Probeklausur zur Mathematik für Physiker III

Die Klausur wird aus zwei Teilen bestehen:

- Im Teil A, den es in der Probeklausur nicht gibt, wird das theoretische Verständnis der behandelten Themen abgefragt.
- Teil B besteht aus Aufgaben, die mit denen der Probeklausur vergleichbar sind. Alle Lösungsschritte sind nachvollziehbar zu begründen.

Einziges zugelassenes Hilfsmittel ist ein selbst zusammengestelltes A4-Blatt (ein- oder zweiseitig, handgeschrieben oder per Computer) mit Notizen.

Teil B

Aufgabe 1. Es sei y(x) die durch $x^2 + 4x + e^y + xy = 1$ implizit in einer Umgebung von $x_0 = 0$ definierte Funktion. Berechnen Sie das Taylor-Polynom zweiter Ordnung von y(x)im Punkt $x_0 = 0$.

Aufgabe 2. Bestimmen Sie die Koordinaten und den Wert des Maximums der Funktion $F(x, y, z) = z^2 - xy$ auf der Menge $K = \{(x, y, z) \in \mathbb{R}^3 : x^2 + z^2 = 4, x + y = 2\}.$

Aufgabe 3. Durch $c(t) = (t, t^2)$ werde eine differenzierbare Kurve $c: [0, 1] \to \mathbb{R}^2$ definiert.

- a) Berechnen Sie die Bogenlänge L(c).
- b) Berechnen Sie das Integral der Differentialform $\omega(\xi_1, \xi_2) = (\xi_2)^3 dx_1 + (\xi_1)^3 dx_2$ längs c.

Aufgabe 4. Lösen Sie folgende Differentialgleichungen (in einer Umgebung ihrer Anfangsdaten):

- a) $y'(x) = \frac{(1+y(x))^2}{x}$ mit y(2) = 3. b) $y''(x) 2y'(x) 3y(x) + e^x = 0$ mit y(0) = 1 und y'(0) = 0.

Aufgabe 5. a) Bestimmen Sie alle Funktionen $v: \mathbb{R}^2 \to \mathbb{R}$, so daß die Funktion f(x,y) = $x^2 - x - y^2 + e^x \cos y + iv(x, y)$ holomorph auf $\mathbb C$ ist.

b) Berechnen Sie
$$\int_{-\infty}^{\infty} dx \, \frac{\cos x}{(1+x^2)^2}$$
.

Aufgabe 6. Für d, h > 0 sei $P = \{(x, y, z) \in \mathbb{R}^3 : 0 \le z \le h, \max(|x|, |y|) \le d(1 - \frac{z}{h})\}$ eine Pyramide, die als homogener Körper der konstanten Dichte $\mu > 0$ angenommen wird. Berechnen Sie

- a) die Masse der Pyramide,
- b) die Koordinaten des Schwerpunktes der Pyramide,
- c) das Trägheitsmoment der Pyramide bezüglich der z-Achse als Drehachse.