V. F. R. JONES: THE TYPE OF CROSSED PRODUCT VON
NEUMANN ALGEBRAS

CHRISTIAN VOIGT

ABSTRACT. This is an exposition of a section in the lecture notes by Jones. We
discuss the type of von Neumann algebras obtained from the group-measure
space construction.
Throughout the notes we consider only o-finite measure spaces. Moreover I" will
always be a discrete group. For most purposes it is convenient to assume I' to be
countable, but we will indicate the steps where this is needed.

1. A TYPE III-ACTION
Let us recall the following definitions.

Definition 1.1. Let T be a discrete group acting on the measure space (X, ). The
action is called

a) (essentially) transitive if there exists x € X such that p(I' - z) = p(X).

b) (essentially) free if for every e £~ € T' we have

p{z e Xly-z=a})=0
¢) ergodic if for every measurable subset A C X satisfying
HAA(Y - 4)) =0
for all v € T we have either p(A) =0 or p(X \ A) = 0.

If I' acts ergodically on X and Y C X is a I'-invariant measurable subset then
we have either p(Y) =0 or u(X \'Y) = 0. Although not needed in the sequel, let
us verify that ergodicity is in fact equivalent to this apparently weaker condition if
the group is countable.

Lemma 1.2. IfT is a countable group acting on the measure space (X, u) then the
action is ergodic iff for every I'-invariant measurable subset Y C X we have either
w¥)=0or p(X\Y)=0.

Proof. Assume first that the action is ergodic and let A C be measurable with
u(AA(y - A)) =0 for all v € T. Let

B={zecAly-zcAforallyel}={re X|Vyel' Iz, € A:y- -2, =2z}

Then
u(8) = ([ 7-4) = (4 U 480+ 0)) = ()
yel’ yel’
since (J,ep AA(7y - A) is a prnull set. Here we use that I' is countable. Since B is
I-invariant we obtain u(A) =0 or u(X \ A) = 0 as claimed.
Conversely let Y C X be I'-invariant. Then YA~ -Y = () for all v € T'. Hence the
condition implies u(Y) =0 or u(X \Y) =0. d

Lemma 1.3. If the discrete group T' acts ergodically on the measure space (X, )
preserving the o-finite measure u then any other I'-invariant measure v on X which
is absolutely continuous to u is of the form v = Ay for some A > 0.
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Proof. Since v is assumed to be absolutely continuous to p we can consider the
Radon-Nikodym derivative f = dv/du. Recall that f: X — [0,00) is a measurable
function such that

o) = [ i

for all measurable sets A C X. Since both p and v are I'-invariant we have
/(v-f)du=/ fdp=v(y~'- A) =v(A) =/ fdu
A y 1A A

for all A and every v € I'. By the uniqueness assertion of the Radon-Nikodym
theorem we conclude that v - f = f almost everywhere for all v € T.
Since f is takes values in [0, 00) we find ¢ > 0 such that

A={z e X|f(a) < ¢}

has measure p(A) > 0. By our above considerations p((y-A)AA) =0 for all v € T
Since the action is ergodic and p(A) > 0 we conclude that pu(X \ A) = 0. This
means that f is essentially bounded by c. In particular, f € L>(X, u)F' = C. Hence
f = Ais a constant function, and this yields the claim. O
Let now I' = Q x Q* be the ax + b-group. That is, I' = Q x Q* as a set with
multiplication

(bl,al) . (b27a2) = (bl + albg,alag).
Let A denote the Lebesgue measure on R and consider the action of ' on (R, \)
given by
(b,a) -z =ax +b.

We collect some properties of this action in the following lemma.

Lemma 1.4. The natural action of the ax 4+ b-group T' = Q x Q* on (R, \) defined
above is free and ergodic, and there is no I'-invariant measure on R equivalent to
the Lebesgue measure .

Proof. We show that the additive subgroup Q C T" acts ergodically on (R, \). As-
sume that f € L*°(R) is invariant under translations by Q. Then f satisfies in
particular f(x) = f(xz + 1) almost everywhere, and it suffices to show that the
corresponding function on T, again denoted by f, is constant. Applying Fourier
decomposition to f € L>(T) C L*(T) we can write

f= anzn

neEZ

for some [2-sequence f,. Now r € Q/Z acts by

re f — Z fn€27rinrzn
nez

We conclude f,e?™™"" = f, for all » € Q and hence f, = 0 for n # 0. This means
f = fe is a constant function.

For freeness of the action observe that (a,b) - * = ax + b = x means (a — 1)x = b.
If a = 1 we obtain b = 0 and hence (a,b) = e. For a # 1 we see that x is uniquely
determined. In particular, for (a,b) # e the set {x € X|(a,b) -z = x} contains only
one element and has therefore measure zero.

Assume that v is a I'-invariant measure on R. Then v is in particular Q-invariant.
We have seen above that Q acts ergodically on (R, \). According to lemma 1.3 this
means that v is a scalar multiple of Lebesgue measure A\. However, the Lebesgue
measure is not [-invariant since the multiplicative subgroup Q* C I' does not
preserve . ]
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2. CONDITIONAL EXPECTATIONS

Let T' be a discrete group acting on the von Neumann algebra M. Then the
projection p. : H ® I?(I') — H ® I2(T") onto the closed subspace H ® Ce induces
an ultraweakly continuous linear map F : M x ' — M given by E(z) = pezpe.

Explicitly we find
E (Z 1“77) = xea

yel’
and hence E takes indeed values in M. The map F is called the conditional expec-
tation from M x I" onto M.

Lemma 2.1. Let I" be a discrete group acting on a von Neumann algebra M. The

conditional expectation E : M x T — M has the following properties.

a) E is unital and faithful, that is E(1) =1 and E(z*x) = 0 implies x = 0.

b) E is a projection of norm one in the Banach space sense, that is, E*> = E and
FE has norm one as Banach space operator.

¢) E is an M-bimodule map, that is E(axb) = aE(x)b for allx € M x T and
a,be M CMxT.

Proof. a) Clearly we have E(1) = 1. Assume that € M x I satisfies E(z*z) = 0.
We may write = )z, for some z, € M and find

E(z"z) = Z TLT.

vel

yel’

Hence E(z*z) = 0 implies 2, = 0 for all v and hence z = 0.

b) The formula E? = E is obvious. From E(r) = p.wp. we see that E has norm
[|E|| <1, and since E(1) =1 it follows that ||E|| = 1.

¢) Since p, € M’ C L(H ® [?(T")) we find

E(azb) = peaxbp. = ap.axp.b = aE(z)b
forx € M xT and a,b € M as claimed. O

3. SEMIFINITE CROSSED PRODUCTS

Theorem 3.1. Let I" be an infinite countable discrete group acting freely and er-
godically on the o-finite measure space (X, i) preserving the measure fi.

a) If p is a finite measure then L™ (X, u) x T is a type 11 -factor.

b) If u is an infinite measure and I' acts non-transitively then L™= (X, u) x I" is a
type 11 -factor.

¢) If p is an infinite measure and T' acts transitively then L (X, ) x T is a type
I -factor.

Proof. a) We prove a slightly more general statement. Assume that M is a finite
factor with normalized trace tr and assume that I" preserves tr. Let £ : M xI' — M
be the conditional expectation and consider Tr = troFE. Then Tr is an ultraweakly
continuous positive linear map. The computation

Tr(zuyyuy) = 0y 1 Tr(z(y - y)) = 0y -1 tr(z(y - y)) = 6,91 tr((y - y)z)

= Oy 1 tr(y(7_1

together with ultraweak continuity shows that T'r is in fact a normalized trace on

M x T'. Hence the factor M x I is finite. We cannot obtain a finite type I-factor
since I was assumed to be infinite. Hence L>°(X, u) x ' is of type I1;.

b) We have to assume here that (X, ) is a standard measure space. If I" acts non-

transitively, there cannot be atoms in (X, ). Otherwise I' - z for € X of positive
measure would be a T-invariant set so u(I' - ) = p(X) by ergodicity, contradicting

) = Tr(yuywuy)
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the assumption that I' acts non-transitively. Let A C X be a measurable subset
with 0 < p(A) < oo and € = x4 ® 6. € L*(X, ) ® [?(T). Then

welfur) = (6. fus6) = 8y [ f@na)
and for p = xaue € L®(X, ) x I' we obtain
we ((Pfuqp) (Pgunp)) = we(xaf(v - xa) (v 9)tyn)

= 67,17—1/ fv-g)dp
ANy-A

= 0y 1 / (v'- fgdu
y—1ANA

= 0y -1 /Aﬁn~A g(n- fldu
= we((pgunp) (pfuyp))

using the I-invariance of p. It follows that we is a trace on p(L>(X, u) x I')p, and
hence p(L>° (X, 1) x T')p is a finite factor. Since (X, i) is a standard measure space
then A, having no atoms, contains subsets of arbitrary measure smaller than p(A).
Hence the factor p(L* (X, u) x I')p cannot be of type I since it contains L™= (A, p).
If L>°(X, p) x T itself were finite with finite trace tr then v(Y) = tr(xy) would give
a finite I'-invariant measure on X absolutely continuous to . According to lemma
1.3 this means v = Ay for some A > 0 and hence v(X) = oo, a contradiction. Hence
L>(X,p) x T is of type .

¢) We may assume that X = T". Since I is countable it follows that u is a multiple
of the counting measure. The crossed product L> (T, ) x I' is unitarily equivalent
to (L°°(T, p)L(T))” c L(I*(T). Direct computation shows that the latter contains
all matrix units e,, for v,n € I' and hence L>=(T', ) x T = L(1*(T)). O

4. TYPE I1]-CROSSED PRODUCTS

We need some prelimiaries on lower semicontinuous functions.

Definition 4.1. Let X be a topological space. A function f : X — [—o0,00] =
R U {00,000} is called lower semicontinuous if

FHEK, ) = {z € X|f(z) > K}
is an open set for every K € R.

Let X be a topological space and let f: X — [—00, 0] be a function. Clearly f
is lower semicontinous iff the set f~1([—o0, K]) is closed for every K € R. If x € X
we say that f is lower semicontinuous at z if either f(z) = —oo or f(x) = oo and
for every K > 0 we find an open neighborhood U of x such that f(u) > K for all
u € U, or f(x) € R such that for every e > 0 there exists an open neighborhood U
of x such that

fu) > f(z) —e
forall u e U.
Lemma 4.2. Let X be a topological space. For a function f : X — [—o00,00] =
R U {—00, 0} the following conditions are equivalent.

a) f is lower semicontinuous.
b) f is lower semicontinuous at every x € X.
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Proof. a) = b) Assume that —oco < f(z) < co and let € > 0. By lower semiconti-
nuity, the set U = f~1((f(x) — ¢, c]) is an open neighborhood of x.

b) = a) Let K € R and consider x € f~((K,c]). If f(x) = oo we find an open
neighborhood U of = such that f(u) > K for all u € U, hence U C f~((K, 00)).
If f(z) < oo we choose € > 0 such that f(z) —e > K. Then there is an open
neighborhhood U of z such that f(u) > f(z) — € > K so that U C f~1((K, o0]) as
well. Hence f~1((K,o0]) is open which means that f is lower semicontinuous. [J
We collect some basic facts on lower semicontinuous functions.

Lemma 4.3. Let X be a compact space and let f : X — [—00,00] be a lower
semicontinuous function. Then f attains its minimum on X.

Proof. b) If —oc is in the image of f of f(x) = oo for all € X there is nothing
to prove. Hence we may assume that f(X) C (—oo,00] and f(zg) < oo for some
xo € X. The set K = {z € X|f(x) < f(z)} is closed by lower semicontinuity, and
it clearly suffices to show that the restriction of f to K attains its minimum. In
other words, we may restrict to the case that f : X — R takes values in R. Fix
e > 0 and let U, for € X be an open set such that f(u) > f(x)—e€ for all u € U,,.
Then (U,)zex is an open cover of X, and since X is compact there exist x1,...,x,
such that Uy, U---UU,, = X. It follows that f is bounded below, and we denote by
7 the infimum of the set f(X). The nonempty sets A,, = f~!([r,r+1/n]) are closed
for all n € N. Using again that X is compact we find a point y in the intersection
of all A,,. We conclude f(y) = r and this yields the claim. O

Lemma 4.4. If (f;)jes is a family of lower semicontinuous functions from the
topological space X to [—o0, 0] and vjeJ fi+ X — [—o0,00] is defined by

V/ #(x) = sup £ (x),

jes ied
then \/jeJ fj is again lower semicontinuous.
Proof. Let K € R. Then

-1

(V) (e = U ()
jeJ jeJ

is an open set by lower semicontinuity of the f;. U

Lemma 4.5. Let H be a Hilbert space and let £ € H. Then te(z) = ||| defines
a lower semicontinuous function from L(H) with the weak topology to R.

Proof. For arbitrary K € R we have to show that the set
Uk = {z e L(H)|[|=¢]| > K}
is weakly open in IL(H). Clearly Uk is strongly open. Hence
Ck = L(H)\ Uk = {z € L(H)|[|z¢]| < K}

is strongly closed. Since C'i is convex this means that C'x is weakly closed by the
Hahn-Banach theorem. Hence Uk is weakly open as desired. O

Lemma 4.6. Let M be a semifinite factor with unit ball My and let tr : My —
[0,00] be a semifinite trace on M. Then for each K > 0 the set

M(K)={x € M; : tr(z*z) < K}

s weakly compact.
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Proof. Let us first consider the case that M is finite. We may assume without loss
of generality that tr is the normalized trace - recall that the normalized trace on a
finite factor is unique, see 7.1.19.

Using the GN S-construction for tr we can write

tr(z) = (A(1), zA(1))

and hence tr(z*z) = |[zA(1)||? for all x € M. According to lemma 4.5 we see that
the map t : M — [0,00) given by t(x) = tr(az*z) is weakly lower semicontinuous.
Hence t71([0, K]) = {z € M|tr(z*x) < K} C M is weakly closed. By the Ka-
plansky density theorem the unit ball M; of M is weakly compact. We conclude
that

M(K) = M, n([0, K])
is weakly compact. This yields the claim for finite M.
Now assume that M is a type I-factor or a type Il -factor. Then we may write

M = N @ L(I*(N)) ¢ L*(M,7) ® L(I*(N))

with N = C in the first case or N a type [I;-factor in the second case. In both
cases 7 : N — C denotes the normalized trace. Then, up to a scalar,

tr(z) =) (A1) @ e;),2(A(1) @)
j=1
forx € M.
We want to show that the function ¢ : M — [0, 00| given by
t(x) = tr(z"2) = Z(w(A(l) ®e;), 2(A(1) ®e;)) = Z (A1) @ ¢;)]

is weakly lower semicontinuous. For this consider the function ¢, : M — [0, ]
given by

Z 1) ® ej), 2(A(1) @ ¢))) an 1) @ e)]l.

Obviously we have

\ tn=t,

neN
and according to lemma 4.5 the maps t,, are weakly lower semicontinuous for all
n. Hence due to lemma 4.4 the function ¢ is indeed weakly lower semicontinuous.
Now the same argument as in the finite case finishes the proof. O

Proposition 4.7. Let M be a semifinite factor with unit ball My and let tr : M, —
[0,00] be a semifinite trace on M. As above we write

M(K)={z e M; : tr(z*z) < K}

for K > 0. Let N C M be a von Neumann subalgebra. If v € M(K) let us denote
by W (x) the weak closure of all convex combinations of elements of the form uzu*
for w € N unitary. Then W(x) C M(K) and if t : W(z) — [0, 00] is the function

t(y) = tr(y*y)

then t attains its minimum at a unique point e(x) of W (x).
Proof. Note that a convex combination of elements u;zu} with u; € N unitary is

a finite sum of the form
n
c= Z /\jujxu;f
=1



V. F. R. JONES: THE TYPE OF CROSSED PRODUCT VON NEUMANN ALGEBRAS 7

where 2?21 Aj =1, A; > 0 for all 7. It is clear that the norm of such a convex
combination is bounded by 1 since x € M;. Moreover the trace of ¢ is clearly
bounded by K. Since M(K) is weakly compact we see that W(x) is a weakly
compact convex subset of M (K).
From the proof of lemma 4.6 we know that ¢ is a weakly lower semicontinuous
function. Hence according to lemma 4.3 there is a point e(z) € W{(x) where ¢
attain its minimum.
Next recall that the GNS-construction for tr is the Hilbert space completion H of
the linear space

N={zeM:tr(z*2) <0} C M
with respect to the inner product (y,z) = tr(y*z). The function t extends to the
function t : H — [0, 00) given by (&) = ||£||%. Since t(y) > t(e(z)) for all y € W (x)
and t is continuous for the norm topology of H, we also have t(§) > t(e(z)) for all
¢ in the norm closure W(x) of W (z). Since W(z) C H is a convex closed subset,
the function ¢ : W(z) — [0,00) has a unique minimum by basic Hilbert space
geometry. O

Proposition 4.8. Suppose that T acts freely and ergodically on L>° (X, 1) such that
M = L>®(X,u) xT is a semifinite factor. Let tr be a semifinite trace on M and let
p € M be a nonzero projection with tr(p) < oo. If E: L®(X,u) xT' — L™(X, )
denotes the canonical conditional expectation then

e(p) = E(p)
and
0 < tr(e(p)?) < tr(p)
where e(p) € M is defined as above.

Proof. By the uniqueness of e(p) € M it follows that e(p) commutes with every
unitary in L*(X,u). Since N = L*(X,u) is maximal abelian in the crossed
product, by 11.2.11 it follows that e(p) € L (X, u).

If o =370 Ajuspuj € W(p) for u; € N we clearly have

E(x) =Y NE(ujpul) = \u;E(p)u; = E(p)
j=1 j=1

by the bimodule property of E and the fact that L (X, u) is abelian. Since F is
ultraweakly continuous we have in fact F(z) = E(p) for all z € W(p). Moreover
we have e(p) € W (p) and together with our observation e(p) € L (M, u) above we
therefore obtain

Since E(p) < p we conclude

tr(e(p)?) = tr(e(p)*e(p)) = t(e(p)) < t(p) = tr(p).
Finally E(p) = E(p?) is a positive non-zero element of M and hence e(p)? = E(p)?
must have non-zero trace. O

Theorem 4.9. Let the countable discrete group T act freely and ergodically on
the countably separated o-finite measure space (X, ). If the factor L>(X,u) x T
is semifinite there exists a o-finite I'-invariant measure on X which is absolutely
continuous with respect to p.

Proof. Define a measure v on X by v(A) = tr(x ) for measurable subsets A C X.
Then v has to be finite and nonzero on some A. Indeed, choose a nonzero projection
p € L®°(X, ) x T with tr(p) < co. Then according to proposition 4.8 the function
E(p)? € L*>(X, i) has finite positive measure with respect to v. By ergodicity of
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the action we see that the complement of the I'-invariant set | J_ . v+ A has measure
zero so that v is o-finite. From the relation

v(YY) =tr(y-xy) = tr(uvxyugl) =tr(xy) =v(Y)
for measurable Y C X we see that v is I'-invariant. O
As a consequence we obtain examples of factors which are not semifinite. Such
factors are sometimes called purely infinite. Since being semifinite is the same
things as being type I or II the following terminology is equivalently used.

yel’

Definition 4.10. A factor is of type I11 if it is not of type I or I1I.

According to theorem 4.9 we obtain a type III-factor from any example of a
free ergodic group action on a countably separated, o-finite measure space (X, u)
such that there is no invariant o-finite invariant measure absolutely continuous with
respect to pu. Hence lemma 1.4 gives the following result.

Corollary 4.11. The crossed product L=°(R, ) x T' for the natural action of the
ax + b-group T'= Q x Q* on (R, \) is a type I11-factor.
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