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Our main concern in this paper is to show that algebraic and analytic p-adic
heights which are defined in a completely different way nevertheless are the
same. If 4 is an abelian variety over a number field k, 4 its dual abelian
variety, and p a prime number then p-adic :Qmwa are pairings
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Their mam:_:os depends on the choice of a nonzero continuous character k of
the absolute Galois group of k into-the group of p-adic 1-units 1+ pPZ, such
that A has o&SwQ good reduction at the ramhification places of ‘x: The.
analytic pairing ( , ), associated with x was defined in Part1 of this paper
([197; but see [24] for a more unified treatment). Its construction is straightfor-
ward and is modeled on Bloch’s description of the real valued Néron-Tate
height which relies on the interpretation of points in 4 (k) as extensions of 4 by
the EE:ES&:& group G,,. It is called msm_u\:o since it also can be expressed
in terms of p-adic theta functions.

The algebraic pairing ., >, was defined i in [20] under the mmm:Bﬁ:oc Em:
A fulfills certain szEn:o conditions. The construction was highly indirect
and used the global flat duality theorem of Artin/Mazur and the descent
theory for the Z y~extension k/k cut out by k. In the first paragraph we cS:
refine these Eﬁsoam in order to define a pairing

AvamﬁfgrmsﬁgT@

between the p-Selmer groups of 4 and A (which by restriction  to points
induces (, »,) only assuming in addition that-p is odd and A has good
reduction at all primes of k above p. Furthermore we show that some of the
arithmetic conditions on A4 assumed in [20] hold true if ¢ , ), is nonde-
generate (Theorem.1). The most important one of that conditions is.that the
Iwasawa L-function L,(4,k,s) of 4 with respect to « is defined. This L-
function is given in terms of certain characteristic polynomials and reflects the
arithmetic properties of A4 with respect to the Z -extension k/k. Assuming the
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nondegeneracy of  , », we then prove in the second paragraph that an
analog of the conjecture of Birch and Swinnerton-Dyer is valid for L,(4, k, 5)
at s=1: L,(4,x,5) has a zero of order rank, H'(o, T,(#/)) at s=1 and the
leading coefficient up to a p-adic unit is equal to the determinant of € , »,
times the order of the p-cotorsion group of the Tate-Safarevi¢ group III,(4) of
A times some other (less important) factors (Theorem 2). If we assume in
addition that the p-component LI, (4)(p) is finite then we have { , »,=( , ),

and rank; H Yo, T,(#)) =rankz A (k) such that our result becomes very msm_-
ogous to the usual conjecture (Theorem 2'). But we emphasize that this result
indicates that for p-adic L-functions a Birch and Swinnerton-Dyer type conjec-
ture might even be true if III, (4) would turn out not to be finite.

The Iwasawa-L-function L,(4,x,s) is defined if and only if the p- -Selmer
group of A over k_ has ann 0 as module over the completed group ring
Z,[Gal(ko/k)]. 5 the third paragraph we investigate that rank (using the
same methods as before) for any abelian variety 4 which has good but not
necessarily ordinary reduction at the primes of k above p and any Z -extension
k. /k. We show that p is the sum of a certain global invariant and certain local
invariants corresponding to the ramification primes of k_/k. It seems that these
local invariants are mainly determined by the p-rank of the reduction of 4 at
the corresponding prime. Using a theorem of Konovalov about universal
norms in formal groups we are able to establish this if 4 is an elliptic curve
(Theorem 3). On the other hand, we imagine that the mentioned global in-
variant behaves rather unpredictably for an arbitrary Z -extension. But if k/k
is the- ow&oﬁoB_o Z -extension we in fact conjecture EN: it always vanishes, i.e.
that p is 83220@ given in local terms. This conjecture contains as a special
case.the conjecture of Mazur that p=0 if 4 has ordinary good reduction at the
ramification primes of k_/k. As already said, in that situation the nonde-

generacy of the algebraic height € , ), would imply p=0. Indeed, we strongly.

suspect that nondegeneracy is true for the cyclotomic character k. As we will
see, our conjecture also is related to Iwasawa’s- “u=0" conjecture. As a
consequence of this discussion and the theorem of Ferrero/Washington about u
=0 for abelian fields we will prove that p=[k: @] if k is abelian over @ and 4
is an elliptic curve which has supersingular reduction at the primes above p
and possesses a nonzero k-rational point of order p (Theorem 5).

Section B is devoted to the proof of the comparison theorem between
analytic and algebraic heights: We have

<, Vx“|A s

(Theorem 6). An introduction into the structure of this rather lengthy proof is
given at the beginning of Sect. B. As an application we show that the nonde-
generacy of ( , ), for all finite intermediate layers of k. /k implies that the
Mordell-Weil group A(k,) is finitely generated if its torsion subgroup is finite
(which, for example, is known to be the case for the cyclotomic k; - Theo-
rem 8). In an appendix we finally give a cohomological interpretation of the
Néron-Tate height pairing which is very similar to the one of ( , ), given in
Proposition 1 of the last paragraph.
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The reader easily will realize to what a big extent this paper originates
from a careful understanding of Mazur's fundamental work in [13]. T want to
mention that, for elliptic curves with complex multiplication, the whole theory
was developed independently by B. Perrin-Riou ([17]). And I want to thank
J. Coates and U. umssma:...mou. several helpful and inspiring conversations.
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Standard notations

For an abelian group M, let TorM be the torsion wiumgcv and
My, :=M/TorM, let DivM be the maximal divisible subgroup and
Mpi.:=M/DivM. We use. the same notation for a homomorphism
J: M—>N between abelian groups, e.g, Divf denotes the induced map
DivM—DivN. Furthermore, f is called a quasi-isomorphism if it :mm :ES
kernel and cokernel. ,

For a Z,-module M, let E*"Nmoan\ (M, Q,/Z,) be the Pontrjagin dual of-
M. If M* is a finitely generated Z,-module we put corank M :=rankgz, M*.

For an abelian group or a commutative 'group scheme G we put

Gp:=ker(G-G) for neN and G(; V.I:B Gpv for a prime number p. In

case of the multiplicative group we use the slightly different notation
tn: =ker (G, —> Gp), resp. u(p):= :l@w,ti. If Q. is an abelian group we also

put T,(G):=1lim G,
-

If not indicated otherwise, all cohomology or Ext-groups.are taken with
respect to the big fppf-site on a scheme S. In Sect. A one might prefer to think
of the small fpqf-site instead; this is possible since there we only consider the
cohomology - of quasi-finite flat group schemes. By S, resp. HX(S,.), resp.
cd,S., we denote the small étale site on S, resp. its oo:oao_om<, resp. .its
cohomological p-dimension. Similarly cd,I' denotes the cohomological p-di-
mension of a profinite group I

Finally, the cyclotomic Z -extension of a number field k is the unique Z,
extension of k oosﬁm_:oa in k(u(p)).



332 . - P. Schneider
A. The Iwasawa theory of abelian varieties

Throughout the paper, 4, is an abelian variety over a finite extension k of @
and p is an odd prime number such that

A has good reduction at all primes of k above p.

We denote by «,, the Néron model of 4 over the ring of integers ¢ in k.
Furthermore, we fix an arbitrary Z,-extension k. /k; let o, be the ring of
integers in k. and put I':=Gal(k/k). This Sect. A is concerned with the
arithmetic properties of the Z,[I']-module H (¢, < (p)).

§1. Algebraic p-adic height pairings

" In this ‘paragraph we want to show that under a further assumption about the
reduction type of A the structure of H' (¢, #(p)) to a big extent depends on
the properties of a certain pairing we will construct. Let Z denote the finite set
of primes of k which are ramified in k,/k (and which therefore lie above p).

Definition. A is called ordinary for k, if A has ordinary good reduction at all
primes in X (in addition to our general assumption about p).

H.:o two spectral sequences
HY(T, H (oo, o (p) = H* (00, 4 (p))

and L
Hi(o, Rin o (p)) = H (0 4/o, (D)

and the fact that , A
Hi(o, A p)=H'(o, np(p)) for i=0

which we established in [20] lead to the exact “ descent diagram”

0

|

H e, ()

l

0— H'(T, A(Kk) () — H' (0. o, 4 () — HO(T, H' (0.0, 4 () —0

|

H(o,R' nr 4 (p))

|

H*(o, o (p))

|

.?Im:ﬁ H(o,,, A4 (p)) — H (0], & (p)) —— H'(I', H (0, & (p))) 0.

ﬁn‘w:owa% have computed the group H®(s,R'm;/(p)) in [20]. Here we
- should remark that most of the results in [20] (proved there only for the
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cyclotomic Z -extension) carry over to our more general situation by exactly
the same proofs. We therefore will use them in that generality without refor-
mulating the proofs. For any finite prime p of k, let k, be the completion of k
at p and let o, resp. k,, be the ring of integers in k,, resp. the residue
class field of o,; (fixing a prime of k. above each p) we put k, ,:=k, -k,
and I:=Gal(k, o/k,). '~

Proposition 1.
i) H'(I,, A(k,, ,))=0 for p¢ £ and i>0;
ii) H%(o, R' np ot (p)= @ H'(L;, Ak, .));

pel
iii) if A is ordinary for k., then, for peZ, HU(T,, A(k,, »)) is finite of order
(3 o (k,) (p))? and H*(I,,, Ak, .))=0. \

Proof. For the assertion i) see [13] (4.2) and (4.4). The other assertions are
shown on pp.282-284 in [20]. Although the vanishing of H*(I,, Ak, ) for
peZX is not stated explicitly there it is an immediate consequence of that
consideration. .

The main additional fact we now want to show is the following result.

Proposition 2. If A is ordinary for k. then the map H2 (o, o (p))— H2 (0 ./o, / (p)
is surjective, ‘ . :

We reduce the proof to a local vnoc_oi,cmm_m

Lemma 3. In the situation of Sm_ﬁgm:&x. to [20] we have the commutative
diagram of exact relative cohomology sequences : .

—HNY,F)—Hyo,#) —H(:,F) —H(Y.$)—

I | - Lo

— H'~Y(Y, #)— H(R/o, .@Jl :AN\? F)-— H(Y, %‘«vllv
Proof. The map H°(e, £)>H°(Y, .#) is surjective for all injective sheaves
JeF (o) (SGA4V47). We thus have the commutative exact diagram
0— HY(o,#) —H,9) —>H(Y,.S)—0

0— H3(R/0, #)— H(R/0, #)— H° (¥, $)— 0.
The assertion now follows by applying these functors to an :c.no:_,a _,om,o_c:o:..
of # and passing to the associated long exact homology sequences.. q.e.d.

From the commutative exact diagram (with Y:=Spec(2)\X)

Hio,d () —Ho,d () — H (Y, (p)— Hio,d (p)

Lo : |

Hi(ey/o, L (p)— H*(on/0, s (p))— H>(Y, A (p) — H3(o /0. (P))
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and the five lemma we get that it suffices to mroi that

Hi(o, o (p))=0 and that

H(o, o (p)— Hi(0 /0, (p)) is surjective.
Using [20] (3.4) and the local flat duality theorem we compute

H3 (e, o (p))= DH3(0p, 4 (p)= @::: o (04),)* =0

pel pes

where &/ denotes the Néron model of the dual abelian variety \»; On the
other hand, in the proof of [20] (7.3). we have identified the map
H%(2, o (p)) = H}(0/o, & (p)) With the map

@H* (ky, A)(p) — H* (ky, o, A)(P)'™)

pel

which is. surjective since HZ2(I;,A(k, ) vanishes according to Propo-
sition1. g.ed.

- Let s#° be the connected component of &/. We put
H(o, T(f)):=lim H' (o, /) =lim H'(o, 7).

wm.ialﬁ. ‘
) EOENH Amu A§» ‘N;w ﬁa&vv* va = A.m_ A§w .&o vi*vds.

Proof. The projective system of nondegenerate pairings between finite groups
Hi(o, %) x Hom(H' (0, Z2), Z/p"Z)— Z[p"Z
induces a pairing.
Hi(o, T(#) x H' (o, L (P)* > Z,

of finitely generated Z,-modules. From the exact sequences (use SGATIX
22.1)

Hi(e, T, () |+ Hi(eo, .ﬁ?&s — Hi(o, .RB —Tor H* (o, T,(£))
and

Hi(o, °(p))* — H' (o, °(p))* — H' (0, Ap)* — Tor H' = (o, o ° (p))*
we see that the orders of the cokernels of the injective maps
H'(o, T,())/p"— H'(0, 4})
and . . .
Hi(o,o°(p))*/p"— H'(e, Zp)*
are bounded independently of v. This implies the Z ,-unimodularity of the
" above pairing (modulo torsion). g.e.d.

We thus have
(H' (0, #°(P))*)1o, = Homg, (H' (0, (), Z
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and, according to the global flat duality theorem,
H?(o, o (p))* =H' (o, T,(/))

where, as before, o is the Néron model of the dual abelian variety 4. Let us
consider the sequence of maps

H' (o, T,(2)) Homg,(H' (o, T,(/), Z,)

|
(H (0, #° (0))rer

[

H (o, of (p)* H'(o, o (p)*

[

H*(o /o, (p))* o

T‘

HYEH (0w, ot ()L HOWH (0., (o))"

where o, B, y are the obvious maps induced vw the descent diagram; further--
more, if we fix a topological mo:n_.mno,n ¢ of I' then f is defined to be the map
induced by the identity on H'(s,, < (p)) :anb:@::m H'(I;.) with Eo r-
coinvariants). In the following we assume that A is ordinary for k! From
Propositions 1 and 2 and the descent diagram we then know that

a* isa nsw&-aoioggwav

B* is injective with finite cokernel, and

%.. is surjective. A
The above sequence therefore determines .a unique bamsm

€ Det m_?,if&zxm;&jc&zl@‘

which is nondegenerate if msm only if y msa \. are quasi-isomorphisms; in :::

case

# ker Div(yofoa)
#ker Divp

Idetd , Pl 1= 1
with . :
I:= # ker(DivH! (o, 2°(p)) — U?I;S A (p)))
holds true. Later on we. will fix a nontrivial continuous character x: I -z

The modified pairing
AA ’ VVx""AA ’ vv.vmomﬁxﬁﬁv

then is independent of the special choice of ¢pel
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Lemma 4. We have the canonical exact sequence
0 #°(c) Z, > H' (0, Ty(s#)— T, Ul (4)—0
where LI, (A) denotes the Tate-Safarevic¢ group of Ay

Proof. As on p. 279 in [20] we consider the commutative exact diagrams

Ol.&el.&lﬁf.&lo

BN

4

(for v big enough) and as in the proof of loc. cit. (6.7) we derive from them the
exact sequences

0—#°(0) ®Z,— H' (o, T, (o)) - lim H' (o, o)

0o—0

ay =

and : _
0— m;Q:n\v:nolm;& A) o> ker(H! (¢, ) — H' (o, ).

But H'(0, &) — H'(0, &) is a quasi-isomorphism and therefore

lim H (0, o),, _ o =lim H' (2, &),,..
— —

Since I, (4)(p) is the image of the quasi-isomorphism H* (¢, #°)(p) — H' (¢, &)(p)
(see [13] appendix) we furthermore have

lim H (0, &), = T,(I,(4)). qe.d.

By restriction and extension { , ), therefore induces a pairing
e AR x A —Q,
which we call the algebraic p-adic height pairing associated with .

Theorem 1. Let A be ordinary for k_,, and suppose that £, Y4 is nondegenerate.
We then have: v
i) H' (0w, & (p)* is a finitely generated Z,[I']-torsion module;

“i1) INQSLKGS*HE\M?LQV is a finitely generated free I ,module;
H*(o, 4 (P)r=0 and H*(o., 4 (p))" is finite; here k, is defined to be that
intermediate layer of k/k with [k,:k]=p";

" iii) if Z={p/p} and p is unramified in k then H' (o, & (p))* has no nonzero
finite I'-submodules.
Remark. 1) H%(o_,, o/ (p))* is a finitely generated Z,-module and Hi(o,,, % (D))
=0 for i=3.
2) Because of Lemma4 the second assumption in E.m theorem can be
replaced by the following one: I, (4)(p) is finite and { , ), is nondegenerate.
3) If k,/k is the cyclotomic Z,-extension then H?(o,, #(p))=0 under the
assumptions of the above theorem; according to [5S] we namely have

P oseeiv ssvipess peasssapmo. as v

#Tord(k,)<oo in that case. Other Z extensions with that property are
discussed in [23].

4) From the local theory (i.e., the considerations on p. 283/284 in [20] and
the results of [8]) it seems very likely that in general H(o, o/ (p))* has
nonzero finite I'-submodules even if k__ is the cyclotomic Z ,-€xtension.

For the proof we need a whole series of preliminary results. These some-
times have interest in there own right and we then state them in a more
general form than necessary. Let o', resp. 2,5 be the ring of p-integers in k, resp.
the ring of integers in k,, and put I:=Gal(k_/k,).

Lemma 5. )
) cd P (ee)= NJ

et

Proof. Since any torsion sheaf of abelian groups on ., is the direct limit of its -
constructible subsheaves (SGA 4 IX 2.9) it suffices to ?9& ,

Hi (o, F)=0 for i>2

and any constructible p-torsion sheaf # on 0q. For i>3 this is done in [14]

muwaov.o.hnnQmmcno?\vdom nonempty open subscheme such that &, is
locally constant, and denote by . . ;

U —2 Spec(s) — Spec(o)

the canonical open immersions. We first consider the spectral sequence

Setr

H,, (0" Ext:, (6,(F), G,)) = EXt.}*(0, (%), G.).

According to SGA 4} [Dualité] Theorem 1.3 we have

, Hom,, (0, (%), G,)=0, Homy(% G,)
and . . A

Ext, (0,(#1).G)=0 for s>0

mzav 9983.3

28t

H,(¢', 0, Hom(# G,)=Exti, (0,(%,), G,).

On the other hand, from Artin-Verdier duality (and the fact that j, and j* are
exact and j, is left adjoint to j*) we get the nondegenerate pairings of finite
groups . , R .
H_\(2,j,0 (Fp)) X Ext}[ (0, (F), G,) - Q/Z.

Oet

Thus H3(s',0,(%y) is dual to HY(o,j,0,(£,)) with &:=Hom,, (% G,). But

one easily checks that . .

Hl(0,j,0,(Fp)=0.

Finally, since kernel and cokernel of the canonical homomorphism
F —>0,(#,y) are skyscraper sheaves, the vanishing of H2 (<, 0,(Z,)) implies
H}(s,F)=0. qed. . :

The next result implicitly is contained in [13].
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Lemma 6. If A has ordinary good reduction at peX then H'(k, o, A)(p)* is a
finitely  generated ~ Z,[L}-module of  rank [ky:Q,]-dimA  with
HY (I, H (ky, ., A))=0. It is free if, moreover, p is unramified in k/Q.

Proof. By the structure theory of Z,[I;]-modules and by change of-the base
field it m:mc_oom to show that

corank H' (k, ., A)(p)'» =[k, EL -dim A
in order to prove the first assertion. From Proposition 1 we know that the map
H' (k,, A)(p)— H' (ky, 0, A (P)®

is surjective with finite kernel. In addition, the group H'(I}, H' (k, ,,, 4)) always
is a subquotient of INQAE\:. On the other hand, according to Tate’s local
duality theorem, we have ’

H'(k,, A)p)*=A(k,)®Z, and H2(k,,4)=0.

But Bzwﬁ&eﬁ@N »=1k,:Q,]-dimA. The second assertion is proved in the
same way as Corollary 5.12 in [13].

Lemma 7. i) Hi(e/o, o (p))= o\ox i+2;

il) if A is ordinary for k,, and p is unramified in k, then H%(o /o, (D)) is

divisible.

Proof. Let o, g be the Henselization of o, at P/peX. From the spectral
sequence

H xn%wnmm. (000,90 4 (P)) = H3" (00/0, 5 (p))

and the vanishing of mm.?s.e,w& (p)) for j=2 (see [20] (3.5)) foliows
| HOYL®H (00 g () for i=2,
B
$(0/o, A (p)=1H _S@mw?z,a:& (@) for i=3,

1o , for i+2,3.
Because of

mgﬁ@mn ga:&@v @H'(I;, H' (ky o, A)(P))

pel

(use [13] (5.2)) and the E.a,ﬁocm lemma we simply have to observe that
NL:M__JHNY

Proposition 8. Suppose that H? (o, o (p))— H*(0p/on (D)) is surjective for all
neN (for example, if A is ordinary for k). We then have an exact sequence of
Z,[I']-modules

0 lim A(ky) (1) = H? (0., # (P))* — X 0
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s&%w Nanu:viomim@sb::m:&mx:_a finitely generated free Z,[I']-
module. : ;

Proof. In a first step we want to show that

IA&%:&@&?HO for n>0. , )

By change of the base field it is sufficient to consider the case I'=I". From the

n

first descent spectral sequence and the vanishing of H3(o_, o (p)) we derive
mnﬁ§8.a&9vv~."mmAQS\Q:\&@vv.
The relative cohomology sequence then gives the exact sequence

mrwm Nop A P)DH w? /o, (P) > H (00, o (p)— H* (o', c& @)
péz

But the outer terms vanish because of Lemma 5, Lemma 71 and
H2(oy, o (p)) = (lim 7 (c,),)* =0 for p/p.

Zoé?oB Hob.:dm# wnan m_ocw_ mmﬂ 95:@ 3008980 mnﬂnronxmﬁ
sequences :

Olv&oAQLAﬁvl.v:»A%:«ggvv*Invm A§=w Av&vv.—.o_.lvo
and passing to the _une@o:ﬁ limit :ﬁ exact sequence

oIleans.b\AEv*l.Nlo
with o

Ne=lim (o) (p) = lim A(k)p) and X :=lim H (o, Ty( )y,

The finiteness of N, together with 1) means that .N T also is ».:E.o and even
 xR=0 o @

since X is Z -torsion free. We thus =m<m the’ exact commutative diagram

0— N, I,Amn?sz&@*v:l X, - —0

olrwc?_.v@vlmw?_m&@v* , li%?aﬂ ?Sralvo.

By our assumption the middle vertical map is injective. On the other cha the

order of the cokernel of the ‘map Nr,— o/°(2,)(p) is bounded Emoﬁanagnw of
n. Therefore

#Hoi V is bounded independently of n. ,@,

By the general structure theory, (2) and (3) E:UG the property of X asserted in
the proposition. gq.e.d.



We now come back to the proof of ,E.SRB 1. The assumptions imply that
the maps f and y are ncmm_._moBoB?mBm and thus in particular

corank H! ?&“ & (p))" =corank H' (¢, & (p))r
and v
# H (0, 4 (p) < 0.

It follows that H(o,, o (p)* and HZ%(o,,(p))* are finitely generated
Z,[I']-torsion modules. Taking Proposition 8 into consideration this estab-
lishes the first and second part of the theorem. In order to prove the third part
we will show that H'([; H! (o, (p))) is divisible; our assertion namely is a
consequence of that fact by a' general property of pro-p-groups ([21] I-32).
Since H?(o, o (p))' is finite, it suffices to prove divisibility for H?(o, /2, (p))
(look at the descent diagram). We use the relative cohomology sequence

Hi(owo, o (p) > H(onfo, 4 (0)— HA (o', L (p)) > H3 (o o, 4 (9)).

According to Lemma 7 the first term is divisible and the last one vanishes. But
H*(o', A (p))=HA4(o', o AEV is divisible, too. Namely, since the cokernel of
#°(p),,...— & D), is a skyscraper sheaf that follows from the divisibility of
HZ (o', &#°(p)) which itself is derived from Lemma 5 using the exact sequence

H2(o', #°(p) — H2 (o, °(p) — H2(o', #0). qed,

We certainly should remark that Theorem 1 is a really conditional state- -

ment in the sense that there exist examples where A is ordinary for k, but
H'(oo, Z(p)* is not a Z,[I']-torsion module. One may hope that ¢, D4
always is nondegenerate if k. /k is the cyclotomic Z,-extension. An “uncon-
ditional” but not very precise statement is the following one.

Proposition 9. If A is ordinary for k then
Defect( , »¢) 2 rankg,gry H (oo, L (p)*= rankg,;ryH' (00, # (p))*.

Proof. (The defect of a pairing, by definition, is the rank of its nczmvmnomv It is
easy to see that

Defect( , D)2 Srwﬁ.anon y*)=corank H°(I, H (¢ ., 4 (p))).

But Proposition 8 implies that the right hand side is nothing else than the
Z,[I'J-rank of H?(o,  (p)* The equality in the statement can be derived
from the descent diagram; instead of doing that we will give a more conceptual
proof of it in Paragraph 3.

The equality sign would hold in the above proposition if and only if the
action of I' upon H' (s, (p)) fulfills a certain partial semi-simplicity proper-
ty. But G. Brattstrom has computed examples where strict inequality occurs,

§ 2. Birch and Swinnerton-Dyer formulas

We now are ready to improve Theorem u of [20]. Fixing a nontrivial con-

tinuous character k: Hle we always assume ths . ..
at th
are fulfilled. y ¢ following conditions

Hypotheses (H): A is o_.a:SQ for k,, and ¢, ), is nondegenerate.

Because of Theorem 1 En characteristic polynomials
E():=p™-det(t—(¢—1); H,®Q,)
Z,

of the Z,[I']-modules H;: =H'(o,,(p))* then are defined; here, u(H;) de-
notes En p-invariant of H, which can be nonzero only for i=1. We call

L,(4,x,5):= [] F(x(¢)! > —1) -1 (seZ,)
i20
the Iwasawa L-function of A with respect to k.

Remark. In the case of the cyclotomic Z p-extension k_/k and the cyclotomic

ormnmoﬁnxﬁrmh?no:o:h Kxaa Enm.&domm the L-functi A:
considered in [20]. ¢ Liunction L(4.s)

We want to determine the Sﬂmmnn
m:=multiplicity of EoANQ.o ow h%_\r.ﬁ s)at s=1
and up to a p-adic unit (indicated by ~) also the leading no&m&oa
c:=[L,(4, x.mv..?l:l._u_hu_.. |

Proposition 1. Assuming (H); we have m =rankg, H' (¢, T, (/) and
detd ;- ),
I

C~

T #H Gl )5 ([T 4,2

iz0 peZ

Proof. Reformulate the proof Q. [20] Am.uv in the Emwoi ooanﬁv (using, of

_ course, Theorem 11) and ii)).

We recall that by definition’
I'= 4 ker(DivH' (o, ° (p))— Div H' (o, £ (p)));

let [ be the order of the oozgvosm_nm _850_ mOn the dual abelian variety 4
Lemma 2.

$H (o, )50 = -1 F AP,
Il P #AR))- # Alk) (p) LLFAP

where 7. (A) denotes the group of 8::«2& components of A Xk,

?ee\ iogémo?. .&\Svcz A(k)(p).and, according to the global flat m:m-
lity theorem and Lemma (1.4), .

(H?(o, .ézi*u?%? T, () =.9°(+)(p).
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In order to compute % H' (o, # (p))piy We start from the exact sequence
0 (A(k)/° () (p) > D, (A)(p) > H (o, 5 °)(p) — I (A)(p) -0
b Y

which is established in [13] (appendix). It gives

#H (o, ) plow=F 1 |[A(K): ()l # L A) )iy ] # 1o(A)P)

Lo J = #ker(DivH! (s, 5°)(p) - DivI, (A)(p))

= #ker(Div H! (o, 4°)(p)— DivH (2, &)(p)).
But we have # IL(A)(P)oiy= # (AP, and #71,(A)(p) = #m,(4)(p). Ac-

cording to [20] (8.3) the group H!(e,°)(p)piy is dual to H'(e,#(p))pw. Fi-
nally, using [20] (6.6) we see that

.\N‘“N&. __H\M.Akvﬂon”«n\loAQY?-”_ _1

holds true. We thus get

() (p)
# A(K)(p)

Combining the above two statements leads to the main result.
,—,__2..3:.. 2. Assuming (H), we have m=rankz, H Yo, T(«)) and

. qed.

#H (o, (Ppiv=1"" - # (A (Poiv- [ | # 1 (A)(P)-

Cc~

detd, Dy # (A Plp

Using Lemma (1.4) and [20] (6.6) we can formulate this result in a different
way which shows an astonishing analogy to the complex Birch and Swin-
nerton-Dyer conjecture.

Theorem 2'. Let A be ordinary for k., and suppose that I, (A)(p) is finite and
that {, >, is nondegenerate. We then have m=rank,z A (k) and

det( , 3, 4 I (4)(p)
- #TorA(k)- #Tor A(k) ) _M #7,(4)- m@#.&?ev%.

[

We mention that in the context of elliptic curves with complex multiplica-
tion similar theorems are contained in [2] and [17]. In Sect. B we shall prove
that the pairing {, ). is equal to the corresponding analytic p-adic height
pairing as defined in [19]. It seems that such an identification is fundamental
for any future proof of the nondegeneracy of ¢, ), in the cyclotomic case. On
the other hand, it might be an interesting problem to decide whether the
nondegeneracy of { , ), already implies the finiteness of III,(4)(p).

We conclude this paragraph by making the remark that L,(4,«,s) has a
functional equation with respect to s—»2—s. For the polynomial F,(¢) this is
proved in [13]. So, we only have to observe that
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Homy, (H,,Z,)=Homy, (lim A(k,)(p), Z,) = Hom, (lim A(k),. z,)
=(Ak) 0)*)10r=(H (0, o (P))ror |

and therefore by using a k-polarization of 4
1

EoBevAINN®BE ewvmmom@eu

holds true. 7 “

§ 3. The nonordinary case

We also want to discuss what the r i | . .
: . anks of the various Z, [I']- i
be if 4 is not assumed to be ordinary for k. Define LT Trmodules mighy

p: “HNDWNN._H:_NN_.AQRC b\@wv*,

p i=ranky rrq H? *
and z,ir H (00, & (D))*,

bv""—‘NBWNvmﬁvumh,Qﬁ?Sw\Ax.ﬁv*. for ﬁmM.

We first compute some Euler characteristics.

Lemma 1. i) ) (—1) corank H(o, .o/ (P)=0;

iZo 4
_.a mWoA —1) corank H(s, /o, c&céwb; —p; |

iii) mwMoA — 1) corank Hi (o, o (p)) = dirn 4 .mMM [k, :Q,]);
iv) NWMQA —1)' corank Hi(o /o, QETW P,

Proof. i) We have to show that -
corank H! ?.v & (p)) = corank H MAP o (p))

:o_n_m: .. .. .
ho rm<o=o Aoos.vma _HNSR.A; >ooo~d5m to loc. cit. (6.6) and [13] (appendix)

corank H' (o, o (p)) = rank, A (k) + corank H' (o, o)(p)
=rankz A (k)+ rank, T, (I, (A)).

On the other hand using the fact that 4 and 4

: . are k-i global flat
duality theorem, and Lemma (1.4) we get - rRogEnous, the m_ovm_ flat

corank H?(o, o (p)) = corank H%(z, o (p)) = rankz, H' (¢, T, (7))
= .annm (k)+ rank, T, (I, (A)).

ii) This comes o.S of the first des |
; ) : descent spectral seque aking
H'(2, o (p))=0 for i23 into respect. quence taking
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iii) Using [20] (3.4) we get
Y. (—1) corank H(o, & (p))

iz0
=Y (corank HZ (s, & (p))— corank H? (2, # (p))).

peZ

But applying the local flat duality theorem we easily see that

corank H3(o,, & (p)) = rank,_lim A(k,),.=0.
? L, »/p

Finally, in [13] (5.3) the equality

. corank H2(o,,, o (p)) =dim A4 - [k, : Q]
is proved. :
iv) Compare the proof of Lemma (1.7).

Lemma 2.
p=p + Y (dimA-[k,:Q,]—p,).
peX

Proof. This is a consequence of Lemma 1 and Lemma (1.3). .

From Lemma (1.6) we know that p,=dimA4- [k,:@Q,] if A has ordinary

" good reduction at p. This proves the following result.

Proposition 3. If A is ordinary for k,, then p=p'.

We guess that p, is equal to 1, [k,:Q,] where

r,:=p-rank of the reduction &/,

(Le, pro= # A (K,),)- As we shall see the computation of p, can be reduced to a
problem about universal norm subgroups of formal Lie groups, which is not
solved in general* We therefore can prove the above equality only if r,=2dimA4
_1. Nevertheless the main argument should be presented in its general setting.

Let € be a p-divisible group over o, and denote by  the dual p-divisible
group. We have the canonical exact sequences

0-%9°>%->%"—0
and
OLQB::lQoILQoolO

of u-&&&c_o groups over o, srnn.o @G resp. Qo,aﬁromg_pnmmv. ooEﬁoﬁo@,
‘part of 4 and (¥™")", resp. (%°°)", is the etale, resp. connected, part of (¥°) .
Because of :

H3 (0, 0 @°)= H3 (0, o0 9™) = H (05,00, $™") =0

P, 007
([20] (3.5)), where o, ,, denotes the ring of integers in k, ,, we get the exact
sequence -

mw?«:suRSVlmw?u,s,ﬁvlmw?«:z.ﬂzvl 0.

* In a forthcoming paper we will establish the required property of formal Lie groups in
rmemlata manerality Tn narticular, the formula p, =7,-[k,:@,] always holds true.

p-adic height pairings. 11 - 345
The dual groups of Qouo and ¥ are connected. But if & is connected we can
use a aomo:v.:os of .m. (2,000 %)* as projective limit of certain universal norm
Mnocnm w._mmoO_ﬁoa with ¢. Namely, let k,, be the unique subfield of k, _ of
.« . i . P, 00
egree p” over k,, and denote by o, , the ring of integers in k, ,. We put

NEs, )= [\ Norm(@(o,.,).
mno.B the local flat duality theorem and the assumption that ¢ is connected we
derive (compare the reasoning on p. 357 in [12]) .

HX(oy o, %)*=1im % (o, )=lim NG (o, )
S ’ «— pon

where En. projective limits are taken with respect to the norm maps. :
In a first step we now assume that ¥ is etale of height 4. & then is a formal

Lie group of dimension h of multiplicative type over »,. We certainly have the
exact sequences ’ R

w@ ml uAQE,‘Z @uAQ«..Svv

g
X

(H o 000 9,

|

H*(o

Q«?,vaﬁ.e. n H

G)*

p,n?

@va

~ ~

Yoy )/ING (o

pon)

“

0

with ﬁ.{_."ﬂﬁw_ @m..s\w..,.:.v and .Qs.:TI.Om_ (ko m/ky,n)- On the o:ﬁ.ﬂ hand, from
[11] (which is a EBE&& version of [13] §4) follows (combine the Lemmata 2
and 3 and the second diagram on p.239) that we also have exact sequences

Ollv T.lﬂluml~AQ§~=u QHQu.EvvllIv

mn

o AT R

P.

—— lim A°(G,, ., %(2, )

m2n

= 90, JING(o, )—— O

for n big enough (such that ko, w/ks,n 18 totally ramified) where u is the twist
matrix of 4 over o, ,. Both together imply

corank H (o, o, 9) " =rank; (e, )=h-[k, ,:Q,]
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for n big enough. By the general structure theory of Z [I.]-modules we thus
have proved that H2(s, o, %")* is a finitely generated Z [I,]-module of rank
height (%*)-[k,: Q,]. 5

It remains to consider the case where 4 and ¢ are connected. Here, there is
the following result of Konovalov ([9]; see also Hazewinkel [25]).

Proposition (Konovalov). Let F(X,Y) be a commutative finite dimensional for-
mal group law over the ring of integers R in a finite extension K of Q,. Assume
the power series which represent the multiplication by p on the reduction of
F(X,Y) are power series in XP’. Then the subgroup of universal norms in F(R)
with respect to any totally ramified Z -extension of K is trivial.

Altogether the above considerations give a result which should be true in
full generality, namely:

Proposition 4. If (%7°)" is zero or isomorphic to a product of one-dimensional p-

divisible groups, then H?(o, ., %)* is a finitely generated Z,[I,]-module of
rank height (9°)-[k,:Q,].
Proof. We have H2 (o, o, 9°%)=0 since (¥°°)  fulfills the assumption made in

the above proposition. Namely, all the one-dimensional factors of (45)" ob-
vipusly must be of height at least 2. .

Theorem 3. If r,zdim A—1 (for some peZ) then p,=r,-[k,:Q,].

Proof. We already have discussed the ordinary case. Assume therefore that r,
=dim 4 —1. According to [13] (5.2) we have

H' (ky, 000 A)P) = H2 (04,000 4 (7))

where (p) is the p-divisible group associated with o over o,. (o @%@: is the
connected one-dimensional p-divisible group of height two, and height (« (p)*)
=height (« (p)} ) =T, :

Corollary 5. Let A be an elliptic curve. For p € we have

_([k,:®Q,] if Aisordinaryatp,
=40

Pe if A is supersingular at p,

and therefore

p=p+ Y [k:Q,l
pel

A supersingular
) atp
Remark. To prove the equality p,=r,-[k,:@,] in any case means to generalize
the result of Konovalov to any connected p-divisible group with connected
dual.

Next we have to discuss the rank p’. As already was indicated at the end of
§1 the behavior of p' if k., varies through the different Z -extensions of k may
be rather complicated. In order to get a general statement we have to impose a
strong condition on the abelian variety A.
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Lemma 6. Assume that
a) A(k) and II,(A)(p) are finite, and
b) Hi(o, ., & (p)°°)=0 for peZ.

We then have H?(o,,, o/ (p))* =1lim A (k,)(p).

A —

Proof. We first prove that

H (0, 4 ()~ H2 (0 o, 4 ()

is .m:.d.oonﬁ for n big o:.o:mw. As we have seen in the proof of Proposition (1.2)
this is a local problem; it namely suffices to show the surjectivity of

mmAQ?:. .&vilvmm?u?oo,g@vvﬂu.x ;

for n big enough and peX. Since the twist matrix of .o/ (p)** over o, , has no
roots o.w unity as eigenvalues (otherwise o/ would have infinitely Emsw.m_qm:,ozm_ :
points in some finite extension of x, which is not possible) the considerations
before Proposition 4 together with assumption b) imply that

| H(0y 0 A (0)) > H (0, o, A ()Y on = H2 (o, ., 4 (p))Fo
is wcao.o:é for n big enough. We Qmmﬂ.gﬁ . A ‘
H(oy ,, 2 (p) > Hi(o, ., o (p))

is surjective, too. From local flat duality and the fact that a formal Lie group
has only finitely many torsion points over o, ,, resp. the above mentioned
3%@9.3\ of the twist matrix, we -derive H ey H(P)°°)=0, resp.’
H(e,,,, & (p)™")=0, and thus H3(c, ,, o/ (p)°)=0. The first step therefore is
established. The same reasoning proves that for arbitrary n>0 the map

H(0,, o (p) > HX(0, [, 4 (p))

at _mm&.rm,m a finite cokernel. On the other hand, it is a consequence of
assumption a) that H *(o,(p)) is finite (compare the proof of Lemma 1). A
look at the descent diagram then shows the finiteness of H %I, H* (o, ().

Combining these facts with Proposition (1.8) now gives the lemma.
H_..mo...oi 4. Assume that ro2dimA—1 for all peX ( \9 SBREQ. if Aisan
elliptic curve). If A (k) and III,(A)(p) are finite, then we have :

H*(oy,, of (p))* =1lim A(k,)(p)

—

and in particular p'=0 and -

p= MHA&B\_IJY [k,:Q,]1.

pe ’

Proof. If r,=dimA resp. =dimA4—1 0o |

» , . -1, we have Z(p))°=0, resp.
mw?g.a.k\@voovnc by Konovalov’s result. Therefore, the mmmmz\_.o_.z is a con-
sequence of the above lemma and Theorem 3. ,
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On the other hand we have a rather clear picture of what to expect if k_, is
“the cyclotomic Ns-nﬁncaow. In that situation Mazur conjectures :z:. p=0
(and therefore p’=0) holds true for any 4 which is ordinary @ k... Motivated
by the analogous function field case we propose the following more general
conjecture.

Conjecture. H* (o, o (p))=0 if k_/k is the cyclotomic Z ,-extension.

This vanishing statement certainly is correct under the mwm:E_uaosm. of
Theorem 4. Theorem 1 shows that for 4 which is ordinary for k,, the conjec-
ture would be a consequence of the -expected sosaomonm.nmnw of the p-adic
height pairing <, Y, associated with 4 and the cyclotomic owmammﬁn k. But
there is another case which we can attack. Let us call an o_:v:m curve A
supersingular at p if it has supersingular good reduction at all primes of k
above p.

Lemma 7. b.& k., be the cyclotomic Z,extension and denote by o, the ring of
p-integers in k. If A is an elliptic curve which is supersingular at p we have

H(0, o (p) = Hi\(ol, £ (p)  for i20.

Proof. From Konovalov’s result we know that H?(e, ,, #(p))=0 for p/p. The
further proof is an argument with the relative cohomology sequence m:.a
~ proceeds along the same lines as the proof of (3.3) in [20].

This result connects our conjecture with a second one which turns out to
be well known.

Conjecture. cd, (o)), =1 (where o, is the ring of p-integers in the cyclotomic
Z -extension). .

Let us slightly modify our notation for a moment writing o, (k) instead of
o

O
Lemma 8. The following assertions are equivalent:

a) od (o (k) <1 for all finite extensions k/Q;

b) H2 (o' (k), p,)=0 for all finite extensions k/Q;

¢) Pic(o' (k) is p-divisible for all finite extensions k/Q; .

d) Eo?wo?:gv* is a finitely generated Z,-module for all \NE.R extensions
k/Q. "
Proof. We know that omu?r?vr,MN (compare [20] (3.7)). The equivalence of

a) and b) then follows from SGA4IX §5. The exact sequence
0—p,~ G, G,—0 _
of sheaves on (o (k)),, leads to the exact cohomology sequence

0> Pic (e (k) @ Z/pZ— HA('n (K), 1)~ HA(0'(K), Gn)p—0.
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But we have HZ (o}, (), G,),< HZ (k, G,,),=0 since cd, (k). <1. Thus b) and
¢) are equivalent. Iwasawa ([7] Theorem 16) has shown that Pic(o),(k))(p)* is a
finitely generated Z,[I']-torsion module which has no nonzero finite I'-sub-

modules. The general structure theory of Z [I']-modules now implies the
equivalence of ¢) and d). gqe.d.

Iwasawa’s conjecture about “u=0" states that the assertion d) above al-
ways holds true. It was proved by Ferrero/Washington ([3]) for abelian exten-
sions k/@Q. Therefore, I think that the Lemmata 7 and 8 provide considerable
evidence for our original conjecture. But they also lead to a concrete result.

Theorem 5. Let k_, be the cyclotomic Z -extension, and let A be an elliptic curve
which is supersingular at p; assume that k/Q is abelian and that A(k) contains a
nonzero point of order p. We then have H* (o, o/ (p))=0 and p=[k:@Q].

Proof. Because of the existence of the Weil pairing we have an exact sequence
o.lvN\ﬁva\_ulvtnlvo

o<onxn..C&:m%acn?ﬂ.mﬁEovo:w,omﬁn Zmnosaoao_20&9?0?05.5&
an exact sequence -

0—>Z/pZ— of\,—p,—F —0 .
over (o)., where & is a skyscraper sheaf. Since the residue class fields of 5,

are p-closed we get Hi (o, #)=0for i>0, On the other hand, we have seen

that the Ferrero-Washington theorem implies

H (0, Z/pZ)=HZ (o, ) =0.

It ,nEm follows HZ (0!, o4 »=0. Esm.:u\ the exact m.o.ncm:no .

0— o, — o (p) 2o A () > F'— 0
over (o)., where &' again is a.skyscraper sheaf leads to the exact sequence

H2 (0, 58,) = H (o, o (0) -2 HE (o), 0 (p)

which shows'that HZ (o, o (p)) vanishes, too. We now just apply Lemma 7
and Corollary 5.

B. The comparison theorem for algebraic and analytic p-adic rmmn__nw

We retain the notations introduced in the previous paragraphs. In particular,
k./k is a fixed (but arbitrary) Nu-oﬁo:mmo: with Galois group I' and «: I -Z;
is a nontrivial continuous character. In this section we will show that the
pairing { , ), defined in §1 is the same as the analytic p-adic height pairing
associated with «. Since the proof is rather long and complicated we first want
to say a few words about the idea behind it. Using Bloch’s description of the
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Néron-Tate height it is an €asy matter in the global function field case to
derive the still simpler and direct description

A(ky=Ext}(£°, G,) x o£°(S)— H'(S, G,) = Pic S =%

as a Yoneda pairing followed by the usual degree map on divisor classes (S
here is ‘the curve which replaces Spec(s)). To compare it with some other
cohomologically defined pairing then is a question of handling the coho-
mological formalism in the right way. (All this was carried out in [18].) If we
try to imitate this procedure in the number field case we immediately run into
the problem that Pic(e) is finite. We have to take into consideration that the
analytic p-adic height somewhat is of a transcendental nature at the primes in
Z. This should be reflected by the degree map we are looking for. Our first
task therefore is to develop a cohomological formalism which is closely related
to the flat cohomology but allows to modify sheaves like G, or «/° at the
primes in Z in such a way that they contain the “transcendental” information
we want to conserve. This is done in §4. In §5, we then are able to define a
trace or degree map from a modified divisor class group of o, resp. o, into
Z,. The key step of our proof is contained in §6 where we show that ( , >,
can be described as a Yoneda pairing in our modified cohomology theory
followed by the degree map. This step is not purely formal insofar as we have
to use a nontrivial result of Serre ([22]) about congruence subgroups of abelian
varieties. This result will enable us to check the commutativity of a certain
diagram locally and away from the primes in X. Finally, in § 7 we compare that
Yoneda pairing with the analytic p-adic height which, of course, will be easy
since we now have the correct cohomology theory at our disposal.

§4. Modified cohomology theories

For m:w scheme S, resp. affine scheme S=Spec(R), _mn us denote by Z(S),
resp. S(R), the category of abelian sheaves on the fppf-site on S. Put
%.lmcmo (e)\Z. For peZ, we consider the left exact functor

H(ky, o> @ .v” L(Y)— &(k,)— (I',-modules)
into the category of discrete I',-modules where
. : mvno:a?svlv Y

is the canonical morphism. We define % (¢)=2(c;Z) to be the mapping
cylinder of these functors: The objects of & (¢) are tuples

(F 5 (Mqer; (Holaes)

‘with FeZ(Y), ‘M, e(I;-modules), and p,: ?leo:ae% 2}%) a homomor-
phism of I'-modules; the morphisms between these tuples are defined in the
evident manner. Z (o) again is an abelian category with enough injective
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objects, and we have the functors

\W X Iy

PV L — 2 () ™ (I,-modules)

1w

I I
given by :
P F—(F;0,0) CIN(F M, ) M,
T M, j ) F . I,,: Mi—(0;0...M...0;0)
; o1
g-th place

i F(F HO>k,, o, 22 F); id) L (F;M,; pp)—ker .
They have the following properties:
1) Each functor is left adjoint to the one listed below :

ii). #*, \: Z are exact; #,, I, are left exact;

iii) 7., #*, « map injective. ogooa to ::oo:é ones;
iv) mo??%&* v =IX7..

Proposition 1. For 4 =(#; M,; .:Lm.,aw (o) we have
keruy, = - 3 for i=0
R'I(%)= coker 1, . for i=1
ET_QA coor @XF)  for i22

Wwith the evident I, -inodule structure.

Proof. If 0-%'>% 920 with 9*=(F uwtw is an exact sequence,

then the-diagram L

0— M} - M e ¥ 0
x& : ‘_L S f:& .

olvmoQa?S, a} _Vlmo?m.ggsw%\.vlmo??s, aFFH—H (K, a*Fh)— .

is commutative and exact. Passing to the ker-coker sequence shows that the
right hand terms in our assertion form an exact d-functor. It ﬁrmnmmo_.a Temains ,
to prove that this é-functor is universal, i.e., Em:

oowahtenm_x_%?s, a} vuo for i22
if ¢ and thus & are injective. But for injective ¢ the map

G LI G=SF

; induced by the y, is an epimorphism Amﬂ:{:;d which in particular implies

coker u, =0. O: the other hand, since k, . is the filtered direct limit of finitely
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generated Y-algebras, it follows from a limit argument that af maps injective
sheaves to acyclic ones.

Definition.
Hi(o,.):=Extyo(#,Z,.), and Hi(s,.):=ExtyeI,,Z,.) for peZ.

Proposition 2. For 4=(F; M_; u,)€ % (o) we have
i) the exact relative cohomology sequence
—@H(,9) > H(0, 9> H(Y, F) > D H* (o,9)—
pel pel
and
ii) the spectral sequences

H(I,, R'I(9) = H (0, %).
Proof. U Apply the functor mﬁwax: %) to the exact sequence
0-4Z->JF, LD, Z-0.

pel
i) We have Homy (I, ,Z, ¥)=Hom,, (Z,I,%)=H'(T,, I,%).
Proposition3. R' ¢, F =D 1, H'(k, . 2y F) for i>0and FeF(Y).

pel .
Proof. Similar to the proof of Proposition 1.

Of course there is a relationship between our modified cohomology theory
HA* and the usual flat cohomology of Spec(o). Let ¢, ,, be the ring of integers
in k, ., and denote by a,: Spec (o, ,,)— Spec(s) the canonical morphism. We
then have the left exact functor R

M: #(0)— % (o)

F —(Zy; H (0, o, a* F); canonical)

where H'(o, ,, a¥ %) is equipped with the evident I',-module structure.
Lemma4. i) R'M(F)=D1,, H (o, ,,, 0 F) for i>0 and FeF(o);
pel
ii) M maps injective sheaves to H®(o,*)-acyclic objects;
iii) H%(o, MF)=H(0/0, F).
Proof. i) This is shown in a ¢imilar way as Proposition 1.
ii) Let # €% (0) be injective. By a limit argument we get

mmAQPS,RH%\JHm;»Po%&H.W\IVHO for i>0.

In particular, the maps H o??su ay F)—H o??eu&w &) are surjective (we have

w¥ F [k, =atF). An appropriate modification of Lemma 3 in the Appendix
of [20] shows that the kernels of these maps are acyclic I,-modules. Together
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with Proposition 1 and Proposition 2ii) these facts imply
Hi(o,MF)=0 for i>0.

Of course, #*# is injective in &(Y). Our assertion thus follows from
Proposition 21). e
iii) If z: Spec(e,,)—Spec(s) denotes the canonical morphism and Y, :=
Yx o, is the base extension we have H(o /0, F)=n*F (¢)" and
H(e, MF)=Homgy,,,(#,Z, MF)

={(x;x,)eZ (Y)x [[H (04, o, 0¥ F)To: x=x,in H(ky, o, a¥F)}
pel g

nmxwxovmn*%ﬂﬁxsvx:mo?s®$,nwp§:v“xnxuBmo?s® wuvnw%.t:ﬁ
pel o o

It therefore remains to prove that

ﬁ??%@%ﬁ«%:mo@w@?ﬁguﬁ5%5@?@
pel ' - o : .

holds true for any sheaf FeL(0,) O_uio.:m_%.ﬁrﬁ.m is a map
, F (04)— right hand side.

We now fix an element Cnu.nuv in the right hand group. Let AP be a filtered

direct system of flat o.-algebras of finite type -with Spec(o, ® o,)=1lim

Spec(4{). We then have Spec(s,, @ k,) = lim Spec(Y,, x A¥) and —
2 . TI.. Gw

H(00 ® 0, F)=lim F(4P),  H(o,, @k, F)=lim F (Y., x 4P)
° 4 . o > G
There ‘are indices B(p) such that x, lifts to F(B,), B,:=AP®), with x=x, in
Z (Y5 X By). But {Y,,Spec(B,)}. is an fppf-covering of Spec(o,). We can

assume that mvmoﬁw}x mvnoﬁwﬂ_v for p*q already. projects to Y. The mgm.ﬁ

E.ovnHQom.wn..,oaEmmooéd:mgoswac:nmEm\:s@xmsa xuooBm?oBm
uniquely determined ye % (¢,). q.ed. .

As a consequence of the above lemma we have the spectral sequence
H(o,RM(F) = H*¥(opfo,F) for FePlo) - -

Proposition 5. If Fe% (o) is represented by a smooth connected commutative o-

group scheme, then we have R'M(%)=0 for i>0 and therefore H'(s, M%)

=Hi(oy /o, F) for i20.

Proof. First note that ‘% is of finite type over ¢ by SGA3VI,5.5. According to
[13] (5.1iii) we have Hi(o,,, op F)=0 for.i>0. The assertion now follows from
Lemma 4i and the above spectral sequence.



In a completely analogous way we get a modified ooroBomomu\ theory over
0. Let kg be the “completion™ (i.e., the union of the completions of the finite
intermediate layers) of k,, with respect to a prime B of k,, above Z, let °g be
the ring of integers in kg, m:a...,mgoa by aq: Spec(kyg) = Y : =Y x 0, 1€5P. 0

Spec(eq) — Spec(e,,), the canonical morphisms. Let #(s,) be the mapping
cylinder of the functors

HOkg, a¥.): L (Y,)— & (kg)— (abelian groups)

and define H'(c,,.) to be the corresponding cohomology 98.5\. O.osonn:w:m
the previous results there are the following simplifications in this context
(“kq, 00 =kq and Iz=1").

Proposition 2. For 4 =(Z ; My; ug)€ Z (o) we have the exact relative cohomolo-
gy sequence

0> @ker g, S A%, %) — HO(Y,, F)—
l%oowmnta —HY 0. 9) > H (Y, F)—
lM\ru.m;»a, abF)— H* (00, 9)—> H* (Y, F)—

X
l.mw%;@ aEF) ...
B/T

If M,: Plo,)— Z (o) denotes the functor analogous to M we have the exact
sequence

O\vm;ﬁa,zs.mﬂvlm;sooimﬂvl@m;%ﬁ. oy F)— .
BT

= H(00, My ) > H(00, F) > DH'(0n,047) = ...
Bz -

for FeL (o)

ition 5’ ] h connected commutative
Proposition 5. If Fe¥(e,) is EESNER by a smoot .
on-group scheme, then we have R'M,(#)=0 for i>0 and therefore
mmAQSvESW\Wv”mmAQR;%ﬂV .\Q\ ~WO. .

Let n: Spec(e,,)— Spec(e) wmmws denote the canonical morphism. We finally
consider the exact functor

7 Z(0)— Z o)
G=(F ;M ;pu) > n*%G:=(n*F; My, Ug)
with Mg:=M, and pg:=p,: M, — HO(k, ., «*F)=H® kg, ajn*F) for B/p.

Remark 6. iy HY(I, H (0, n*%9))=H" (0, %) for any Y€ Z (o);
i) the I'-module H%(o,n*%) is acyclic for injective ¥ Z (o).

ﬁ«eo& 1) Easy. ii) For injective ¥€ Z (o) we have:
a) #*%ec¥#(Y) is injective;

b) ker p, is an injective I}-module; -
¢) the maps u, and Hg are surjective (SGA4V4.7).
From c) and Proposition 2’ we derive the exact sequence

0—Dkerpg— H (o, 1*9) — HO(Y,, n* #*%) 0.
Bz

Because of a) and the proof of I1112.20 in [16], resp. b) and Shapiro’s lemma,

the right term, resp. the left term, is acyclic as I'-module, and therefore the
middle term is, too. q.e.d.

With the help of the relative cohomology sequence it is easy to see that the
d-functor H*(o,, n*.) is universal, ie., R'H(¢ o, m*.)=H'(c,, n*.). We thus get
the spectral sequence

H(L W (o, n* ) = H'*i(0,%)

for 4e 2 (o).

Lemma 7. For #e%(o) we have M n*F =n*MF and the morphism of spec-
tral sequences

H{(LH (04, My 1* F)) = Hi*i(0, MF)
H{L Hi(o,n* 7)) = H"(o, [0, F).
?eo\‘ Left to the reader as an exercise.

For the convenience of the reader we now give some comments on our
notations concerning homological algebra:

- 1) If it is possible from the context we often skip the symbols M and M
for example, we write H(o; %) instead of H'(¢, MF) for F e (o).

2) We do not distinguish in the notation between cohomology and hyper--

- cohomology; for example, if ¥ is an object in the derived category D*(Z(s))

its hypercohomology groups are simply denoted by H'(¢, ). The same for the
Ext-functors. . ,

3) Let A be an abelian category, A an object in A, and nelN a natural
number. We denote by A4[n] the complex

A—"— A4 (in degree 0 and 1)

sogoawmm: a_oanszEnao:éoanmamoQbiEw._: biﬁviaﬁ:ocrmé
the distinguished triangle : :

A4, g4 9 A : 0
n id+n /c\

0 4 001, 4y _ﬂ =id+0, 4

T-YA) > An]—>A-—">4
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(the indicated isomorphism takes place in D*(¥), it is even an isotopy) and
therefore an exact sequence . -

o F(A[H])—— F{(A)—2 F (4)— F* 1 A[n]) — ...

for any covariant cohomological functor F on D*(A). If A—">A is an epi-
morphism, then A[n] and A4,:=ker(4 —2, A) are canonically isomorphic in
D*+(2) and we get F'(4[n])=F(4,). More generally, for any complex A" in A
which is bounded below and any neZ, let A'[n] denote the simple complex
which is functorially associated with the double complex

A% A" (in first degree 0 and 1).

Using the second double complex spectral sequence one easily sees that
A"— A'[n] induces a functor on D*(2A). Furthermore there is the canonical

isomorphism -
T(A)[n]=T(A'[—n))— T(4'[n])

. which is induced by the isomorphism of double complexes
PO
= -1
A —25 A

4) Yoneda product, resp. cup-product, is denoted by v, resp. u. We refer
the reader to SGA 45[C.D.] for the definition.

§ 5. Trace maps

Let G be-a commutative Y-group scheme locally of finite type. For peX and
any finite intermediate layer E of k »/k, we denote by NG(E)<= G/(E) the sub-
group of universal norms with respect to the extension k, ,/E. We put

NGk, )= |J NG()

E<ky o
Of course, NG(k, o) is a I;-submodule of G(k, o).

Definition. )
NG:=(G; NGl(k,,,); inclusion)e Z (o).

In this paragraph we study the cohomology of the “modified multiplicative
group” NG,,eZ (o). For simplicity, we write N.:=NG,,(.).

Remark 1.
WN_S\ZWG.BHFM\ZNAn for ﬁmM

p-adic height pairings. I}
357

Let 9, be the Néron model of G, over

the exact sequence Y, and define the sheaf D€ (Y) by

Olas\_\lﬁilv@lo. A:
We then have the exact sequence
05>NG, — s s
in .@A%v Ellv\*QSl@.|A@v\ﬁn.8\2»u.8“0vl.o @)

Remark 2. 1) H°(s, £,%,)=k*;
:v ~.w;$ FeGm)=0;
iii) H%(o, 9)=(@k3/03) D (Dk;/Nk,).

p¢r pel

Proof. i) Clear. ii) We have the injective :oBoSonvEmBm

1
H', 4,%,)— HY (Y, %,)=H} (Yg,G,)>H.\(k,G,)=0

where g: Spec(k)— Y denotes the canonical morphism.

iii) Since G,,y is smooth, the se i

, m 3 1) remains e fi icti

v ez G, m s smooth, the acmsow_ ( xact after restriction to

- ( ,Qvlh.omﬁ\wu (compare [16] n..\.w.v. g.ed.
Using the above remark we derive from the

ing to (2) the exact sequence ~cohomology ,mmncnsoo belong-

kK — % % x N . A . ’
A«@. ku\ﬁuv @ Amw »v\z w.uvl.ll.v IHAP. N a:.v —_— 0

.-
=~
- deg

.\\
NNE

Here v, , denotes the map induced b

Since it vanishes on the image of k* y log,ox via global class field theory. .

the map —v, induces a homomorphism
deg: M_AQ,ZﬁLINu
which we call the trace map. We also need Ea following modified version
deg,:=(—log,ok(¢))~! - deg

which depends on the topological generator

same way —u,:= ¢ of I' but is surjective. In the

5 ot . .
W_H [ka:k1™' v, . induces a I -equivariant homomorphism

O :
deg: H ?S,Zﬁalen (resp. deg,:=(—log,k(¢))~! - deg)

such that we have the commutative diagram

) m_?,ZESVIIlmH?e, NG,)

 deg deg
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Lemma 3. For i=2, %AQ%Z@U is a torsion group with trivial p-primary
‘component.

i i logy sequence since the
" The assertion follows from the relative cohomo . .
MMMH“% IMM\S‘ G,,), resp. Hi(kg, G,,) for B/Z, have the required property for
i>2, resp. i=1. The map

H3(Y,., Gy) (p)—— @ H? ks, G) =0

namely is :.c.moaﬁ (compare [16], p. 109).

emma & Ao, NG)OLP'L for i=2,
) H(ow NGulp D=1 for iz3;

~ . N.\WNA.%S.Zeigc“_vﬁ \.Qw. ~"wv

va m~AQu 2a§g¢uv = 0 .\:Q*. mWA

- (the isomorphism depends on the choice of ).
Proof: Part i) follows from Lemma 3 and the exact sequences
05 B (00, NG Z/p' L~ H(00, NG 1) = Hi(0s NG,y 0.
The assertion ii) then is a consequence of i), the spectral sequence before
Lemma (4:7), and the fact that cd,'=1. qed.
Because of the above lemma the map deg, resp. deg,, in a natural way
induces 2 homomorphism
d': A* (00, NG, [p") - Z'Z,
" resp. a surjective homomorphism
d: B*(e, NG, [p")—Z/p’Z

ich does not depend on the special choice of ¢. .
EEM,E&M can be wME about the kernel of the trace map? It seems most likely

that ker (H(o,, NG,,) 25 Z p) is p-divisible if k, is the o.wo_owo:;o Z ,-extension,
which in vmnmoamn would imply that d is an isomorphism in Smﬁromwwm“wa mwm”
‘consider the extension k., =Q(u(p))/k=Q(y,): There we have the

quence

t——1+pZ,—— H' (05, NG,) —— Picl) ——0

log,, 1 —p)-deg

Z

4

.mna thus Pic (s, )=ker(A!(¢,, NG,)25Z,). But mooow&:mﬂﬁo the ﬂM:a:_u-

i o ic(».) is p-divisible. In the general case not only
Washington theorem Pic(s,) is p-divisi e !
mémmmém,w “u=0"-conjecture is involved but also the nonvanishing of certain
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p-adic regulators which describe the behavior of the group of p-units in k_
under v,. Using results of Greenberg ([4]) one can prove the above divisibility
property if k/Q is abelian and k./k is the cyclotomic Z ,-extension. We do not
go into this since it is not needed in the following. :

We finally have to proyide a compatibility between the map d and certain

.._08_:moaamvm:.mgmswmag vaBo?EmRaEoom:oiom_Ensamomaon
(compare [12]) .

H2(op, ppo)=Ha(ky, 1) =Z/p°Z.
Using the relative cohomology sequence we then may consider the diagram

@ mmAQuw tvevjmm—?: ZaSﬁﬁe”_

B e

w@mN\EN -,  zpz
P

s&ﬂd.w.hu.Aws\saouoamgnmﬁ.& vJEomoZ«éEor.:mmcoéuOni_:o:
split completely in k.. - , ,

Lemma 5. The above diagram is commutative.

Proof. The primes not in S split finitely in k. H:m._oo.& ‘component of
(log,. k(¢))~! - v, corresponding to P/pé¢s therefore is given by the normal-
ized discrete valuation on k¥. The further details are left to the reader.

§6. Algebraic heights

-We now come back to the situation of §1. In anmoEmﬁ the abelian <m.ao€ A

always is assumed to be ordinary for k,/k! The fundamental tool for the

‘comparison of algebraic and analytic p-adic height is the pairing
m&@%&m NG,)x B(o, No®)—— A'(s,NG,) —=- 7, (*)
Lemma 1. For pe X we have HO(Ty, N A(k,, )= NA(k,). N
Proof. We have to show that the nmcoioﬂ map
C AG)NAK)— AENAE)

is injective for any finite intermediate layer E of k, . /k,. Put w"H‘Gm:we. o,c\mv. :
By Tate’s local duality theorem the required injectivity is equivalent to the

surjectivity of the corestriction map

H'(g, A(ky, o) ——— H'(I;,, A (K, .)).

We now make use of the computations on p.283/284 in [20]. Let L denote the
completion of the maximal unramified extension of ke, and put L :=k, . L,
I}:=Gal(L,/L), and g° = Gal(L_/EL)
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The general case follows by a successive application of the following two
special cases.

A?A E

1. Case. Let E/k, be unramified, i, g°=TI?. We then have the commutative
diagram N
H'(g, A(k, ) -2 H(Gal(L/E), H'(I}, A(L))

cores R EOD—‘OW

H(I,, Ak, o)) ——> HO(Gal (L/k,), H' (I, A(L))

with isomorphisms in the rows (see loc. cit, p.283). But the right hand
corestriction map is surjective since according to loc. cit.,, p.284, the discrete
Gal(L/E)-module H ;h.o,\ﬁhsvv has no non-zero coinvariants (compare the
argument ‘in the proof of {6] Th. 3.1).

2. Case. Let Efk, be totally ramified, ie, ﬁeuh.o and g=g° In this situation
we have commutative exact diagrams

H'(g, Ak, .) —— H°(Gal(L/k,), H' (8, A(L,)

cores Aﬁ ? HO(Gal(Ljk p), cores)

HY(T,, Ak, o) —— HO(Gal (L/k,), H' (T, A(L)

and . .
0——N—— H'(g, A(L,) —— H' (g, # (%)) —0

0> N H'(L, A(L o) —— H' (5, (%) (p) —0
(see loc. cit) which obviously imply the 3@&3@ surjectivity (even
bijectivity). q.e.d.
Since NA(k,) is of finite index in A(k,) for pe Z (by our assumption about
~ A) we see that
No#°(0):=A%, Nst°)={aec°(Y): acNA(k,) for pez}

is a subgroup of finite index in A(k). Furthermore, Lemma 3 in [19] implies
that the map

p-aaic neight pairings. 11

361
Ext’, (% G,)— Ext (N % NG,,)
06,2 > A0~ (0>NG, NI —Ng*—0)
is well defined. On the other hand, w i
. ¢ derive fi
ma 9 in [18]) the canonical identification e from L13) (51) (compare Lem-
i .
A(k)=Ext! («° G,,).
Hence, by restriction, (*) induces a pairing
(,): Esxzf&o@vlﬁ.
The aim of this paragraph is to prove the following result.
Proposition 2. . ; |
A ’ Vx.“ ‘A > v
Our algebraic pairing
(log, k(@) ™" <, Dy ZO(o) x A °(0) > @,
was defined by the diagram ,
&.OAQv@Nu v.m\o?w®6=\Nu
H'(o, #°(p))
H''(o, (p))
Hoyfo, 4 (p) , |
PR D | S
H' (o, o (p)’ _ .
H'(eo,, D))y
H?(o4/0, o (p))

lim H! (o, /%) % H*(o, & (p)~> H* (o, p(p)) = Q,/Z,
using the identification |
Hom(#°()® Q,/Z,, Q,/Z,)=Hom, (/°(-)® Z,, Z,).

~=mn<03~m8vm,€ono$8 ia ,
\ ep place the diagram by anoth i
contains modified cohomology (resp. Ext-) groups. ’ e one which only

First we observe E&. there is the following commutative diagram (2):
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.QOAHS% = H%ou/o, #O)p* = H%0,%p° — NA0)p®
] -
" H'(o, %)

A s, &
H'(e, o) )

_\ :

H'(on/0, Hy) —H (o), #°[p')) = H'(o, 2°[p")) —H' (o, N4°[1"])

! ! | H

H (00, Ap) +—H' (0, Z°[p"]) = H' (000, S°[p']) «—H' (00, N#°[P"]"

| | | _

H' (00, Ap)r +—H (000, A°[P°Nr == B (000, Z°[P"Dr < H' (00, N [p*Dr

| | ;! P

H(00)0, ) «— H(0o/0, #°[p*))=— H?(0, #°[p’]) < H*(o, N [p"])

Explanations. (i) For the identification /°(c)=H®(0n/c, #/°) compare the
proof of §7 Lemma 1 in [20]. The existence of the other maps between the first

and second column is obvious from the fact that the s-morphism /° -2 o/° is

faithfully flat. . .

(i) The identifications between the second and third column are a con-
sequence of the fact that R'M(&°) =R M («/°)=0 for i>0 (see Propositions
(4.5) and (4.5").

(ili) There is a canonical inclusion N&/°cM.o#° since 4 has good re-
duction at the primes pe X.

(iv) The maps & arise from the distinguished triangles in D* (¥ (o)), Tesp.
D*(Z (o)), which correspond to multiplication by p® on °, resp. M./°, resp.
No£°. :

(v) The maps between the second and third, resp. fourth and fifth, row are
given by the first descent spectral sequence and by the spectral sequence after
Remark (4.6) (the respective cohomology groups are p-torsion groups, and
cd,I'£1). According to Lemma (4.7) the two spectral sequences are com-
patible. :

(vi) The maps between the third and fourth row are induced by the identity
maps. Recall that we always fix our generator ¢ of I'.

One possibility to define cup-product is to require the commutativity of the
diagram

H' (o, 3. % H*(o, A g)—2— H(o, ) =Z/p'Z
H'(o, Hom, (42, 1)) , 3
Ext} (%, pp)  x H%(o, #2)——> H*(o0, pp»)=Z/p"Z

where the homomorphism of sheaves /o — Hom, (&%, p,) is induced by the

nairina 70 @ 7% 511 which defines the cun-oroduct in the upper row, and

prauiv NI panugs, 11
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where ¢, is the first oa.mo morphism in the local
: . -global spectral seque f
Ext’s. Using (2) and (3) we can replace (1) by the diagram F puenee Tor

()L, N°()®Q,/Z,
T A—
lim H' (o, 0) lim ' (o, N [p*])

!

lim A' (o, N/°[p*])

|

_I_.mvu N.MuAhoo, N.o7° ' Dr
lim H' (o, Hom, (2, p,.)) |
lim H Nﬁz&o [r]) , @)
£ mn?oc\ﬁ .\Qogvv

!

H? (o, o°(p)) = H3(c, u(p))=Q,/Z,.

?90;«520@202&:&9.5Em_n:no_cﬁ .  enc
. . .. .ao:hc_zwommn:n:omomm-
groups. We consider the diagram A ! b

; 1( g0
_Aﬁ Ext; (o)., p,) X

H' (o, %) WO )
H (o, Hom, (/2 u,.)) Ho(Ext{(°,G,) - ()
m__ . . . m?n
Ext; (e, pyo)———"—— Ext N, G,).

Here ¢, is the second edge morphism in the local . |

e -global spectral sequence for
Ext’s; voom_.am of .IOB A..Qo“ G,,)=0 (see SGA 7 VII 1.3.8) it is an isomorphism.
,E:.w canonical .gmﬁo,seos of (4,4) by @G, given by the Poincaré divisor
defines a.canonical homomorphism of sheaves | A

o°— Ext!(«°, G,)
such that the diagram o .

0—— Hom, (42, ) —— Ext}(«°, G,) —2— Ext}(«°, G, )

] ]

00— Y g0, g0

is ooBB:Saﬁ (see SGA 7VIII). Of course, the composite map in the right
column of (5) is the same as the “inclusion”

A°(0)= A(k)=Ext!(£°, G,).
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The map r is induced by the obvious map of complexes

r': Hom, (o#°, 3,.1 Hom, (#),I),,)—>Hom, (s,

s )

where G,,—I', resp. ~s=||¢.~ is an injective resolution of G, resp. the
complex om mrom<om I,

Lemma 3. The diagram (5) is commutative.

Proof. In the language of derived categories the edge morphisms ¢, and ¢, have
the following descriptions:

e;: H'(e,Hom, (2, p,.)), and ¢,: Ext!(«#°,@G,,)
m;ﬁ%wh@@w (2, 1)) H'(c,R* Hom, (£°, G,))
:;&—1 Hom, (242, 1,.)) H'(o,1<,R* Hom,(°, G,))
Ext) (5, p,.) | - HY(,T- _Amumz“ («°,G,))

H'(s,Ext!(£°,G,))

where. t<; denotes the truncation functor in dimension1 (see SGA4
XVII 1.1.13). We therefore have to prove that the outer part of the following
diagram is commutative in the derived category D* (¥ (o)):

Al AZ°[p"] T-1(°)
(id, 0) Am.v
[elp — o°]
(b) (b)

_”moa Aon\ Vs thevla|v mNHw A,&ou aivu

% 0,pY) ]

moaeﬁ %; tucv ; N:l ! Agw A.b\o' e:.vv

(© =
: a.M 1 R* Hom, (42, ) r

Hom, (+/°, G,,)

(the indicated isomorphisms take place in D*(&(0))). It is easy to check that
-the part (a) of the above diagram is commutative up to homotopy; the
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commutativity of the parts (b) is trivial. It remains to consider the part (c). Let

G,—=TI, I,—>J, and s Hom (s2,J)— K’

be injective resolutions. We shall extract all the necessary information from the
exact diagram of complexes

ETSS

0—— Hom(«#°, I') —— Hom(&°, I') ——— Hom (&2, I,.) ——— 0

Hom(s,.,J")

K

(in order to simplify the notation we skip the subscript “»” in the following).
Because of Hom(«®, G,,)=0. we find a map h which makes the diagram

0

Hom (#°, %) —"— Hom (&2, %) —*— K®

Hom (%, I'),

commutative (the subscript :m: indicates the kernel of Em 9&0395_ in 50

" respective complex). One easily checks that

(K°— K})oh—(s'or') Hom(«°, I"),.
=(Hom (&°, '), Ext' (#°, G,) > K})

for an mv?o?._ma map f. This means EB the diagram

1, K@) &L T Exe! (0, G,)
(d)

1 R* Hom(2, p,o) ——1; R* Hom(«°, G,,)

is commutative up to 505083 Furthermore 7_,s" induces an _woao:u?ma
in DY (L (0)).

On the other hand we find a map g such that



Hom(s/°, 1), 22, Ko

F\\\\n

Ext(#°,G,)

l

0

is commutative. It is not hard to see that g fits into the commutative diagram

Hom (e, ) — K°

Ext'(#/°,G mw) —E— Ext!(#°, G w—L— K.

But ::m means that the diagram

—Hmog A‘Q“mi tvcv ’mv @M— A.\D\Ow B.-LH_

?

() Hom(s#,,u,.) - TTHExtH(#°,G,,)
| >
aM_w+ Hom (o3, p,..) et — 1, K

is commutative up to homotopy. Now, (d) and (e) together imply the com-
mutativity of (c) in the derived category. g.ed.

Using (5) we can replace (4) by the diagram
A)RZ, NA)®Q,/Z,
|
S lim H' (o, No°[p])
Ext!(27°, G,)®Z, limH (o, Nat°[p']"

%

lim B (o, No£° [p']), ©)

%

lim H2(s, N/ [p*])
—

%

H*(o,/o,9°(p))

H

lim Ext} (0, 1) % H*(o,5°(p) ——s H (e, u(p)=Q,/Z,.

The essential step will be the next in which we transform the Yoneda pairing
in the bottom row into one between modified cohomology groups. We first
define a map similar to r. If

Exty o (No° NG,)=Hom p.(z,(NZ°, T(NG,))
= Hom p+ (20 (N#°[p"], T(NGn[p*]) =Extly (o (N [p" L NG [p'])

is
is the canonical map given by the functoriality of the [p“]-construction then we
denote by 7 the composite map

. Ext!(#° G,)— Exty,(N#° NG,)— lim Exty ,(N&Z°[p'], NG, [p"]).

We want to prove that the a_mmHmE
lim Exty (N [p"L NG, [p']) x lim A2(, 2&%@911 lim A (e G, [p"))
] | /
Ext!(#°,G,) H*(o /o, °(p))
\

1 —

lim Ext} (), p1,.) x H2(0, o/°(p))
— : .

H¥o,p

1s almost commutative in the following sense.

Lemma 4. There is a CeN such that, \9,. QS\ ecExt(#°, G,,) and for any
yelim Ao, No°[p]) and xeH?*(o, " (p))
which map to the same element in E,N?S\m, £°(p)), we have
C-(r(e) vx —d(F(e)v y))=0.

Proof. Because of H3(o, /0, u(p))=0 this cannot be proved directly. Instead of
that we use a local method based on an important result of Serre. Namely, let
S be the set of primes of k which lie above oo or p or which split completely in
k. or at which A has bad reduction. Because of [13] (5.1(v)) the vertical maps
in the commutative diagram
H(s, o vlrllvzm (09,

pis

pY

H'(k,A,.) —— [[H'(k,, 4,.)

p¢sS

are injective. Since § is a set of density zero we have, according to [22], that
the groups ker p, are finite and that :B?Qt J)=0 (the result is stated there

only for finite sets m but the proof literally extends to our situation 3\ using
the OmcoSnQ\ density :._no_,nav and consequently

lim (ker p)) =0.
—



Using the local and m_ocﬁ flat duality theorems this implies the surjectivity of

the ma
P @ H(op, o (p)— H(c, # (p)).
pES ;

The cokernel of the map
mﬂw HZ(oy, o (p)) - H(e, o°(p))
P

therefore is finite of order C,, say. Now let (x,)pes €D H? (00, (p)) be a
¢S
preimage of C,x and denote by y' the image of (x,) under the natural map

® EN?E & (p))— _:d H*(o,N ot r" .
P¢S

The compatibility assertion of Lemma (5.5) then implies

Ci-(re)vx)=Y rle)vx,= Y fle)vx,=d((e)vy).

PES pe¢s

But from our assumption follows C,-y'=C,C,-y where C, denotes the order
of the kernel of the map

lim H?*(o,N°[p"])— H*(0, /2, 24°(p))

,S:nr is finite since 4 has ordinary good reduction at the primes in X. With
C:=C,C, we finally get

C-(r(e)vx)=C-d{f(e)vy). q.ed.

From (6) and Lemmad4 we easily derive that our m_mncnm_o pairing
(log,k(¢))~*-<, >, also is defined by the diagram

A°()®Z, : N#°0)®Q,/Z,

&

in

lim B (o, N.°[p*])

. 4
Ext}(#°,G,)®Z, mwm_?%z,&o?éa

—F —WBNM»AQOSZ.\&O—”@.QVN-
—>

%

lim Ext} ,(N#°[p*], NG, [p*]) x lim H?(o, No/° [p*])—— lim H* (2, NG,,[p*])

Q,/Z,

But for functorial reasons the above diagram can further be simplified to the
following one:

Aﬁ&@Nu Z.n\o?v@Bu\Nm

=

Ext!(#°G,)®Z, “

Extl,(No#°,NG,)®Z

p

;

lim Extg, (No/°[p*], NG, [p°]) x lim H' (6, N/ °[p"]) —— lim H? (s, NG, [p"])
«— — R

|

Fﬁ: Ao NG, [p"])
%anwe

Q,/Z,

The m::noBBEm:SQ of :,.a oonsoo:sm :oBoBoGEmB implies the com-
mutativity of

Exty (N NG,) x N0 A'(o.NG,) —S8e .7

Ext} (N ° ['], NG, [p"]) x H' (0. N /° [p")—> H2(0, NG, [p"])

H*(o,,, NG QQFN\EN.

The combination of the last two Emmnmam shows that the pairing (., >,
given by

A0) Nat®()

=

Ext!(#°, G,)

mxﬁw‘?ﬁz.&o, Zasv X ZROA§VL¢~M~AQ,ZAW§V —deg Ny

which precisely is the assertion we wanted to prove.
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§ 7. Analytic heights

We begin by recalling the definition given in [19] (but see also [24]) of the
analytic p-adic height pairing associated with x. For any

i=(0-G,,—» % — 4°—0)eExt}(#° G,)=A(k)
we :m.<a the exact sequence of points in the finite adeles A of k
0—G,(A)— Z(A)— L°(A)—0.
The homomorphism v, ,: G, (A)—Z, .@xanam in a unique way to a homomor-
phism v,: Z'(A)— Q, which vanishes on ,mnw\ (e) X mz % (k). By restriction to
global points v, induces a map v,: A(k)—Q, and we put
(5 ) Al xA()—Q,

(@ a)—v,(a).

Proposition 1.

(=0, |
3&0\. EZmMBlZleZm«lZ&\olQaocoﬁnmﬁrawammnoﬁmi

Exty,(N#°, NG,) then, for aeN/°(s)=Homy ,,(#,Z N/°), the Yoneda’

anco~2m<mmm_?,2@sw me@miﬁ\*N,Zﬁsvmmm?gg\?oooBBEmaé
exact diagram :

Nava: 0 NG, ¥ > L —0
ao NG, >sNZ » Not® 0.
By composition we get an extension . ,
Unava: Y(A) >»Z(A)—4—>Q,

of v, , which vanishes on [[%(e,) x [[H°(I;,I*%) (observe that because of
. , per pel

Lemma (6.1) and [19] Lemma 3 we have moAthZ,@vHZ.&?LV. It induces a

ma _
P vnavs L—2— Nt(o)—2-Q,

with the property
A«M» Qva = CZm< EAHV‘
Our assertion now is a consequence of the following lemma.

Lemma 2. For

e=(0—NG,—%— £,Z—0)cExty (4,ZNG,)=H'(s,NG,)
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and an extension v,: ¥ (A)—>Q, of v,, which vanishes on

[1%(e,) x [TH(T,, 1}9)

p¢x pel
let v,: Z—Q, be the map induced by restriction to global sections. We then have
v,(1)=dege.

Proof. We choose feH(s, 9)=Homy,,,,(#,Z, 9) such that Sf=e where § is
the connecting homomorphism corresponding to (2) in § 5. This amounts to the
existence of a commutative exact diagram -

0——NG,—— & — g7 0

| l

~

OJZ@SJ\*@SJ 9 — 0.

:Qﬁvgmmo? @Vu@x\gw@@@z@ ,%noamEiamm@o:mmo?\%v
B-T:33 eX : . - .
under f we obviously have ’ 4 ,v

dege=—uv,,(f,),)

Let now s,e%¥(o,) for p¢Z, resp.e H(I,, I*%) for peX, be a v»omamm,@ of 1eZ
(we observe that because of Remark (5.1) and Hilbert 90 we have H "I, Nk, )
=0 and therefore the exact sequence , . :

0— Nk, — H(L,, I¥%)— Z —0), |
Also let se® (k) be m,w_.&iwmavo». 1€Z, m.s.a denote by s,ek?, resp. s'ek*, the
image of s,, resp. s, under the map f'. We then compute .
ve(D)=v,(s)=0,((s;* ")) =0k (551 +5),)
=00, ((5571 80 = = 0y, (), = = 1y ()
=dege. qed. - . :

Hwam¢o<m.§ovom50=mbaToco&:o: Am.wvﬁomo:ﬁn ,m?o 5.«8&: result
of this Sect. B. .

Theorem 6. Let A be ordinary for k. We \Eem.A s =—0(,)

.n.
As a consequence, Theorem 2’ can be transformed into the following state-

ment which should be considered as an analog for L ,(4,x,s) of the conjecture
of Birch and Swinnerton-Dyer. .

H.__mo_d-:q.h&m33&3@\3 »oeSim:ge@m%SHE;\AXE;\E-.::EQ
that ( , ), is nondegenerate. We then have m=rank, A (k). and :

4ot ) # M A)p) .
¥ TorA(®R) #Tor A LI# () (T1#/(c,)7.

P pel
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We also get a criterion for the finite generation of A(k,) which is inde-
pendent of any assumption about the Tate-Safarevi& group.

Theorem 8. Let A be ordinary for ko, and suppose that (,).: A(k,) x Ak,)—Q,
is nondegenerate for all neN. Then A(k,,) is finitely generated as an abelian
group if TorA(k,) is finite (which is the case, Jor example, for the cyclotomic
Z -extension k; see [5]). -

Proof. According to the argument in the proof of [13] (6.11) we have to show
that rank; A(k,) is bounded independently of n. But .

ranky A(k,)=rank(( , ). for Ap,)
=rank(< , >, for 4,,)
Srank, HO(I,,H' (2, o (p))*)

is bounded by the Z ,-rank of the Z,[ I'T-torsion submodule of H! (o, < (p))*.

Appendix : A cohomological interpretation of the Néron-Tate height

There is also an interesting modification of the usual S ppf-cohomology of Spec(s) at infinity. For
simplicity and in order to emphasize the parallelism we use in the following the same notations as
in §4.-Let 2(2) be the mapping cylinder of the left exact functors

HO(k,, a}.): P (0)— F(k,)— (abelian groups)
P P

for p/oo where k, denotes the completion of k at p and «,: Spec(k,)— Spec(o) is the canonical

morphism. We define . ) .
. H'(e,.):=Exty,(4,Z,.)

as new .ooroiaoww theory which takes the archimedean primes into respect. One obviously can
develop for Hi(s,.) a similar formalism as in §4. And again one has a trace map: For p/oo let
Nk, <k denote the maximal compact subgroup of k}; we have

Nk, =ker(loge| {,)

where, for any prime p, | l,: kf—R% denotes the normalized absolute value. The “multiplicative
group” in & (¢) now is .
NG,: = (G, (Nky)p o ; inclusion).

There is a canonical exact sequence

(D k/o}) (D k/Nky) ——— H' (0, NG,p) ——0

Pt o plao .
-
-
“hilogdls| =0~
f -
' &

R
which shows that v, induces a homomorphism
deg: H'(s,NG,)—>R

called the (real) trace map. N
~ Let now 4, be an arbitrary abelian variety over k. We have the pairing

Exty (S, #° NG,) x Ao, £, %)= o4°(0)—*— A' (6, NG,) —5> R,
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Via the natural map
A(k)=Ext}(°, G,)—Exty (£, #°,NG,)
81ﬂ.sl%lc&oiSleiZEle,&l\*.ﬁolo'
with N =(&'; (max. compact mcwmqocv of Z'(k,)),,; inclusion) it induces a pairing
(,): A(k)x A(k)—R.
Proposition. ( , ) is the Néron-Tate height pairing.

The proof is completely analogous to the proof of Proposition (7.1) and is based on Bloch’s
description of the Néron-Tate height in [1].
In this context we also should mention the pairing

Homy (A Z,NG,)=o*x B (0, #,Z)—— A'(6,NG,) — R *)
between finitely generated abelian groups of the same rank. .
Proposition. The determinant of (*)is equal (up to sign) to the unit regulator of k.

See [10] for a very similar result.
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