Übungen zur Mathematik für Physiker III

Abgabe: Bis 18.01.2011, vor der Vorlesung in den Briefkästen

Blatt 12

Aufgabe 1. Sei a < b und sei $f: [a, b] \to [0, \infty[$ stückweise stetig differenzierbar. Bei Rotation um die x-Achse überstreicht der Graph von f die Rotationsfläche

$$\{(x, y, z) \in \mathbb{R}^3 : x \in [a, b], y^2 + z^2 = f(x)^2\},\$$

deren Oberflächeninhalt A(M) gegeben ist durch

$$A(M) = 2\pi \int_{a}^{b} dx \cdot f(x) \sqrt{1 + f'(x)^{2}}.$$
 (1)

- (a) Seien R > r > 0. Berechne die Oberflächeninhalt des Torus $\{(x,y,z) \in \mathbb{R}^3 : x^2 + (\sqrt{y^2 + z^2} R)^2 = r^2\}$.
- (b) Berechne die Fläche des Teils der Kugel $x^2 + y^2 + z^2 = 16$, der außerhalb des Parabeloids $x + y^2 + z^2 = 16$ liegt; s. Abb. 1. (*Hinweis:* Verwende (1).)

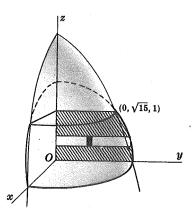


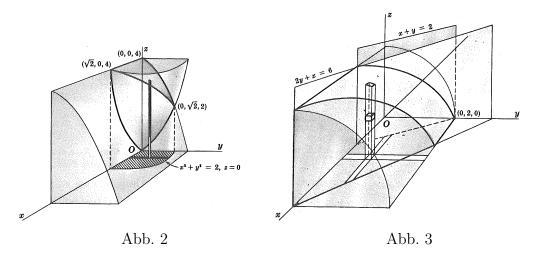
Abb. 1 mit vertauscher x- und z-Achse

Aufgabe 2. Sei $f: [a, b] \to [0, \infty[$ wie in Aufgabe 1.

- (a) Bezeichne V das Volumen des Körpers $\{(x,y,z)\in\mathbb{R}^3:x\in[a,b],y^2+z^2\leq f(x)\}$ und A den Flächeninhalt unter dem Graphen von f (d.h. der Inhalt der von den Kurven $y=0,\ x=a,\ y=f(x),\ x=b$ berandete Fläche) sowie U den Umfang des Kreises, den der Schwerpunkt der Fläche unter dem Graphen bei der Rotation um die x-Achse beschreibt. Beweise die zweite $Suddinsche\ Regel\ V=AU$.
- (b) Berechne das Volumen (des Inneren) des Torus aus (b).

Aufgabe 3. (a) Bestimme das Volumen, das von dem Paraboloid $z = 2x^2 + y^2$ und der Fläche $z = 4 - y^2$ eingeschlossen wird, s. Abb. 2. (*Hinweis:* Integriere in der Reihenfolge $\int dx \int dy \int dz$ mit gegeeigneten Grenzen.)

(b) Bestimme die Masse des Körpers, der im ersten Oktanten durch die Ebenen $y=0,\,z=0,\,x+y=2,\,2y+x=6$ und den Zylinder $y^2+z^2=4$ begrenzt wird, wenn die Dichte an der Stelle (x,y,z) gleich z ist, s. Abb. 3. (*Hinweis:* Integriere in der Reihenfolge $\int dy \int dx \int dz$ mit gegeeigneten Grenzen.)



Aufgabe 4. Seien a, b, c > 0.

- (a) Bestimme die Masse der Platte $\{(x,y,z): 0 \le x,y \le a,|z| \le b\}$, wenn die Dichte an der Stelle (x,y,z) gleich $c(x^2+y^2)$ ist.
- (b) Bestimme Masse und Trägheitsmoment bezüglich der x-Achse einer (zweidimensionalen) Platte, die als Ränder den Bogen der Kurve $y = \sin x$ und die x-Achse hat (jeweils mit $x \in [0, \pi]$), wenn die Dichte an der Stelle (x, y) gleich cy ist.