Übungen zu Mathematik für Physiker I

Abgabe: Donnerstag, 21.11.2013 bis 10h00 in den Briefkästen

Blatt 5

Aufgabe 1. Es sei

$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$, $v_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $w = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$.

- (a) Zeigen Sie: (v_1, v_2, v_3) ist Basis des \mathbb{R}^3 .
- (b) Bestimmen Sie $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{C}$ mit $w = \sum_{i=1}^3 \lambda_i v_i$.
- (c) Für welche $\lambda, \mu \in \mathbb{R}$ ist $\begin{pmatrix} 1 \\ \lambda \\ \mu \end{pmatrix} \in \operatorname{span}_{\mathbb{R}}(v_1, v_3)$?

Aufgabe 2. Sei $U = \operatorname{span}_{\mathbb{R}}(u_1, u_2, u_3) \subseteq \mathbb{R}^4$ und $V = \operatorname{span}_{\mathbb{R}}(v_1, v_2, v_3) \subseteq \mathbb{R}^4$ mit

$$u_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ -2 \end{pmatrix}, \ u_2 = \begin{pmatrix} 1 \\ 2 \\ 2 \\ 0 \end{pmatrix}, \ u_3 = \begin{pmatrix} 2 \\ 3 \\ 2 \\ -2 \end{pmatrix}, \ v_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \\ -2 \end{pmatrix}, \ v_2 = \begin{pmatrix} 2 \\ 3 \\ 4 \\ -3 \end{pmatrix}, \ v_3 = \begin{pmatrix} 1 \\ 3 \\ -1 \\ -2 \end{pmatrix}.$$

Bestimmen Sie die Dimensionen von $U, V, U + V, U \cap V$ sowie eine Basis von $U \cap V$.

Aufgabe 3. Eine Matrix $A=(a_{ij})\in M(n\times n,K)$ heißt symmetrisch, falls $a_{ij}=a_{ji}$ für alle $i,j=1,\ldots,n$, und schief-symmetrisch, falls $a_{ij}=-a_{ji}$ für alle $i,j=1,\ldots,n$.

- (a) Zeigen Sie, daß alle symmetrischen bzw. alle schief-symmetrischen Matrizen je einen Untervektorraum von $M(n \times n, K)$ bilden, und bestimmen Sie dessen Dimension.
- (b) Zeigen Sie, daß es für jede Matrix $A \in M(n \times n, K)$ genau eine symmetrische Matrix A_+ und eine schief-symmetrische Matrix A_- gibt mit $A = A_+ + A_-$.

Aufgabe 4. Begründen Sie, weshalb die unten angegebenen Folgen $(a_n)_{n\in\mathbb{N}^{\times}}$, $(b_n)_{n\in\mathbb{N}}$ und $(c_n)_{n\in\mathbb{N}^{\times}}$ konvergent bzw. divergent sind, und bestimmen Sie im Konvergenzfall den Grenzwert:

(a)
$$a_n = \frac{1}{(\sqrt[k]{2})^n} \binom{n}{k}$$
, $k \in \mathbb{N}^{\times}$ (b) $b_n = \left(\frac{7 + 24i}{25}\right)^n$
(c) $c_n = \sqrt[n]{\sum_{k=0}^n x^{n-k} 2^k}$, $x \in \mathbb{R}_+^{\times}$