2. Übungsblatt zur Vorlesung "Geometrie von Eichtheorien"

(Topologische Grundlagen)

 $\bf Abgabe$ der Lösung bis Montag, 31.10.2005, vor Vorlesungsbeginn im Briefkasten 79 des Übungsleiters.

4. Aufgabe (5 Punkte)

Beweisen Sie, daß der Einheitskreis $S^1 = \{(x,y) \in \mathbb{R}^2, x^2 + y^2 = 1\}$ kompakt ist.

5. Aufgabe (5 Punkte)

Auf dem topologischen Raum \mathbb{R} der reellen Zahlen wird durch $x \sim y \Leftrightarrow x-y \in \mathbb{Z}$ (ganze Zahl) eine Äquivalenzrelation definiert. Identifizieren Sie den Raum \mathbb{R}/\sim , d.h. finden Sie einen (möglichst einfachen) Homöomorphismus $f: \mathbb{R}/\sim \to Y$ (Bijektivität und Stetigkeit sind zu diskutieren).

In Verallgemeinerung auf den n-dimensionalen Fall wird eine Äquivalenzrelation im \mathbb{R}^n definiert durch $(x_1, x_2, \dots x_n) \sim (y_1, y_2, \dots, y_n) \Leftrightarrow x_i - y_i \in \mathbb{Z}$ für jede Komponente i. Identifizieren Sie den Raum \mathbb{R}^n/\sim , wieder durch Angabe eines Homöomorphismus $f: \mathbb{R}^n/\sim Y$ (auf die Diskussion von Bijektivität und Stetigkeit kann verzichtet werden).

6. Aufgabe (5 Punkte)

Auf dem topologischen Raum $X = \mathbb{R}^{n+1} \setminus \{0\}$ wird eine Äquivalenzrelation definiert durch $(x_1, x_2, \dots x_{n+1}) \sim (y_1, y_2, \dots y_{n+1}) \Leftrightarrow x_i = \lambda y_i$ mit dem gleichen $\lambda \in \mathbb{R}^+$ (positive reelle Zahl) für alle *i*. Identifizieren Sie den Raum X/\sim durch Angabe eines Homöomorphismus $f: X \to Y$.

Was passiert, wenn $\lambda \in \mathbb{R} \setminus \{0\}$ zugelassen wird (ohne weitere Diskussion)?