Übungen zur Mathematik für Physiker III

Abgabe bis Mittwoch, den 2.11.16, 12 Uhr in den Briefkästen

Blatt 2

Aufgabe 1. Sei $U:=\{(r,\phi)\in\mathbb{R}^2: r>0\}$ und $Q\colon U\to\mathbb{R}^2$ die Polarkoordinaten-Transformation,

$$Q(r, \phi) = (r \cos \phi, r \sin \phi).$$

Ferner sei $f: \mathbb{R}^2 \to \mathbb{R}$ zweimal stetig differenzierbar und $g = f \circ Q$. Zeigen Sie:

(a) Mit $(x, y) = Q(r, \phi)$ gilt

$$(\partial_1 f)(x,y) = \cos \phi \cdot (\partial_1 g)(r,\phi) - \frac{\sin \phi}{r} \cdot (\partial_2 g)(r,\phi),$$

$$(\partial_2 f)(x,y) = \sin \phi \cdot (\partial_2 g)(r,\phi) + \frac{\cos \phi}{r} (\partial_2 g)(r,\phi).$$

[*Hinweis:* Berechnen Sie $((DQ)(r,\phi))^{-1}$.]

(b) Mit $(x,y) = Q(r,\phi)$ gilt $(\Delta f)(r\cos\phi, r\sin\phi) = \partial_r^2 g(r,\phi) + \frac{1}{r}\partial_r g(r,\phi) + \frac{1}{r^2}\partial_\phi^2 g(r,\phi)$. (*Hinweis:* Die Rechnung wird übersichtlicher, wenn Sie die Gleichungen aus (a) in folgender suggestiver Kurzform schreiben:

$$\partial_x = \cos\phi \cdot \partial_r - \frac{\sin\phi}{r} \cdot \partial_\phi, \qquad \qquad \partial_y = \sin\phi \cdot \partial_r + \frac{\cos\phi}{r} \cdot \partial_\phi.$$

Beachten Sie dabei die Leibniz-Regel!)

- **Aufgabe 2.** (a) Sei $m \in \mathbb{R}$ und $f: \mathbb{R}^n \to \mathbb{R}$ differenzierbar und homogen vom Grad m in dem Sinne, daß $f(tx) = t^m f(x)$ für alle $x \in \mathbb{R}^n$ und t > 0. Zeigen Sie, daß dann $\langle x, (\operatorname{grad} f)(x) \rangle = mf(x)$ für alle $x \in \mathbb{R}^n$.
 - (b) Sei $y \in \mathbb{R}^n$ und $g, h \colon \mathbb{R}^n \to \mathbb{R}$ gegeben durch $g(x) = \cos(\langle y, x \rangle)$ und $h(x) = \sin(\langle y, x \rangle)$. Zeigen Sie, daß dann gilt:

$$\operatorname{grad} g = -h \cdot y$$
, $\operatorname{grad} h = g \cdot y$, $\Delta u + ||y||^2 u = 0$ für $u = g$ und $u = h$.

Aufgabe 3. Die *Rotation* eines differenzierbaren Vektorfeldes $v: U \to \mathbb{R}^3$ auf einer offenen Teilmenge $U \subset \mathbb{R}^3$ ist definiert als das Vektorfeld

$$\operatorname{rot} v = (\partial_3 v_2 - \partial_2 v_3, \ \partial_1 v_3 - \partial_3 v_1, \ \partial_2 v_1 - \partial_1 v_2) : U \to \mathbb{R}^3.$$

(a) Berechnen Sie rot v für $v: \mathbb{R}^3 \to \mathbb{R}^3$, $x \mapsto (e^{x_1+x_2}, \sin(x_2x_3), x_1+x_3)$.

(b) Sei $U \subseteq \mathbb{R}^3$ offen und seien $f: U \to \mathbb{R}$ und $u, v: U \to \mathbb{R}^3$ zweimal differenzierbar. Zeigen Sie, daß dann gilt:

rot grad
$$f = 0$$
, $\operatorname{rot}(fu) = f \operatorname{rot} u + (\operatorname{grad} f) \times u$, $\operatorname{div} \operatorname{rot} u = 0$, $\operatorname{div}(u \times v) = \langle \operatorname{rot} u, v \rangle - \langle u, \operatorname{rot} v \rangle$,

wobei
$$x \times y = (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1)^t$$
 für $x, y \in \mathbb{R}^3$.

(Bemerkung: Man schreibt auch suggestiv $\nabla = (\partial_1, \partial_2, \partial_3)$ als Vektor von Operatoren und erhält dann symbolisch $\nabla f = \operatorname{grad} f$, $\langle \nabla, f \rangle = \operatorname{div} f$, $\nabla \times v = \operatorname{rot} v$. Dann gilt zum Beispiel $\nabla \times (fu) = (\nabla f) \times u + f(\nabla \times u)$.)

Aufgabe 4. Seien $\beta \in \mathbb{N}^n$ ein Multi-Index, $n, d \in \mathbb{N}$ und $f, g \colon \mathbb{R}^n \to \mathbb{R}$ gegeben durch

$$f(x_1, ..., x_n) = (x_1 + \dots + x_n)^d,$$
 $g(x_1, ..., x_n) = x^{\beta}$

für alle $x \in \mathbb{R}^n$. Ferner sei für jeden Multi-Index $\alpha \in \mathbb{N}^n$

$$\beta - \alpha := (\beta_1 - \alpha_1, \dots, \beta_n - \alpha_n), \qquad \alpha \le \beta : \Leftrightarrow \alpha_1 \le \beta_1, \dots, \alpha_n \le \beta_n.$$

- (a) Berechnen Sie für jeden Multi-Index $\alpha \in \mathbb{N}^n$ die partiellen Ableitungen $(\frac{\partial}{\partial x})^{\alpha} f$ und $(\frac{\partial}{\partial x})^{\alpha} g$. Unterscheiden Sie dabei die Fälle $|\alpha| \leq d$ und $|\alpha| > d$ sowie $\alpha \leq \beta$ und $\alpha > \beta$.
- (b) Beweisen Sie durch Entwicklung von f und g in Taylorreihen die Gleichungen

$$(x_1 + \dots + x_n)^d = \sum_{\alpha \in \mathbb{N}^n, \ |\alpha| = d} \frac{|\alpha|!}{\alpha!} x^{\alpha}, \quad (x + y)^{\beta} = \sum_{\alpha \in \mathbb{N}^n, \ \alpha \le \beta} \frac{\beta!}{\alpha! (\beta - \alpha)!} x^{\alpha} y^{\beta - \alpha}.$$