let M be a finitely generated Z,[I']-torsion module.
-Because of the isomorphism

Z,Ir1——1Z,[d, y-1+t
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we consider M as module over the power series ring Z,[t]. According to the
general structure theory we then have a quasi-isomorphism of Z,[t]-modules

M- BT, /<A )

where the f(t)eZ,[t] are powers of p or distinguished pol i i i
: omials (i.e.
and =t* mod p). The polynomial : polynomisls (e, monie

depends only on M and is called the characteristic polynomial of M. This

SHBEo_omw wm.wcwamoa_umowcmm&Eomo:oismonc?m_oaaomnivzon,Zm-
mely, if S

Tor M — @(Z/p*=Z)[[1]
is a quasi-isomorphism of Z [t]-modules, Ems we have
Fy(f)=p™=-det(t—(y—1); MRQ,).
. z,

Let M7, resp. M r» be the I'invariants, resp. I'-coinvariants, of M. Further-
more M(n), neZ, @nsoﬁom the usual n-fold Tate twist of M (see [2] 1, §2). Now
we have the following fundamental result about the values of Fy,(z) .

Lemma 1. For ne Z, the' following three assertions are equivalent: .
i) M(m)" is finite; _ . o
i) M(n), is finite;
iii) Fy((1+p9)~"—1)=0. .
\\ these assertions hold, then |Fy (1 +p)~"— Dl,= 4+ M(n) /4 M(n);.
Proof. We have . o
: Fym@=u, Fy (14 p9)7"(c+ 1)~ 1)

with : eZX. Therefore it is h 't . - )
D u, e, enough to prove the 1 =
which we refer to [4] pp. Le mmm. prove the lemma in Eo case n=0 for

But we are also interested to anal ,
: yze the case where F,, (t :
=0. Define p(M)20 and ¢(M)eZ, by Fult) has @ zeroat ¢

- DR 17200] g =sc(M)=0.
The identity map on M induces the homomorphism
Sfu: MF>M,;
if fiyis a ncm&-mmoBoGEmnw we put
" g(M):= #coker f,,/ #Xker f,,.
Remark 2. i) Let M—N be a nzmm_.-w.woBonEmB of NLHZ_-BOQ:_&.,H_._@P \%.

is a quasi-isomorphism if and only if f, i . “modutes.
have g(M)=g(N). y if fy is a quasi-isomorphism; in this case we
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5mStWom:ag.HN\sz;E_inwﬁn”b&mwwacmwm-mmoBo%EmBmua
q(M)=p".
Lemma 3. i) p(M)Zrank; M =rank; Mp;

if) Rgvnawswuuza <>fyy is a quasi-isomorphism; in this case we have
le(M)|, ' =q(M).

Proof. This is an easy generalization of [37] lemma z.4 if one uses the above
remark and the structure theory of Z,[I']-modules.

An ind-p-group ® over o is an inductive system
6 "Aﬁﬁ ~.<vemzU
where 4, is a quasi-finite flat o-group scheme, and, for each veNN,

¥

O.I.v\%., ol @<+» Q<+_

is an exact sequence of o-group schemes. ® obviously represents a sheaf on

Ofpr- We call E_.A@Yum;ca, &)

the (p-adic) arithmetic homology groups of ®. There is a natural action of Q
on H,(®), and we have the canonical decomposition (as I'-modules)

H(®)= @ m\.:%@v,

Jjmodd

where ¢;H,(®) is the maximal Z ,-submodule on which de4 acts as BcEE._-
cation by x(8Y. Of course, the e;H,(®) are compact Z,[I J-modules. :. is
unknown in general whether they are finitely generated over Z,[I']. To decide
whether they are Z [I'J-torsion modules seems to be a deep problem.

Lemma 4. If ¢;H,(®) is a finitely generated Z,[I’ a-S.E.o: Eo&:w and neZ an
integer with n=j modd, then the following three assertions are equivalent:
iy H°(G, H'(v, ®)(n)) is finite;
il) HY(G, H'(0,,, ®)(n)) is finite;
i) F, ,00((1 +99" — 1) #0.
If, in addition, these assertions hold, then

o # H'(G, H' (0, ®)(n)
el 2= D= 506, 6.0, ©))
Proof. Because of A
H'(T', (e;H(®)(—n)=H"(G, H'(0,,, B)(n)*)
=H'""(G, H (0., ®)()* (r=0,1)

this is an easy consequence of Lemma 1.

" Since we have a canonical topological generator y of I', we can mna shall
identify the G-coinvariants of H'(s, ®) with HY(G, H'(o, ®)). Again the
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identity map on H'(o_, ®) induces a homomorphism

H°(G, H(v,,, 6)~H'(G, Hi(0,,,, ®))
which is nothing else than the Pontrjagin dual of £

1y

o H(®)

IL. Algebraic Tori
§ 3. The Basic Iwasawa Modules

Let T be an algebraic torus over k of dimension dim T>0, and let 7 be its
Néron model over o. In particular, 7 is a separated smooth o-group scheme.
Furthermore we recall that the formation of the Néron model commutes with
etale base change and with Henselization or completion in a closed point (see
[27]). Let 77° denote the connected component of 7 ; it is an open subgroup
scheme of 7 with connected fibres which is of finite type over o. The for-

Bmaono::ooo::anaaooBvosnEooEEEoms:r arbitrary base change (see
SGA3VI, §3). ’ :

Example. Let 4, denote the Néron model over o of the ‘Bc_nbzomw?n group
G, We have 4)=G,,,, and the closed fibres of %, are extensions of.the
constant group scheme Z by the multiplicative group. ‘ , ,

Our aim is to mwc%_:ﬁ groups H'(o_, 7 (p)); but-we shall do this only.
under a certain restrictioh on p. First, let o' resp. o/, resp.’o;,, denote-the ring of
p-integers in k resp. k, resp. k__. . , .

wasa‘wraxéoé om.n:ms:o baio .&»Eown:n only finitely many primes
of k., ([3], Lemma 1). C . . C

5>BozwEnmaznﬁaaomx%»axwo:wEnd&anmcoévmnonmammaa5,.
ko /k ([13], Lemma 4). : : ;

1i1) -0}, (but not o) is noetherian, -
iv) 7 x o/, is the Néron model of T x k, over o).
o

535,amﬁm_ogancmmrmiao<nnc\,?mo mQ>u<~u_.u,<:>m.An=g
EGAIV173.2). . . ,

The finite Galois extension k,/k is defined to be the minimal splitting field
of Ty, (in k). In this Part II we shall always assume the following condition on
the odd prime number p to be fulfilled. . A .

Hypothesis. All primes of k above p are unramified in k.
Of course, this excludes only finitely many prime numbers p.
Remark 2. With 7™ as Néron model of T X k, over o, we have:
i) The canonical map 7 mo,_,lfwc ™ is an open immersion, which induces
in particular an isomorphism T ow,o:mm. ®° It also induces isomorphisms

(Z,) x0,=(T™),, for each meN, and J (p) x 0,~ T " (p).
o o
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5ﬁzwmmmﬁmza@cmmm-maﬁnoéﬂE Enwao:_mﬁ\\@:mm:msa-n-maocv
over o. -

Proof. It is enough to prove the assertions over o’ and over U:=Spec(v)~ {p
ramified in k,} separately. Over o', we simply use the first remark. Over U, by
an etale base change it suffices to consider the multiplicative group for which
the assertions obviously are fulfilled (compare SGA7IX3.1e).

The principal reason for our condition on p is that we have the following
fundamental lemma. Namely, since Spec(o,)— Spec(o) is pro-etale with Ga-
lois group G, it enables us to use the Hochschild-Serre spectral sequence for
the study of the groups H'(o,,, 7 (p))-

Lemma 3. H: (0, 7 (p)=H'(o,, 7 (p)) for iz0.

Before we give the proof, we first establish two lemmas about the local
cohomology of finite flat group schemes.

Lemma 4. If % is a finite flat o,-group scheme, then
H.(0,, 9)=H.(8,, %)
for i=0; both groups are zero for i+2,3.

Proof. First we recall that H'( ) denotes the relative fpqf-cohomology with
respect to the closed point. The case i=0 is trivial because ¥ is separated over
o,. For i=1 see [17], Lemma 5.1. There it is also shown that Hi(o,,%,)
=H\(5,,%,) holds true for i>1 and any smooth o -group scheme of finite
-type. According to [20], Proposition 5.1 we always have an exact sequence of
o,-group schemes .

. 0-9—>%,—%, -0,

where %, and ¥, are smooth of finite type over o,. Applying the five lemma to
the corresponding long exact cohomology sequences gives Hi(o,, 9)=H'(5,, %)
for i=2. Finally, the vanishing of Iioﬁ %) for i+2,3 is proved in [16] (1.10).

Lemma 5. Let p be a prime of k above p, let 4 be a finite flat o,-group scheme
of rank a power of p, and let Lk, be an infinitely ramified abelian extension with
ring of integers R. We then have:

i) H.(R, %)=0 for i+2;

i) H%(R,%)=0, if the Cartier dual 4P of 4 is etale over o,,.

Proof. Since cohomology commutes with filtered projective limits of affine
schemes, Lemma 4 allows us to replace o,, resp. k;, by 0,, tesp. k,, in the
statement, and, of course, it implies the first assertion for i#2, 3. Furthermore,
we can assume that h\mc is a totally ramified infinite abelian p-extension.
Namely, if the statement is proved in this case, it is obviously also true in case
that L is a totally ramified p-extension of a finite extension of m«.. The general
case now follows again from a limit argument because L always 1s the union of
fields of the latter type; this is seen with the help of the local class field theory.

g gt e e
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According to [16] we have

H (R, 9)=H(L, %)
and

H2(R, 9)=lim H2(R,, 9)=(lim H' (R,, $")*,

ir.o_.o R, runs through the rings of integers in the subfields of L which are
mm:o over me. But HZ(L, %,.) vanishes, because L has a cohomological p-
dimension =<1 (see [31], proof of II-11, Proposition 9).

X Zwé we assume that 4” is etale over d,. Let x be the residue class field of
o,. Since h\mg is' totally ramified, x is the residue class field of each R
Therefore we have 4. "

H'(R,, 9")=H.(x. 97)

for »: a (use [22]II139 and VI27), and one can easily check that ‘the
:.mm_m_cwu maps H!(R,, mmjlw« "(R;,4"), for Ry,<R,, induce the multipli-
cal : : ! i i

mQ_WM.N.A M %%M %L on H(x, 95). But H, (x,4]) is a finite p-group. Hrcm we

wmsaw.q. :.. the finite prime p of k is unramified in ky, then, for all neN,
7, X0, is finite flat over o, with etale Cartier dual.

Proof. By an etale base change and descent-theory (EGAIV2.7.1) it suffices to

oonmEon‘GoBc_av:ommﬁ.mnocv.mﬁtammm::anﬁﬁﬁmg_mnmE.QQg_
over any base scheme. . , . . :

We come back to the proof of Lemma 3: Let us consider the relative
cohomology sequence S . o

= H' 0y, 7 (p) = H'(0}, T(0) = @ H* Yo, T (p)—,
Bip T
where o, o denotes the monm.n:mmaos ow o, in P/p. Because of hmBBm S and
mvn ”&uo<o remark we have H.(o, 4, 7 (p))=0 for all P/p and i=0. This
implies v ' B :
H'(o,, 7 () =H (0}, 7 (p) = H., (0, T (P)),
since J (p) is ind-etale over o/, .

Remarks. 1) Because of Lemma 3 it seems o‘nn should a priori consider only
nSF cohomology groups over o, of ind-p-groups (over o). But in the situation
which we shall-study in Part III of this paper a similar lemma does not exist;

g&:im_gnﬂomaﬁmﬁEoSEm:mﬁooroBo_omwmnozvmmREogunmammasm
ones. . ,

2) TQ M vo. the Galois m&:n of the maximal abelian p-extension of »8,.
unramified outside p. Equivalently, .# is the maximal abelian pro-p-factor
group of the algebraic fundamental group of Spec (o). Thus we have

Ho(0,,, Q/Z)* =4,
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or because of Lemma 3 .
o H (up)=A(=1).

The G-module .# was studied in detail by Iwasawa in his work on cyclotomic
fields ([13]). Therefore our arithmetic homology groups appear as a natural
generalization of this “classical” Iwasawa module.

Lemma 7. i) cd o, <2;

p 0=

il) HZ/(o,,, 7 (p)) is divisible.

Proof. i) All the residue class fields of o/, are p-closed. An easy modification
of [35]11.10.2.3 then shows
cd, 0 <cd, k,+1.

p o=
But according to [31]1I-11, Proposition 9 we have cd ksl

i) Define the sheaf # on o, by the exact sequence
0= o™ 7 (Plar, — "= T (P, F 0.

F is a skyscraper sheaf because ﬁE;aFV T(p);,, is an epimorphism. Again a
modification of [35]11.10.1.2 implies ,
He (0, #)=0
for i>0. CmFm this and H (0, 7,)=0 we derive the surjectivity of
H2(0, 7 (p))—— H. (0, 7 ()

from the above exact sequence.
Proposition 8. i) Ho(7 (p)) is a finitely generated Z -module;

ii) H,(J (p)) is a finitely generated Z,[I']-module;

i) H,(7 (p))=0 for i=2.
Proof. i) is clear.

ii) From the Hochschild-Serre spectral moacmboo we get the surjective edge

homomorphism
H (0, 7 (P)— H(I, H. (04, 7 (D)),

because the cohomological dimension of I' ist 1. According to Lemma 9i
(applied to o)) the left term is of cofinite type. Therefore, H (T @) is a
finitely generated Z,-module, which implies the required result (see [13]).

iii) For i>2 the assertion follows from Lemma 71i). The case i=2 we shall
treat in several steps.

Step 1: T=G,,: From the exact sequences
ol:u;l@sl\w..lvﬁslo
on (o)), wé get the exact cohomology sequence

0 H (0. G,) @ Q,/Z,— H (04, 1(p)— H(0,, G,) (p) 0.
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wm: mvm Picard group Pic(o))=H.(0),, G,) is a torsion group, which means
H m?owe G,)®Q u\N% =0. On the other ‘hand we have
H; (0, G,)p)SH(k,, G,)(p) (see [22]1112.22) and H2(k,, G,)(p)=0 be-
cause of cd, k< 1. Therefore H2(o!_, u(p)) vanishes.

.mﬁﬂu 2: Huma;ﬁznﬁ\n& testriction of the multiplicative group over a
finite extension N\».” Let B, resp. B, denote the ring of p-integers in K, resp.
K(u(p)). The nm.noEo.m_ morphism 7: Spec(B) — Spec(o’) is finite and faithfully
flat. Therefore, if ¢,, is the Néron model of G, over B, we have

7, (%
(see [27] Prop. 2.5). In particular, we get
.QlAﬁv\cvn" *Atgv\mn~v.

But, for the etale topology, n x 1s even exact ([22]113.6). This implies’

a.DuE. - S\wsvvsv

HZ (0, 7 (p))=HZ (0}, m, u(p)) = H2(B,, u(p))"=0
(with a:=[K nk_:K]). - ,

Step 3: T is k-isogenous to a k-torus T, with HZ (0, 7,(p))=0, where 7,
aonoﬁmw the Néron model of T, over o: There exist k-homomorphisms

T n H;o'»u'vuj

with mog.ua. -id for a certain ne N. Because of the universal property of Néron
models this induces homomorphisms a .

, ‘H( ) , . ‘ )
 HAOW T () B0, T () =02 B2 (o), T (p))
with H(f)oH(®)=n-id, ie. n annihilates H2(o,, T (p)). T i
)o H( , le. n 20, 7 (p). Together with
Lemma 7(ii) this means H2(o,_, 7 (p)) =0. o ¢ ,
The general case now results from the fact that we always have a k-isogeny |

r , ' .S
n . -
T"x [] Ry G~ [T RenGi
v=1 «.H_..?» -

S:rmv?‘ovmmaFﬁumHZm:a::n_.Ba&m”omoE» . www
Theorem 1.5.1). q.ed. . weoa\ﬁmwﬂ

<<m Wmﬁ no.<<8 &mocwméﬁoro:sw &.t %QAEVNSNN._HJTB,ﬂos Ed..h
dules. This requires some preparation. , , :

Lemma 9. i) HL(v', 7 (p)) is of cofinite type;

i) the natural maps mmkc\, T°(p))— H. (o', T (p)) are quasi-isomorphisms;
iii) we have an exact sequence

0~ T°(0)®Q,/Z, > HL (0, 7°(p))— HL (0", 7% (p) —0:
iv) HL (0, 7°(p) is finite.
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Proof. i) We omit this proof because it is completely analogous to the proof of
Lemma 6.8 in [17] (the finite set S of primes figuring there is in our case the
set of finite primes of k which are ramified in k7).

ii) Define the sheaf & on o, by the exact sequence
Ol%.ogv\e‘..lw@v?rl%\.lo.

We have to show that the groups H.(o', #) are finite. Obviously, # is a
skyscraper sheaf, and, even more,

TPu=T Py (e Fy, =0

holds true with U:=Spec(o’)~ {p ramified in k;}. It is enough to verify this
over the normalization V of U in k;, because ¥V— U is an etale covering; but,
over V, both sides become isomorphic to u(p),. Therefore, the cohomology
groups of % are finite if the stalks of & are finite (see [35]1110.1). This
follows now by a further application of the method in the proof of Proposition
81ii): Step 1: For T=G,, we even have & =0. Step 2: The formation of the
connected component commutes with m,. Step 3: The stalks of & are at least
of cofinite type. :

iiij) The morphism 7%, —2>7, is etale and surjective (SGA3VIz3.11).
Therefore we have the exact sequences .

0= T e > erkwn Rad
and we get the required exact sequence by going to the direct limit in the
_corresponding cohomology sequences.

iv) This again follows by an application of the method in the proof of
Proposition 8iii): For T=G@,, the assertion follows from the finiteness of the
ideal class group of k. In general, i)-iii) imply that H} (o', 7 %(p) is at least of
cofinite type. ‘

The character group T of T is by definition the etale k-group scheme which
represents the sheaf Hom, (T, G,) on k;ppr- We often identify T with the
discrete G,-module T(k); as Z-module T(k) is Z-free of rank dimT. For any
finite prime p of k let HQM._% denote the maximal compact subgroup of T QmL
(with respect to the p-adic topology).

Lemma 10. i) T(k,)/T(k,) is Z-free of finite rank;
i) 7°(B,)<T(ky) of finite index;

iii) if p is unramified in k., then T°(,)=T(K,)".

Proof. We have .

T(k,) ={xe T(k,): z(x)ed); forall ye T(k,)},
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integers B, we have
T°(B)=B* =G, (Lf =T(LYy.
The assertion iii) now follows by taking Galois invariants.

‘G%E.:..o:. H:a torus T)'vis called even, resp. odd, if & is totally real and all
involutions in G, act as multiplication by +1, resp. —1, on T.

Remark 11. i) T, is even <>k, is totally real < k is 8?:% real and T(k)=T
for all p/oo; ’

ii) T, is odd < k is totally real and T(k,)=0 for all p/co.
Proposition 12. 7°(0") is finitely generated of rank

M rank, qxcmuv —rank, T(k).
»lporoo
wwoc\o. In [33] the same assertion is proved for the p-unit group in T(k) instead
of 7°(0"). The vqc:: group is the subgroup of all elements in T(k) which lie in
i@% for all primes p not dividing p. But Lemma 10 shows that Z°(0") is a
subgroup of finite index in the p-unit group.- «

Theorem 13. i) The Z,[I'}-rank of H,(F(p)) is L -dim T- [k,: Q];

.Eﬁ.\ﬁ_,age_,a%.o%,aiom\é_.:&,3%.gmsswzﬁmgﬁga
a Z,[T'J-torsion module. S CH

wwoc\.‘cmﬁh."HQm:»S\F_V._uwoB.Em EOn_._mnEE-w.a:n ‘mvno:m_mnnzonom
and Lemma 3 we get the exact sequences oo :

0= HI([, B0,y 7 ()~ (0,7 () = HO(Ty, H (0, T () 0

(r .rmw cohomological p-dimension 1). The groups H(I,, H(v,,7 (p)) w.no.
finite, because the T'(k,)(p) are. Together with Lemma 9 this implies ;

rankg H,(7 (p)),=corank H}(0;, 7 (p))

=corank 7 °(0) ® Q,/Z,=rank; 7 °(0}).
Since the k, are totally imaginary, we oono_zau.?oa Proposition 12
ranky H (7 (p))y, =% dimT [k, :Q]-p"~ '+,

with 0<c,<dim T s, s:= 4 {primes of k_, above p}. According to the general
structure theory of finitely generated Z,[I']-modules this means that the
Z [I'-rank of H,(J (p)) is the asserted one. .

i) Let k¥ be the maximal totally real subfield of k,, wnm let R, be the ring

of p-integers in k. An easy computation using Proposition 12 shows ’

‘which immediately implies (i) and 7°(5,) < T(k,) (we think of 7 °(8,) as being
canonically embedded into HQMLV. But 70 is Zariski open in J; therefore,
F°(,) is open in ﬂQmL, and the index _”jmvvf F°(5,)] is finite. Let p be
unramified in k. If h\m«. is a finite unramified splitting field of Ty with ring of

ranky; 7 °(0,)/9°(R,)Sdim T - s,
if T, is even, resp. :

rank, 7°(R)<dim T-s,
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if T), is odd. For any 4-module M define M*, resp. M7, to be ,Ew Ewiaw_
submodule on which the complex conjugation in 4 acts as multiplication by
+1, resp. —1. Obviously,

IMEM*+*4+M~- and M*NnM =M,
holds true. Thus we get

corank (7°(0,) @ Q ,/Z,)* =rank, 7 °(0;)* =rank, TR,
and
corank (7°(0,) ® Q ,/Z,)~ =rank; 7 °(0,)” =rankgJ %0}/ T °(R,)-

The rest of the proof can be dealt with exactly in the same way as in the first
part, . . .

For T=G,, this theorem (in the Galois theoretic version) was already
obtained by Iwasawa ([13]).

§4. Values of L-Functions

We fix an even, resp. odd, torus T, and an even, resp. odd, Emnmaﬁ 0= &A&
According to the results of the preceding paragraph the following definition
makes sense. We call ,
) o\ — 5§ (—1)it1
LT, s):=[] F,_,mren@+p)7° 1)

i20

ma-,m:ﬁa.a+anH|: (s€Z,)
F, _ nowan(1+p) 77 =1)

the j-th Iwasawa L-function of T, (with respect to p). The aim of this mna the
next paragraph is to study the p-parts of the <m_co.m of these h..?sgo:m at
integer points. As (2.4) shows we have to oo.nwam.n the twisted groups
H'(o,,, 7 (p))(n) in order to do’this. The idea now is to ESE%R.E«S groups
as cohomology groups of a twisted sheaf. Because of (3.3) it is enough to
achieve this for the etale cohomology over o/, For any ne Z define

ﬁiu, w». :“ou
T ) =3 T 115, ®W51) w.m n>0,
¢ Hom, (u&", 7,) if n<0,

7 ()():=1im 7,4(n)

as sheaves on o, (in fact, they are representable by etale quasi-finite separated

o'-group schemes). We have canonical isomorphisms
| | HL (00, T () ) = HE (0, 7))
of Q-Boaiam (see [2], 1§2 or [22], p. 163).
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Lemma 1. i) H. (o', 7 (p)(n))=0 for i=3;
ii) H%(G, H%(0,,, 7 (p)) (W)= HC,(0', T (p)(n));
iii) H'(G, H' (0, 7 (p))(n))=HZ(0', 7 (p) (n));
iv) we have an exact sequence

olmé,moeg,S@@imrﬁ33@
—~H(G, H (o, 7 (p))(n)) — 0. |

Proof. This follows easily from the Hochschild-Serre spectral sequence using
(3.3) and (3.8iii)).

Lemma 2. H)(o', 7 (p)(n)) is finite for all n+ —1.

Proof. Let j: Spec(k)~Spec(o’) be the natural inclusion. Because of the uni-
versal property of the Néron model

.\.*ANJC&F».L”Q'CVV\?Q
holds true. Since p,;,,, is a locally free Z/p’ Z-sheaf of rank 1, we get
J TEY =T (p)(n).

Efa%m:wa,mé@umm;,:%ﬁmw?,:@@Esaa.%
latter group obviously is finite for n+ —1. ; S

Proposition 3. HZ (o', 7 (p)(n) is finite for n21.

Proof. Again we use the same method as in the proof of (3.8iii)). Step 1: For T
=G,, see [34] Theorem 5; in fact, the groups HZ(o, u(p)(n)) vanish for n>1.
Step 2: Since p,,,, is a locally free Z/p’ Z-sheaf of rank 1, the twisting com-
mutes with m, (on the etale sites). Step 3: H3 (0", 7 (p)(n)) is at least of cofinite |
type; this follows from Lemma liii), (3.8ii)), and the general fact that the I-
invariants of a finitely generated Z,[T ]-module are of finite type over Z,.

imima8anrm&NnEmﬁéawﬁa:Qnonaoam:wgvo%nmmmmdoi H;
for these first three results. ) ' S

Theorem 4, i) LY(T, —n)#+ o0 for n& —1;
i) I)(T, —n)=*0 for neN; : ,
iii) [LNT, —n)l,=T] #H. (0", 7 ()(m) "Y' for neN with n=j—1 mod .
iz0 . o i
Proof. i) Lemma 1ii) and 2 imply the finiteness of Ho (T @:IS? The assér-
tion now follows from (2.1). ii) This is similarly proved as i) using Proposition
3. iif) Combine (2.4), haEBm.r Lemma 2, and Proposition 3.’ ’

wm‘gla.:>2mmw2<o§o=o:ra.mvoéﬂ:oonogmo.‘ﬂNﬁsw:g»,SS:«.
real is contained in [2] (6.1). )

2) One possibility to state the Leopoldt conjecture is: HZ (o', Q,/Z,)=0 .
([29], p.202). It is proved in case that k is abelian over @ or over an_
imaginary quadratic field. Therefore the proof of Proposition 3 gives the fol-
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lowing result: H2 (o', 7 (p)(—1)) is finite if k; is abelian over Q or over an
imaginary quadratic field, Tesp., is always finite if the Leopoldt conjecture
holds true. : .

3) We conjecture that H2 (o', 7 (p)(n)) is finite for all n#0 (see [29] (5.7) for
a very weak result in this direction). A consequence would be that the above
theorem is correct for all n40, 1 (and =j—1modd in iii)).

4) Let L(T,s) denote the Artin L-function associated with the represen-
tation of G, on T (for an arbitrary k-torus T), and let neN be a natural
number. From the functional equation we derive

+0 for T, even and n odd,
L(T, —n) or T, odd and n even,

=0 otherwise.

According to Siegel the values L(T, —n) are rational numbers, and Coates/
Lichtenbaum ([6]) present a conjecture which expresses Enm.m n.:n&nnm as
etale Euler characteristics. We leave it to the reader as an exercise in applying
the duality theorem of Artin/Verdier ([18]) to show that these Euler character-
istics agree with the ones in Theorem 4iii).

" Theorem 5. Let p denote the multiplicity of the trivial representation in the
representation of G, on T @ Q. Under the assumption k,, nky=k we have:
. (t—(1+p9)~t+1y if j=—1modd,
) Fonaran(0=9 if j& —1modd;
i) if H2(0,, 7 (p)(—1)) is finite and j=0, then L(T, 1)*0, 0o;
iti) if T is even and H2 (o', 7 (p)(—1)) is finite (e.g. for kr abelian over Q),
then

r: %.Am;wwz‘i | =TT #Hale, 7 @)= D™
120 M s=1p 2

Proof. i) Because of k., Nk, =k we have
CH(04, 7 (@) (=) =Hg(o', 7 (p)(=1). (*)

In particular, G acts trivially on the first term, and there is a quasi-isomor-
phism of G-modules H(0,, 7 (p))— H’(0,, 1(p))*- .
ii) Using i) this follows exactly in the same way as Theorem 4ii).

iii) Combining (+), Lemma 1, and (2.4) we get

IF, oy +p97 1 =1,
_#H'(G, H' (0, 7 (P)(—1))
T #HG, H (0,,, 7 (p))(—1))
_HEETOED) 6 B 70) (= Do
I#EM~AD@..O\|GVA1IvaUm< # A ’ Acoo °
=] #HL0, 7@ (-5

i20
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Remarks. 1) The Galois theoretic version of the above theorem for T=@,, and
k totally real was obtained by Coates in [4] (Theorem 1.13 and App. Lemma 8).
More than that, he gives an interpretation of the corresponding Euler charac-
teristic in “classical” terms (class number, Leopoldt regulator, ...). In this way
he gets a complete analogue of the analytic class number formula for the L-
function LY(G,,, s).

2) Let p be as in Theorem 5. The action of G on Ho(7 (pH(1) ®Q,, factors
through a finite quotient and is therefore semisimple. Consequently,
F,_ m&ﬁs;a has a zero of exact multiplicity p at t=0. For T), even this means
that F__:AH s) has a pole of order <p at s=1. Finally we recall that the Artin
L-function has a pole of exact order p at s=1.

§5. The Point s=0 : -
Let T, be odd. Then the finitely generated groups J %(0") and @WQML have

rlp
the same rank (see (3.12)). There exist two remarkable pairings between these

groups. The first pairing:
G 7% x @TK)-Z

pip .
- (a, @va g Mcu o NQAQY
) : . ovip :
where v,: kX —Z denotes the normalized discrete valuation. The second and
more important pairing: i B : .
| G 0 Too) x @.WQ«LIVNu

- plp
@®1) Y log,oNormy,q, (1,(@),
. o/p o ’
where log,,: Q, —Z, is the extended (log, p=0). p-adic logarithm.. o
For any prime p of k above p define Ku\»»a to be a finite unramified
splitting field of T}, (our condition on p!), :.q._mmeuHQm:W..\ML denotes the
Frobenius generator, we put : : : .

L(T, ?u%ﬁuqﬂ -, T(K,)®Q)eZ[1].

Then L (T, (N,)~*" !, N,:=number of elements in the residue class field of p,
is the Euler factor corresponding to p in the Artin L-function L(T, s). L (T, 1)
has a zero of exact multiplicity rank, uﬂQmL at t=1, because g, acts semisimply
on T(K,)® Q. Define :

L(T):=[L,(T, t)- (1—p)~rTlo]
and :
Ly, (T, 5):=(Ly(T)-s™" Tho)-1  (seZ,).

Now we can state the main result of this paragraph.

Theorem 1. For T, odd we have:
1) H(o, 7 (p)) is finite for all i20 and =0 for i23;
i) (, ), is nondegenerate;
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iil) LT, s) has a zero :of multiplicity WMEaWijL at s=0; equality
holds if and only if (, ), is nondegenerate;  */?
iv) if , >, is nondegenerate, then

LT, 9) - [T Lp,o(T, 9)scolp= m&l& 1 #H 7 @)
oip et(, vw P iz0

The proof will occupy the next pages and will be included in a series of
lemmas. But first we want to make a remark on the value of L(T, s) at s=0.

Remark. The Artin L-function L(T,s) is holomorphic at s=0 with L(T, 0)e Q.
1t is L(T;, 0)=0 essentially in the both cases that T}, isodd or that k=Q and T
=@,,. In the first case a long and tedious computation starting from the
results in {147 shows that
, IL(T, 0)l,= [] #H'(0, 7 (p)) """
iz0

(for all odd prime numbers p which are unramified in kr/k). In the other case
one has L(G,,q, 0)= —3.

If p denotes the multiplicity of the zero of L’(T,s) at s=0, then

p=plec H (T () —pleo HolT (D))
and
cleogH, (7 (p)
T

( .s” =(— €))° .
LT 95 Lo =(logy 1+ - Lo G
Because of (2.4) and (4.2) we have

| S #H'(G, HY (e, T ()
pleoHolT 0N =0,  IeleoHolZ DNy =""3 1005 7 ()

From O.wv and the final remark in §2 we get ,
plegH (T (p)))2 corank H*(G, H (04, 7 (P))-
Furthermore, m@cw:&#rm_aw if and only if the homomorphism
f: HO(G, HL(0,., 7 (p)) = H*(G, H (0, 7 (P))
induced by the anEWQ map on HX(0,,, 7 (p)) is a quasi-isomorphism; in that
case .

ki
cteo Hy (7 (o = =2

From (4.1) we get the exact sequence ‘
0—> H (G, H, (0, T (p))) — HL(0', 7 (p) ——> H°(G, Hy (0, 7 (P) 0
~and the isomorphism

HY(G, H} (0., 7 (p)) —2— H2,(0', 7 (P)).
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According to (3.9) the canonical map

T°0)®Q,/Z,—— HL(0', 7 (p))

is a quasi-isomorphism, and according to (3.12) we have

corank 7°(0)®Q,/Z, =Y rank, T(k,).
»/p
Combining all these formulas results in

pZcorank H'(G, H} (0., 7 (p)))=corank H. (o', 7 (p))
=corank 7°(0)®Q,/Z,= Y rank, T(k,), . o)

p/p

where equality holds if and only if [ is a quasi-isomorphism; in that case

LT, ) - TIL, (T, 9),_l,
. ®lp
=IEAT 8) 5700 - [T L(T) Y, Y

»lp

=1L (D - log, (1 + )2 4 HO o, 7 gy - £k Bf
o p llog,(1+p°);- #H (0, 7 (p)) e i

In order to analyze the map f we study the following ooBBEw,aﬁ &mmnt.A

T°(0)®Q,Z, ——@®TK)®Q,/Z,
. plp’ .
) .

HL(0, T (p)——@HLK,, T(p)
»ip ) :

‘:oa,mw_?.wesi@ipEé,_:% e

s

G, HY(0,, 7 (p) —— @ H' (G, H,(Y,, T(p)

. »ip :

Bl , ~

HA, T ()= @k, T0) =@ (TR) O Z,)*

pip ) . 24
Here we have put ﬁuumnmo?r@»’b. The maps in the right column are

defined completely in the same way as their analogues in the left oo:::.:

{cd, Y, <1). Among the maps in the rows the first one is given by the inclusions

%toAcQMﬂ:mL and the other ones by a morphism of spectral mmnsa:onm. The

identification H2(k,, T(p))=(T(k,) ® Z )* f al duality ¢
ettty » _ (k,) ,)* comes from the local duality theorem



270 - ,. P. Schneider

Lemma 2. The composite map —: \.lo?g®6=\N=l@.uqcmt®Nuv* in (3) is a
' »ip .
quasi-isomorphism if and only if { ) , is nondegenerate, in which case the map is

surjective with kernel of oimw i iy
|det <, >,I;* - log, (1+p9)5”

Proof. We fix a prime p above p. We have to show that the composite map
np: Tk)®Q,/Z,—(T(k)®Z)*

in the right column of (3) has the following description: There exists a unit
e€Z; with
log, (1 +p°) - (nr(@a®x))(x)=¢ - (log, > Normg_q_° x(a))- x

for all a® x e T(k,) ® Q,/Z, and y € T(k,). The definition of #; does not depend
on our assumption that T}, is odd. Thus we can consider the analogous map

ni=tlg,: ky @ Q,/Z,=Hk,, (o)~ Hilk,, n(p)=Q,/Z,
(observe H W“Amﬁ G,,)=0 (Hilbert 90) and &,,(k,)=7Z). It is easy to check that
nr(@®x) () =n(x(a) ®x)
holds true. .E_on&on.n it remains to- prove
ker (log, (1 +p°)- n)=Kker 3, 4
where 9: mw ®Q,/Z,—Q,/Z,is defined by
. a®x_lcom.u0233mu\e“3v X,

Let Q@¥/Q, denote the unique Z -extension which is contained in @Q,(u(p)), and

let: NQ,<Q, resp. Nk, <k, denote the subgroup of universal norms with

respect to Q°/Q,, resp. Q3 ms\mu. According to the local class field theory we
have the commutative diagram
£ INE,— Gal(Q¥ - k,/k,) > Z,

Norm

Q;/NQ,—— Gal(Q¥/Q)=Z,,

where the »moBo%EmBm in the rows are given by the 8.&@303 law. Thus the
norm map mw /N Maleux /NQ, is injective with finite cokernel of order

[Q*Nk,:Q,]. From
NQ,=p*xTorZ) =ker(log,), #coker(log,)=p
(see [24]117.16) then follows

Nk, =ker (log, > Norm;_q )

Iwasawa L-Functions of Varieties over Algebraic Number Fields 271

and
# coker (log,, o Normg o )=p-[QF Nk, @,].
This implies
ker8={zek; ®Q,/Z,:p - [QXk,:Q,] 2eNk,®Q,/Z,}. )

Now we shall determine ker#, which obviously is the kernel of the natural
map .

MWA ® QME\N\ lvAAcMuo @Mﬂv ) ®eh\Nqu.
Moreover, an easy argument shows

wowzuﬁmmﬁw®6u\Nv“23.wa@wﬁ o av

with s(p):=number of primes of k., above p, mwfnewc . w».: and 7 Fa natural
map ,

T ks ®QZ,~ (k)" ® QL omigs, -
But according to the next lemma we have .
kerf=N£,®Q,/Z,. ‘ ™
Now (4) follows from (5)~(7) and -

P-[Q K, Q,]=(log, (I +p) - s(p)l; .

Lemma 3. Let K/Q, be a finite. extension, and let L/K be a Nu-mxumx&.o:. If
NKZK”* denotes the subgroup of universal norms with respect to L/K, then
NK®Q,/Z, is the kernel of the natural map ,

K~ ®A~u\NFIVQLx ®en\Nuvew:55..
Proof. Define L,/K to be the. unique subfield of L with [L,:K]=p" For ¢ ®
Mmz K®Q,/Z, we choose be L} such that ,nuI.,ZoBs?\n,AS. Because of

Norm, . (b**- va,NZoHBr\xAS.E eP=1

there exists an ae L} such that b” .c~'=ga-a~" (Hilbert 90), where o denotes
a topological generator of Gal (L/K). We now have v

c ®MH@& -a- Aqavlvow.ﬁna ®ﬁ_.le.n ®=INHE —0) Am ®~|:HV

P p P P P
Thus it is shown that NK ®6KN= is contained in the kernel of that map. The -
inverse inclusion immediately follows from the following two assertions:
(o=, ®Q,/Z)SNL,®Q,/Z,

where NL,<L, denotes the subgroup of universal norms with respect to
Gal(L/L,). Namely, since the action of Gal(L/K) on Gal (L/L,) is trivial, the
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reciprocity law implies that L} ® Q,/Z,/NL,QQ,/Z, is isomorphic to Q,/Z,
as Gal(L/K)-module. :

(NL,®Q,/Z) K" ®Q,/Z)=NK®Q,/Z,.

Namely, the inclusion K* £ L; and the norm map L —K* induce maps
: . i
Q,/2,2K*®Q,/Z/NK®Q,/L,—— L*®Q,/Z,/NL,OQ,/L,=Q,Z,

with NoI=p". But again the reciprocity law implies sker N =p". Therefore [
is an isomorphism. qg.e.d.

In order to study the maps 6 and 4, in (3) we consider the relative
cohomology sequence
0—H' (0, 7 (p))— Hel(0', %@:lm\@mﬁwe%@v
p/p

—H?(0, 7 (p)— HA(0, T ()~ D H (8, 7 ()

»lp

— H3(o, 7 (p))—0.

Use (3.4), (3.6) and (4.11)) for the zeros at the beginning and at the m.sa.Hrm
same lemmas imply

Hi(o, 7 (p))=0 for i>3. (8)

" Concerning the relative cohomology groups for p/p, we have

H3(b,, 7 (p)=HZ%(k,, T(P))
and ’
H3(b,, 7 (p)=HL(k,, T@)V/H'(®,, 7 (P))

{[16]), and from the exact sequences of 6,-group schemes
0 Ty TO—" 0 700
(our condition on p!) we derive the exact sequence

07, ®Q,/Z,— H' (b,, 7 (p)— H'(8,, 7 ) (p) 0.

. Because of H!(8,, 7°=0 ([171 5.1iii)) and Z7°(,)="T (k) ((3.10iii))) we thus
t v
® CHA®,. 7 (p)=Hi(k,, TO)/T (k) @Q,/Z,.

Inserting this in the above cohomology sequence gives the exact sequence

0— H' (0, 7 (p)— HA (0, T (p) —— @D HL(K,, TN/ T(k,) ®Q,/Z,

r/p
— H(0, 7 (p)— H2(0', 7 (p)) lF@ﬁﬁ, T(p) ©)
v/p

— H3(o, 7 (p))—0.
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Furthermore we need the commutative exact diagram
0
ﬁe‘éetﬁJ@uﬁicv\:@néekﬁ
p/p Lo
4
HL(0, 7 (o) —"—@HLk,, TO)/ T, ®Q,/Z, (10)

p/p

@H.(k,, T)(p) ;

p/p

J
0.
The map in the first row is induced by the canonical :oB.oBo:uEmB
TO(0)= T(k) @D T K,/ T(K,).

: . Y ' :
The short exact sequence in the right .oo_.s.Bu is derived from the exact
sequernces of Mc-m:.éu schemes olﬁ.ﬁlﬂk T—0. We have already seen
that § is a quasi-isomorphism. According to the local duality theorem
([31]115.8) the groups H,(k,, T)=H}(K,, T)* are finite,
Lemma 4. i) 6, is a quasi-isomorphism,;

i) (, )p 1S nondegenerate;

__#cokerd; 0o -

iii) [J[TL,(T)~ " -det(,),| =
w.\w »(7) ¢ vm_u, #kerd, o

Proof. We consider the ooBiEmaﬁw mmmmwma. of pairings between free Z- .
modules L - ; .
TK)/TK,) x T(K)——Z

TENTERY x Tk) ——z

i.Eor are induced by (a, Y)— vyex(@) (p/p and v,: K} —>Z the normalized

discrete valuation). Because Tk, splits, one can easily check that the pairing in-
the first line has determinant +1. Taking Galois invariants resp. coinvariants’
we get the commutative diagram .

(T(K)TK ) x T(K,)y —Z

P

&

jmcv\ﬂcm,uva X WQML —
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where again the pairing in the top line has determinant +1. The map in the
left column is an isomorphism because of (T(K,¥f*»=T(k,) and
H'(H,, T(K,))<H'(8,, 7 °)=0. According to a lemma of Tate ([37]z.4) the
map in the right column is injective with finite cokernel of order |L (T)I.
Therefore, if the pairing in the bottom line is denoted by (, )p» then (), is
nondegenerate with

Idet (, ),|=ILy(T)I - 4 Tor (T(K)g) ™"
H, being cyclic implies
#Tor(T(K,)y)=#H ' (H,, T(K,)=#H'(H,, T(K,)
=4 H(k,, T)=#HL(k,, T)
(use ‘wCAL torsionfree and H “_QAE Z)=0. Thus we have established
L, (T)=Idet(, )| - # Hi(Ky, T).

Using (10) the lemma now follows from this formula and the fact that the
kernel of the natural map

TO(0)>@Tk)/ Tk

p/P
is finite. In order to prove the last statement we observe that this kernel is
contained in the “unit group” o
{ae T(k): ae T(k,) for all finite p}
of Tj,. >ooo,n&5m to [33] the unit group is finitely generated of rank
Y rank, T(k,)—rank, T(k);
p/oo
but this expression is zero, since T}, is odd.
Lemma 5. i) Hi(o, 7 (p)) is finite for all i20 and =0 for iz3;
ii) 8, is a quasi-isomorphism;
i) I[TL,(T) - det(, )yl, - [T #H'(o, 7 @) "

»ip >0
_ #cokerd scokerd,
T #kerd  dkerd,

Proof. In (8) we have already seen that H(o, 7 (p))=0 holds true for i=4. We
first show that the whole lemma follows from the vanishing of H>(o, 7 (p)).
Namely, the groups H. (0, 7 (p)) and H2(0', 7 (p)) are of cofinite type and
have the same corank; this is a consequence of (4.1iii/iv)) using the general fact
that the I'-invariants and the I'-coinvariants of a finitely generated Z,[I']-
" torsion module are finitely generated Z,-modules of the same rank. This means

corank H2(o', 7 (p))=corank H}, (o', 7 (p)) =rank 7 %0
=Y rank, T(k,)=Y corank H 2 (k,, T(p)

»ip »/p
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mw..“_, EMR»WS_ using z,.o. exact sequence (9) we get that 4, is a quasi-isomor-

phism if H>(o, .Q. (p)) vanishes. Under the same assumption the other assertions
are now m_wo easily derived from (9) and Lemma 4.

. According to the flat arithmetic duality theorem of Artin and Mazur we
ave ,

w _ a’#.! 0
H AO« .Qu@v *= W@ moao\sﬁs A.Nt.v ai\av = W—Wﬂl mOBo\vu\ Aru\'v.? QSV

(we remember that ¢, denotes the Néron model of G,, over o). But the
Ec..:& map Hom,  (7,,%,)— Hom, cons (Tpis @) s E_.nmmsw. O<2.o. this is
a direct consequence of the universal Emﬂoﬁw of Néron models cnomcm,m T

is ns.pnw over mvon?v/ {p ramified in k;}, by an etale base ormu,mn it wcmmo,nmﬁ:o‘
8:2.&2 the case N:.Hmw: where the required bijectivity is ‘evident. Thus- it.
remains to  show limHom, (T, G,)=0. Since Ext; AT, G,)=0

Am0>.\<.~: 3.3.1), the sequence 0—» T — T — Hom, (T, G,)—0 of sheaves
on kg, is exact. In the corresponding exact ooroBo«,_«.omvN sequence

T(—Hom,,  (T,,G,)—H Kk T),,—0

the first term 7T(k) vanishes, because T, i I i
fir 3 i is odd. On the other hand H'(k, T
annihilated by [k;:k] because of H'(k,, T)=H"(k,, Z)*™T =0. We muw:w WM

lim Hom,, (T,, G,)=lim H'(k, T),,=0. ge.d.

Hwovno&o:rngnonoamsoéms.ﬂso&mﬁn_, . ‘ ..
, wmonoB:mwac
{)~(3), Lemma 2, Lemma 4ii), and Lemma 5. ) ! : 4 by combining

ncaaoaan.ﬂg,_,rn_umi:mA.vmmnonao , .,
.. . . mobmnmnnmoﬁmbn_aﬂ
odd p which is unramified in wﬂ\»w. - . ye n (and o

:.ﬂnaﬂ. the assumption that ,AQ, holds true (in .wvvnovlma m:pmaocmw in
whic s.:: be clear from the proofs) we can even determine the multiplicity at s
=0 of all Iwasawa L-functions LY(T, s).. v

,—,—.oc_.mi,m. \A%E:mAQSw@::wQH. .
, .. ;.;mcm:,zw%.o&umzmoM.Aaa@
resp. odd, then L)(T, s) has a zero of exact multiplicity ! .mz“

at s=0. ranke, & -AT0E) ® va

Proof. Let p“T,) denote the .multiplicity of LT, s) at muo... Because ou,.
F, bz (0 +0 the number pY(T,) is also the multiplicity of the zero of
Fo,_ 1,5 @y(®) at t=0. This means (compare (1)) v_. .

PUT)2 rank, H(I',e;_, H (7 (p)))
=corank H(I', e, _,H' (0., 7 (p)))
=coranke, _,H.(0}, 7 (p))
=coranke, (7 °(0))®Q,/Z,)
=rankz e, {(7°(0))®Z,).
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But we have (for the notatien see the proof of (3.13i1)))

T IXT, =LY (Txk{, s),
0sj<d k
Jjeven

Y ranke, (7 °(0))®Z,)=rank(J °(0))®Z,)"

in case T, is even, resp.

[T ENT)=L)(TxkT,s)
O._.UO“HM&

Y ranke, (7 °(v}) ®Z,)=rank(7 °(0}) ®Z,)* =rankz, 7 °(R,)
in case T, is odd. Therefore, it obviously suffices to prove the theorem under
the additional assumption k=k7. If T, is odd, this is done in Theorem 1. For
the rest of the proof let T, be even and assume k=k{. We have to show

POT ) =rank(7° (o) ®Z,) " (11)

First we consider the special case that all primes above p are unramified in
k/k. If x: G,—A4—{+1} is the non-trivial character and if T, denotes the
- twist of T by yx, then we have:
(@) Ty is odd; .
(b) »PM»%. k,; in particular, all primes above p are unramified in x?\ww
(¢) L)(T,5)=L)(T,,s) and

rank(7°(0)) ®Z,) " =rank(7,°(0)RZ,)* = rank, 7,°(0"),

irono%ﬂam:ogmEomeODBoaa_ omﬂxoﬁuo.woomcma Om?vm:aﬁg
Theorem 1 implies p1%(T,,)=rank 7,°(0); because of (c) this is nothing else
than (11).

Coming back to the general case it follows from the theorem of Grunwald-
Hasse-Wang ([1]) that there exists a quadratic extension K/k with the follow-
ing properties: )

(d) K is totally real:’

(¢) each prime of k which is ramified in ky is unramified in K;

(f) all primes above p are unramified in K(u,)/K.

Let B resp. B, resp. B, denote the ring of p-integers in K resp. K(u,) resp.
K (u(p)). For any Z{Gal(K(u,)/k)]-module M define M *.% to be the maximal
submodule on which the non-trivial element in Gal(K(y,)/K), resp.
Gal(K (u,)/k,), acts as multiplication by the first sign, resp. the second sign.

First we notice that because of (¢) the formation of the connected com-

ponent 7 ° and the formation of the ind-o-group scheme 7 (p) (although not
the formation of the Néron model J) commute with the base change
Spec(B)— Spec(o’). Since T, fulfils the condition of the above considered
special case, we have

P (T, ) =rank(7 °(B,) ®Z,)~

=rank(Z7 °(B)®Z,) ¥ +rank(7 "(B) ®Z,) "
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We already w,:os that
ba;ﬁzwﬁgwﬁéﬁoc ®Z,)” =rank(7°(B,) ®Z,)".

Since p:=p'OT ) —p® i wltiplici
) =P AT,) is the multiplicity of the zero of F.(). H
:=(HLB,,Z(P)*) ", at =0, we get in a similar way that w0

bWB:wEoﬁmvnooBB_ﬁmoAhIM.EQO:Q\IAEVJJ
=corank HL,(B,, 7 (p))* =rank(7 °(B))®Z,) "

Clearly (11) is a consequence of these formulas,
Corollary 7. Assume (C) to be true If k is totally r j s |

y7.. . eal and 0%,
the multiplicity of the zero of LG, ) at wuoea and Qg <d is even, then

sG):= 4 {p/p: [k, (u,): k,J1(G—1)}.

Proof. We have to show

ranke, l.:o‘_v *®Z,)=s()).

Wn %5 one r.waa pE2 :dﬁto.m ranke; _ (o} ®NLHO ([4],.p: 285); on the other
_.&“., according HM the Dirichlet unit theorem, the normalized discrete va-
uations corresponding to the primes P of %, abo i i-1 .

phism of 4-modules B , <n. pinduce @ w:w Trisomer

(©)*/0; ®Z,—[[Z,=[]Z,[4/4,],
B/p olp

where we have set uiuﬁmzwitvv\»v. Since

e 2=l 1 ELIGZD
0 otherwise,

we 8&3:32% get

S%I.:ocx®,NxvuMBa§_:§EELuwS.n.o.a.
eip .

It is a o.o:_.moEno of Coates/Lichtenbaum ([6] Conjecture 2.2) that the
above corollary is correct without the assumption that (C)- holds true. Using
Qms.won:aoam: methods Greenberg ([9]) has proved this in case that k is real -
abelian over Q. In fact his proof shows that the pairing <, >_is nonde-
generate in certain situations (compare also [8]): we shall &.m%:m,m. this "in-
another paper. : . o

II1. Abelian Varieties
§6. The Basic Iwasawa Module

Let A be an abelian <m:.coQ over k of dimension dimA4 >0, let .o be .its Néron
model over o, and let &° be the connected component of o/ We recall that .7
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is of finite type over o. >.mv§ our task is to study the groups H'(v_,, & (p)), and
again we have to impose restrictions on p. Firstly throughout PartIII we
always assume the following condition to be fulfilled.

Hypothesis. A has good reduction at all primes of k above p.

For brevity, we say A4 is ordinary at p, if A has ordinary good reduction at all
primes of k above p. In §8 we will introduce additional hypotheses on p.

Remark 1. i) o, is flat and quasi-finite over o; in particular, &(p) is an ind-p-
group over o.

ii) o x o, is the Néron model of 4 ww; over o,.
o

The duality theory for abelian varieties will be of fundamental importance
" to us. Let A be the dual abelian variety over k (4 represents the sheaf
Ext;,  (A4,G,)), and let o/ be the Néron model of 4 over o. Since A and A4 are
k-isogenous, A has good reduction at all primes above p too.

Remark 2. If A is ordinary at p, so, too, is A.

Proposition 3 (Artin/Mazur). i) H(o, #,,) is finite for all i20 and =0 for i>3;
ii) the cup-product induces a complete duality .

H'(o, o£,;) x H3~(0,.4,) > Q/Z.
Proof. [17] (7.3). o

Lemma 4. i) H%(o, o/ (p)) is finite;
ii) H'(o, o/ (p)) is of cofinite type for i=1,2;
iii) Hi(o, o/ (p) =0 for i23.

Proof. i) is clear. ii) See [17] a.wv.mop. the case i=1. But the same method of
proof shows that limH Aowk\ub is a finitely generated Z -module. Because of

Proposition 3ii) this implies that H (o, of Gznmwm 2(0, o) 1s of cofinite type.
ii1) This is a consequence of Proposition 3 using imH o?lmivuo.
Proposition 5. i) H,(</(p)) is finite;

ii) H, (4 (p)) is a finitely generated Z ,[I']-module;

iii) H,(#(p))=0 for i23. o
Proof. i) [12]. ii) [17] (6.4) and (5.3); but it can also be deduced from the
descent diagram in the next paragraph. iii) Using H'(o,, #Z(p))
=lim H'(o,, o (p)) this follows from Lemma 4iii).

Mazur has conjectured that H,(s/(p)) is even a Z [I']-torsion module, if 4
is ordinary at p; he has some weak partial resuits in this direction ([17] (6.9)

and [197] II19). Without the assumption that A4 is ordinary at p this is certainly
false ([28]). We now investigate the situation for H,(</(p)).

For j big enough, the sheaf theoretic image </ of &, ghc&?:\. , i

independent of j. In the following we always assume that j is “big enough”!
We then have the exact diagram
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0— _ % 7
nn\n.:c.\vnx /ofpas . o ——0

T

A,
where o; denotes the induced epimorphism (compare [17], p. 201).
Lemma 6. We have an exact sequence

Ofpas’

0~ A ®Q,/Z,— H' (0, (p)— H' (0, #)(p) 0.

Proof. From the commutative exact diagram

0—1 I et o
,&nf:a:i ) /ospas o 0
< . P
. “ _
0 ’ .&E\\oxwﬁs 4 —.of . 0

/otpas

we derive the commutative exact &mmami

0—— T (O)fp"* o (0) ——H' (0, 10 1) ——— H' (0, ) (P)—L2 H' (0, ) p)
b ;o

o.l;v.eﬁe,\ic&g —— H'(0, &) — H(s, ,&xa,him__? )(p).

The assertion follows now b

. y.passing to the direct limit with . i
only has to observe . o , respect to 1. One

ly o 0)/p o 0) =l o 0/ 7 (0)= o/ (0) S, 2, = A © @, 2,

because ./ (0)/.#/(0) is a finite p-group. A
—..2:.5» 7. If H'(o, )(p) is finite, then we. have:
i) H*(0, o (p)) =(#°(0) ® Z ,)*;
ii) corank H' (0, o (p)) = corank H? (o, s/ (p)) = rank, A (k).

"Proof. i) From the commutative exact diagram

Aj+1 -
—_—r i —— 0
2j

J

— s ——0

O—— —
N n.I_\aaua\ .h\\o:.n\

P

0—— -
r&u\\oavn\ ug\a.‘ha\
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we derive the commutative exact diagram
0 @ A (0)———H' (0. 1)~ H(0, L)(p)
. p
0—— A (0)/p’#(0) —— H'(0,.o,) —— H' (0, #)(p).
Passing to the projective limit and applying Proposition 3ii) results in
H (0, () = lim H' (0, 4,) = lim 7 (0)/p’ # (o).

Since o/ (0)/+/(0) is a finite p-group, we have lim p’ o/ (o0)/p’ A (0)=0 and there-
fore ~ o _
_Aﬁ%\.ﬁov\w\.v&?vng o (0)/p A (0)=o(0)RZ,

(according to Mordell and Weil, the group A(k)= (o) is mig_v\ generated).
Finally, it is easy to see that .«7(0)/.«/°(0) is finite of order prime to p (compare
[17]. p. 200/201). Thus we get

H*(0, A(p))*=A(0)®Z,=A°(0)QZ,.

Because 4 and A are k-isogenous, the group H'(o, «/)(p) is finite if and only if
H(o, #)(p) is finite. The assertion follows now by reason of symmetry.

i) This is a consequence of i) and Lemma 6 using
ranky ./°(0) = rank, A (k) =ranky 4 (k).

Remark 8. E (o, o/)(p) is finite if and only if the p-primary component of the
Tate-Safarevi¢ group of 4 1 is finite ([17], Appendix).

Proposition 9. If H(#(p) is a Z,[I']-torsion module and if the groups
H'(o,, o¢)(p) are finite for all neN, then H,(<(p))=0.

Proof. We deduce from Proposition 5i) and [17] (6.11) that A(k,) and there-

fore also A(k,) are finitely generated. Consequently we get lim o/°(0,)®Z,=0, -

where the projective limit is taken with respect to the norm maps. Lemma 71)
now implies )

H (0, o (p) = lim H(o,, o ()= (lim +/°(0,) ® Z,)* =0.

w&:&».mesw&oaamogﬁ&mmnma ,égowiomrwznmﬁmv:m: 5. Embmﬁ
paragraph one can show: If 4 is ordinary at p and if H,(s/(p)) vanishes, then

H (< (p)) is a (finitely generated) Z,[I']-torsion module.

Let 0<j<d be an integer such that e, ,H (#(p)) is a Z,[I'J-torsion

module; we call

j-1

L)(A, ):=F,  mwpml +p°)' 7t —1) (s€Z)

the j-th Iwasawa L-function of A, (with respect to p). The rest of the paper is
devoted to the study of L))(4, s) at s=1L.
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Remarks. 1) The substitution of variables we have made in the definition of
the Iwasawa L-functions here and in §4 follows the principle

t=(14poEi—1,

where g=0 or 1 is the “dimension” we spoke about in the introduction. This
leads to the right analogies with the complex L-functions.

2) If A is ordinary at p and if eoH,(s7(p)) is a Z,[I']-torsion module, then
uv:?r 5) has a functional equation with respect to sk—2—s ([17](7.8)).

§7. The Descent Diagram

The cohomological descent formalism we used in Part II was based on (3.3).
But this lemma becomes false in the present context. Therefore we have to

develop a more refined descent technique. As it is shown in the appendix there
exist two spectral sequences .

H'(G,H'(o,,, #(p) = E'*/ (M
and ,

H'o,Ring o (p) = Ei+i ,, (In

oos<nqm§m85mmeomu:::o:r,;o Hdzoinm?oea:mzmw=w;o:.mnEamo
spectral sequences for our purposes.” :

Lemma 1. #/(p),,,. =75(#(p)s,,. ). o
Proof. Put G,:=Gal(k,/k), and let 5, € G, be a generator. Since
) QQA«&AEH?:»\VH,ME wﬁvﬁnx.A.&\.véawhiv
. n i o

holds true and since 7;_is left exact, it suffices to prove

' c&\a\vﬁuﬁm.:ﬁ M\c:;:v.

The Galois group G, acts in a natural way on the Weil restriction Ry ol ),
The o-group scheme : .

B:=ker (R, o)y, ~"—>R, ot
is separated and of finite type over o and represents the sheaf ng (<, - ).

Furthermore, there exists a canonical exact sequence of o-group schemes
0—of — 3.

Over Spec (o)~ {p/p}, 1 is an isomorphism (223 :,H.\:. But there exists an open .
subscheme Uc<Spec(o) such that U contains {p/p} and .« is an.abelian
scheme. Over U, 1 is a closed immersion (EGAIV 18.12.6). Thus ! is a closed

-immersion which induces an isomorphism in the generic fibres. Since .</ is flat

over o, this implies that 1 identifies .o/ with the scheme-theoretic closure of the
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generic fibre of # in 2 (in the sense of EGA IV 2.8.5). In particular, we have
.\&\exv:“.&\uauns. QOQ. .
Under the assumption that H?*(o,, #/(p)) vanishes we establish now the

exact “descent diagram”: 0 ,

v

H'(o, AP _

<

//s
E'— —H°G, H (0, #(p)) ——0

moAO, R! ﬂnmn&@vv

H (o, 4 ()« _
~N
Y
//

E*———H'(G, I_z?a, o (D).

The vertical sequence is the exact sequence of lower terms of A.E, :. ona.Sme
Lemma 1 into consideration. The horizontal sequence and the .annzmomcob in
the bottom row are derived from (I) using the above assumption and the fact
that the cohomological p-dimension of G is 1. By o and § we simply denoted
the induced maps.

"The key problem is the computation of H%(o, R' ;. (p)).

Proposition 2. If A is ordinary at p, then H(o, R' ng o/ (p)) is finite of order
([T # () @),
»ip
where xe, is the residue class field of p.
, First we proye a more general lemma. Put Me.s ”HM%EEV and G,
:=Gal(k, /k,).
Lemma 3.
HC(0, R* g of (p)) = @ ker (HY (K, )= Hoylky oo D))

»/p

=@ H'(G,, Ak, ) 7).

»/p

Proof. According to the appendix there exists a spectral sequence

H'(G, @ Hi(oy, g () = Eif (1D

B/p

Iwasawa L-Functions of Varieties over Algebraic Number Fields 283

and an exact sequence

E(,y—H0,R R@l@mm?e o (p)—EL, Iv)

»/p
(which is derived from a second spectral sequence converging also to E, - use
Lemma 1); here o, ¢ denotes the Henselization of 9., in P/p. If we apply (3.5)

to (III), then we get E.,=0 and mwvumoau@mp.?s.? 2/ (p)). Inserting this

into (IV) leads to R
H°(o, R! a?&@uwﬂ@mw@e R@Tm\wmrcg.@ ()
H@Mwolmn.?ﬁ < (p) — H (o, (u(p)), o (p)).

Because of EN.?.: .RGVVHIM%EEAE for p/p ([17](5.2)) we thus have proved
the assertion. ,

In order to prove Proposition 2 it therefore remains to show that
EAQEEM.SVZE is finite for p/p of order (# . (xc,)(p))>. We fix a prime p
above p in the following, First we introduce some notations. Let h\m,: resp. L,
be the maximal unramified extension, resp. -its completion and .set ‘L

=Lk(), Lo+ =Lu(), and G3:=Gal(L,/L)=Gal(L,/L):

L —~1
P.00 .Qw .
G

-~

’ ~L ———L

. Let R, resp. R, be the ring of integers in L, resp. L, and define %, to be the-
" residue class field of R, which is an algebraic closure of K,. Because of -

H'(Gal(L/k,), A(L))=H'(Gal (L /k . sv,,_ AL )=0

for i>0([17] (4.2) and E.Av.wsa the E&.Eﬁ the considered Galois groups are
pro-cyclic) we easily deduce from the Hochschild-Serre spectral sequences that

H'(G,, A(K, )= H'(Gal (L,,/k,), A(L,)) ,
=H°(Gal F\@, HY(GY, A(L,))). .
An appropriate moumam,:nm:.os of [17](5.1ii)) (which is proved exactly in the
same way; the finite extensions of L are namely still discretely valuated) shows .
HYGY, AL)=H' (G, A(L,)).

This last cohomology group we now compute with the help of the QEQ.
sequence

ol,&%svlﬁmsvw oA (R,)—0 )

given by the reduction map; here 7 is the formal completion of ./ over 6_.

- ~ L4

Since 4 ‘is ordinary at p,  is isomorphic, over R, to the (dim 4)-fold product
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of the formal multiplicative group G,, ([171(4.27)). In particular, we have an
isomorphism of G2-modules

c&'ﬂﬁ,ocvmﬁsﬁ.%onvv&:_&.

Lemma.

PN

: if i=1,
H'(G, 6, (R))(p)= /s

0 if i>1.

Proof. We consider the exact sequences

~ ~ =

0-&, (R,)— R —i*x -0
and

Olw%.,wo.lvM”o L Q' -0,

where v is that valuation of L_ whose restriction to L is soHB.m:Noa mmm %o
denotes the additive group of rational :Em&mnm s&wmo aosna_:_m»oﬂm e
p™ - [L(u,): L] for some meN. The groups «; m.ba Q' are cm_n_:o y Mrm?o. o
and an‘&oﬁm p-cohomologically trivial. According to [15] emma : n,_o_o
G%module L% is cohomologically trivial. Thus the corresponding co o gy
wnencmsnom imply

H'(G), @s%oog;,nm_ (G2, R (n)=(Q'/Z)(P)=Q,/Z,
and

. -~

HY(GY, G, (R )(p)=H (G, R:)(p)=0 for i>1.

Using this lemma we see that the p-part of the ooso_Bo_omuN sequence
corresponding to (2) is the exact sequence of Gal F\ML-Boac es

0 N+=(Q,/Z,)™4 - H'(G% A(L.) A(L,.))(p)— Hom(Gy, #(5,)(p) =0, ()
- N:=(Q, /4, . P

where the Galois action o:‘ N is given by the twist matrix U e GL(dim 4, Z,) of

A at p (see [17], p.216 or [15]). Because of det(U—1)#0 ([17](4.38)) the

aroup H*(Gal(L/E,), N) is finite of order |det(U—1)|;* and H'(Gal(L/k,), N).

vanishes. Therefore, from (1) and the cohomology sequence corresponding to
(3) we get that HY(G,, Ak, .))(p) is finite of order
et (U— 1)l - 4 H*(Gal(L/R,), Hom(GY, o (%,)(¢))
=|det (U =Dy '+ 4 /() (P).
But with the help of [23](§21, Theorem4) and [171(4.34) (the constant ¢

i i ) one
appearing there is a p-adic unit as is seen from the proof using det U €Z})
can easily show that

det (U —1)[; ' = 4. (k,)(p). qed.
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§8. An Analogue of the Conjecture of Birch and Swinnerton-Dyer

In this paragraph we always assume that the following conditions are fulfilled.

Hypothesis (H): A is ordinary at p(2),
H'(o,, #)(p) is finite foi*all n>0,
H (A (p)is a Z [ I']-torsion module, and
eoH (5 (p)) has no finite I'-submodules = 0.

Because of (6.9) we have the descent diagram at our disposal. First we collect
the information which we can extract from that diagram. Let

S HOG, H' (0, o/ (p)) > H'(G, H (0, £ (p))
‘be the homomorphism induced by the identity map on H 104 (p)).

Lemma 1. i) « and f are quasi-isomorphisms, and B is surjective;
i) corank H(G, H' (o, o (p))) = rank, 4 (k);

#Wﬂﬂcma\m _ rri (= 1)+t
iii) %kerDive #ker \v:l.._wo. #H'(o, A (D))5;,
([T # 2 (c,) (p))*
v/p

Proof. Since the groups HY(G, A(k_) () and -H%o, R' 7, .« (p)) are finite (see
(6.51) and (7.2)), it follows from ‘the descent diagram - that «

is a quasi-
isomorphism and that 8 has finite kernel.” Using that H,(=(p)) is a finitely
generated Z ,[I']-torsion module we see that — ‘

corank H' (0, o/ (p)) = corank H(G, H'(o, #(p))
. - =corank H'(G, H% (o, o/ (p))).
But mno.,ua&sm to (6.7ii)) we have
" corank H! (0, o vi.u corank H?(o, o (p)) =rank, 4 (k).

This implies the assertion ii) and that B is a quasi-isomorphism. Because
eoH,(#/(p)) has no finite I'-submodules +0, the group H'(G, H' (o, «(p))) is
divisible. Therefore § must be surjective. An easy diagram chase finally results .
in assertion iii). : L .

Now let p be the multiplicity of the zero of L)(A, s) at s=1. We have

p=plegH (L (p)))
and

(L (4, 9) - (s=1)="),, =(—log, (1 +p°) - c(eo H, ( (p)).
From Lemma 1, (2.3), and the final remark in §2 we get
p=ranky, A(k), )

where equality holds if and .o:@. if f is a quasi-isomorphism: in that case
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_o?om;.&\@a_m_
_ #kerf _#kerDiv(fea)
" #cokerf  #kerDivp

1 #H @, £ @) (1 # A () ).

i20 - plp

@

Next we define a @w&:m. For this c,ﬁvoma we consider the following sequence -
of maps:

Aoz, Hom(4A(W®Z,,Z,)
ul

A°(0)®Z,

H :p,_“v& (2 H'(o, 4 (P)*
B o

HY(G,H' (0, # (@)))* —L— H°(G, H' (00, & (P)*

The identification in the left column and the upper map in the wmrﬁ oo_E:.:
are given by (6.71) and (6.6). All maps dom_aom o<o§.:.w_€ f* are quasi-
isomorphisms. Thus this sequence determines a unique pairing

DAl x AR -,
which is nondegenerate if and only if f is a quasi-isomorphism; in that case

4 ker Div(foo)
-1 __
det ¢, 0l = #ker Div

’ _H.NQAV.HOH : "&QAOVHE‘H_F AWV

holds true. of course, our pairing depends on the chosen generator yeI'. But’

we can easily avoid this by defining a canonical pairing
<, VulﬁEx\mQavlen

by {a,b),:={a, b) -log, (x (7). Combining (1)~(3) results in the following prop-
osition.
Proposition 2. i) p=rankz A(k); .

ii) p=ranky A(k)<>(, ), is nondegenerate; in that case

LA, 9) - (5= 1)Ll
=[] #H@ 2@ 1[AKhe: 7)oy’

iz0

det <, Y0t ([T # o e ()

v/p
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ﬁo. now want to interprete the Euler characteristic which appears in
Proposition 2 in more “classical” terms. As usual we denote by III,(A) the

Tate-Safarevié group of A,. One of our assumptions means that I, (A)(p) is
finite for all 7n2 0 (compare (6.8)).

Lemma 3. H'(o, o (p))y, is canonically dual to H (0, °)(p)y,.

Proof (without assuming (H)). Since </
have the commutative diagram

R,

[9fpas Iogpqs 18 8N epimorphism, we

0— m;o“ thv\E\..f_m;c. r&.cvl.vmnAP A.&.ovwr _vlmuap c&l.uvn?. -0

.Oplvmpﬁcu r&.ﬁ\ﬁ‘.m;c. .\o\lov I.vaAo‘ Ac&.ov v lmqu. %NOVE 50

pJ
Passing to the projective limit (with respect to.j) leads to
H' (o0, #°)(p)p;, = Tor (lim H N.AP (°),)).
On the other hand from (6.3) we get
(H' (0, & (P))pi)* = (lim H' (0, 7 1)) )*
‘ HHQZW’ENNAP, o ).
Therefore it remains to show that the canonical map .
mwmm:? A.&ovzyl mhs.mu? o 1) | |
is an isomorphism. But this is a consequence of the fact that the quotient sheaf
A (), = | ),

o:o;n\wm,».on\.vmmgocm? Emovmna.ma O:Anoavﬁnﬁm &mn.cmwmoc nwnnmm-
ing (6.6)). . . : . .

Remark. (6.6) and [17] (appendix) W.EUG. 92.5&330: is the image of the
map : : .

H' (0, )Py — H (0, ) (Plpiy = H' (0, o (P)pis-

Taking this into consideration one -easily derives from ron:.:mu that
1, (A) (P)pyy is canonically dual to II, (A)(p) . I

Div*

Lemma 4.
N—.VIMO#NNNAP co\qvxvﬂ.::n ’ _ﬁ\mAkvqo_‘.“ cn\quOv._,.cn“_ _M~
__ ®IOLAG
C#AR @) # Ak (). .“mo #7,(4)(p),

where m,(A) is the group of connected components of Axxk,.
. [



288 B P. Schneider

. Proof (assuming only the finiteness of H*(o, 27)(p)). Because of (6.71)) we have
#H 0, S ()= # A°0) p).
Define the sheaf # on o, , by the exact sequence

00  —d.  —F 0.

[o1pgf /ofpas
The exact sequence of finite groups
0—(A(k)/.°(0)) () — F (0)(p) —~ H' (0, ) (p) ~ W (A) (p) >0
is established in [17] (appendix). Using & (0)= @:LM: and Lemma 3 we get
#H' (0, o (Plpi, = # LA @) [T #7,(D(P) - ILAK) : Z°(0)]l,-

pfoo

. i i i ideration the equalities
The assertion now follows if we take into const li
#M (A (p)= #n,(A4)(p) (see [30], §1 Satz 10, or SGA 7IX§11) and #III,(A4)(p)
= %E;EXE (see the above remark or [36]).

The combination of Proposition 2 and Lemma 4 implies our main result.

Theorem 5. Assuming (H), the multiplicity of the zero of L))(A, m.v at ,MIL is
>ranky A (k); equality holds if and only if (. >, is nondegenerate, in which case
we have . .

ILLP(4, 5) - (s=1) 7k A®],_ |t

(A p) - [det <, Dyl ' A)p)- ([T 4 2 06) P
TR r R A |

Conjecture. The pairing { , >, is nondegenerate.

Remarks. 1) Conjecturally our assumptions (H) are always ?:._:n_”a if _W H_M
ordinary at p. Thus the above 8835.8: be viewed as a mmum_.m aﬁnwww.ﬁro
any case, for the definition of the pairing A.,. >, and for that par h e
theorem which is not concerned with the explicit formula we do not nee
assumption that e, H (s (p)) has no finite I'-submodules 0.

2) From the proofs one can easily see that

det{, ), A)p) - ([T # < (x,)(p)?
*amm el

is a p-adic integer. .
uﬂ First one should observe the astonishing mbw_omw between the Monmsﬁmm%.
Theorem 5 and the formula which w:nr.w:a wii:mﬁou.bwan oWJ_aow:ﬂo o
the leading coefficient of the Hasse-Weil L-function of \w at s= .a _Mﬁ "
‘doubtedly the connection is much deeper. Let 4, be a Wei 0:2% Msm aanwoz-
a prime number such that A4 is ordinary at p. H.Wo: gmnc.n EM ké% enon
Dyer ([21]) associate an mcmwwaom:%. defined ?m.&o L-function rk ,n -
and p. Assuming the conjecture of Birch and Swinnerton-Dyer they prove:
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A(Q) is finite if and only if L (4, 1)%0, in which case

, ) 2 .
LA = g (A5ROV 114y,

here ce@* is a constant given by the Weil parametrization of A which
conjecturally is equal to 1 (loc. cit. §2.3 and §9.6). We immediately realize that
the above expression is completely in agreement with the formula in -our

theorem. This supports the so-called main conjecture of that theory (loc. cit.
§9.5 Conj. 3) which asserts

L(A4,9=LP(4,5)  u(( +p)*~*—1)

with an appropriate invertible power series u(t)eZ L0

4) Because of its abstract definition the pairing { , >, is not computable in
practice. There exist several suggestions for an analytically defined p-adic
height (Bernardi, Gross, Néron). Unfortunately they lead to a canonical pairing
A(k) xke&leu only in case that 4 has complex multiplication (but see [397).
What is the relationship between our pairing  ,-),, and p-adic heights?.

Finally we want to point out another situation to which. our methods can
be applied. We assume that k contains an imaginary quadratic field F and that
Ay is an elliptic curve with complex multiplication by the ring of integers in F;
let p=3 be a prime number such that (p)=p- 5 splits in F and A4 has good
(and therefore ordinary) reduction’ at all primes above p. Changing our no-
tations we put k__:=k(A(p)), o, the ring of integers in k_, and G:=Gal(k_/k).
Then we are led to consider the ‘G-module H'(o_,, «/(p)). This leads to the
definition of Iwasawa L-functions which are algebraic analogues of the Hecke
L-function associated with the grossencharacter of "A,. Now, as has already

- been done in a different language in [5] and [26], it is possible to discuss the

values of these Iwasawa L-functions at integer points using the methods
developed in this paper. We restrict ourselves to giving some indications only:

1) We have an analogue of (3.3). Furthermore, the basic Iwasawa module
can be interpreted as a certain Galois group (compare the remark preceding -
(3.7)). Thus it is not astonishing that a modified form of the Leopoldt conjec-
ture plays a central réle in the study of that module. We refer the reader to
(51 ‘ ‘ .

2) At the moment one has no finiteness result like (4.3).

3) The vanishing of H*(o,, o(p)) follows from the modified .hmov&.&,
conjecture. :

4) One can establish an analogue of Theorem 5. Indeed this is simpler
because of the following facts: , , : : :
a) The sequence 0o, — o L5 of >0 of o-group schemes is exact.

b) Instead of the descent diagram one simply uses the Hochschild-Serre
spectral sequence associated with the Galois extension Spec(o..)— Spec(v')
(here *’” means “p-integral”). )
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c) One can define the analogue of the E&.E.m {, >, without any E.r
potheses. Moreover, it is shown in [38] that {, >, is the same as the analytic
height pairing, apart from a scalar multiple. The analogue of Theorem 5 now
holds with the assumption that II,(A)(p) is finite and that the modified
Leopoldt conjecture is valid.

Appendix. Equivariant Cohomology

Of course, the notion of equivariant cohomology can be developed E a very general context. IMR
we confine ourselves to that special case which is the most man_.om»._um one for oE.._uEvomamm_ _m”
K/k be a Galois extension with Galois group G, let R be the ring of integers :.~ .N. nm ef
n: Spec(R)— Spec(o) be the structure morphism. If & (o) denotes the om_omoQ.om abelian w anmM
on o,,,, we have the following three additive and left exact functors (which commute w

pseudofiltered direct limits):

& (0)— (discrete G-modules)
Fr—H°(R, n* F),

H°(R/s, .): £(0)—(abelian groups)
F > H°(G, H°(R, n* %)),

g L(0)— & (o)
FroneF (U,):=H(G, (n* F)U x R)).

Since n* is exact and takes injective sheaves to H°(R, -)-acyclic sheaves, the _‘EE derived ».EMQ%G
“of the first functor are the usual cohomology groups H'(R, n*.) regarded as discrete G-modules.
Define

H'(Rfo,.), resp. Ring.,

to be the right derived functors of H°(R/o,.), resp. n,. Because of the commutative diagrams

HOR,7*.) A discrete v .S&L&\f%@
#(o) G-modules/’
H®R/o,.) \oa,.v Rl \m !
.Amco:mnw Am&nzszv
groups groups

there exist two spectral sequences ,
H(G, H'(R, n* F)) = H'*/(R/o, #)
and ) o
H(o, Rin,F) = H*I(Rfo, F),

i 0 * injective sheaves to acyclic discrete G-modules, resp.
anm<mwmw<wwwwwmmmoﬂ. W:Hm wnmmr%mﬂwwmg 1111.17(d) and 3.6(c)) it suffices to consider the
case that G is finite. v
- Lemma 1. If G is finite and % € &(0) is an injective sheaf, then:
i) HY(R, n* &) is an acyclic G-module;
il) ng & is a flabby sheaf.
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Proof. i) We regard G as a category with one object in the usual way. Let B be that site which
has G as underlying category and arbitrary families of morphisms as coverings. We have the
canonical morphism of topologies (in the sense of [35]11.2.2)

I Bg—0,,,,

defined by f(G):=Spec(R). Thevcategory of abelian sheaves on B; is nothing else than the

category of G-modules. Because of HO(R,n*.)=f* the assertion now is 2 consequence of [35]
(13.7.2).

ii) The sheaf r,n*& is flabby according to [22](III1.11 and 2.13(b)). This means that the
cochain complex
0—F(U x Nvlv:.wﬂacg. x R) =[] # (U, x U)x R)y—
o : B i o k

is exact for any mosw::m Ui—Uin o,,, ([22]111212). An easy generalization of the assertion i)
implies that each term in this sequence is an acyclic G-module. Therefore the sequence remains
exact if we take the G-invariants, i.e. the cochain complex

016 (U) ]2, F (U) - [[ n6 F (U, xU)—
i ’ bj

is exact. Thus s & is flabby.
From now on we assume that Z:={p ramified in K}<=Spec(o) is finite. Let Y:=Spec(o)~Z

denote the open complement and put Z:=n"'Z and Y:=n-'Y,

Lemma 2. R'ng %, =0 for #e (o) and i>0.

Proof. This results from the commutative diagram of functors
S~ (o)

L)

([22]111.4) and the fact that the restriction functor #(0)— & (Y) is exact..

-1 we apply Lemma 2 to the relative cohomology sequence, then we get ,
Hi(o, Ring #)=Hi(o, Ring &) ~ for j>0. )

;nmin»n.o_&aogoow ﬁo_.mvno:.w_monza:oamsinw ooEonﬁroa_w”?a oor.oEo._o@ mnocn.m.
We have the additive and left exact functors ; . i

& (0) - (discrete G-modules)
F i ker (HO(R, n* #) > HO(T, n* F)), .
HY(R/v,.): & (0)— (abelian groups)
F> H(G, ket (H'(R, n* #)— HO(V, 7% ). .

>m&=9aam§aoa<&?saoao:rnn_.ﬁ?aﬁon &EE«E.«E«RF:? ‘cohomology groups
2(R, n*.) regarded as discrete G-modules, Define ,

Z(R/o,.)

Scogoamiaunina?:oﬁoao-. mwg\ctyww_oo flabby sheaves are HY(o, -)-acyclic, Lemma 1 ii)
implies that n; takes injective sheaves to HY(o, .)-acyclic sheaves. :

Lemma 3. If £ e%(o0) is an injective sheaf, then HY(R, n* #) is an acyclic (discrete) Q.:S&im.

.
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Proof. Because of the injectivity, of & we have H}(R, n*#)=0 and thus the exact sequence of &- ¢ 17. Mazur, B.: Rational points of abelian varieties with val

dul math. 18, 183-266 (1972)
modules

18. Mazur, B.: Notes on étale cohomology of number fields. Ann. sci. Ec. Norm. Sup. 6, 521-556
(1973)

19. Mazur, B.: Modular curves and the Eisenstein ideal. Publ. Math, IHES 47, 33-186 (1977)

20. Mazur, B., Roberts, L.; Local Ruler characteristics. Invent. math. 9, 201-234 (1970)

21. Mazur, B, Swinnerton-Dyer, P.: Arithmetic of Weil curves. Invent. math. 25, 1-61 (1974)

22, Milne, J.S.: Etale cohomology. Princeton: Princeton Univ. Press 1980

23. Mumford, D.: Abelian varieties. Oxford Univ. Press 1974

24, Neukirch, J.: Klassenkérpertheoriec. Mannheim: Bibliographisches Institut 1969

25. Ono, T.: Arithmetic of algebraic tori. Ann. Math. 74, 101-139 (1961) . :

26. Perrin-Riou, B.: Groupe de Selmer d’une courbe elliptique & multiplication complexe. Com-
positio Math. 43, 387-417 (1981) .

27. Raynaud, M.: Modéles de Néron. C.R. Acad. Sci. Paris 262, 345-347 (1966)

28. Rubin, K.: On the arithmetic of CM elliptic curves in Z -extensions. Harvard Thesis 1980.

29. Schneider, P.: Uber gewisse Galoiscohomologiegruppen. Math. Z. 168, 181-205 (1979)

30. Schneider, P.: Die Galoiscohomologie p-adischer Darstellungen iiber Zahlkdrpern. Regens-
burg: Dissertation 1980 .

31. Serre, J-P.: Cohomologie Galoisienne. Lecture Notes in Math., vol. 5. wﬁ::.mnin:uﬂm.zns. -
York: Springer 1964

) e . 32. Serre, J-P.: Facteurs locaux des fonctions zéta des variétés algébriques Emms_,:oi et conjectu-
now imply the existence of the spectral sequenc res). Sém. Delange-Pisot-Poitou 19, 1969 /70 o o -

H(G, Hy(R, n* F)) = Hi; R /0, F) 33. Shyr, J-M.: A generalization of Dirichlet’s unit theorem. J. Number Theory 9, 213-217 1977) .
2 I . . 34. Soul¢, C.: K-théorie des anneaux d’entiers de corps de nombres et cohomologie ¢tale. Invent.
and | (0, Ring ) = Hif (R/o, ). . - math. 55, 251-295 (1979) N , o
25 e X N act 35. Tamme, G.: Einfiihrung in die étale Kohomologie. Der Regensburger Trichter Bd. 17. Regens-

ults in the exact | - burg 1979 . L ) i . Co

. ‘terms of the latter spectral sequence resu ; urg ) . .
Applying (#) to the sequence of lower ‘ter : { 36. Tate, J.: Duality theorems in Galois cohomology over number fields. Proc. Int. Congress Math.

sequence o Ln F)—> H(o, 1y F)— HAR /0, F). Stockholm 1962, pp. 288-295 c . . . -
- H3(R/o, #)— H®(0, R s F) = Hi(o. g 37. Tate, J.: On the conjecture of Birch and Swinnerton-Dyer. and a ‘geometric analog. Sém.

Bourbaki 1965/66, exp. 306 , ,

38. Perrin-Riou, B.: Descente infinie et :mﬁnp:., u..“m&n_pn sur les oo:avom,o_:w:n:am a multipli-

ues in towers of number fields. Invent.
0— HY(R, * #)— HO(R, n* F)— HO(Y, 7* F) 0.

i F is
According to Lemma 1 the second and the third term are acyclic G-modules. mﬁ,:uonaoﬁﬁ ng
flabby which implies the surjectivity of the restriction map

HO(G, HOR, n* F)=ng F ()1 F (V) =HG, H' (Y. 7* #))

(SGA 4 V 4.7). Therefore H3(R, n* %) must be acyclic too.
The commutative diagrams

u\?vlbo\l F(o)

mwﬁ.:...; &mnao.n v
S G-modules.

Q
mws\s// \moa. ) H(R/ p/ \* #0)

(abelian chn_wmn
ﬁ groups v groups
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