Grundlagen der Mathematik, Teil II

Inhalt

VI	Integralrechnung		1
	34	Das Riemannsche Integral	1
	35	Riemannsche Summen	7
	36	Der Hauptsatz der Differential- und Integralrechnung	11
	37	Integrationsmethoden	14
	38	Uneigentliche Integrale	20
	39	Gleichmäßig konvergente Funktionsfolgen	23
	40	Vertauschungssätze	27
	41	Die Γ -Funktion	31
VII	Lir	neare Abbildungen	36
	42	Definition und Beispiele	36
	43	Bild und Kern einer linearen Abbildung	38
	44	Lineare Abbildungen und Matrizen	41
	45	Die darstellende Matrix einer linearen Abbildung	43
	46	Zur Theorie linearer Gleichungssysteme	49
	47	Elementarmatrizen	52
	48	Kommutative Diagramme und Basiswechsel	56
	49	Determinanten	59
	50	Laplacescher Entwicklungssatz und komplementäre Matrix	64
	51	Eigenwerte und Diagonalisierbarkeit	70
	52	Das charakteristische Polynom	73
	53	Diagonalisierung	76
	54	Orthonormalsysteme	84
	55	Selbstadjungierte und unitäre Endomorphismen. I	88
	56	Trigonalisierung	91
	57	Selbstadjungierte und unitäre Endomorphismen. II	94
	58	Der Rieszsche Darstellungssatz	98

${\bf VIII\ Differenzierbare\ Abbildungen}$

Literatur

- [1] O. Forster, "Analysis 1," Vieweg (2006).
- [2] K. Königsberger, "Analysis 1," Springer (2004).
- [3] G. Fischer, "Lineare Algebra," Vieweg (2005).
- [4] O. Forster, "Analysis 2," Vieweg (2005).
- [5] K. Königsberger, "Analysis 2," Springer (2004).

Teil VI

Integralrechnung

Es gibt verschiedene Integralbegriffe, die sich unterscheiden hinsichtlich der Menge der integrierbaren Funktionen. Wir behandeln hier das Riemann-Integral.

34 Das Riemannsche Integral

Definition 34.1 Eine Funktion $\phi:[a,b]\to\mathbb{C}$ heißt *Treppenfunktion*, wenn es eine Unterteilung $a=x_0< x_1< \cdots < x_n=b$ von [a,b] derart gibt, daß ϕ auf jedem offenen Teilintervall $]x_k,x_{k+1}[$ konstant ist. Die Werte von ϕ an den Punkten x_0,\ldots,x_n dürfen dabei beliebig (aber beschränkt) sein.

Die Menge aller Treppenfunktionen auf [a, b] werde mit $\mathcal{T}[a, b]$ bezeichnet.

Satz 34.2 $\mathcal{T}[a,b]$ ist ein (unendlich-dimensionaler) Vektorraum über \mathbb{C} .

Beweis. Zu zeigen ist:

- i) Die Nullfunktion $\phi(x) = 0$ liegt in $\mathcal{T}[a, b]$.
- ii) Aus $\phi, \psi \in \mathcal{T}[a, b]$ folgt $\phi + \psi \in \mathcal{T}[a, b]$.
- iii) Aus $\phi \in \mathcal{T}[a, b]$ und $\lambda \in \mathbb{C}$ folgt $\lambda \phi \in \mathcal{T}[a, b]$.

i) und iii) sind klar. Zu ii) betrachte man die Unterteilung $\{x_0, \ldots, x_n\}$ zu ϕ und $\{x'_0, \ldots, x'_m\}$ zu ψ und bilde die Unterteilung $\{t_0, \ldots, t_k\} := \{x_0, \ldots, x_n\} \cup \{x'_0, \ldots, x'_m\}$ mit $k \leq m + n - 1$ und $t_j < t_{j+1}$. Dann sind ϕ , ψ und damit $\phi + \psi$ Treppenfunktionen bezüglich der gemeinsamen Unterteilung $\{t_0, \ldots, t_k\}$.

Definition 34.3 (Integral für Treppenfunktionen) Sei $\phi \in \mathcal{T}[a,b]$ definiert bezüglich der Unterteilung $a=x_0 < x_1 < \cdots < x_n = b$, und auf den Teilintervallen $]x_{k-1},x_k[$ habe ϕ den Wert c_k . Dann setzt man

$$\int_a^b dx \; \phi(x) := \sum_{k=1}^n c_k (x_k - x_{k-1}) \; .$$

Für reellwertige positive Treppenfunktionen ist das Integral $\int_a^b dx \ \phi(x)$ gleich dem Inhalt der Fläche, die vom Graphen von ϕ und den Geraden $x=a, \ x=b$ und y=0 begrenzt wird. Streng genommen muß noch gezeigt werden, daß das so definierte Intgral $unabhängig\ von\ der\ gewählen\ Unterteilung\ der\ Treppenfunktion ist. Das geschieht durch Zurückführen zweier Unterteilungen auf eine gemeinsame noch feinere Unterteilung und Berücksichtigung der Tatsache, daß die endlich vielen Randpunkte der Teilintervalle zum Integral nicht beitragen. (Für positive$

Funktionen haben die Kanten $\{x_k\} \times [0, \phi(x_k)]$ die Fläche 0, was sich dann auf allgemeine Funktionen überträgt.)

Für reellwertige Funktionen $f,g:[a,b]\to\mathbb{R}$ erklären wir $f\le g \quad\Leftrightarrow\quad f(x)\le g(x)$ für alle $x\in[a,b].$

Satz 34.4 Für Treppenfunktionen $\phi, \psi \in \mathcal{T}[a, b]$ und Zahlen $\alpha, \beta \in \mathbb{C}$ gilt:

i)
$$\int_{a}^{b} dx \ (\alpha \phi + \beta \psi)(x) = \alpha \int_{a}^{b} dx \ \phi(x) + \beta \int_{a}^{b} dx \ \psi(x)$$
 (Linearität)

ii)
$$\left| \int_{a}^{b} dx \; \phi(x) \right| \leq (b-a) \cdot \sup_{x \in [a,b]} |\phi(x)|$$
 (Beschränktheit)

iii) Sind ϕ, ψ reellwertig mit $\phi \leq \psi$, so gilt $\int_{-b}^{b} dx \; \phi(x) \leq \int_{-b}^{b} dx \; \psi(x) \tag{Monotonie}$

(Man sagt: Das Integral ist ein lineares, beschränktes und monotones Funktional auf $\mathcal{T}[a,b]$.)

Beweis. Nach Wahl gemeinsamer Unterteilungen sind das die üblichen Eigenschaften endlicher Summen. $\hfill\Box$

Definition 34.5 (Ober- und Unterintegral) Sei $f:[a,b]\to\mathbb{R}$ eine beschränkte reellwertige Funktion. Dann heißt

$$\int_a^b dx \ f(x) := \inf \left\{ \int_a^b dx \ \psi(x) : \ \psi \in \mathcal{T}[a, b] \ , \ \psi \ge f \right\}$$

das Oberintegral von f und

$$\int_{a}^{b} dx \ f(x) := \sup \left\{ \int_{a}^{b} dx \ \phi(x) : \phi \in \mathcal{T}[a, b], \ \phi \le f \right\}$$

das Unterintegral von f. (Dabei sind die Treppenfunktionen $\phi \in \mathcal{T}[a,b]$ reellwertig.)

Es gilt stets $\int_a^b dx \ f(x) \ge \int_a^b dx \ f(x)$ wegen der Monotonie des Integrals nach Satz 34.4.iii).

Für reellwertige Treppenfunktionen $\psi \in \mathcal{T}[a,b]$ gilt $\int_a^b dx \ \psi(x) = \int_a^b dx \ \psi(x)$, denn die Treppenfunktion selbst realisiert das Infimum und Supremum.

Definition 34.6 Eine beschränkte reellwertige Funktion $f:[a,b] \to \mathbb{R}$ heißt *Riemann-integrierbar*, wenn ihre Ober- und Unterintegrale übereinstimmen; in diesem Fall setzt man

$$\int_{a}^{b} dx \ f(x) := \int_{a}^{b} dx \ f(x) = \int_{a}^{b} dx \ f(x) .$$

Eine beschränkte komplexwertige Funktion $f:[a,b]\to\mathbb{C}$ heißt Riemann-integrierbar, wenn $\operatorname{Re} f$ und $\operatorname{Im} f$ Riemann-integrierbar sind; in diesem Fall setzt man

$$\int_a^b dx \ f(x) := \int_a^b dx \ (\operatorname{Re} f)(x) + i \int_a^b dx \ (\operatorname{Im} f)(x) \ .$$

Damit ist jede Treppenfunktion auch Riemann-integrierbar, und ihr Riemann-Integral stimmt mit dem Integral nach Definition 34.3 überein. Im folgenden meinen wir mit 'integrierbar' stets 'Riemann-integrierbar'. Der folgende Satz ist unser wichtigstes Werkzeug für das Riemann-Integral.

Satz 34.7 Eine Funktion $f:[a,b] \to \mathbb{R}$ ist genau dann integrierbar, wenn zu jedem $\epsilon > 0$ reellwertige Treppenfunktionen $\phi, \psi \in \mathcal{T}[a,b]$ existieren mit $\phi \leq f \leq \psi$ und

$$\int_{a}^{b} dx \; \psi(x) - \int_{a}^{b} dx \; \phi(x) \le \epsilon \; .$$

Beweis. (\Rightarrow) Nach Definition von inf und sup gibt es eine Treppenfunktionen $\psi \geq f$ mit $\int_a^b dx \ \psi(x) - \int_a^b dx \ f(x) \leq \frac{\epsilon}{2}$ und eine Treppenfunktion $\phi \leq f$ mit $\int_a^b dx \ f(x) - \int_a^b \phi(x) \leq \frac{\epsilon}{2}$.

(\Leftarrow) Nach Definition ist $\int_a^b dx \ f(x) - \int_a^b dx \ f(x) \le \epsilon$ für jedes $\epsilon > 0$, also stimmen Ober- und Unterintegral überein.

Satz 34.8 Jede stetige Funktion $f:[a,b] \to \mathbb{R}$ ist integierbar.

Beweis. Nach Satz 24.14 sind stetige Funktionen auf kompakten Intervallen auch gleichmäßig stetig. Also gibt es zu $\epsilon > 0$ ein $\delta > 0$ mit $|f(x) - f(y)| < \frac{\epsilon}{b-a}$ für alle $x,y \in [a,b]$ mit $|x-y| < \delta$. Wähle $n \in \mathbb{N}$ mit $\frac{b-a}{n} < \delta$ und die Unterteilungsstellen $x_k := a + k \frac{b-a}{n}$ mit $0 \le k \le n$. Für $1 \le k \le n$ setze $c_k := \sup_{x \in [x_{k-1},x_k]} f(x)$ und $c_k' := \inf_{x \in [x_{k-1},x_k]} f(x)$. Konstruiere die Treppenfunktionen ϕ, ψ mit der Unterteilung $\{x_0,\ldots,x_k\}$ derart, daß ψ auf $[x_{k-1},x_k]$ den Wert c_k hat und ϕ auf $[x_{k-1},x_k]$ den Wert c_k' . Nach Konstruktion gilt $\phi \le f \le \psi$.

Nach dem Satz vom Minimum/Maximum wird das Supremum und Infimum angenommen, d.h. es gibt $\xi_k, \xi_k' \in [x_{k-1}, x_k]$ mit $c_k = f(\xi_k)$ und $c_k' = f(\xi_k')$. Wegen $|\xi_k - \xi_k'| < \delta$ ist $|c_k - c_k'| < \frac{\epsilon}{b-a}$ für alle k und deshalb $\psi(x) - \phi(x) < \frac{\epsilon}{b-a}$ für alle $x \in [a, b]$. Dann gilt nach Satz 34.4

$$\int_{a}^{b} dx \ \psi(x) - \int_{a}^{b} dx \ \phi(x) = \int_{a}^{b} dx \ (\psi - \phi)(x) \le (b - a) \sup_{x \in [a, b]} |\psi(x) - \phi(x)| < \epsilon \ .$$

Nach Satz 34.7 ist f integrierbar.

Satz 34.9 Jede monotone beschränkte Funktion $f:[a,b] \to \mathbb{R}$ ist integrierbar.

Beweis. (für f monoton wachsend) Wir wählen eine äquidistante Unterteilung $x_k = a + k \frac{b-a}{n}$ und die Treppenfunktionen

$$\phi(x) := f(x_{k-1}) \qquad \text{für } x_{k-1} \le x < x_k$$

$$\psi(x) := f(x_k) \qquad \text{für } x_{k-1} \le x < x_k$$

und $\phi(b) = \psi(b) = f(b)$. Dann gilt $\phi \leq f \leq \psi$ und

$$\int_{a}^{b} dx \ \psi(x) - \int_{a}^{b} dx \ \phi(x) = \sum_{k=1}^{n} (f(x_{k}) - f(x_{k-1}))(x_{k} - x_{k-1})$$
$$= \frac{b-a}{n} \sum_{k=1}^{n} (f(x_{k}) - f(x_{k-1})) = \frac{b-a}{n} (f(b) - f(a)).$$

Wähle $n > \frac{1}{\epsilon}(b-a)(f(b)-f(a))$, dann ist f integrierbar nach Satz 34.7.

Beispiel 34.10 Wir betrachten die monotone Funktion $f:[0,b] \to \mathbb{R}$ mit $f(x) = x^2$. Dann ist mit den Bezeichnungen im vorigen Beweis

$$\int_0^b dx \ \psi(x) = \frac{b}{n} \sum_{k=1}^n \left(\frac{kb}{n}\right)^2 = \frac{b^3}{n^3} \sum_{k=1}^n k^2 = \frac{b^3}{n^3} \frac{n(n+1)(2n+1)}{6}$$

$$= \frac{b^3}{3} \left(1 + \frac{1}{n}\right) \left(1 + \frac{1}{2n}\right),$$

$$\int_0^b dx \ \phi(x) = \frac{b}{n} \sum_{k=1}^n \left(\frac{(k-1)b}{n}\right)^2 = \frac{b^3}{n^3} \sum_{k=0}^{n-1} k^2 = \frac{b^3}{n^3} \frac{(n-1)n(2n-1)}{6}$$

$$= \frac{b^3}{3} \left(1 - \frac{1}{n}\right) \left(1 - \frac{1}{2n}\right).$$

Damit gilt

$$\frac{b^3}{3} \left(1 - \frac{1}{n} \right) \left(1 - \frac{1}{2n} \right) \le \int_0^b dx \ x^2 \le \frac{b^3}{3} \left(1 + \frac{1}{n} \right) \left(1 + \frac{1}{2n} \right)$$

für alle $n \in \mathbb{N}^{\times}$, also $\int_{0}^{b} dx \ x^{2} = \frac{b^{3}}{3}$.

Wir werden nun grundlegende Eigenschaften des Riemann-Integrals zeigen. Diese Beweise beruhen auf der Einschachtelung integrierbarer Funktionen durch Treppenfunktionen und sind leider etwas mühsam.

Satz 34.11 Seien $f, g : [a, b] \to \mathbb{C}$ integrierbare Funktionen und $\alpha, \beta \in \mathbb{C}$. Dann ist auch die Funktion $\alpha f + \beta g$ integrierbar, und es gilt

$$\int_a^b dx \ (\alpha f + \beta g)(x) = \alpha \int_a^b dx \ f(x) + \beta \int_a^b dx \ g(x) \ .$$

Somit bildet die Menge der über [a,b] Riemann-integrierbaren Funktionen einen unendlich-dimensionalen Vektorraum.

Beweis. Es genügt, den Satz für reellwertige f,g und $\alpha,\beta\in\mathbb{R}$ zu beweisen. Der allgemeine Fall läßt sich dann mit Definition 34.6 darauf zurückführen. Wir betrachten zunächst $\alpha,\beta\in\mathbb{R}_+^\times$. Nach Voraussetzung gibt es zu $\epsilon>0$ Treppenfunktionen $\phi_1,\phi_2,\psi_1,\psi_2$ mit $\phi_1\leq f\leq \psi_1$ und $\phi_2\leq g\leq \psi_2$ sowie

$$\int_a^b dx \ \psi_1(x) - \int_a^b dx \ \phi_1(x) \le \frac{\epsilon}{2\alpha} \ , \qquad \int_a^b dx \ \psi_2(x) - \int_a^b dx \ \phi_2(x) \le \frac{\epsilon}{2\beta} \ .$$

Dann ist $\alpha \phi_1 + \beta \phi_2 \leq \alpha f + \beta g \leq \alpha \psi_1 + \beta \psi_2$, und nach Satz 34.4 gilt

$$\int_a^b dx \ (\alpha \psi_1 + \beta \psi_2)(x) - \int_a^b dx \ (\alpha \phi_1 + \beta \psi_2)(x) \le \epsilon \ .$$

Damit ist $\alpha f + \beta g$ integrierbar. Sowohl $I_1 = \int_a^b dx \ (\alpha f + \beta g)(x)$ als auch $I_2 = \alpha \int_a^b dx \ f(x) + \beta \int_a^b dx \ g(x)$ liegen zwischen $\int_a^b dx \ (\alpha \phi_1 + \beta \phi_2)(x)$ und $\int_a^b dx \ (\alpha \psi_1 + \beta \psi_2)(x)$, also gilt $I_1 = I_2$.

Mit f ist auch -f integrierbar durch Wahl der Treppenfunktionen $-\psi_1 \leq 1$

Mit f ist auch -f integrierbar durch Wahl der Treppenfunktionen $-\psi_1 \leq -f \leq -\phi_1$, so daß die Aussage auch für $\alpha < 0$ und/oder $\beta < 0$ gilt.

Satz 34.12 Seien $f, g : [a, b] \to \mathbb{R}$ integrierbare Funktionen. Dann gilt:

i) Ist
$$f \leq g$$
, so folgt $\int_a^b dx \ f(x) \leq \int_a^b dx \ g(x)$.

- ii) Die Funktionen $f_+ := \max(f,0)$ und $f_- := \max(-f,0)$ sowie $|f| = f_+ + f_-$ sind integrierbar, und es gilt $\left| \int_a^b dx f(x) \right| \le \int_a^b dx |f(x)|$.
- iii) Für jedes $p \in [1, \infty[$ ist die Funktion $|f|^p$ integrierbar.
- iv) Die Funktion fg ist integrierbar.

Beweis. i) Es ist $g - f \ge 0$ eine integrierbare Funktion, deren (Unter)integral \ge dem Integral der Treppenfunktion 0 ist. Also ist $\int_a^b dx \ (g - f)(x) \ge 0$.

ii) Aus $\psi \geq f \geq \phi$ folgt $\psi_+ \geq f_+ \geq \phi_+$ und $\phi_- \geq f_- \geq \psi_-$. Dann gilt $\psi - \phi = (\psi_+ - \psi_-) - (\phi_+ - \phi_-) = \psi_+ - \phi_+ + (\phi_- - \psi_-) \geq \psi_+ - \phi_+$, also $\int_a^b dx \; (\psi_+ - \phi_+)(x) \leq \int_a^b dx \; (\psi - \phi)(x) \leq \epsilon.$ Damit ist f_+ integrierbar, analog auch $f_- = (-f)_+$ und damit $|f| = f_+ + f_-$. Wegen $f \leq |f|$ und $-f \leq |f|$

gelten $\int_a^b dx \ f(x) \le \int_a^b dx \ |f(x)| \ \text{und} \ - \int_a^b dx \ f(x) \le \int_a^b dx \ |f(x)|, \text{ folglich}$ $\left| \int_a^b dx \ f(x) \right| \le \int_a^b dx \ |f(x)|.$

iii) Die Funktion f ist beschränkt, $|f| \leq M$. Wegen der Linearität genügt es, $0 \leq f \leq 1$ zu betrachten. Nach Voraussetzung gibt es Treppenfunktionen ϕ, ψ mit $0 \leq \phi \leq f \leq \psi \leq 1$ und $\int_a^b dx \; \psi(x) - \int_a^b dx \; \phi(x) \leq \frac{\epsilon}{p}$. Die Funktionen ϕ^p und ψ^p sind wieder Treppenfunktionen mit $\phi^p \leq |f|^p \leq \psi^p$. Nach dem Schrankensatz 27.5 für die Funktion $h: \psi \mapsto \psi^p$ mit $0 \leq h' \leq p$ auf [0,1] gilt $\frac{\psi^p - \phi^p}{\psi - \phi} \leq p$ und damit

$$\int_a^b dx \ (\psi^p - \phi^p)(x) \le p \int_a^b dx \ (\psi - \phi)(x) \le \epsilon \ .$$

Damit ist $|f|^p$ integrierbar.

iv) Verwende
$$fg = \frac{1}{4}((f+g)^2 - (f-g)^2)$$
.

Insbesondere sind auch $\max(f,g) = \frac{1}{2}(f+g+|f-g|)$ und $\min(f,g) = \frac{1}{2}(f+g-|f-g|)$ integrierbar.

Satz 34.13 Sei a < b < c. Eine Funktion $f : [a, c] \to \mathbb{C}$ ist genau dann integrierbar, wenn f über [a, b] und über [b, c] integrierbar ist, und dann gilt $\int_a^c dx \ f(x) = \int_a^b dx \ f(x) + \int_b^c dx \ f(x).$

Beweis. Folgt durch Unterteilung der approximierenden Treppenfunktionen in b. \Box

Man setzt $\int_a^a dx \ f(x) := 0$ und $\int_b^a dx \ f(x) = -\int_a^b dx \ f(x)$ für $b \ge a$, falls f über [a,b] integrierbar ist. Die Zusammensetzungsformel aus Satz 34.13 gilt dann für beliebige a,b,c, wenn f über $[\min(a,b,c),\max(a,b,c)]$ integrierbar ist. Daraus erhalten wir im Beispiel 34.10

$$\int_a^b dx \ x^2 = \int_a^0 dx \ x^2 + \int_0^b dx \ x^2 = \int_0^b dx \ x^2 - \int_0^a dx \ x^2 = \frac{1}{3} (b^3 - a^3) \ .$$

Satz 34.14 (Mittelwertsatz der Integralrechnung) Es sei $f:[a,b] \to \mathbb{R}$ eine stetige Funktion und $g:[a,b] \to \mathbb{R}$ eine integrierbare Funktion mit $g \ge 0$. Dann gibt es ein $\xi \in [a,b]$ mit $\int_a^b dx \ (fg)(x) = f(\xi) \int_a^b dx \ g(x)$. Für g=1 gilt speziell $\int_a^b dx \ f(x) = (a-b)f(\xi)$ für ein $\xi \in [a,b]$.

Beweis. Setze $M:=\sup_{x\in[a,b]}f(x)$ und $m:=\inf_{x\in[a,b]}f(x)$, dann gilt $mg\leq fg\leq Mg$ und folglich

$$m \int_a^b dx \ g(x) \le \int_a^b dx \ (fg)(x) \le M \int_a^b dx \ g(x) \ .$$

Somit gibt es ein $\lambda \in [m, M]$ mit $\int_a^b dx \ (fg)(x) = \lambda \int_a^b dx \ g(x)$. Die stetige Funktion $f: [a, b] \to \mathbb{R}$ nimmt ihr Supremum M und Infimum m an. Nach dem Zwischenwertsatz gibt es dann ein $\xi \in [a, b]$ mit $f(\xi) = \lambda$.

Man nennt $M(f) := \frac{1}{b-a} \int_a^b dx \ f(x)$ den *Mittelwert* der stetigen Funktion f:

$$[a,b] \to \mathbb{R}$$
. Allgemeiner heißt $M_g(f) := \frac{\int_a^b dx \ (fg)(x)}{\int_a^b dx \ g(x)}$ der bezüglich g gewichtete

Mittelwert von f.

35 Riemannsche Summen

Wir zeigen nun, daß eine approximierende Treppenfunktion weitgehend beliebig ist, solange die Unterteilung genügend fein wird.

Satz 35.1 (Riemannsche Summen) Sei $f:[a,b] \to \mathbb{R}$ eine integrierbare Funktion. Dann gibt es zu jedem $\epsilon > 0$ ein $\delta > 0$, so daß für eine beliebige Unterteilung $a = x_0 < x_1 \cdots < x_n = b$ von [a,b] mit $|x_{k+1} - x_k| < \delta$ und beliebige Wahl von Stützstellen $\xi_k \in [x_k, x_{k+1}]$ gilt

$$\left| \int_a^b dx \ f(x) - \sum_{k=0}^{n-1} f(\xi_k) (x_{k+1} - x_k) \right| < \epsilon \ .$$

Beweis. i) Sei zunächst f eine Treppenfunktion, die bezüglich einer Unterteilung $a=t_0 < t_1 < \cdots < t_m = b$ definiert ist, und $M:=\sup_{x\in [a,b]}|f(x)|$. Sei $a=x_0 < x_1 < \cdots < x_n = b$ eine Unterteilung von [a,b] mit $|x_{k+1}-x_k| < \delta$. Für beliebige Wahl von Stützstellen $\xi_k \in [x_k,x_{k+1}]$ definieren wir eine Treppenfunktion $\Phi \in \mathcal{T}[a,b]$ durch $\Phi(x)=f(\xi_k)$ für $x_k < x \leq x_{k+1}$ und $\Phi(a)=f(\xi_0)$. Dann gilt $\sum_{k=0}^{n-1}f(\xi_k)(x_{k+1}-x_k)=\int_a^b dx \;\Phi(x)$ und

$$\left| \int_{a}^{b} dx \ f(x) - \sum_{k=0}^{n-1} f(\xi_{k})(x_{k+1} - x_{k}) \right| \le \int_{a}^{b} dx \ |f(x) - \Phi(x)| \ .$$

Die Funktionen f und Φ stimmen auf jedem offenen Intervall $]x_k, x_{k+1}[$ überein, für das $[x_k, x_{k+1}]$ keinen Punkt t_j enthält. Damit ist $f - \Phi \neq 0$ höchstens auf 2m Teilintervallen. Deren Gesamtlänge ist $< 2m\delta$. Wegen $|f(x) - \Phi(x)| \leq 2M$ für alle $x \in [a, b]$ folgt

$$\int_{a}^{b} dx |f(x) - \Phi(x)| < 4Mm\delta.$$

ii) Sei nun f wieder eine beliebige integrierbare Funktion. Wähle $\delta < \frac{\epsilon}{8Mm}$ für die beiden Treppenfunktion ϕ, ψ mit $\phi \leq f \leq \psi$ und $\int_a^b dx \ (\psi - \phi)(x) < \frac{\epsilon}{2}$. Dann ist auch

$$\sum_{k=0}^{n-1} \phi(\xi_k)(x_{k+1} - x_k) \le \sum_{k=0}^{n-1} f(\xi_k)(x_{k+1} - x_k) \le \sum_{k=0}^{n-1} \psi(\xi_k)(x_{k+1} - x_k)$$

d.h. nach i) gilt

$$\sum_{k=0}^{n-1} f(\xi_k)(x_{k+1} - x_k) \in \left] - \frac{\epsilon}{2} + \int_a^b dx \, \phi(x), \frac{\epsilon}{2} + \int_a^b dx \, \psi(x) \right[$$

Aus
$$\int_a^b dx \ \psi(x) \le \frac{\epsilon}{2} + \int_a^b dx \ f(x)$$
 und $\int_a^b dx \ \phi(x) \ge -\frac{\epsilon}{2} + \int_a^b dx \ f(x)$ folgt die Behauptung.

Ist $f:[a,b]\to\mathbb{R}$ integrierbar, so gilt folglich

$$\int_{a}^{b} dx \ f(x) = \lim_{n \to \infty} \sum_{k=0}^{n-1} f(\xi_k) (x_{k+1} - x_k) \ ,$$

falls $\{x_k\}$ eine von n abhängige Unterteilung von [a,b] ist mit $\max(|x_{k+1}-x_k|) \to 0$ für $n \to \infty$ und $\xi_k \in [x_k, x_{k+1}]$.

Beispiel 35.2 $\int_0^a dx \cos x = \sin a$.

Beweis. Wähle (n+1) Stützstellen $x_k = \frac{ka}{n}, 0 \le k \le n$. Dann ist

$$\int_0^a dx \cos x = \lim_{n \to \infty} \frac{a}{n} \sum_{k=0}^{n-1} \cos\left(\frac{ka}{n}\right) = \lim_{n \to \infty} \frac{a}{2n} \sum_{k=0}^{n-1} \left(e^{\frac{ika}{n}} + e^{\frac{-ika}{n}}\right)$$

$$= \lim_{n \to \infty} \frac{a}{2n} \left(\frac{1 - e^{ia}}{1 - e^{\frac{ia}{n}}} + \frac{1 - e^{-ia}}{1 - e^{-\frac{ia}{n}}}\right)$$

$$= \lim_{n \to \infty} \frac{a}{2n} \left(e^{\frac{ia}{2}(1 - \frac{1}{n})} \frac{\sin\frac{a}{2}}{\sin\frac{a}{2n}} + e^{-\frac{ia}{2}(1 - \frac{1}{n})} \frac{\sin\frac{a}{2}}{\sin\frac{a}{2n}}\right)$$

$$= \lim_{n \to \infty} \frac{a}{2n} \left(2\cos\left(\frac{a}{2} - \frac{a}{2n}\right) \frac{\sin\frac{a}{2}}{\sin\frac{a}{2n}} \right)$$

$$= \lim_{n \to \infty} \left(\frac{2\cos\frac{a}{2}\sin\frac{a}{2}\cos\frac{a}{2n}}{\frac{\sin\frac{a}{2n}}{2n}} + \frac{a}{2n} \frac{2\sin\frac{a}{2}\sin\frac{a}{2}\sin\frac{a}{2n}}{\sin\frac{a}{2n}} \right)$$

$$= \sin a$$

unter Verwendung von $\lim_{x\to 0} \frac{\sin x}{x} = 1$ und $\lim_{x\to 0} \cos x = 1$.

Im Prinzip läßt sich auf ähnliche Weise die Berechnung des Riemann-Integrals auf die Berechnung von Reihen zurückführen. Tatsächlich sind Integrale über den später einzuführenden Hauptsatz der Differential- und Integralrechnung meist einfacher zu berechnen als Reihen, und so können manche Reihen über den 'Umweg' der Integrale berechnet werden. Riemannsche Summen sind aber ein wichtiges Hilfmittel in Beweisen:

Satz 35.3 Für komplexwertige integrierbare Funktionen $f:[a,b] \to \mathbb{C}$ gilt $\left| \int_a^b dx \, f(x) \right| \le \int_a^b dx |f(x)| \le (b-a) \sup_{x \in [a,b]} |f(x)|.$

Beweis. Wir nehmen das Gegenteil an, $\left| \int_a^b dx \ f(x) \right| - \int_a^b dx \ |f(x)| = \epsilon > 0$. Wir wählen Riemannsche Summen für Re f, Im f und |f| mit

$$\left| \int_{a}^{b} dx \, (\operatorname{Re} f)(x) - \sum_{k=0}^{n-1} (\operatorname{Re} f)(\xi_{k})(x_{k+1} - x_{k}) \right| < \frac{\epsilon}{4} \,,$$

$$\left| \int_{a}^{b} dx \, (\operatorname{Im} f)(x) - \sum_{k=0}^{n-1} (\operatorname{Im} f)(\xi_{k})(x_{k+1} - x_{k}) \right| < \frac{\epsilon}{4} \,,$$

$$\left| \int_{a}^{b} dx \, |f(x)| - \sum_{k=0}^{n-1} |f(\xi_{k})|(x_{k+1} - x_{k})| < \frac{\epsilon}{4} \,.$$

Die ersten beiden Ungleichungen ergeben

$$\left| \int_a^b dx \ f(x) - \sum_{k=0}^{n-1} f(\xi_k) (x_{k+1} - x_k) \right| < \frac{\epsilon}{2} \ .$$

Daraus folgt nach Dreiecksungleichung

$$\left| \int_{a}^{b} dx \ f(x) \right| = \left| \left(\int_{a}^{b} dx \ f(x) - \sum_{k=0}^{n-1} f(\xi_{k})(x_{k+1} - x_{k}) \right) + \sum_{k=0}^{n-1} f(\xi_{k})(x_{k+1} - x_{k}) \right|$$

$$\leq \frac{\epsilon}{2} + \sum_{k=0}^{n-1} |f(\xi_{k})|(x_{k+1} - x_{k}) < \frac{3\epsilon}{4} + \int_{a}^{b} dx \ |f(x)|,$$

Widerspruch. Die Ungleichung $\int_a^b dx |f(x)| \leq (b-a) \sup_{x \in [a,b]} |f(x)| \text{ folgt aus } |f(x)| \leq \sup_{x \in [a,b]} |f(x)|.$

Für eine integrierbare Funktion $f:[a,b]\to\mathbb{C}$ und $p\geq 1$ setzen wir

$$||f||_p := \left(\int_a^b dx |f(x)|^p\right)^{\frac{1}{p}}.$$

An dieser Stelle wird ein Schwachpunkt der Menge der Riemann-integrierbaren Funktionen sichtbar. Entgegen der Erwartung ist $f \mapsto ||f||_p$ keine Norm! Zwar gelten Skalierung (N2) und Dreiecksungleichung (N3), aber aus $||f||_p = 0$ folgt nicht f = 0. Sei z.B.

$$f(x) = \begin{cases} 0 & \text{für } x \neq \frac{a+b}{2} \\ 1 & \text{für } x = \frac{a+b}{2} \end{cases}, \qquad \phi_n(x) = \begin{cases} 0 & \text{für } |x - \frac{a+b}{2}| > \frac{1}{n+1} \\ 1 & \text{für } |x - \frac{a+b}{2}| \leq \frac{1}{n+1} \end{cases}.$$

Dann ist ϕ_n Treppenfunktion mit $0 \le |f|^p \le \phi_n$, und wegen $\int_a^b dx \ \phi(x) \le \frac{2}{n+1}$

ist f integrierbar mit $\int_a^b dx \ |f(x)|^p = 0$, aber $f \neq 0$. Dieser Schwachpunkt wird später im Lebesgue-Integral behoben. Zumindest für stetige Funktionen tritt das Problem nicht auf: Sei |f(y)| = M > 0 für ein $y \in [a,b]$, dann gibt es wegen der Stetigkeit von |f| ein $\epsilon > 0$ mit $|f(x)| \geq \frac{M}{2}$ für alle $x \in [a,b]$ mit $|x-y| < \epsilon$. Dann ist

$$\phi(x) = \begin{cases} \frac{M}{2} & \text{für } |x - y| < \epsilon \\ 0 & \text{für } |x - y| \ge \epsilon \end{cases}$$

Treppenfunktion mit $\phi \leq |f|^p$ und $\int_a^b dx \ \phi(x) \geq \frac{M}{2} \min(\epsilon, b - a) > 0$, also auch $\int_a^b dx \ |f(x)|^p > 0$.

Satz 35.4 (Höldersche Ungleichung für Integrale) Es seien $f, g: [a, b] \to \mathbb{C}$ integrierbare Funktionen und $p, q \ge 1$ mit $\frac{1}{p} + \frac{1}{q} = 1$. Dann gilt

$$\left| \int_{a}^{b} dx \ (fg)(x) \right| \le ||f||_{p} \ ||g||_{q} \ .$$

Beweis. Nach Satz 34.12.iii) existieren $||f||_p$, $||g||_q$. Wir wählen eine äquidistante Unterteilung $x_k = a + \frac{k}{n}(b-a)$ und beliebige Stützstellen $\xi_k \in [x_k, x_{k+1}]$. Dann ist nach Satz 28.9 (Höldersche Ungleichung für Summen) sowie $\left(\frac{b-a}{n}\right)^{\frac{1}{p}}\left(\frac{b-a}{n}\right)^{\frac{1}{q}} = \frac{b-a}{n}$

$$\frac{b-a}{n} \sum_{k=0}^{n-1} |f(\xi_k)g(\xi_k)| \le \left(\frac{b-a}{n} \sum_{k=0}^{n-1} |f(\xi_k)|^p\right)^{\frac{1}{p}} \cdot \left(\frac{b-a}{n} \sum_{k=0}^{n-1} |g(\xi_k)|^q\right)^{\frac{1}{q}}.$$

Die drei Summen sind für $n \to \infty$ Riemannsche Summen zu $\Big| \int_a^b dx \ (fg)(x) \Big|, \|f\|_p$ bzw. $\|g\|_q$.

Satz 35.5 (Minkowskische Ungleichung für Integrale) Es seien f, g: $[a, b] \to \mathbb{C}$ integrierbare Funktionen und $p \ge 1$. Dann gilt

$$||f+g||_p \le ||f||_p + ||g||_p$$
.

Beweis. Analog zu Satz 35.4 mit der Minkowskischen Ungleichung für Summen aus Satz 28.10. $\hfill\Box$

Folglich ist $\left(\mathcal{C}([a,b]), \|\ \|_p\right)$ ein normierter Vektorraum, wobei $\mathcal{C}([a,b])$ den Vektorraum der stetigen Funktionen über [a,b] bezeichnet. Insbesondere wird durch

$$\langle f, g \rangle = \int_a^b dx \, \overline{f(x)} \, g(x) \,, \qquad f, g \in \mathcal{C}([a, b])$$

ein Skalarprodukt auf $\mathcal{C}([a,b])$ definiert. Es zeigt sich jedoch, daß $\left(\mathcal{C}([a,b]), \|\ \|_p\right)$ nicht vollständig (d.h. kein Banach-Raum) ist. Auch dieser Schwachpunkt wird durch das Lebesgue-Integral repariert.

36 Der Hauptsatz der Differential- und Integralrechnung

Definition 36.1 Eine Funktion $f:[a,b]\to\mathbb{C}$ heißt *Regelfunktion*, wenn es zu jedem $\epsilon>0$ eine Treppenfunktion $\phi\in\mathcal{T}[a,b]$ gibt mit $|f(x)-\phi(x)|\leq\epsilon$ für alle $x\in[a,b]$.

Wegen Re $\phi-\epsilon \leq \operatorname{Re} f \leq \operatorname{Re} \phi + \epsilon$ sowie $\int_a^b dx \; (\operatorname{Re} \phi + \epsilon)(x) - \int_a^b dx \; (\operatorname{Re} \phi - \epsilon)(x) = 2\epsilon(b-a)$ und analog für die Imaginärteile ist jede Regelfunktion integrierbar. Die Konstruktionen in den Beweisen zu Satz 34.8 und Satz 34.9 zeigen, daß jede stetige Funktion und jede monotone Funktion eine Regelfunktion ist.

Satz 36.2 Es sei $f : [a,b] \to \mathbb{C}$ eine Regelfunktion. Dann existieren in jedem $Punkt \ x_0 \in [a,b[$ die rechtsseitigen Grenzwerte $\lim_{x \searrow x_0} f(x)$, und in jedem $Punkt \ x_0 \in]a,b]$ existieren die linksseitigen Grenzwerte $\lim_{x \nearrow x_0} f(x)$.

Beweis. (für rechsseitige Grenzwerte) Sei ϕ die Treppenfunktion mit $|f(x) - \phi(x)| \leq \frac{\epsilon}{2}$ für alle $x \in [a, b]$ und $]x_0, \beta[$ das Intervall, auf dem ϕ konstant ist. Dann gilt für alle $x, x' \in]x_0, \beta[$ die Abschätzung $|f(x) - f(x')| \leq |f(x) - \phi(x)| + |\phi(x') - f(x')| \leq \epsilon$. Nach dem Cauchyschen Konvergenzkriterium existiert der Limes $\lim_{x \searrow x_0} f(x)$.

Wir betrachten nun die Abhängigkeit des Integrals von einer der Integrationsgrenzen als neue Funktion, die man auch *unbestimmtes Integral* nennt.

Satz 36.3 Sei $F: I \to \mathbb{C}$ eine Regelfunktion und $a \in I$. Für $x \in I$ werde durch $F(x) := \int_a^x dt \ f(t)$ eine Funktion $F: I \to \mathbb{C}$ definiert. Dann gilt: Die Funktion $F: I \to \mathbb{C}$ ist stetig und in jedem Punkt $x_0 \in I$ sowohl linksseitig als auch rechtsseitig differenzierbar mit

$$\lim_{h \searrow 0} \frac{1}{h} \big(F(x_0 + h) - F(x_0) \big) = \lim_{x \searrow x_0} f(x) , \qquad \lim_{h \nearrow 0} \frac{1}{h} \big(F(x_0 + h) - F(x_0) \big) = \lim_{x \nearrow x_0} f(x) .$$

Insbesondere ist F differenzierbar in jedem Punkt $x \in I$, in dem f stetig ist, mit F'(x) = f(x).

Beweis. Wegen $|F(x_1) - F(x_2)| \le |x_1 - x_2| \sup_{x \in [x_1, x_2]} |f(x)|$ ist F auf jedem abgeschlossenen Intervall Lipschitz-stetig und damit stetig.

Sei $A := \lim_{x \searrow x_0} f(x)$. Zu $\epsilon > 0$ wähle $\delta > 0$, so daß $|f(x) - A| < \epsilon$ für alle $x \in]x_0, x_0 + \delta[$. Dann gilt für einen solchen Punkt x

$$\left| \frac{F(x) - F(x_0)}{x - x_0} - A \right| = \left| \frac{1}{x - x_0} \int_{x_0}^x dx \, (f(x) - A) \right| \le \frac{1}{x - x_0} \int_{x_0}^x dx \, |f(x) - A| \le \epsilon.$$

Damit existiert der rechtsseitige Grenzwert $\lim_{x\searrow x_0} \frac{F(x)-F(x_0)}{x-x_0}$ und ist gleich A. Analog für den linksseitigen Grenzwert.

Definition 36.4 Eine stetige Funktion $F:I\to\mathbb{C}$, für die eine Regelfunktion $f:I\to\mathbb{C}$ existiert mit

$$\lim_{h \searrow 0} \frac{1}{h} \big(F(x_0 + h) - F(x_0) \big) = \lim_{x \searrow x_0} f(x) , \qquad \lim_{h \nearrow 0} \frac{1}{h} \big(F(x_0 + h) - F(x_0) \big) = \lim_{x \nearrow x_0} f(x) ,$$

heißt *Stammfunktion* zu *f* .

Die Menge aller Stammfunktionen zu einer Regelfunktion $f:I\to\mathbb{C}$ heißt das unbestimmte Integral zu f, geschrieben $\int dx\ f(x)$.

Nicht jede differenzierbare Funktion ist eine Stammfunktion. Es läßt sich zeigen (Königsberger, Analysis I), daß Funktionen, die mit Ausnahme abzählbar vieler Punkte stetig differenzierbar sind, Stammfunktion sind.

Satz 36.5 Es sei $F: I \to \mathbb{C}$ Stammfunktion zu einer Regelfunktion $f: I \to \mathbb{C}$. Eine weitere Funktion $G: I \to \mathbb{R}$ ist genau dann Stammfunktion zu f, wenn F - G konstant ist.

Beweis. (\Rightarrow) Nach dem Identitätssatz 27.6 für stetige und differenzierbare Funktionen ist F-G konstant in jedem offenen Intervall, in dem f stetig ist. Wegen der Stetigkeit von F,G ist F-G dann auf ganz I konstant.

$$(\Leftarrow)$$
 ist klar.

Satz 36.6 (Hauptsatz der Differential- und Integralrechnung) Es sei $G: I \to \mathbb{C}$ eine beliebige Stammfunktion zu einer Regelfunktion $f: I \to \mathbb{C}$. Dann gilt für beliebige $a, b \in I$

$$\int_a^b dx \ f(x) = G(b) - G(a) \ .$$

Beweis. Das ist klar für die Stammfunktion $F(x)=\int_a^x dx\ f(x)$. Für jede weitere Stammfunktion G gilt G(x)=F(x)+c für ein $c\in\mathbb{C}$, und in der Differenz G(b)-G(a)=F(b)-F(a) hebt sich die Konstante weg. \square

Jede Ableitungsformel der Differentialrechnung liefert damit ein unbestimmtes Integral. Die Grundintegrale sind

$$\int dx \, x^s = \frac{x^{s+1}}{s+1} + c \,, \qquad x \in \mathbb{R} \text{ für } s \in \mathbb{N} \,, \quad x \in \mathbb{R}^\times \text{ für } s \in \mathbb{Z} \,, \quad s \le -2 \,,$$

$$x \in \mathbb{R}^\times \text{ für } s \in \mathbb{C} \setminus \{-1\}$$

$$\int dx \, \frac{1}{x} = \ln|x| + c \,, \qquad x \ne 0$$

$$\int dx \, e^{ax} = \frac{1}{a} e^{ax} + c \,, \qquad a \in \mathbb{C}$$

$$\int dx \, \sin x = -\cos x + c \,,$$

$$\int dx \, \cos x = \sin x + c \,,$$

$$\int dx \, \frac{1}{\sqrt{1-x^2}} = \arcsin x + c \,, \qquad |x| < 1$$

$$\int dx \, \frac{1}{1+x^2} = \arctan x + c \,, \qquad x \notin \frac{\pi}{2} + \pi \mathbb{Z}$$

$$\int dx \, \frac{1}{\sin^2 x} = -\cot x + c \,, \qquad x \notin \pi \mathbb{Z}$$

Über den Hauptsatz der Differential- und Integralrechnung liefern diese unbestimmten Integrale ein Riemannsches Integral, falls das Intervall [a, b] im Definitionsbereich der Stammfunktion liegt. So erhalten wir z.B.

$$\int_{a}^{b} dx \ x^{n} = \frac{b^{n+1} - a^{n+1}}{n+1} \qquad n \in \mathbb{N} ,$$

$$\int_{0}^{\frac{\pi}{2}} dx \ \cos x = \sin(\frac{\pi}{2}) - \sin(0) = 1 ,$$

$$\int_{0}^{a} dx \ e^{x} = e^{a} - 1 .$$

Ist F die Stammfunktion zu f, dann ist für das Riemannsche Integral die folgende Schreibweise üblich:

$$\int_{a}^{b} dx \ f(x) = F(x) \Big|_{a}^{b} := F(b) - F(a) \ ,$$

also z.B.
$$\int_0^1 dx \, \frac{1}{1+x^2} = \arctan x \Big|_0^1 = \frac{\pi}{4}.$$

37 Integrationsmethoden

37.1 Partielle Integration

Aus der Produktregel für das Differential gewinnt man die folgende Rechenregel:

Satz 37.1 (partielle Integration) . Es seien $u, v : I \to \mathbb{C}$ Stammfunktionen zu Regelfunktionen $f = v' : I \to \mathbb{C}$ und $g = u' : I \to \mathbb{C}$ (die Ableitung ist im Sinne von Definition 36.4 zu verstehen). Dann ist auch uv eine Stammfunktion, und es gilt

$$\int dx \ (uv')(x) = (uv)(x) - \int dx \ (u'v)(x) \ ,$$

$$\int_a^b dx \ (uv')(x) = uv \Big|_a^b - \int_a^b dx \ (u'v)(x) \ .$$

Beweis. Folgt (mit einseitigen Grenzwerten) aus der Rechnung zur Produktregel in Satz 26.6. \Box

Beispiel 37.2 $I_n(x) := \int dx \sin^n x$ für $n \in \mathbb{N}$, $n \ge 2$. Wir setzen $u = \sin^{n-1} x$, $v = -\cos x$, dann folgt mit partieller Integration (die Konstante c ist weggelassen)

$$\int dx \sin^n x = -\sin^{n-1} x \cos x + \int dx ((n-1)\cos x \sin^{n-2} x) \cos x$$
$$= -\sin^{n-1} x \cos x + (n-1) \int dx \sin^{n-2} x (1-\sin^2 x) .$$

Daraus ergibt sich die Rekursionsformel

$$I_n(x) = -\frac{1}{n}\sin^{n-1}x\cos x + \frac{n-1}{n}I_{n-2}$$

aus der mit $I_0 = x$ und $I_1 = -\cos x$ die unbestimmten Integrale berechnet werden können, z.B. $\int dx \sin^2 x = \frac{1}{2}(x - \sin x \cos x)$. Interessant sind die Riemannschen

Integrale $(k \in \mathbb{N}^{\times})$

$$A_{2k} := \int_0^{\frac{\pi}{2}} dx \sin^{2k} x = \frac{(2k-1)(2k-3)\cdots 1}{2k(2k-2)\cdots 2} \cdot \frac{\pi}{2} ,$$

$$A_{2k+1} := \int_0^{\frac{\pi}{2}} dx \sin^{2k+1} x = \frac{2k(2k-2)\cdots 2}{(2k+1)(2k-1)\cdots 3} .$$

Wegen $0 \le \sin^{2k+2} x \le \sin^{2k+1} x \le \sin^{2k} x \le 1$ für $x \in [0, \frac{\pi}{2}]$ gilt $0 \le A_{2k+2} \le A_{2k+1} \le A_{2k} \le \frac{\pi}{2}$. Andererseits ist $\lim_{k \to \infty} \frac{A_{2k+2}}{A_{2k}} = \lim_{k \to \infty} \frac{2k+1}{2k+2} = 1$, also auch $\lim_{k \to \infty} \frac{A_{2k+1}}{A_{2k}} = 1$ und daraus

$$\frac{\pi}{2} = \lim_{k \to \infty} \frac{(2k)^2 (2k-2)^2 \cdots 2^2}{(2k+1)(2k-1)(2k-2+1)(2k-2-1)\cdots(2+1)(2-1)}$$
$$= \lim_{k \to \infty} \prod_{n=1}^k \frac{4n^2}{4n^2 - 1} = \prod_{n=1}^\infty \frac{4n^2}{4n^2 - 1}.$$

Diese Formel heißt Wallissches Produkt.

Beispiel 37.3 $\int dx \arcsin x$. Wir setzen $u = \arcsin x$, v = x, dann folgt mit partieller Integration und $\sqrt{1-x^2}' = -\frac{x}{\sqrt{1-x^2}}$

$$\int dx \arcsin x = x \arcsin x - \int dx \frac{x}{\sqrt{1 - x^2}} = x \arcsin x + \sqrt{1 - x^2}.$$

Ähnlich zeigt man $\int dx \arctan x = x \arctan x - \frac{1}{2} \ln(1+x^2)$.

Beispiel 37.4 $\int dx \sqrt{1-x^2}$. Wir setzen $v=x, u=\sqrt{1-x^2}$, dann folgt

$$\int dx \sqrt{1 - x^2} = x\sqrt{1 - x^2} - \int dx \ x \cdot \frac{-x}{\sqrt{1 - x^2}} = x\sqrt{1 - x^2} - \int dx \ \frac{(1 - x^2) - 1}{\sqrt{1 - x^2}}$$
$$= x\sqrt{1 - x^2} - \int dx \sqrt{1 - x^2} + \arcsin x$$

also $\int dx \sqrt{1-x^2} = \frac{1}{2}x\sqrt{1-x^2} + \frac{1}{2}\arcsin x$. Der Graph $(x,\sqrt{1-x^2})$ für $x \in [0,1]$ beschreibt einen Viertelkreisbogen mit Radius 1. Dementsprechend ist $\int_0^1 dx \sqrt{1-x^2} = \left(\frac{1}{2}x\sqrt{1-x^2} + \frac{1}{2}\arcsin x\right)\Big|_0^1 = \frac{\pi}{4}$ die Fläche der Viertelkreisscheibe, d.h. die Kreisscheibe vom Radius 1 hat die Fläche π .

Satz 37.5 (Trapezregel) Es sei $f: I \to \mathbb{R}$ eine zweimal stetig differenzierbare Funktion und $a, b \in I$. Dann ist

$$\int_{a}^{b} dx \ f(x) = \frac{b-a}{2} (f(b) + f(a)) - R ,$$

$$R = \frac{1}{2} \int_{a}^{b} dx \ (x-a)(b-x) f''(x) = \frac{(b-a)^{3}}{12} f''(\xi) \quad \text{für ein } \xi \in [a,b] .$$

Beweis. Setze $g = \frac{1}{2}(x-a)(b-x)$ mit $g'(x) = \frac{1}{2}(b+a-2x)$ und g''(x) = -1. Zweimalige partielle Integration liefert

$$R = \int_{a}^{b} dx \ (gf'')(x) = (gf')(x) \Big|_{a}^{b} - \int_{a}^{b} dx \ (g'f')(x)$$
$$= -(g'f)(x) \Big|_{a}^{b} + \int_{a}^{b} dx \ (g''f)(x) = \frac{b-a}{2} (f(b)+f(a)) - \int_{a}^{b} dx \ f(x) \ .$$

Nach dem Mittelwertsatz der Integralrechnung ist

$$\frac{1}{2} \int_{a}^{b} dx \ (x-a)(b-x)f''(x) = \frac{1}{2} f''(\xi) \int_{a}^{b} dx \ (x-a)(b-x)
= \frac{1}{2} f''(\xi) \left(\frac{x^{2}}{2} (a+b) - \frac{x^{3}}{3} - abx \right) \Big|_{a}^{b} = \frac{(b-a)^{3}}{12} f''(\xi) .$$

Approximiert man eine viermal stetig differenzierbare Funktion f durch eine Parabel mit gleichen Funktionswerten in $a, b, \frac{a+b}{2}$, so entsteht die Keplersche Faßregel

$$\int_{-b}^{b} dx \ f(x) = \frac{b-a}{6} (f(b) + f(a) + 4f(\frac{a+b}{2})) - R , \qquad R = \frac{(b-a)^{5}}{2880} f^{(4)}(\xi)$$

für ein $\xi \in [a, b]$. Sie liefert für Graphen kubischer Polynome eine exakte Formel (d.h. R = 0) zur Flächenberechnung.

Über die partielle Integration gewinnen wir eine Formel für das Restglied der Taylorschen Formel.

Satz 37.6 Es sei $f: I \to \mathbb{C}$ eine (n+1)-mal stetig differenzierbare Funktion und $a \in I$. Dann gilt für alle $x \in I$

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_{n+1}(x) .$$

$$R_{n+1}(x) = \frac{1}{n!} \int_a^x dt \ (x-t)^n f^{(n+1)}(t) .$$

Beweis. Durch Induktion nach $n \in \mathbb{N}$. Die Formel gilt für n = 0 auf Grund des Hauptsatzes des Differential- und Integralrechnung. Angenommen sie gilt bis einschließlich $n-1 \geq 0$, dann ergibt partielle Integration des Restgliedes

$$R_n(x) = \frac{1}{(n-1)!} \int_a^x dt \ (x-t)^{n-1} f^{(n)}(t) = -\frac{1}{n!} \int_a^x dt \ \left(\frac{d}{dt} (x-t)^n\right) f^{(n)}(t)$$

$$= -\frac{1}{n!} (x-t)^n f^{(n)}(t) \Big|_a^x + \frac{1}{n!} \int_a^x dt \ (x-t)^n f^{(n+1)}(t)$$

$$= \frac{f^{(n)}(a)}{n!} (x-a)^n + R_{n+1}(x) .$$

Die bisherige Form des Restgliedes ergibt sich nun aus dem Mittelwertsatz: Es gibt ein $\xi \in]a, x[$ bzw. $\xi \in]x, a[$ mit

$$R_{n+1}(x) = f^{n+1}(\xi) \frac{1}{n!} \int_a^x dt \ (x-t)^n = f^{n+1}(\xi) \frac{(x-a)^{n+1}}{(n+1)!} \ .$$

37.2 Substitutionsregel

Aus der Kettenregel für die Ableitung einer zusammengesetzten Funktion gewinnen wir die sehr wichtige Substitutionsregel:

Satz 37.7 Es sei $f: I \to \mathbb{C}$ eine Regelfunktion, $F: I \to \mathbb{C}$ eine Stammfunktion zu f und $t: [a, b] \to I$ eine stetig differenzierbare und streng monotone Funktion. Dann ist $F \circ t: [a, b] \to \mathbb{C}$ eine Stammfunktion zu $(f \circ t) \cdot t': [a, b] \to \mathbb{C}$, und es gilt

$$\int_{a}^{b} dx \ f(t(x)) \cdot t'(x) = \int_{t(a)}^{t(b)} dt \ f(t) \ .$$

Beweis. Wir wiederholen den Beweis der Kettenregel in Satz 26.8 für rechtsseitige Grenzwerte und t streng monoton wachsend. Für $x_0 \in [a,b[$ sei $y_0:=t(x_0) \in I$ und $A:=\lim_{y\searrow y_0}f(y)$. Setze $\phi(y):=\left\{\begin{array}{cc} \frac{F(y)-F(y_0)}{y-y_0} & \text{für } y>y_0\\ A & \text{für } y=y_0 \end{array}\right.$ Nach Voraussetzung gilt $\lim_{y\searrow y_0}\phi(y)=\phi(y_0)=A$ und $F(y)-F(y_0)=(y-y_0)\phi(y)$ für alle $y\in I$ mit $y\geq y_0$. Dann erhalten wir

$$\lim_{x \searrow x_0} \frac{F(t(x)) - F(t(x_0))}{x - x_0} = \lim_{x \searrow x_0} \frac{\phi(t(x)) \cdot (t(x) - t(x_0))}{x - x_0}$$

$$= \lim_{x \searrow x_0} \phi(t(x)) \cdot \lim_{x \searrow x_0} \frac{t(x) - t(x_0)}{x - x_0}$$

$$= \phi(t(x_0)) \cdot t'(x_0) = A \cdot t'(x_0) = \lim_{x \searrow x_0} f(t(x)) \cdot t'(x) .$$

Analog für linksseitige Grenzwerte und/oder t streng monoton fallend. Also ist $(F \circ t)(x)$ Stammfunktion zu $((f \circ t) \cdot t')(x)$. Nach dem Hauptsatz der Differential-

und Integralrechnung gilt

$$\int_{a}^{b} dt \ f(t(x)) \cdot t'(x) = (F \circ t)(x) \Big|_{a}^{b} = F(t(b)) - F(t(a)) = \int_{t(a)}^{t(b)} dt \ f(t) \ . \quad \Box$$

Beispiel 37.8 $\int_a^b dx \ f(\alpha x + \beta) \ \text{mit } \alpha \neq 0. \ \text{Setze } t(x) = \alpha x + \beta, \ t'(x) = \alpha, \ \text{dann}$ ist

$$\int_a^b dx \ f(\alpha x + \beta) = \frac{1}{\alpha} \int_a^b f(t(x)) \cdot t'(x) = \frac{1}{\alpha} \int_{\alpha a + \beta}^{\alpha b + \beta} dt \ f(t) \ .$$

Beispiel 37.9 Oft gelingt es, Integrale in der Form $\int dx \, \frac{t'(x)}{t(x)}$ zu identifizieren für eine stetig differenzierbare Funktion $t:[a,b]\to\mathbb{R}$ mit $t(x)\neq 0$ für alle $x\in [a,b]$. Setzt man $f(t)=\frac{1}{t}$, so ist

$$\int_a^b dx \; \frac{t'(x)}{t(x)} = \int_a^b dx \; f(t(x))t'(x) = \int_{t(a)}^{t(b)} dt \; f(t) = \ln|t| \Big|_{t(a)}^{t(b)} = \ln\left|\frac{t(b)}{t(a)}\right| \; .$$

Z.B. erhalten wir für $[a,b]\subset]-\frac{\pi}{2},\frac{\pi}{2}[$

$$\int_{a}^{b} dx \tan x = -\int_{a}^{b} dx \frac{\cos'(x)}{\cos x} = -\ln\left|\frac{\cos b}{\cos a}\right|.$$

Das entsprechende unbestimmte Integral ist $\int dx \tan x = -\ln|\cos x| + c$. Analog ist $\int dx \cot x = \ln|\sin x| + c$.

Beispiel 37.10 $\int_a^b dx \, \frac{1}{\sqrt{1+x^2}}$. Setze $x = \sinh t$, also $t(x) = \operatorname{arsinh} x = \ln(x+\sqrt{x^2+1})$. (Siehe den letzten Teil von 23.3.) Für die Ableitung der Umkehrfunktion gilt

$$\operatorname{arsinh}'(x) = \frac{1}{\sinh'(t(x))} = \frac{1}{\cosh t(x)} = \frac{1}{\sqrt{1 + \sinh^2 t(x)}} = \frac{1}{\sqrt{1 + x^2}}.$$

Also ist f(t) = 1 und

$$\int_a^b dx \, \frac{1}{\sqrt{1+x^2}} = \int_{\operatorname{arsinh}(a)}^{\operatorname{arsinh}(b)} dt \, 1 = \operatorname{arsinh}(b) - \operatorname{arsinh}(a) = \ln \frac{b+\sqrt{b^2+1}}{a+\sqrt{a^2+1}} \; .$$

Das entsprechende unbestimmte Integral ist $\int dx \frac{1}{\sqrt{1+x^2}} = \operatorname{arsinh} x = \ln(x+\sqrt{1+x^2}) + c$. Analog zeigt man $\int dx \frac{1}{\sqrt{x^2-1}} = \operatorname{arcosh} x = \ln(x+\sqrt{x^2-1}) + c$ für $|x| \ge 1$.

37.3 Partialbruchzerlegung

Durch Partialbruchzerlegung (Satz 19.7) lassen sich rationale Funktionen darstellen als Summe von Polynomen und Funktionen der Form $\frac{b}{(x-a)^k}$ mit $a,b\in\mathbb{C}$ und $k\in\mathbb{N}^\times$. Handelt es sich um eine reelle rationale Funktion, so treten die zueinander komplex-konjugierten Funktionen $\frac{b}{(x-a)^k}$ und $\frac{\bar{b}}{(x-\bar{a})^k}$ in der Summe gemeinsam auf. Für $k\geq 2$ wird für reelle und komplexe Nullstellen gleichermaßen $\int dx \, \frac{b}{(x-a)^k} = \frac{b}{(1-k)(x-a)^{k-1}} + c \text{ erhalten. Für } k=1 \text{ und eine reelle Nullstellen gleicher Funktionen gemeinsam auf.}$

$$\frac{b}{(x-a)} + \frac{\bar{b}}{(x-\bar{a})} = \frac{2x \operatorname{Re}(b) - 2\operatorname{Re}(\bar{b}a)}{(x - \operatorname{Re}(a))^2 + (\operatorname{Im}(a))^2} =: \frac{Bx + C}{(x+p)^2 + q^2},$$

mit $B, C, p, q \in \mathbb{R}$ und q > 0. Man schreibt $Bx + C = \frac{B}{2}(2x + 2p) + (C - Bp)$, so daß ein Term $\frac{B}{2}\frac{f'(x)}{f(x)}$ mit $f(x) = (x + p)^2 + q^2$ entsteht, der die Stammfunktion $\frac{B}{2}\ln|f(x)|$ hat. Der verbleibende Teil wird nach Substitution $t = \frac{x+p}{q}$ zum arctan:

$$\int dx \, \frac{Bx + C}{(x+p)^2 + q^2} = \frac{B}{2} \ln((x+p)^2 + q^2) + \frac{C - Bp}{q} \arctan \frac{x+p}{q} \, .$$

In vielen anderen Fällen gibt es Substitutionen t(x), die auf rationale Funktionen in t führen:

Beispiel 37.11 Es sei $\int dx \ R(\cos x, \sin x)$ für eine rationale Funktion R von $\sin x$ und $\cos x$. Setzt man

$$t = \tan \frac{x}{2}$$
 \Rightarrow $\cos x = \frac{1 - t^2}{1 + t^2}$, $\sin x = \frac{2t}{1 + t^2}$, $t'(x) = \frac{1}{2}(1 + t^2)$,

so entsteht

$$\int_{a}^{b} dx \ R(\cos x, \sin x) = \int_{\tan \frac{a}{2}}^{\tan \frac{b}{2}} dt \ R(\frac{1+t^{2}}{1+t^{2}}, \frac{2t}{1+t^{2}}) \frac{2}{1+t^{2}}.$$

Eine solche rationale Funktion kann dann mittels Partialbruchzerlegung integriert werden.

Beispiel 37.12 $\int dx \ R(e^{px})$ für $p \in \mathbb{R}^*$ und eine rationale Funktion R. Die Transformation $t = e^{px}$ führt auf

$$\int_{a}^{b} dx \ R(e^{px}) = \frac{1}{p} \int_{e^{pa}}^{e^{pb}} dt \ R(t) \frac{1}{t} \ .$$

Insbesondere lassen sich auf diese Weise rationale Funktionen von $\sinh x$ und $\cosh x$ integrieren.

Beispiel 37.13 $\int dx \ R(x, \sqrt[n]{px+q})$ für $n \in \mathbb{N}^{\times}$ und $p \in \mathbb{R}^{*}$, $q \in \mathbb{R}$. Die Transformation $t = \sqrt[n]{px+q}$ führt auf eine rationale Funktion:

$$\int_a^b dx \ R(x, \sqrt[n]{px+q}) = \frac{n}{p} \int_{\sqrt[n]{pa+q}}^{\sqrt[n]{pb+q}} dt \ R(\frac{t^n-q}{p}, t) t^{n-1} \ .$$

Beispiel 37.14 $\int dx \ R(x, \sqrt{px^2 + qx + r})$ für $p \in \mathbb{R}^{\times}$ und $q, r \in \mathbb{R}$ mit $r \neq \frac{q^2}{4p}$. Durch quadratische Ergänzung $px^2 + qx + r = p(x + \frac{q}{2p})^2 + r - \frac{q^2}{4p}$ und linearer Substitution $t = \sqrt{\left|\frac{4p^2}{4pr - q^2}\right|}(x + \frac{q}{2p})^2$ entsteht je nach Vorzeichen von p und $4pr - q^2$ eines der Integrale

$$\int dt \ R'(t, \sqrt{t^2 + 1}) \ , \quad \int dt \ R'(t, \sqrt{t^2 - 1}) \ , \quad \int dt \ R'(t, \sqrt{1 - t^2}) \ ,$$

welches durch $t = \sinh y$, $t = \cos y$ bzw. $t = \sin y$ auf eine rationale Funktion von e^{sy} bzw. $\sin y$ und $\cos y$ zurückgeführt wird.

38 Uneigentliche Integrale

Wir haben bisher nur Funktionen über kompakten (beschränkt und abgeschlossen) Intervallen intgriert. Wünschenswert wäre aber auch die Integration über offene Intervalle sowie über unbeschränkte Intervalle. Solche "uneigentlichen Integrale" können über einen Grenzprozeß Riemannscher Integrale erhalten werden.

 $\begin{array}{l} \textbf{Definition 38.1 Eine Funktion } f:[a,\infty[\to \mathbb{C} \text{ sei "über jedes kompakte Intervall } [a,R] \text{ mit } R>a \text{ integrierbar. Existiert der Limes } \lim_{R\to\infty} \int_a^R dx \ f(x) \text{, dann heißt das } \\ \text{Integral } \int_a^\infty dx \ f(x) \text{ konvergent, und man setzt } \int_a^\infty dx \ f(x) := \lim_{R\to\infty} \int_a^R dx \ f(x) \text{.} \\ \text{Analog wird für } f: \]-\infty,b] \ \to \ \mathbb{C} \text{ im Fall der Konvergenz das Integral } \\ \int_{-\infty}^b dx \ f(x) \text{ definiert.} \\ \end{array}$

Beispiel 38.2 Das Integral $\int_1^\infty dx \, \frac{1}{x^s}$ konvergiert für s > 1. Es gilt

$$\int_{1}^{R} dx \, \frac{1}{x^{s}} = \begin{cases} \frac{R^{1-s}-1}{1-s} & \text{für } s \neq 1\\ \ln R & \text{für } s = 1 \end{cases}$$

Der Grenzwert für $R\to\infty$ existiert genau für s>1, und es gilt $\int_1^\infty dx\,\frac{1}{x^s}=\frac{1}{s-1}$ für alle s>1.

 $\begin{array}{l} \textbf{Definition 38.3} \ \ \text{Es sei} \ \ f: \ [a,b[\ \to \ \mathbb{C} \ \ \text{eine Funktion, die } \ddot{\text{u}} \text{ber jedes Teilintervall} \ \ [a,b-\epsilon] \ \ \text{mit} \ \ 0 < \epsilon < b-a \ \ \text{integrierbar ist.} \ \ \text{Existiert der einseitige Grenzwert} \ \lim_{\epsilon \searrow 0} \int_a^{b-\epsilon} dx \ f(x), \ \text{so heißt das Integral} \ \int_a^b dx \ f(x) \ \ \textit{konvergent}, \ \text{und man setzt} \ \int_a^b dx \ f(x) := \lim_{\epsilon \searrow 0} \int_a^{b-\epsilon} dx \ f(x). \end{aligned}$

Analog wird für $f:]a,b] \to \mathbb{C}$ im Fall der Konvergenz das Integral $\int_a^b dx \ f(x)$ definiert.

Beispiel 38.4 $\int_0^1 dx \, \frac{1}{\sqrt{1-x^2}}$. Die Funktion $f(x) = \frac{1}{\sqrt{1-x^2}}$ ist auf [0,1[definiert, und auf dem kompakten Teilintervall $[0,1-\epsilon]$ gilt

$$\int_0^{1-\epsilon} dx \, \frac{1}{\sqrt{1-x^2}} = \arcsin x \Big|_0^{1-\epsilon} = \arcsin(1-\epsilon) \; .$$

Der arcsin ist stetig auf [-1,1], so daß gilt $\lim_{\epsilon \searrow 0} \arcsin(1-\epsilon) = \arcsin 1 = \frac{\pi}{2}$ und damit $\int_0^1 dx \, \frac{1}{\sqrt{1-x^2}} = \frac{\pi}{2}$.

Definition 38.5 Es sei $f:]a,b[\to \mathbb{C}$ eine Funktion mit $-\infty \le a < b \le \infty$, die über jedes kompakte Teilintervall $[\alpha,\beta] \subset]a,b[$ integrierbar ist, und $c \in]a,b[$. Existieren die uneigentlichen Integrale

$$\int_c^b dx \; f(x) = \lim_{\beta \nearrow b} \int_c^\beta dx \; f(x) \quad \text{und} \quad \int_a^c dx \; f(x) = \lim_{\alpha \searrow a} \int_\alpha^c dx \; f(x) \; ,$$

so heißt das Integral $\int_a^b dx \ f(x)$ konvergent, und man setzt $\int_a^b dx \ f(x) := \int_a^c dx \ f(x) + \int_c^b dx \ f(x)$. (Die Definition ist unabhängig von der Wahl von $c \in]a,b[.)$

Beispiel 38.6 $\int_{-\infty}^{\infty} dx \, \frac{1}{1+x^2}$. Zu betrachten sind die Integrale $\int_{0}^{R} dx \, \frac{1}{1+x^2} = \arctan(R)$ und $\int_{-R'}^{0} dx \, \frac{1}{1+x^2} = -\arctan(-R') = \arctan R'$. Der Grenzwert $\lim_{R\to\infty} \arctan(R) = \frac{\pi}{2}$ existiert, somit gilt $\int_{-\infty}^{\infty} dx \, \frac{1}{1+x^2} = \pi$.

Satz 38.7 (Majorantenkriterium) Es seien $f:[a,b[\to \mathbb{C} \ und \ g:[a,b[\to \mathbb{R} \ Regelfunktionen \ mit \ |f| \le g$. Existiert das Integral $\int_a^b dx \ g(x)$, dann existiert auch $\int_a^b dx \ f(x)$.

Beweis. Seien F,G die Stammfunktionen zu f,g für kompakte Teilintervalle in $[a,b[,\,\mathrm{d.h.}$

$$\int_{a}^{u} dx \ f(x) = F(u) - F(a) \ , \qquad \int_{a}^{u} dx \ g(x) = G(u) - G(a) \ , \qquad a < u < b \ .$$

Aus der Existenz von $\int_a^b dx\, g(x)$ folgt, daß es zu jedem $\epsilon>0$ ein $\beta\in]a,b[$ gibt, so daß für alle $u,v\in]\beta,b[$ gilt $|G(u)-G(v)|\leq \epsilon.$ Für diese u>v gilt dann

$$|F(u) - F(v)| = \left| \int_{v}^{u} dx \ f(x) \right| \le \int_{v}^{u} dx \ |f(x)| \le \int_{v}^{u} dx \ g(x) = G(u) - G(v) \le \epsilon.$$

(Gist monoton wachsend wegen $g\geq 0).$ Nach dem Cauchyschen Konvergenzkriterium existiert der Limes $\lim_{u\nearrow b}F(u)$ und damit das Integral $\int_a^b dx\ f(x).$ \Box

Beispiel 38.8 Das Integral $\int_0^\infty dx \, \frac{\sin x}{x}$ ist konvergent.

Beweis. Die Funktion $f(x) = \begin{cases} \frac{\sin x}{x} & \text{für } x \neq 0 \\ 1 & \text{für } x = 1 \end{cases}$ ist stetig auf \mathbb{R} und damit über jedes kompakte Teilinvervall von \mathbb{R} integrierbar. Damit ist nur die obere Integrationsgrenze kritisch, und es genügt, das Integral über $[1, \infty[$ zu betrachten. Partielle Integration liefert

$$\int_{1}^{R} dx \, \frac{\sin x}{x} = -\frac{\cos x}{x} \Big|_{1}^{R} - \int_{1}^{R} dx \, \frac{\cos x}{x^{2}} = \cos 1 - \frac{\cos R}{R} - \int_{1}^{R} dx \, \frac{\cos x}{x^{2}} \, .$$

Es gilt $\left|\frac{\cos x}{x^2}\right| \leq \frac{1}{x^2}$ für alle $x \in [1, \infty[$ und $\int_1^R dx \frac{1}{x^2} = 1 - \frac{1}{R}$. Damit ist das Integral $\int_0^\infty dx \, \frac{\sin x}{x}$ konvergent. Der Grenzwert kann später mit Fourier-Reihen berechnet werden; es gilt $\int_0^\infty dx \, \frac{\sin x}{x} = \frac{\pi}{2}$.

Das Integral ist aber nicht absolut konvergent. Zerlegung in Intervalle der

Länge π ergibt

$$\int_0^{n\pi} dx \left| \frac{\sin x}{x} \right| = \sum_{k=1}^n \int_{(k-1)\pi}^{k\pi} dx \left| \frac{\sin x}{x} \right|$$

$$\geq \sum_{k=1}^n \frac{1}{k\pi} \int_{(k-1)\pi}^{k\pi} dx \left| \sin x \right| = \sum_{k=1}^n \frac{1}{k\pi} \int_0^{\pi} dx \sin x = \frac{2}{\pi} \sum_{k=1}^n \frac{1}{k}.$$

Die harmonischen Reihe divergiert, d.h. der Limes $n \to \infty$ existiert nicht.

Satz 38.9 (Integralvergleichskriterium für Reihen) Es sei $f: [1, \infty[\to \mathbb{R}_+ \ eine \ monoton \ fallende \ Funktion. \ Dann \ konvergiert \ die \ Folge \ der \ Differenzen$

$$a_n := \sum_{k=1}^n f(k) - \int_1^{n+1} dx \ f(x) \ ,$$

und für ihren Grenzwert gilt $0 \le \lim_{n \to \infty} a_n \le f(1)$. Insbesondere konvergiert die

Reihe $\sum_{k=1}^{\infty} f(k)$ genau dann, wenn das Integral $\int_{1}^{\infty} dx \ f(x)$ konvergiert, und in diesem Fall gilt

$$0 \le \sum_{k=1}^{\infty} f(k) - \int_{1}^{\infty} dx \ f(x) \le f(1) \ .$$

Beweis. Es gilt $f(k) \ge \int_k^{k+1} dx \ f(x) \ge f(k+1)$, da f monoton fallend. Damit wächst $(a_n)_{n\ge 1}$ monoton, andererseits gilt

$$a_n = \sum_{k=1}^n f(k) - \int_1^{n+1} dx \ f(x) \le \sum_{k=1}^n f(k) - \sum_{k=1}^n f(k+1) = f(1) - f(n+1) \le f(1) \ .$$

Somit ist $(a_n)_{n\geq 1}$ konvergent mit Grenzwert zwischen 0 und f(1).

Beispiel 38.10 Es existiert der Grenzwert $\gamma := \lim_{n \to \infty} \left(\sum_{k=1}^n \frac{1}{k} - \ln n \right)$ mit $0 \le \gamma \le 1$. Zum Beweis verwende man den Satz 38.9 für $f(x) = \frac{1}{x}$ und $\lim_{n \to \infty} (\ln(n+1) - \ln(n)) = 0$. Der Grenzwert heißt Eulersche Konstante oder auch Euler-Mascheroni-Konstante. Mit Methoden analog zur Trapezregel kann man $\gamma = 0.5772\dots$ berechnen.

39 Gleichmäßig konvergente Funktionsfolgen

Wenn die bisher vorgestellten Integrationsmethoden nicht zum Ziel führen, so kann man versuchen, die zu integrierende Funktion zu approximieren durch Funktionen, deren Integral bekannt ist. Das kann z.B. eine Taylorreihe sein. Es stellt

sich dann die Frage, ob Approximation und Integral kommutieren. Die zentrale Aussage ist, daß Grenzwert und Integration für gleichmäßig konvergente Funktionsfolgen vertauschen. Punktweise Konvergenz genügt nicht. Wir formulieren gleichmäßge Konvergenz zunächst für allgemeine Definitionsbereiche $D \subset X$ eines metrischen Raumes X.

Definition 39.1 Eine Folge $(f_n)_{n\in\mathbb{N}}$ von Funktionen $f_n:D\to\mathbb{C}$ heißt gleichmäßig konvergent gegen die Grenzfunktion $f:D\to\mathbb{C}$, wenn es zu jedem $\epsilon>0$ ein $N\in\mathbb{N}$ gibt, so daß $|f_n(x)-f(x)|<\epsilon$ für alle $x\in D$ und alle $n\geq N$.

Eine Reihe $\sum_{k=0}^{\infty} f_k$ von Funktionen $f_k:D\to\mathbb{C}$ heißt gleichmäßig konvergent auf D, wenn die Folge der Partialsummen $F_n:=\sum_{k=0}^n f_k$ gleichmäßig konvergiert.

Gleichmäßige Konvergenz kann mit dem Cauchy-Kriterium überprüft werden:

Satz 39.2 (Cauchy-Kriterium) Eine Folge $(f_n)_{n\in\mathbb{N}}$ von Funktionen $f_n: D \to \mathbb{C}$ ist genau dann gleichmäßig konvergent auf D, wenn es zu jedem $\epsilon > 0$ ein $N \in \mathbb{N}$ gibt, so da $\beta |f_n(x) - f_m(x)| < \epsilon$ für alle $m, n \geq N$ und alle $x \in D$.

Beweis. (\Rightarrow) durch Dreiecksungleichung für $f_n - f_m = (f_n - f) + (f - f_m)$, wenn f die Grenzfunktion ist.

(⇐) Grenzfunktion f existiert punktweise nach Cauchy-Kriterium: Da \mathbb{C} vollständig ist, folgt aus $|f_n(x) - f_m(x)| < \epsilon$, daß $(f_n(x))_{n \in \mathbb{N}}$ einen Grenzwert in \mathbb{C} hat, den wir f(x) nennen. Für $m \to \infty$ ergibt sich $|f_n(x) - f(x)| \le \epsilon$ für alle $n \ge N$ und alle $x \in D$.

Entsprechend gilt für Reihen, daß $\sum_{k=0}^{\infty} f_k$ genau dann gleichmäßig konvergent ist, wenn es zu jedem $\epsilon > 0$ ein $N \in \mathbb{N}$ gibt, so daß $\Big|\sum_{k=n}^{m} f_k(x)\Big| \leq \epsilon$ für alle $m,n \geq N$ und alle $x \in D$. Insbesondere ist jede Potenzreihe gleichmäßig konvergent im Inneren ihres Konvergenzkreises.

Satz 39.3 Eine Folge $(f_n)_{n\in\mathbb{N}}$ stetiger Funktionen konvergiere gleichmäßig gegen die Grenzfunktion $f: D \to \mathbb{C}$. Dann ist f stetig.

Beweis. Wir zeigen, daß f in jedem Punkt $\tilde{x} \in D$ stetig ist. Zu $\epsilon > 0$ gibt es wegen der gleichmäßigen Konvergenz ein $N \in \mathbb{N}$, so daß $|f_n(x) - f(x)| < \frac{\epsilon}{3}$ für alle $n \geq N$ und alle $x \in D$. Da f_n in \tilde{x} stetig ist, gibt es ein $\delta > 0$ mit $|f_n(x) - f_n(\tilde{x})| < \frac{\epsilon}{3}$ für alle $x \in D$ mit $|x - \tilde{x}| < \delta$. Dann folgt aus der Dreiecksungleichung

$$|f(x) - f(\tilde{x})| \le |f(x) - f_n(x)| + |f_n(x) - f_n(\tilde{x})| + |f_n(\tilde{x}) - f(\tilde{x})| < \epsilon$$

für alle $x \in D$ mit $|x - \tilde{x}| < \delta$.

Satz 39.4 Es sei X ein metrischer Raum und

$$C_b(X) := \{ f : X \to \mathbb{C} \text{ stetig }, \quad ||f|| := \sup_{x \in X} |f(x)| < \infty \}$$

der Vektorraum der stetigen und beschränkten komplexwertigen Funktionen auf X. Dann ist $(C_b(X), \| \ \|)$ vollständig (d.h. Banach-Raum) bezüglich der Supremums-Norm $\| \ \|$. Insbesondere ist $(C(X), \| \ \|)$ Banach-Raum, falls X kompakt ist.

Beweis. i) Zunächst ist zu überprüfen, daß $\| \|$ eine Norm ist. Die Skalierung (N2) ist klar, die Dreiecksungleichung (N3) folgt aus

$$||f + g|| = \sup_{x \in X} |f(x) + g(x)| \le \sup_{x \in X} (|f(x)| + |g(x)|) \le \sup_{x \in X} |f(x)| + \sup_{y \in X} |g(y)|$$
$$= ||f|| + ||g||.$$

Ist ||f|| = 0, so folgt f(x) = 0 in jedem Punkt $x \in X$, also (N3).

ii) Zu zeigen ist, daß jede Cauchy-Folge $(f_n)_{n\in\mathbb{N}}$ aus $\mathcal{C}_b(X)$ konvergent ist gegen eine Grenzfunktion aus $\mathcal{C}_b(X)$. Sei $||f_n - f_m|| < \epsilon$ für alle $m, n \geq N$. Dann ist $|f_n(x) - f_m(x)| < \epsilon$ für alle $x \in X$, d.h. $(f_n)_{n\in\mathbb{N}}$ ist gleichmäßig konvergent gegen eine Grenzfunktion $f: X \to \mathbb{C}$ nach Satz 39.2. Nach Satz 39.3 ist f stetig, wegen $||f|| \leq ||f - f_n|| + ||f_n|| < \epsilon + ||f_n||$ ist f beschränkt. Ist K kompakt, so ist jede stetige Funktion beschränkt nach dem Satz vom Maximum.

Der Beweis von Satz 39.4 zeigt, daß wir den Bildraum durch einen beliebigen Banach-Raum ersetzen dürfen:

Satz 39.5 Es sei X ein metrischer Raum, $(Y, || \cdot ||_Y)$ ein Banach-Raum und

$$C_b(X,Y) := \{ f : X \to Y \text{ stetig }, \quad ||f|| := \sup_{x \in X} ||f(x)||_Y < \infty \}$$

der Vektorraum der stetigen und beschränkten Abbildungen von X nach Y. Dann ist $(C_b(X,Y), \| \ \|)$ vollständig (d.h. Banach-Raum) bezüglich der Supremums-Norm $\| \ \|$. Insbesondere ist $(C(X,Y), \| \ \|)$ Banach-Raum, falls X kompakt ist.

Beweis. Die Vollständigkeit von Y garantiert die Rekonstruktion der Grenzfunktion $f(x) = \lim_{n \to \infty} f_n(x) \in Y$ in jedem Punkt $x \in X$. Ansonsten wie für $Y = \mathbb{C}$. \square

Wir geben nun ein weiteres nützliches Kriterium für gleichmäßige Konvergenz von Funktionsreihen.

Satz 39.6 (Dirichlet-Kriterium) Es seien $f_n: D \to \mathbb{R}$ und $a_n: D \to \mathbb{C}$ Funktionen, für die gilt

i) Für jedes $x \in D$ ist $(f_n(x))_{n \in \mathbb{N}}$ monoton fallend.

- ii) $(f_n)_{n\in\mathbb{N}}$ konvergiert gleichmäßig auf D gegen 0.
- iii) Es gibt eine Schranke $M \in \mathbb{R}_+$, so daß $\left| \sum_{k=0}^n a_k(x) \right| \leq M$ für alle $n \in \mathbb{N}$.

Dann konvergiert die Reihe $\sum_{n=0}^{\infty} a_n f_n$ gleichmäßig auf D. Insbesondere ist unter

den Voraussetzungen i) und ii) die alternierende Reihe $\sum_{n=0}^{\infty} (-1)^n f_n$ gleichmäßig konvergent auf D.

Beweis. Man benutzt den Trick der Abelschen Summation. Mit $A_k := \sum_{j=0}^k a_k$ gilt

$$\sum_{k=0}^{n} a_k f_k = A_0 f_0 + (A_1 - A_0) f_1 + \dots + (A_n - A_{n-1}) f_n$$

$$= A_0 (f_0 - f_1) + A_1 (f_1 - f_2) + \dots + A_{n-1} (f_{n-1} - f_n) + A_n f_n.$$

Damit gilt

$$\sum_{k=n+1}^{m} a_k f_k = \sum_{k=0}^{m} a_k f_k - \sum_{k=0}^{n} a_k f_k = \sum_{k=n}^{m-1} A_k (f_k - f_{k+1}) + A_m f_m - A_n f_n.$$

Die Voraussetzungen liefern $|A_k(x)| \leq M$ für alle $x \in D$ und alle $k \in \mathbb{N}$, außerdem $f_k - f_{k+1} \geq 0$ und $f_k \geq 0$ auf D. Damit gilt

$$\left| \sum_{k=n+1}^{m} (a_k f_k)(x) \right| \le M \sum_{k=n}^{m-1} (f_k - f_{k+1})(x) + M f_m(x) + M f_n(x) = 2M f_n(x) .$$

Da $(f_n)_{n\in\mathbb{N}}$ gleichmäßig gegen 0 konvergiert, gibt es zu $\epsilon>0$ ein $N\in\mathbb{N}$, so daß $0\leq f_m(x)\leq \frac{\epsilon}{2M}$ für alle $x\in D$. Aus dem Cauchy-Kriterium folgt die Behauptung.

Beispiel 39.7 Die Reihe $\sum_{k=1}^{\infty} \frac{e^{\mathrm{i}kx}}{k}$ konvergiert gleichmäßig auf jedem Intervall $[\delta, 2\pi - \delta]$ mit $0 < \delta < \pi$.

Beweis. Setze $a_k = e^{ikx}$, $f_k := \frac{1}{k}$, dann ist das Dirichlet-Kriterium erfüllt wegen

$$\left| \sum_{k=1}^{n} e^{ikx} \right| = \left| \frac{1 - e^{inx}}{1 - e^{ix}} \right| \le \left| \frac{2}{e^{\frac{ix}{2}} - e^{-\frac{ix}{2}}} \right| = \frac{1}{\sin \frac{x}{2}} \le \frac{1}{\sin \frac{\delta}{2}}.$$

Insbesondere sind $\sum_{k=1}^{\infty} \frac{\sin(kx)}{k}$ und $\sum_{k=1}^{\infty} \frac{\cos(kx)}{k}$ gleichmäßig konvergent auf jedem kompakten Teilinterall von $]0, 2\pi[$.

Für spätere Zwecke berechnen wir konkret:

Beispiel 39.8 Es gilt
$$\sum_{k=1}^{\infty} \frac{\sin(kx)}{k} = \frac{\pi - x}{2}$$
 für alle $x \in [\delta, 2\pi - \delta]$ mit $0 < \delta < \pi$.

Beweis. Es gilt

$$\sum_{k=1}^{n} e^{ikt} = e^{it} \frac{1 - e^{int}}{1 - e^{it}} = \frac{e^{i\frac{(2n+1)t}{2}} - e^{i\frac{t}{2}}}{2i\sin\frac{t}{2}}$$
$$= \left(\frac{\sin\frac{(2n+1)t}{2}}{2\sin\frac{t}{2}} - \frac{1}{2}\right) + i\left(\frac{1}{2}\cot\frac{t}{2} - \frac{\cos\frac{(2n+1)t}{2}}{2\sin\frac{t}{2}}\right),$$

also
$$\sum_{k=1}^{n} \cos(kx) = \frac{\sin\frac{(2n+1)t}{2}}{2\sin\frac{t}{2}} - \frac{1}{2}$$
 und $\sum_{k=1}^{n} \sin(kx) = \frac{\cos\frac{t}{2} - \cos\frac{(2n+1)t}{2}}{2\sin\frac{t}{2}}$. Wegen $\frac{\sin(kx)}{k} = \int^{x} dt \cos(kt)$ gilt für endliche Summen nach partieller Integration

$$\sum_{k=1}^{n} \frac{\sin(kx)}{k} = \int_{\pi}^{x} dt \sum_{k=1}^{n} \cos(kt) = \int_{\pi}^{x} dt \left(\frac{\sin\frac{(2n+1)t}{2}}{2\sin\frac{t}{2}} - \frac{1}{2} \right)$$

$$= \frac{\pi - x}{2} - \frac{1}{2n+1} \frac{\cos\frac{(2n+1)t}{2}}{\sin\frac{t}{2}} \Big|_{\pi}^{x} + \int_{\pi}^{x} dt \frac{\cos\frac{(2n+1)t}{2}}{2n+1} \cdot \frac{(-\cos\frac{t}{2})}{2\sin^{2}\frac{t}{2}} .$$

Punktweise für festes $x \in]0, 2\pi[$ erhalten wir im Limes $n \to \infty$ die behauptete Grenzfunktion.

Für x=0 und $x=2\pi$ ist offenbar $\sum_{k=1}^{\infty} \frac{\sin(kx)}{k} = 0$. Somit gilt unter Beachtung der Periodizität des Sinus

$$\sum_{k=1}^{\infty} \frac{\sin(kx)}{k} = \begin{cases} 0 & \text{für } x \in 2\pi\mathbb{Z} \\ \frac{(2n+1)\pi - x}{2} & \text{für } x \in]2\pi n, 2\pi(n+1)[\end{cases}$$

d.h. die Grenzfunktion ist nicht stetig.

40 Vertauschungssätze

Satz 40.1 Es sei $(f_n)_{n\in\mathbb{N}}$ eine Folge integrierbarer Funktionen $f_n:[a,b]\to\mathbb{C}$, die gleichmäßig gegen eine Grenzfunktion $f:[a,b]\to\mathbb{C}$ konvergiert. Dann ist auch f integrierbar, und es gilt

$$\int_a^b dx \ f(x) = \lim_{n \to \infty} \int_a^b dx \ f_n(x) \ .$$

Beweis. Es genügt, reellwertige Funktionen zu betrachten. Nach Definition der gleichmäßigen Konvergenz gibt es zu $\epsilon > 0$ ein $N \in \mathbb{N}$, so daß $|f(x) - f_n(x)| < \frac{\epsilon}{3(b-a)}$ für alle $n \geq N$ und alle $x \in [a,b]$. Aus der Integrierbarkeit von f_n folgt, daß es Treppenfunktionen $\phi, \psi \in \mathcal{T}[a,b]$ gibt mit $\phi \leq f_n \leq \psi$ und $\int_a^b dx \ (\psi - \phi)(x) \leq f_n = 0$

$$\int_{a}^{b} dx \left(\psi + \frac{\epsilon}{3(b-a)} \right) (x) - \int_{a}^{b} dx \left(\phi - \frac{\epsilon}{3(b-a)} \right) (x) \le \frac{\epsilon}{3} + \frac{2\epsilon}{3(b-a)} \int_{a}^{b} dx \, 1 = \epsilon.$$

Somit ist f integrierbar. Damit gilt

$$\left| \int_a^b dx \ f(x) - \int_a^b dx \ f_n(x) \right| \le \int_a^b dx \ |f(x) - f_n(x)| \le \frac{\epsilon}{3} ,$$

d.h. Grenzwert und Integration vertauschen.

 $\frac{\epsilon}{3}$. Dann gilt auch $\phi - \frac{\epsilon}{3(b-a)} \le f \le \psi + \frac{\epsilon}{3(b-a)}$ sowie

Auf gleichmäßige Konvergenz der Funktionsfolge kann nicht verzichtet werden.

Beispiel 40.2 Für $n \geq 2$ sei $f_n: [0,1] \to \mathbb{R}$ definiert durch $f_n:=\max(n-n^2|x-\frac{1}{n}|,0)$. Die punktweise gebildete Grenzfunktion ist $\lim_{n\to\infty} f_n(x)=0$. Denn f(0)=0 für alle $n\geq 2$, und für jedes $x_0\in [0,1]$ gilt für $N\geq \frac{2}{x_0}$ mit $N\in \mathbb{N}$, daß $f_n(x_0)=0$ für alle $n\geq N$. Allerdings ist $(f_n)_{n\geq 2}$ nicht gleichmäßig konvergent gegen 0, da es für $\epsilon=1$ und für jedes $N\geq 2$ ein $x\in [0,1]$ und ein $n\geq N$ gibt, z.B. $x=\frac{1}{n}$, mit $|f_n(x)-0|>1$. Für die Integrale haben wir

$$\int_0^1 dx \, f_n(x) = \int_0^{\frac{1}{n}} dx \, \left(n + n^2 (x - \frac{1}{n}) \right) + \int_{\frac{1}{n}}^{\frac{2}{n}} dx \, \left(n - n^2 (x - \frac{1}{n}) \right)$$
$$= \left(n^2 \frac{x^2}{2} \right) \Big|_0^{\frac{1}{n}} + \left(2nx - n^2 \frac{x^2}{2} \right) \Big|_{\frac{1}{n}}^{\frac{2}{n}} = 1 ,$$

aber für die Grenzfunktion $\int dx \ 0 = 0$.

Entsprechend Satz 40.1 gilt:

Satz 40.3 Es sei $\sum_{n=0}^{\infty} f_n$ eine Reihe integrierbarer Funktionen $f_n : [a,b] \to \mathbb{C}$, die gleichmäßig gegen $f : [a,b] \to \mathbb{C}$ konvergiert. Dann ist auch f integrierbar, und es gilt

$$\int_{a}^{b} dx \sum_{n=0}^{\infty} f_{n}(x) = \sum_{n=0}^{\infty} \int_{a}^{b} dx f_{n}(x) .$$

Beweis. Man wende Satz 40.1 auf die Folge der Partialsummen $F_k = \sum_{n=0}^k f_n$, welche wieder integrierbare Funktionen sind, an.

Beispiel 40.4 (Wahrscheinlichkeitsintegral) Die Funktion $W(x) := \int_0^x dt \ e^{-\frac{t^2}{2}}$ heißt $Gau\beta$ sches Wahrscheinlichkeitsintegral. Die Exponentialfunktion ist gleichmäßig konvergent in jedem kompakten Intervall $[0,x] \subset \mathbb{R}_+$, so daß Integration und Summe vertauschen:

$$W(x) = \int_0^x dt \sum_{k=0}^\infty \frac{(-1)^k t^{2k}}{2^k k!} = \sum_{k=0}^\infty \frac{(-1)^k}{2^k k!} \int_0^x dt \ t^{2k} = \sum_{k=0}^\infty \frac{(-1)^k x^{2k+1}}{2^k (2k+1)k!} \ .$$

Beispiel 40.5 (Elliptisches Integral) Die Berechnung der Schwingungsdauer T des mathematischen Pendels als Lösung der Differentialgleichung $f''(x) + \omega^2 \sin(f(x)) = 0$ führt auf das elliptische Integral $\frac{T\omega}{4} = \int_0^{\frac{\pi}{2}} dx \frac{1}{\sqrt{1-k^2\sin^2 x}}$ mit Anfangsauslenkung $k = \sin\frac{x_0}{2}$. Unter Verwendung der Binomialreihen aus Beispiel 11.5 erhalten wir

$$\int_0^{\frac{\pi}{2}} dx \frac{1}{\sqrt{1 - k^2 \sin^2 x}} = \int_0^{\frac{\pi}{2}} dx \sum_{n=0}^{\infty} {\binom{-\frac{1}{2}}{n}} (-k^2 \sin^2 x)^n = \sum_{n=0}^{\infty} (-1)^n {\binom{-\frac{1}{2}}{n}} k^{2n} A_{2n}$$

mit den Integralen $A_{2n} = \int_0^{\frac{\pi}{2}} dx \sin^{2n} x$ aus Beispiel 37.2. Damit gilt

$$\frac{T\omega}{4} = \int_0^{\frac{\pi}{2}} dx \frac{1}{\sqrt{1 - k^2 \sin^2 x}} = \frac{\pi}{2} \left(1 + \sum_{n=1}^{\infty} \left(\frac{1 \cdot 3 \cdots (2n-1)}{2 \cdot 4 \cdots (2n)} \right)^2 k^{2n} \right).$$

Wir nutzen nun den Hauptsatz der Differential- und Integralrechnung, um eine zu Satz 26.12 ähnliche Aussage über die Differenzierbarkeit von Funktionsreihen zu erhalten:

Satz 40.6 Es seien $f_n: I \to \mathbb{C}$ mit $I \subset \mathbb{R}$ stetig differenzierbare Funktionen, für die gilt:

- i) Die Folge $(f_n)_{n\in\mathbb{N}}$ konvergiert punktweise auf I.
- ii) Die Folge $(f'_n)_{n\in\mathbb{N}}$ konvergiert gleichmäßig auf I.

Dann ist die Grenzfunktion $f = \lim_{n\to\infty} f_n$ stetig differenzierbar, und es gilt $f'(x) = \lim_{n\to\infty} f'_n(x)$.

Beweis. Die Grenzfunktion der Ableitungen $f^* := \lim_{n \to \infty} f'_n$ ist nach Satz 39.3 stetig auf I. Für festes $a \in I$ gilt $f_n(x) = f_n(a) + \int_a^x dt \ f'_n(t)$ für alle $x \in I$. Nach Satz 40.1 wird im Limes $n \to \infty$ daraus $f(x) = f(a) + \int_a^x dt \ f^*(t)$. Nach dem Hauptsatz der Differential- und Integralrechnung ist f differenzierbar mit

 $f' = f^*$, also sogar stetig differenzierbar.

Auf gleichmäßige Konvergenz der Folge der Ableitungen kann nicht verzichtet werden. Z.B. konvergiert die Folge der Funktionen $f_n = \frac{1}{(n+1)}\sin((n+1)x)$ gleichmäßig gegen 0, aber die Folge der Ableitungen $f'_n = \cos((n+1)x)$ hat überhaupt keine Grenzfunktion.

Beispiel 40.7 Wir berechnen erneut $f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n}$ für |x| < 1. Inerhalb des Konvergenzradius R = 1 konvergiert f absolut, insbesondere auch punktweise. Die Reihe der Ableitungen $\sum_{n=1}^{\infty} x^{n-1}$ ist für |x| < 1 absolut, damit gleichmäßig, konvergent gegen $\frac{1}{1-x}$. Nach Satz 40.6 gilt $f'(x) = \frac{1}{1-x}$, also $f(x) = -\ln|1-x| + c$ für ein $c \in \mathbb{R}$. Die Integrationskonstante ergibt sich für x = 0 zu c = 0, d.h. es gilt $\sum_{n=1}^{\infty} \frac{x^n}{n} = -\ln(1-x)$ für alle $x \in]-1,1[$.

Beispiel 40.8 Für alle $x \in [0, 2\pi]$ gilt $\sum_{k=1}^{\infty} \frac{\cos(kx)}{k^2} = \left(\frac{\pi - x}{2}\right)^2 - \frac{\pi^2}{12}$, insbesondere $\zeta(2) = \sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$.

Beweis. Die Reihe $f(x) = \sum_{k=1}^{\infty} \frac{\cos(kx)}{k^2}$ ist absolut konvergent auf \mathbb{R} , damit auch

gleichmäßig konvergent. Die Reihe der Ableitungen $f'(x) = -\sum_{k=1}^{\infty} \frac{\sin(kx)}{k}$ ist nach Beispiel 39.8 gleichmäßig konvergent auf $[\delta, 2\pi - \delta]$ gegen die Grenzfunktion $\frac{x-\pi}{2}$. Somit gilt für alle $x \in]0, 2\pi[$ nach Satz 40.6 die Beziehung $f(x) = \frac{(x-\pi)^2}{4} + c$ für ein $c \in \mathbb{R}$. Da f als gleichmäßig konvergente Reihe stetig ist, gilt diese Beziehung sogar für $x \in [0, 2\pi]$. Integration liefert

$$\int_0^{2\pi} dx \ f(x) = \left(\frac{(x-\pi)^3}{12} + cx\right)\Big|_0^{2\pi} = \frac{\pi^3}{6} + 2\pi c \ .$$

Andererseits gilt nach Satz 40.1

$$\int_0^{2\pi} dx \ f(x) = \sum_{k=1}^{\infty} \frac{1}{k^2} \int_0^{2\pi} dx \ \cos(kx) = \sum_{k=1}^{\infty} \frac{1}{k^3} \sin(kx) \Big|_0^{2\pi} = 0 \ .$$

Somit gilt $c = -\frac{\pi^2}{12}$.

41 Die Γ -Funktion

Satz 41.1 Das uneigentliche Integral $\Gamma(x) := \int_0^\infty dt \ t^{x-1} e^{-t}$ ist konvergent für alle $x \in \mathbb{R}_+^*$. Es gilt

i)
$$\Gamma(x+1) = x\Gamma(x)$$
 für alle $x \in \mathbb{R}_+^*$

ii)
$$\Gamma(1) = 1 \implies \Gamma(n) = (n-1)!$$
 für alle $n \in \mathbb{N} \setminus \{0\}$

Beweis. Kritisch sind beide Integrationsgrenzen. Wegen $\lim_{t\to\infty}t^{x+1}e^{-t}=0$ gibt es für jedes $x\in\mathbb{R}_+^*$ ein $t_0\in\mathbb{R}_+^*$, so daß $t^{x-1}e^{-t}\leq\frac{1}{t^2}$ für alle $t\geq t_0$. Zerschneiden des Integrals bei t_0 liefert für $0<\epsilon< t_0$

$$0 \le \int_{\epsilon}^{t_0} dt \ t^{x-1} e^{-t} \le \int_{\epsilon}^{t_0} dt \ t^{x-1} = \frac{t_0^x - \epsilon^x}{x} \le \frac{t_0^x}{x} ,$$

d.h. $\lim_{\epsilon \searrow 0} \int_{\epsilon}^{t_0} dt \ t^{x-1} e^{-t}$ existiert für alle $x \in \mathbb{R}_+^*$. Für $t_0 < R < \infty$ gilt

$$0 \le \int_{t_0}^R dt \ t^{x-1} e^{-t} \le \int_{t_0}^R dt \ \frac{1}{t^2} = -\frac{1}{t} \Big|_{t_0}^R \le \frac{1}{t_0} \ .$$

Somit ist $\Gamma(x)$ konvergent.

i) partielle Integration liefert für x > 0

$$\int_{\epsilon}^{R} dt \; t^{x} \, e^{-t} = -t^{x} \, e^{-t} \Big|_{\epsilon}^{R} + \int_{\epsilon}^{R} dt \; \frac{d}{dt}(t^{x}) \, e^{-t} = -R^{x} \, e^{-R} + \epsilon^{x} \, e^{-\epsilon} + x \int_{\epsilon}^{R} dt \; t^{x-1} \, e^{-t} \; .$$

Die Behauptung folgt aus $\lim_{\epsilon \to 0} \epsilon^x = 0$ für x > 0.

ii) Es gilt

$$\Gamma(1) = \lim_{\epsilon \searrow 0} \int_{\epsilon}^{1} dt \ e^{-t} + \lim_{R \to \infty} \int_{1}^{R} dt \ e^{-t} = -\lim_{\epsilon \searrow 0} e^{-t} \Big|_{\epsilon}^{1} - \lim_{R \to \infty} e^{-t} \Big|_{1}^{R} = \lim_{\epsilon \searrow 0} e^{-\epsilon} = 1.$$

Die Funktion $\Gamma: \mathbb{R}_+ \to \mathbb{R}$ interpoliert damit die Fakultät. Eine andere Interpolation wird wie folgt erhalten: Für $x \in \mathbb{N}^\times$ und beliebige $n \in \mathbb{N}^\times$ gilt

$$(x-1)! = \frac{(x+n)!}{x(x+1)\cdots(x+n)} = \frac{n!n^x}{x(x+1)\cdots(x+n)} \cdot \left(\frac{n+1}{n}\cdots\frac{n+x}{n}\right).$$

Das bleibt auch im Limes $n \to \infty$ richtig. Im Limes werden die Brüche $\frac{n+p}{n}$ zu 1. Läßt man sie weg, dann kann man die so entstehende rechte Seite sogar für komplexe Zahlen $x \in \mathbb{C}$ definieren (mit $n^x = e^{x \ln n}$). Zweckmäßigerweise betrachtet man das Inverse:

$$G_n(z) := \frac{z(z+1)\cdots(z+n)}{n!n^z}$$
.

Satz 41.2 Die Folge $(G_n)_{n\geq 1}$ konvergiert an jeder Stelle $z\in\mathbb{C}$. Ihre Grenzfunktion $G: \mathbb{C} \to \mathbb{C}$ mit $G(z) := \lim_{n \to \infty} G_n(z)$ ist stetig und hat Nullstellen genau in den Punkten $0, -1, -2, \dots$ Es gilt

i)
$$G(z+1) = \frac{1}{z}G(z)$$
 für alle $z \in \mathbb{C}^*$

ii)
$$G(1) = 1$$
 \Rightarrow $G(n) = \frac{1}{(n-1)!}$ für alle $n \in \mathbb{N}^{\times}$

Beweis. Für $z \in \{0, -1, -2, \dots\}$ konvergiert (G_n) gegen 0. Sei also $z \in \mathbb{C} \setminus$ $\{0,-1,\dots,\}$ fest. Wähle $R,N\in\mathbb{N}$ mit $N\geq 2R>2|z|.$ Dann ist $G_n(z)\neq 0$ für

alle
$$2R \le n \le N$$
, und es gilt $G_N(z) = G_{2R-1}(z) \cdot \prod_{n=2R}^N \frac{G_n(z)}{G_{n-1}(z)}$. Die Quotienten

$$\operatorname{sind} \frac{G_n(z)}{G_{n-1}(z)} = \frac{z+n}{n} \cdot \left(\frac{n-1}{n}\right)^z = \left(1+\frac{z}{n}\right) e^{z\ln(1-\frac{1}{n})}. \text{ Nach Satz 23.2 gilt } (1+\frac{z}{n}) = e^{L(\frac{z}{n})} \text{ für } |z| < n \text{ und damit}$$

$$G_N(z) = G_{2R-1}(z) \cdot \exp\left(\sum_{n=2R}^N \left(\sum_{k=1}^\infty (-1)^{k-1} \frac{z^k}{n^k k} - z \sum_{k=1}^\infty \frac{1}{n^k k}\right)\right).$$

Die Summanden mit k=1 heben sich gegeneinander auf, und wir erhalten für $n \ge 2R > 2|z|$ die Abschätzung

$$\Big| \sum_{k=2}^{\infty} (-1)^{k-1} \frac{z^k}{n^k k} - z \sum_{k=2}^{\infty} \frac{1}{n^k k} \Big| \le \sum_{k=2}^{\infty} \frac{R^k}{n^k} + R \sum_{k=2}^{\infty} \frac{1}{n^k} \le \left(\frac{R^2}{n^2} + \frac{R}{n^2} \right) \sum_{k=0}^{\infty} \frac{1}{2^k} \le \frac{4R^2}{n^2} .$$

Somit ist die Reihe $\sum_{n=0}^{\infty} \ln \frac{G_n(z)}{G_{n-1}(z)}$ gleichmäßig konvergent auf $K_R(0) = \{z \in \mathbb{R} \mid x \in \mathbb{R} \}$

 $\mathbb{C}: |z| < R$, so daß die Grenzfunktion $\lim_{N\to\infty} G_N(z)$ existiert und stetig in jedem Punkt $z \in \mathbb{C}$ ist.

- i) folgt aus $G_n(z+1)=\frac{z+n+1}{nz}G_n(z)$ und Grenzwertbildung. ii) folgt aus $G_n(1)=\frac{n+1}{n}$ und Grenzwertbildung.

Man definiert die Gamma-Funktion $\Gamma: \mathbb{C} \setminus \{0, -1, -2, \dots\} \to \mathbb{C}$ als $\Gamma(z) :=$ $\frac{1}{G(z)}$. Nach Satz 41.2 ist Γ stetig und nullstellenfrei auf dem Definitionsbereich, es gilt $\Gamma(z+1) = z\Gamma(z)$ sowie $\Gamma(n) = (n-1)!$ für $n \in \mathbb{N}^{\times}$. Zu zeigen ist allerdings, daß auf \mathbb{R}_+^* die Integraldefinition aus Satz 41.1 mit $\frac{1}{G(z)}$ übereinstimmt. Dazu benötigt man:

Satz 41.3 (Bohr-Mollerup) Eine Funktion $F: \mathbb{R}_+ \to \mathbb{R}_+$ stimmt mit der Einschänkung der Γ -Funktion auf \mathbb{R}_+ überein, falls gilt

- i) F(1) = 1
- ii) F(x+1) = xF(x)
- iii) $F(\lambda x + (1-\lambda)y) \leq (F(x))^{\lambda} (F(y))^{1-\lambda} \text{ für alle } x, y \in \mathbb{R}_+ \text{ und alle } \lambda \in]0,1[.$

Beweis. Wegen der Rekursionsformel i
i) genügt der Beweis für 0 < x < 1. Nach iii) gilt für
 $n \in \mathbb{N}^\times$

$$F(n+x) = F(x(n+1) + (1-x)n) \le (F(n+1))^x (F(n))^{1-x}$$

= $(n!)^x ((n-1)!)^{1-x} = n!n^{x-1}$.

Andererseits ist

$$n! = F(n+1) = F(x(n+x) + (1-x)(n+x+1)) \le (F(n+x))^x (F(n+x+1))^{1-x}$$
$$= (n+x)^{1-x} F(n+x) ,$$

somit $n!(n+x)^{x-1} \le F(x+n) \le n!x^{n-1}$. Division durch $x(x+1)\cdots(x+n)$ und Multiplikation mit (x+n) liefert

$$\frac{n!n^x}{x(x+1)\cdots(x+n)} \left(\frac{n+x}{n}\right)^x \le \frac{F(n+x)}{x(x+1)\cdots(x+n-1)}$$
$$\le \frac{n!n^x}{x(x+1)\cdots(x+n)} \frac{n+x}{n} .$$

Für $n \to \infty$ entsteht $\Gamma(x) \le F(x) \le \Gamma(x)$.

Wir überprüfen iii) für die Integraldarstellung $F(x)=\int_0^\infty dt\ t^{x-1}e^{-t}$. Nach der Hölderschen Ungleichung mit $p=\frac{1}{\lambda}$ und $q=\frac{1}{1-\lambda}$ sowie $f(t)=t^{\frac{x-1}{p}}e^{-\frac{t}{p}}$ und $g(t)=t^{\frac{y-1}{q}}e^{-\frac{t}{q}}$ gilt

$$\int_{\epsilon}^{R} dt \ t^{\lambda x + (1-\lambda)y - 1} e^{-t} = \int_{\epsilon}^{R} dt \ t^{\frac{x-1}{p} + \frac{y-1}{q}} e^{-\frac{t}{p} - \frac{t}{q}} \\
\leq \left(\int_{\epsilon}^{R} dt \ t^{x-1} e^{-t} \right)^{\frac{1}{p}} \left(\int_{\epsilon}^{R} dt \ t^{y-1} e^{-t} \right)^{\frac{1}{q}}.$$

Im Limes $\epsilon \to 0$ und $R \to \infty$ folgt die Behauptung.

Satz 41.4 Es gilt
$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$
 sowie $\int_0^\infty dx \ e^{-x^2} = \frac{\sqrt{\pi}}{2}$ und $\int_{-\infty}^\infty dx \ e^{-x^2} = \sqrt{\pi}$.

Beweis. Für $x \in \mathbb{R} \setminus \mathbb{N}$ gilt

$$\Gamma(x)\Gamma(1-x) = (-x)\Gamma(x)\Gamma(-x) = (-x)\left(\lim_{n \to \infty} \frac{1}{G_n(x)}\right)\left(\lim_{n \to \infty} \frac{1}{G_n(-x)}\right)$$

$$= (-x)\lim_{n \to \infty} \frac{1}{G_n(x)G_n(-x)}$$

$$= (-x)\lim_{n \to \infty} \frac{(n!)^2}{(0+x)(0-x)(1+x)(1-x)\cdots(n+x)(n-x)}$$

$$= \frac{1}{x}\lim_{n \to \infty} \prod_{k=1}^{n} \frac{k^2}{k^2 - x^2}.$$

Mit dem Wallisschen Produkt $\prod_{k=1}^n \frac{4k^2}{4k^2-1} = \frac{\pi}{2}$ aus Beispiel 37.2 gilt für $x=\frac{1}{2}$ die Gleichung $\Gamma(\frac{1}{2})^2 = \pi$, also $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.

Nach Substitution $t(x) = x^2$ mit $t' = 2x = 2\sqrt{t}$ erhält man

$$\int_{\epsilon}^{R} dx \ e^{-x^{2}} = \int_{\epsilon}^{R} dx \ e^{-t(x)} t'(x) \frac{1}{2\sqrt{t}} = \frac{1}{2} \int_{\epsilon^{2}}^{R^{2}} dt \ t^{\frac{1}{2}-1} e^{-t} \ .$$

Für $\epsilon \setminus 0$ und $R \to \infty$ folgt die Behauptung.

Es läßt sich zeigen, daß $\prod_{k=1}^{\infty} \frac{k^2}{k^2 - x^2} = \frac{\pi x}{\sin \pi x}$ für $x \notin \mathbb{Z}^{\times}$. Somit gilt allgemein $\Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin \pi x}$ für $x \notin \mathbb{Z}$.

Satz 41.5 (Stirlingsche Formel) Für $n \in \mathbb{N}^{\times}$ gilt $n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\mu(n)}$ mit $0 \le \mu(n) \le \frac{1}{12n}$. (Wir zeigen nur $0 \le \mu(n) \le \frac{1}{8n}$.)

Beweis. Nach Trapezregel (Satz 37.5) für $f(x) = \ln x$ und $(\ln x)'' = -\frac{1}{x^2}$ gilt

$$\int_{k}^{k+1} dx \ln x = \frac{1}{2} (\ln k + \ln(k+1)) + \frac{1}{2} \int_{k}^{k+1} dx \, \frac{(x-k)(k+1-x)}{x^2}$$

für k > 0. Summieren über k von 1 bis n - 1 ergibt

$$\int_{1}^{n} dx \ln x = \sum_{k=1}^{n} \ln k - \frac{1}{2} \ln n + \int_{1}^{n} dx \, \frac{\phi(x)}{x^{2}}$$

mit $\phi: \mathbb{R}_+ \to \mathbb{R}_+$ gegeben durch $\phi(x) := \frac{1}{2}(x - [x])(1 + [x] - x)$, wobei $[x] \in \mathbb{N}$ der ganze Teil von $x \in \mathbb{R}_+$ ist. Wegen

$$\int_{1}^{n} dx \ln x \cdot 1 = x \ln x \Big|_{1}^{n} - \int_{1}^{n} dx \, 1 = n \ln n - n + 1 = 1 + \ln \left(\frac{n}{e}\right)^{n}$$

sowie $\sum_{k=1}^{n} \ln k = \ln(n!)$ gilt $\ln(n!) = \ln\left(\left(\frac{n}{e}\right)^{n} \sqrt{n} \cdot c_{n}\right)$ mit

$$c_n := \exp\left(1 - \int_1^n dx \, \frac{\phi(x)}{x^2}\right).$$

Da $0 \le \phi \le \frac{1}{8}$ eine beschränkte Funktion ist und das Integral $\int_{1}^{\infty} dx \ x^{-2}$ konvergent ist, existiert der Limes $c := \lim_{n \to \infty} c_n = \exp\left(1 - \int_{1}^{\infty} dx \ \frac{\phi(x)}{x^2}\right) = \lim_{n \to \infty} \frac{c_n^2}{c_{2n}}$. Für den letzten Bruch ergibt sich

$$\frac{c_n^2}{c_{2n}} = \frac{(n!)^2 (2n/e)^{2n} \sqrt{2n}}{(2n)! (n/e)^{2n} n} = \sqrt{\frac{2}{n}} \frac{(n!)^2 4^n}{(2n)!} = \sqrt{\frac{2}{n}} \frac{2 \cdot 4 \cdot \cdot \cdot (2n)}{1 \cdot 3 \cdot \cdot \cdot \cdot (2n-1)}$$

$$= \sqrt{\frac{2(2n+1)}{n}} \sqrt{\frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot \cdot \cdot (2n) \cdot (2n)}{(2-1)(2+1) \cdot (4-1)(4+1) \cdot \cdot \cdot (2n-1)(2n+1)}}.$$

Im Limes $n\to\infty$ entsteht unter der letzten Wurzel das Wallissche Produkt (Beispiel 37.2) für $\frac{\pi}{2}$, d.h. es gilt $\lim_{n\to\infty}\frac{c_n^2}{c_{2n}}=\sqrt{2\pi}$. Somit ist die Behauptung bewiesen mit

$$\mu(n) := \int_{n}^{\infty} dx \, \frac{\phi(x)}{x^2} \, .$$

Wegen $0 \le \phi \le \frac{1}{8}$ gilt $0 \le \mu(n) \le \frac{1}{8n}$, was sich unter Verwendung der Konvexität noch etwas verbessern läßt.

Bemerkung: Man kann zeigen, daß die Stirlingsche Formel auch richtig bleibt für die Γ -Funktion, d.h. für x>0 gilt $\Gamma(x+1)=\sqrt{2\pi x}\Big(\frac{x}{e}\Big)^x e^{\mu(x)}$ mit $0\leq \mu(x)\leq \frac{1}{12x}$.

Teil VII

Lineare Abbildungen

42 Definition und Beispiele

Definition 42.1 Seien V,W Vektorräume über K. Eine Abbildung $F:V\to W$ heißt *linear* (genauer: K-linear) oder *Homomorphismus* von Vektorräumen (über K), wenn

- (L) $F(\lambda_1 \cdot v_1 + \lambda_2 \cdot v_2) = \lambda_1 \cdot F(v_1) + \lambda_2 \cdot F(v_2)$ für alle $v_1, v_2 \in V$ und $\lambda_1, \lambda_2 \in K$. Eine lineare Abbildung $F: V \to W$ heißt
 - Isomorphismus, wenn F bijektiv ist,
 - Endomorphismus, wenn W = V ist,
 - Automorphismus, wenn F bijektiv und W = V ist.

Beispiel 42.2

- i) Skalentransformationen (Dilatationen). Sei V ein reeller Vektorraum und c>0, dann definiert $F_c:v\mapsto c\cdot v$ einen Automorphismus von V (eine lineare Abbildung $F_c:V\to V$, die bijektiv ist mit $F_c^{-1}=F_{\frac{1}{c}}:v\mapsto \frac{1}{c}\cdot v$).
- ii) Drehungen in der Ebene. Sei $V=\mathbb{R}^2$ und F_α die Drehung um den Nullpunkt mit dem Winkel $\alpha,$

$$F_{\alpha}: \left(\begin{array}{c} x \\ y \end{array}\right) \mapsto F_{\alpha} \left(\begin{array}{c} x \\ y \end{array}\right) := \left(\begin{array}{c} x \cos \alpha - y \sin \alpha \\ x \sin \alpha + y \cos \alpha \end{array}\right) .$$

F ist ebenfalls ein Automorphismus mit $F_{\alpha}^{-1} = F_{-\alpha}$.

iii) Matrizen. Sei $V = W = \mathbb{R}^2$ und

$$F_a: \left(\begin{array}{c} x\\ y \end{array}\right) \mapsto \left(\begin{array}{c} a_{11}x_1 + a_{12}x_2\\ a_{21}x_1 + a_{22}x_2 \end{array}\right) .$$

Dann ist $F_a:\mathbb{R}^2\to\mathbb{R}^2$ eine lineare Abbildung, welche durch die Matrix $a=\begin{pmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{pmatrix}\in M(2\times 2,\mathbb{R})$ parametrisiert wird. Die beiden

Beispiele i) und ii) sind Spezialfälle mit
$$a=\begin{pmatrix}c&0\\0&c\end{pmatrix}$$
 (für $V=\mathbb{R}^2$)

und $a = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$. Für allgemeines a ist F ein Endomorphismus. Es wird wichtig sein zu untersuchen, wann F bijektiv ist, also ein Automorphismus ist.

iv) Projektionen der Ebene auf eine Gerade durch den Nullpunkt. Sei $V = \mathbb{R}^2$ und (v_1, v_2) eine Basis, z.B. $v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ und $v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Dann definiert die eindeutige Zerlegung von v nach der Basis $v = \lambda_1 \cdot v_1 + \lambda_2 \cdot v_2$ zwei Projektionen

$$F_1: \lambda_1 \cdot v_1 + \lambda_2 \cdot v_2 \mapsto \lambda_1 \cdot v_1 ,$$

$$F_2: \lambda_1 \cdot v_1 + \lambda_2 \cdot v_2 \mapsto \lambda_2 \cdot v_2 .$$

Diese Projektionen F_1, F_2 sind lineare Abbildungen.

- v) In Analogie zu Beispiel iii) definieren wir $F_a: \mathbb{R}^2 \to \mathbb{R}^1$ durch $F_a: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto a_{11}x_1 + a_{12}x_2$. Dann ist F_a eine lineare Abbildung, die durch die Matrix $a = \begin{pmatrix} a_{11} & a_{12} \end{pmatrix} \in M(1 \times 2, \mathbb{R})$ parametrisiert wird. Beispiel iv) für $v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ und $v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ ist ein Spezialfall mit $F_1 \Leftrightarrow a = (1 \ 0)$ und $F_2 \Leftrightarrow a = (0 \ 1)$.
- vi) Projektionen auf einen Untervektorraum. In Verallgemeinerung von Beispiel iv) sei V ein n-dimensionaler Vektorraum, $W \subset V$ ein Untervektorraum und $V = W \oplus W'$. Dann ist die Projektion $F_W : V \to W$ eine lineare Abbildung, die wie folgt erhalten wird. Man nehme eine Basis (w_1, \ldots, w_r) von W und eine Basis (w'_{r+1}, \ldots, w'_n) von W' (also n-r Vektoren von V, so daß $(w_1, \ldots, w_r, w'_{r+1}, \ldots, w'_n)$ eine Basis von V ist) und zerlege $v \in V$ nach dieser Basis, $v = \sum_{i=1}^r \lambda_i \cdot v_i + \sum_{j=r+1}^n \mu_j \cdot w'_j$. Dann ist $F_W : v \mapsto \sum_{i=1}^r \lambda_i \cdot v_i$. Diese Abbildung F_W ist unabhängig vom direkten Summanden W' (welcher nicht eindeutig war) und unabhängig von der Basis von W.
- vii) Differentiation. Für ein offenes Intervall $I =]a, b[\subset \mathbb{R} \text{ seien } V = \mathcal{C}^1(I)$ und $W = \mathcal{C}(I)$ die (unendlich-dimensionalen) Vektorräume der einmal stetig differenzierbaren bzw. der stetigen reellwertigen Funktionen auf I, mit $(\lambda_1 \cdot f_1 + \lambda_2 \cdot f_2)(x) := \lambda_1 \cdot f_1(x) + \lambda_2 \cdot f_2(x)$ für $x \in]a, b[$. Dann ist das Differential $D: V \to W$ mit $D: f \mapsto f'$ eine lineare Abbildung. Ist $V = \mathcal{C}^{\infty}(I)$ der Vektorraum der beliebig oft differenzierbaren Funktionen über I, dann ist das Differential $D: V \to V$ ein Endomorphismus.
- viii) Integration. Für ein abgeschlossenes Intervall $I = [a, b] \subset \mathbb{R}$ definiert das Integral $\int : f \mapsto \int_a^b f(x) dx$ eine lineare Abbildung $\int : \mathcal{C}(I) \to \mathbb{R}$.

Diese sehr unterschiedlichen Beispiele zeigen, daß lineare Abbildungen häufig auftreten. Kenntnisse der allgemeinen Eigenschaften von linearen Abbildungen und von Methoden zu ihrer Untersuchung sind deshalb sehr wichtig.

43 Bild und Kern einer linearen Abbildung

Satz 43.1 Sei $F: V \to W$ eine lineare Abbildung. Dann gilt

- i) F(0) = 0, F(v w) = F(v) F(w), $F(\lambda_1 \cdot v_1 + \dots + \lambda_n \cdot v_n) = \lambda_1 \cdot F(v_1) + \dots + \lambda_n \cdot F(v_n)$.
- ii) Ist die Familie $(v_i)_{i\in I}$ linear abhängig in V, so ist die Familie $(F(v_i))_{i\in I}$ linear abhängig in W.
- iii) Sind $V' \subset V$ und $W' \subset W$ Untervektorräume, so ist das Bild $F(V') \subset W$ Untervektorraum von W und das Urbild $F^{-1}(W') \subset V$ Untervektorraum von V.
- iv) $\dim(F(V)) \leq \dim(V)$.
- v) Ist F ein Isomorphismus, so ist auch das Urbild $F^{-1}: W \to V$ eine lineare Abbildung (und damit ein Isomorphismus).

Beweis. i) ist klar.

- ii) Sei $0 = \sum_{i \in I} \lambda_i \cdot v_i$, wobei mindestens einer und insgesamt endlich viele Skalare λ_i ungleich 0 sind. Dann ist auch $0 = F(0) = \sum_{i \in I} \lambda_i \cdot F(v_i)$.
- iii) $0 \in V'$ und $0 = F(0) \in F(V')$, also $F(V') \neq \emptyset$. Sind $w_1, w_2 \in F(V')$, dann gibt es v_1, v_2 mit $w_1 = F(v_1)$ und $w_2 = F(v_2)$. Also $\lambda_1 \cdot w_1 + \lambda_2 \cdot w_2 = \lambda_1 \cdot F(v_1) + \lambda_2 \cdot F(v_2) = F(\lambda_1 \cdot v_1 + \lambda_2 \cdot v_2) \in F(V')$, und F(V') ist Untervektorraum. Sind $v_1, v_2 \in F^{-1}(W')$, so ist $F(v_1), F(v_2) \in W'$ und auch $\lambda_1 \cdot F(v_1) + \lambda_2 \cdot F(v_2) \in W'$, da W' Untervektorraum. Also ist $F(\lambda_1 \cdot v_1 + \lambda_2 \cdot v_2) = \lambda_1 \cdot F(v_1) + \lambda_2 \cdot F(v_2) \in W'$ und damit $\lambda_1 \cdot v_1 + \lambda_2 \cdot v_2 \in F^{-1}(W')$, und $F^{-1}(W')$ ist Untervektorraum.
- iv) Sind $F(v_1), \ldots, F(v_n)$ linear unabhängig, so sind auch v_1, \ldots, v_n linear unabhängig, denn das Gegenteil führt wegen ii) zu einem Widerspruch.
- v) Seien $w_1, w_2 \in W$ und $v_1, v_2 \in V$ mit $F(v_1) = w_1$ und $F(v_2) = w_2$. Dann ist $F(\lambda_1 \cdot v_1 + \lambda_2 \cdot v_2) = \lambda_1 \cdot w_1 + \lambda_2 \cdot w_2$. Anwenden von F^{-1} liefert $F^{-1}(\lambda_1 \cdot w_1 + \lambda_2 \cdot w_2) = \lambda_1 \cdot F^{-1}(w_1) + \lambda_2 \cdot F^{-1}(w_2)$.

Seien V, W Vektorräume über K, dann bezeichnen wir mit

$$\operatorname{Hom}_K(V, W) := \{F : V \to W : F \text{ ist } K\text{-linear}\}$$

die Menge aller K-linearen Abbildungen (aller Homomorphismen) von V nach W. Die Menge $\operatorname{Hom}_K(V,W)$ ist ein Vektorraum mit Verknüpfungen

$$(\lambda_1 \cdot F_1 + \lambda_2 \cdot F_2)(v) := \lambda_1 \cdot F_1(v) + \lambda_2 \cdot F_2(v) .$$

Insbesondere ist der Nullvektor die lineare Abbildung $0: v \mapsto 0$ für alle $v \in V$, und die negative Abbildung ist $-F: v \mapsto -F(v)$. Ist der Körper klar, dann schreiben wir $\operatorname{Hom}(V, W)$ statt $\operatorname{Hom}_K(V, W)$.

Ist V=W, so schreiben wir $\mathrm{End}(V):=\mathrm{Hom}(V,V),$ und $\mathrm{End}(V)$ ist wieder ein Vektorraum. Entsprechend bezeichnet

$$\operatorname{Aut}_K(V) := \{F : V \to V : F \text{ ist } K\text{-linear und bijektiv}\}$$

die Menge der bijektiven linearen Abbildungen von V nach V. Jedoch ist $\operatorname{Aut}(V)$ kein Vektorraum, denn für $F \in \operatorname{Aut}(V)$ ist $0 \cdot F = 0 \notin \operatorname{Aut}(V)$.

Lineare Abbildungen lassen sich ganz analog wie allgemeine Abbildungen hintereinander ausführen.

Satz 43.2 Sind U, V, W Vektorräume und $G: U \to V$ sowie $F: V \to W$ lineare Abbildung, dann ist auch die Komposition $F \circ G: U \to W$ eine lineare Abbildung. Beweis.

$$(F \circ G)(\lambda_1 \cdot u_1 + \lambda_2 \cdot u_2) := F(G(\lambda_1 \cdot u_1 + \lambda_2 \cdot u_2))$$

$$= F(\lambda_1 \cdot G(u_1) + \lambda_2 \cdot G(u_2))$$

$$= \lambda_1 \cdot F(G(u_1)) + \lambda_2 \cdot F(G(u_2))$$

$$= \lambda_1 \cdot (F \circ G)(u_1) + \lambda_2 \cdot (F \circ G)(u_2) . \square$$

Ohne Beweis erwähnen wir:

Satz 43.3 Ist V ein Vektorraum, so ist Aut(V) eine Gruppe mit der Komposition als Verknüpfung.

Definition 43.4 Ist $F: V \to W$ eine lineare Abbildung, so heißt

- $\operatorname{im}(F) := F(V) \subset W$ das *Bild* von F,
- $\ker(F) := F^{-1}(0) \subset V \text{ der } \mathit{Kern} \text{ von } F.$

Satz 43.5 Sei $F: V \rightarrow W$ linear. Dann gilt:

- i) $\operatorname{im}(F) \subset W$ und $\ker(F) \subset V$ sind Untervektorräume.
- ii) F surjektiv \Leftrightarrow im(F) = W
- iii) F injektiv $\Leftrightarrow \ker(F) = \{0\}$
- iv) Ist F injektiv und sind v_1, \ldots, v_n linear unabhängig, so sind auch $F(v_1), \ldots, F(v_n)$ linear unabhängig.

Beweis. i) ist in Satz 43.1.iii) bewiesen und ii) ist die Definition der Surjektivität.

- iii) $0 \in \ker(F)$. Ist F injektiv, so folgt aus F(v) = 0 = F(0), daß v = 0. Gibt es umgekehrt $v_1 \neq v_2 \in V$ mit $F(v_1) = F(v_2)$, so wäre $F(v_1 v_2) = 0$, also $0 \neq v_1 v_2 \in \ker(F)$. Widerspruch
- iv) Sei $\lambda_1 \cdot F(v_1) + \cdots + \lambda_n \cdot F(v_n) = 0$, dann gilt $0 = F(\lambda_1 \cdot v_1 + \cdots + \lambda_n \cdot v_n)$ nach Linearität und $\lambda_1 \cdot v_1 + \cdots + \lambda_n \cdot v_n = 0$ nach iii). Also ist $\lambda_i = 0$.

Definition 43.6 Ist $F: V \to W$ linear, so heißt die Zahl $\operatorname{rang}(F) := \dim(\operatorname{im}(F))$ der *Rang* der Abbildung F.

Der Rang ist eine wichtige Charakterisierung einer linearen Abbildung.

Satz 43.7 Ist V ein endlich-dimensionaler Vektorraum und $F:V\to W$ eine lineare Abbildung, so gilt

$$\dim(V) = \dim(\operatorname{im}(F)) + \dim(\ker(F)).$$

Beweis. Wir wissen $\dim(\operatorname{im}(F)) \leq \dim(V)$ nach Satz 43.1.iv) und $\dim(\ker(F)) \leq \dim(V)$ nach Satz 43.5.i). Seien also (v_1, \ldots, v_k) eine Basis von $\ker(F)$ und (w_1, \ldots, w_r) eine Basis von $\operatorname{im}(F)$. Wir wählen $u_1, \ldots, u_r \in V$ mit $F(u_i) = w_i$ für alle $1 \leq i \leq r$. Für $v \in V$ gibt es eine eindeutige Darstellung $F(v) = \lambda_1 \cdot w_1 + \cdots + \lambda_r \cdot w_r$. Für die so bestimmten λ_i konstruieren wir $v' := \lambda_1 \cdot u_1 + \cdots + \lambda_r \cdot u_r$. Dann gilt F(v - v') = 0, also $v - v' \in \ker(F)$. Es existieren also eindeutig bestimmte μ_1, \ldots, μ_k mit $v - v' = \mu_1 \cdot v_1 + \cdots + \mu_k \cdot v_k$. Also gilt

$$v = \lambda_1 \cdot u_1 + \dots + \lambda_r \cdot u_r + \mu_1 \cdot v_1 + \dots + \mu_k \cdot v_k .$$

Damit ist V durch die Familie $\mathcal{B} = (u_1, \ldots, u_r, v_1, \ldots, v_k,)$ erzeugt. Zum Beweis der linearen Unabhängigkeit sei $\lambda_1 \cdot u_1 + \cdots + \lambda_r \cdot u_r + \mu_1 \cdot v_1 + \cdots + \mu_k \cdot v_k = 0$. Anwenden von F ergibt $F(\lambda_1 \cdot u_1 + \cdots + \lambda_r \cdot u_r) = \lambda_1 \cdot w_1 + \cdots + \lambda_r \cdot w_r = 0$, und damit $\lambda_i = 0$. Das liefert $\mu_1 \cdot v_1 + \cdots + \mu_k \cdot v_k = 0$ und damit $\mu_j = 0$. Damit ist \mathcal{B} eine Basis von V aus $\dim(\operatorname{im}(F)) + \dim(\ker(F))$ Vektoren.

Satz 43.8 Zwischen endlich-dimensionalen Vektorräumen V, W gibt es genau dann einen Isomorphismus, wenn $\dim(V) = \dim(W)$.

Beweis. F ist Isomorphismus, wenn linear, injektiv und surjektiv. F injektiv heißt $\dim(\ker(F)) = 0$ und F surjektiv heißt $\operatorname{im}(F) = W$. Aus dem vorigen Satz folgt dann die Behauptung.

Satz 43.9 Ist $\dim(V) = \dim(W) < \infty$ und ist F linear, dann sind für F Injektivität, Surjektivität und Bijektivität äquivalent.

Beweis. injektiv \Rightarrow surjektiv: F injektiv, dann $\ker(F) = \{0\}$ und $\dim(V) = \dim(\operatorname{im}(F))$. Also $\dim(\operatorname{im}(F)) = \dim(W)$ und dann $\operatorname{im}(F) = W$.

surjektiv \Rightarrow injektiv: F surjektiv, dann dim(im(F)) = dim(W) = dim(V). Also dim(ker(F)) = 0 und $\text{ker}(F) = \{0\}$, somit F injektiv.

Satz 43.10 (Faktorisierungssatz) Sei $F: V \to W$ linear und $\mathcal{B} = (u_1, \ldots, u_r, v_1, \ldots, v_k)$ eine Basis von V mit $\ker(F) = \operatorname{span}(v_1, \ldots, v_k)$. Mit $U := \operatorname{span}(u_1, \ldots, u_r)$ qilt:

i)
$$V = U \oplus \ker(F)$$

- ii) Die Einschränkung $F|_{U}: U \to \operatorname{im}(F)$ ist ein Isomorphismus.
- iii) $Sei P_U : V = U \oplus \ker(F) \to U$ die Projektion auf den ersten Summanden, definiert für $v = u + v' \in V$ mit $u \in U$ und $v' \in \ker(F)$ durch $P_U(v) := u$, so gilt $F = F|_U \circ P_U$.

Beweis. i) ist klar, denn U und ker(F) sind linear unabhängig.

- ii) $\ker(F|_U) = \ker(F) \cap U = \{0\}$, also ist $F|_U: U \to \operatorname{im}(F)$ injektiv, außerdem surjektiv und damit bijektiv.
- iii) Für v=u+v' mit $u\in U$ und $v'\in\ker F$ ist $F(v)=F(u)+F(v')=F(u)=F\big|_U(u)=F\big|_U(P(v)).$

Zu beachten ist, daß U in der direkten Summe $V = U \oplus \ker(F)$ nicht eindeutig definiert ist. Die $F|_U$ sind also, je nach Wahl von U, verschiedene Isomorphismen.

44 Lineare Abbildungen und Matrizen

Ist $A \in M(m \times n, K)$, so wird durch $F_A(x) := A \cdot x$ für $x \in K^n$ eine lineare Abbildung $F_A : K^n \to K^m$ definiert. Dazu gibt es folgende Umkehrung:

Satz 44.1 Sei $F: K^n \to K^m$ eine lineare Abbildung. Dann existiert genau eine Matrix $A_F \in M(m \times n, K)$ mit $F(x) = A_F \cdot x$ für alle $x \in K^n$. Für diese Matrix A_F gilt $A_F := (F(e_1), \ldots, F(e_n))$, d.h. die j-te Spalte von A_F ist der Vektor $F(e_j) \in K^m$, wobei $e_j \in K^n$ der j-te Standardbasisvektor ist.

Damit definiert die Zuordnung $F\mapsto A_F$ eine bijektive Abbildung $M_m^n: \operatorname{Hom}(K^n,K^m)\to M(m\times n,K).$

Beweis. Sei
$$A=(a_{ij})\in M(m\times n,K)$$
 und $a_j:=\begin{pmatrix}a_{1j}\\ \vdots\\ a_{mj}\end{pmatrix}\in K^m$ die j-te Spalte

von A. Dann gilt für alle $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in K^n$

$$A \cdot x = \begin{pmatrix} x_1 a_{11} + x_2 a_{12} + \dots + x_n a_{1n} \\ \vdots \\ x_1 a_{m1} + x_2 a_{m2} + \dots + x_n a_{mn} \end{pmatrix} = \sum_{j=1}^n x_j a_j.$$

Sei nun $F: K^n \to K^m$ linear und $A_F := (F(e_1), \dots, F(e_n))$, dann gilt $A_F \cdot x = \sum_{j=1}^n x_j F(e_j) = F(\sum_{j=1}^n x_j e_j) = F(x)$. Sei $A' = (a'_1, \dots, a'_n) \in M(m \times n, K)$ mit $A' \neq A$. Dann gibt es ein $r \in M(m \times n, K)$

Sei $A' = (a'_1, \ldots, a'_n) \in M(m \times n, K)$ mit $A' \neq A$. Dann gibt es ein $r \in \{1, \ldots, n\}$, so daß für die r-te Spalte gilt $a'_r \neq a_r$. Für $x = e_r$ gilt dann $A' \cdot x = a'_r \neq a_r = F(x)$. Damit ist A_F durch F eindeutig bestimmt.

Die wichtigen Begriffe von Bild, Kern und Rang einer linearen Abbildung übertragen sich somit auf Matrizen.

Definition 44.2 Für $A \in M(m \times n, K)$ heißt

- i) $\ker(A) = \{x \in K^n : A \cdot x = 0 \in K^m\} \subset K^n \text{ der } Kern \text{ von } A,$
- ii) $\operatorname{im}(A) = \{b \in K^m : \text{ es gibt ein } x \in K^n \text{ mit } A \cdot x = b\} \subset K^m \text{ das } \operatorname{\textit{Bild}} \text{ von } A,$
- iii) rang(A) = dim(im(A)) der Rang von A.

Wir zeigen später, daß die hier gegebene Definition des Rangs einer Matrix mit Definition 13.11 übereinstimmt. Nach i) ist $\ker(A)$ die Lösungsmenge des homogenen LGS $A \cdot x = 0$. Der Faktorisierungssatz liefert dann eine Methode zur Bestimmung von $\operatorname{im}(A)$: Ist (v_1, \ldots, v_{n-r}) eine Basis von $\ker A \subset K^n$, so ergänze man sie zu einer Basis $(v_1, \ldots, v_{n-r}, u_1, \ldots, u_r)$ von K^n . Dann ist $(A \cdot u_1, \ldots, A \cdot u_r)$ eine Basis von $\operatorname{im}(A)$.

Beispiel 44.3 Durch F((w, x, y, z)) = (w + x - y, x + y - z, w + 2x - z) für $w, x, y, z \in \mathbb{R}$ werde eine lineare Abbildung $F : \mathbb{R}^4 \to \mathbb{R}^3$ definiert. Daraus lesen wir ab:

$$F(e_1) = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
, $F(e_2) = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$, $F(e_3) = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $F(e_4) = \begin{pmatrix} 0 \\ -1 \\ -1 \end{pmatrix}$.

Folglich wird F durch die Matrix $A_F = \begin{pmatrix} 1 & 1 & -1 & 0 \\ 0 & 1 & 1 & -1 \\ 1 & 2 & 0 & -1 \end{pmatrix} \in M(3 \times 4, \mathbb{R})$

dargestellt. Zur Berechnung des Kerns als Lösung von $A \cdot x = 0$ führen wir folgende elementare Zeilenumformungen durch:

$$A_F \xrightarrow{IV_{13}(-1),IV_{23}(-1)} \begin{pmatrix} 1 & 1 & -1 & 0 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{IV_{21}(-1)} \begin{pmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Daraus lesen wir als Lösung $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_3 \\ x_4 \end{pmatrix} \text{ ab mit } x_3, x_4 \in \mathbb{R}$

beliebig. Folglich ist dim(ker A) = 2, und eine Basis von ker A ist (v_1, v_2) mit

$$v_1 = \begin{pmatrix} 2 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \qquad v_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 1 \end{pmatrix}.$$

Wir können sie z.B. zur Basis (v_1, v_2, e_1, e_2) von \mathbb{R}^4 ergänzen. Somit ist $(F(e_1), F(e_2)$ eine Basis von im(A).

45 Die darstellende Matrix einer linearen Abbildung

Im folgenden geht es darum, die Äquivalenz zwischen Matrizen und linearen Abbildungen auf beliebige endlich-dimensionale Vektorräume zu verallgemeinern. Der erste Schritt ist

Satz 45.1 Gegeben seien endlich-dimensionale Vektorräume V und W und Vektoren $v_1, \ldots, v_r \in V$ und $w_1, \ldots, w_r \in W$. Dann gilt:

- i) Sind die v_1, \ldots, v_r linear unabhängig, so gibt es mindestens eine lineare Abbildung $F: V \to W$ mit $F(v_i) = w_i$ für alle $1 \le i \le r$.
- ii) Ist $(v_1, ..., v_r)$ eine Basis, so gibt es genau eine lineare Abbildung $F: V \to W$ mit $F(v_i) = w_i$ für alle $1 \le i \le r$. Für diese Abbildung F gilt
 - $\operatorname{im}(F) = \operatorname{span}(w_1, \dots, w_r)$
 - F injektiv \Leftrightarrow (w_1, \ldots, w_r) ist linear unabhängig.

Beweis. ii) Ist $v = \lambda_1 \cdot v_1 + \dots + \lambda_r \cdot v_r \in V$, so definieren wir $F(v) := \lambda_1 \cdot w_1 + \dots + \lambda_r \cdot w_r$. Da die λ_i eindeutig bestimmt sind, ist auch F(v) eindeutig. Zu zeigen ist aber, daß F wirklich linear ist. Sei $v' = \mu_1 \cdot v_1 + \dots + \mu_r \cdot v_r$ ein weiterer Vektor. Dann gilt

$$\lambda \cdot v + \mu \cdot v' = \sum_{i=1}^{r} (\lambda \lambda_i + \mu \mu_i) \cdot v_i \quad \text{und}$$

$$F(\lambda \cdot v + \mu \cdot v') = \sum_{i=1}^{r} (\lambda \lambda_i + \mu \mu_i) \cdot w_i = \lambda \left(\sum_{i=1}^{r} \lambda_i \cdot w_i \right) + \mu \left(\sum_{i=1}^{r} \mu_i \cdot w_i \right)$$

$$= \lambda \cdot F(v) + \mu \cdot F(v').$$

Klar ist, daß im $(F) \subset \text{span}(w_1, \dots, w_r)$. Andererseits ist $w = \lambda_1 \cdot w_1 + \dots + \lambda_r w_r = F(\lambda_1 \cdot v_1 + \dots + \lambda_r \cdot v_r)$ und damit $\text{span}(w_1, \dots, w_r) \subset \text{im}(F)$.

Sei (w_1, \ldots, w_r) linear abhängig, so gibt es mindestens ein $\lambda_i \neq 0$, so daß $0 = \lambda_1 w_1 + \ldots \lambda_r w_r = F(\lambda_1 \cdot v_1 + \cdots + \lambda_r \cdot v_r)$. Da (v_1, \ldots, v_r) eine Basis ist, ist $\lambda_1 \cdot v_1 + \cdots + \lambda_r \cdot v_r \neq 0$, und damit ist F nicht injektiv. Das bedeutet F injektiv $\Rightarrow (w_1, \ldots, w_r)$ linear unabhängig. Ist umgekehrt (w_1, \ldots, w_r) linear unabhängig, dann betrachten wir F(v) = 0 mit $v = \lambda_1 \cdot v_1 + \cdots + \lambda_r \cdot v_r$, also $F(\lambda_1 \cdot v_1 + \cdots + \lambda_r \cdot v_r) = \lambda_1 \cdot w_1 + \cdots + \lambda_r \cdot w_r$, was zu $\lambda_i = 0$ und damit v = 0 führt. Also ist $\ker(F) = \{0\}$ und F ist injektiv.

i) Ist (v_1, \ldots, v_r) linear unabhängig, aber keine Basis, dann können wir eine Basis $(v_1, \ldots, v_r, v_{r+1}, \ldots, v_n)$ von V finden. Für diese geben wir beliebige Vektoren $w_{r+1}, \ldots, w_n \in W$ vor und finden für jede Wahl von w_{r+1}, \ldots, w_n eine lineare Abbildung F mit $F(v_i) = w_i$.

Satz 45.2 Sei $\mathcal{B} = (w_1, \dots, w_n)$ Basis eines Vektorraums W.

- i) Es gibt genau einen Isomorphismus $\Phi_{\mathcal{B}}: K^n \to W$ mit $\Phi_{\mathcal{B}}(e_i) = w_i$ für alle $1 \leq i \leq n$, wobei $(e_i)_{i=1,\dots,n}$ die Standardbasis ist.
- ii) Ist $W = K^n$ und $\mathcal{B} = (w_1, \dots, w_n)$ eine Basis von W, dann gilt $\Phi_{\mathcal{B}}(x) = A_{\mathcal{B}} \cdot x$ mit $A_{\mathcal{B}} = (w_1, \dots, w_n) \in M(n \times n, K)$, für alle $x \in K^n$. (Die Spalten von $A_{\mathcal{B}}$ sind also die nebeneinandergeschriebenen Basisvektoren w_i .)

Beweis. i) folgt aus Satz 45.1 und ii) ist Satz 44.1.

Wir können nun die Verallgemeinerung von Satz 44.1 angeben:

Satz 45.3 Gegeben seien K-Vektorräume V mit Basis $\mathcal{A} = (v_1, \ldots, v_n)$ und W mit Basis $\mathcal{B} = (w_1, \ldots, w_m)$.

- i) Dann gibt es zu jeder linearen Abbildung $F: V \to W$ genau eine Matrix $A = (a_{ij}) \in M(m \times n, K)$, so daß $F(v_j) = \sum_{i=1}^m a_{ij} \cdot w_i$.
- ii) Die so erhaltene Abbildung

$$M_{\mathcal{B}}^{\mathcal{A}}: \operatorname{Hom}(V, W) \to M(m \times n, K), \qquad M_{\mathcal{B}}^{\mathcal{A}}: F \mapsto A = M_{\mathcal{B}}^{\mathcal{A}}(F)$$

ist ein Isomorphismus von Vektorräumen über K, und insbesondere gilt

$$M_{\mathcal{B}}^{\mathcal{A}}(\lambda \cdot F + \mu \cdot G) = \lambda \cdot M_{\mathcal{B}}^{\mathcal{A}}(F) + \mu \cdot M_{\mathcal{B}}^{\mathcal{A}}(G)$$
.

Ist $V = K^n$ und $W = K^m$ und sind \mathcal{A} und \mathcal{B} die Standardbasen, dann ist $M_{\mathcal{B}}^{\mathcal{A}} = M_m^n : \operatorname{Hom}(K^n, K^m) \to M(m \times n, K)$ die Konstruktion aus Satz 44.1.

Definition 45.4 Mit den Bezeichnungen aus Satz 45.3 heißt $A = M_{\mathcal{B}}^{\mathcal{A}}(F)$ die darstellende Matrix von $F: V \to W$ bezüglich der Basen \mathcal{A} von V und \mathcal{B} von W.

Beweis von Satz 45.3. i) Durch Komposition von F mit den Isomorphismen $\Phi_{\mathcal{A}}$ und $\Phi_{\mathcal{B}}$ aus Satz 45.2:

$$A := (\Phi_{\mathcal{B}})^{-1} \circ F \circ \Phi_{\mathcal{A}} : K^n \to K^m , \qquad A \cdot x := (\Phi_{\mathcal{B}})^{-1} (F(\Phi_{\mathcal{A}}(x))) .$$

Umgekehrt ergibt sich F aus A durch $F = \Phi_{\mathcal{B}} \circ A \circ (\Phi_{\mathcal{A}})^{-1} : V \to W$ mit $A \circ x := A \cdot x$. Zunächst ist $(\Phi_{\mathcal{A}})^{-1}(v_i) = e_i \in K^n$. Matrixmultiplikation liefert

$$A \cdot ((\Phi_{\mathcal{A}})^{-1}(v_j)) = \begin{pmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{pmatrix} = \sum_{i=1}^m a_{ij} \cdot e_i \in K^m.$$

Anwenden von $\Phi_{\mathcal{B}}$ liefert $\Phi_{\mathcal{B}}(A \cdot ((\Phi_{\mathcal{A}})^{-1}(v_j))) = \sum_{i=1}^m a_{ij} \cdot w_i \in W$.

ii) Als Komposition linearer Abbildungen ist $M_{\mathcal{B}}^{\mathcal{A}}: \mathrm{Hom}(V,W) \to M(m \times n,K)$ mit

$$A = M_{\mathcal{B}}^{\mathcal{A}}(F) = (\Phi_{\mathcal{B}})^{-1} \circ F \circ \Phi_{\mathcal{A}} : K^n \to K^m .$$

linear. Da \mathcal{A} eine Basis ist, gibt es nach Satz 45.1.ii) genau eine lineare Abbildung F mit $F(v_j) = \widetilde{w_j} := \sum_{i=1}^m a_{ij} \cdot w_i$. Also ist $M_{\mathcal{B}}^{\mathcal{A}}$ bijektiv.

Beispiel 45.5 Wir betrachten die durch F((x, y, z)) = (x - y, 2x + y - z) definierte lineare Abbildung $F : \mathbb{R}^3 \to \mathbb{R}^2$ bezüglich der Basen (v_1, v_2, v_3) von \mathbb{R}^3 und (w_1, w_2) von \mathbb{R}^2 mit

$$v_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $v_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $w_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $w_2 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$.

Damit gilt

$$F(v_1) = F((0,1,1)) = \begin{pmatrix} -1 \\ 0 \end{pmatrix}, F(v_2) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, F(v_3) = \begin{pmatrix} 0 \\ 3 \end{pmatrix}.$$

Diese Vektoren sind nun bezüglich der Basis (w_1, w_2) darzustellen, $w_1a_{1j}+w_2a_{2j}=F(v_j)$. Es handelt sich also um drei lineare Gleichungssysteme aus 2 Gleichungen mit 2 Unbekannten:

$$\begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \end{pmatrix} \qquad \Rightarrow \qquad \begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix} = \begin{pmatrix} -\frac{1}{3} \\ -\frac{1}{3} \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} a_{12} \\ a_{22} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \Rightarrow \qquad \begin{pmatrix} a_{12} \\ a_{22} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} a_{13} \\ a_{23} \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \end{pmatrix} \qquad \Rightarrow \qquad \begin{pmatrix} a_{13} \\ a_{23} \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}.$$

Die darstellende Matrix ist folglich $A = \begin{pmatrix} -\frac{1}{3} & 1 & 2 \\ -\frac{1}{3} & 0 & -1 \end{pmatrix}$.

Sind also die Basen der Vektorräume V und W festgelegt, dann kann man die Vektorräume mit den Standardräumen K^n, K^m der Koordinaten identifizieren und lineare Abbildungen $F: V \to W$ mit Matizen $A \in M(m \times n, K)$. Eine oftmals sinnvolle Wahl besteht aus Basen, in denen für die Koordinatenmatrix die Einheitsmatrix entsteht:

Definition 45.6 Die Matrix

$$E_r = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix} \in M(r \times r, K) ,$$

in der sämtliche Einträge auf der *Diagonalen* gleich 1 und alle anderen Einträge gleich 0 sind, heißt $(r \times r)$ -Einheitsmatrix. Ihre Komponenten sind also $E_r = (\delta_{ij})$, wobei

$$\delta_{ij} = \begin{cases} 1 & \text{für } i = j \\ 0 & \text{für } i \neq j \end{cases}$$

das Kronecker-Symbol ist.

Satz 45.7 Sei $F: V \to W$ linear und dim(V) = n, dim(W) = m, dim $(\operatorname{im}(F)) = \operatorname{rang}(F) = r$. Dann gibt es Basen \mathcal{A} von V und \mathcal{B} von W mit

$$M_{\mathcal{B}}^{\mathcal{A}}(F) = \begin{pmatrix} E_r & 0_{r \times (n-r)} \\ 0_{(m-r) \times r} & 0_{(m-r) \times (n-r)} \end{pmatrix}$$
.

 $\textit{Dabei ist } 0_{p \times q} \in \textit{M}(p \times q, \textit{K}) \textit{ die Matrix, in der sämtliche Einträge gleich 0 sind.}$

Beweis. Wir wählen eine Basis (w_1, \ldots, w_r) von $\operatorname{im}(F)$ und ergänzen sie zu einer Basis $\mathcal{B} = (w_1, \ldots, w_r, w_{r+1}, \ldots, w_m)$ von W. Dann wählen wir wie im Beweis von Satz 43.7 Vektoren $u_1, \ldots u_r \in V$ mit $F(u_i) = w_i$ für alle $1 \leq i \leq r$ und ergänzen sie mit einer Basis (v_1, \ldots, v_k) von $\ker(F)$ zu einer Basis $\mathcal{A} = (u_1, \ldots, u_r, v_1, \ldots, v_k)$ von V. Dann hat $M_{\mathcal{B}}^{\mathcal{B}}(F)$ die angegebene Form. \square

Seien $G:K^r\to K^n$ und $F:K^n\to K^m$ lineare Abbildungen, dargestellt (bezüglich der Standardbasen) nach Satz 44.1 durch Matrizen $B=M_n^r(G)\in M(n\times r,K)$ und $A=M_m^n(F)\in M(m\times n,K)$.

Nach Satz 43.2 ist die Komposition $F \circ G : K^r \to K^m$ wieder eine lineare Abbildung, welche durch eine Matrix $C = M_m^r(F \circ G) \in M(m \times r, K)$ dargestellt wird. Das bedeutet $C = M_m^r \left((M_m^n)^{-1}(A) \circ (M_n^r)^{-1}(B) \right)$, und auf diese Weise wird ein Produkt

$$: M(m \times n, K) \times M(n \times r, K) \to M(m \times r, K) ,$$

$$A \cdot B := M_m^r \left((M_m^n)^{-1} (A) \circ (M_n^r)^{-1} (B) \right)$$

von Matrizen passender Größe definiert. Im Produkt muß die Zahl der Spalten der linken Matrix gleich der Zahl der Zeilen der rechten Matrix sein.

Satz 45.8 Ist
$$A = (a_{ij}) \in M(m \times n, K)$$
, $B = (B_{jk}) \in M(n \times r, K)$ und $A \cdot B = C = (c_{ik}) \in M(r \times s, K)$, so gilt $c_{ik} = \sum_{j=1}^{n} a_{ij}b_{jk}$.

Beweis. Sei $F = (M_n^m)^{-1}(A) : K^n \to K^m$ und $G = (M_r^n)^{-1}(B) : K^r \to K^n$ sowie $F \circ G = (M_r^m)^{-1}(C) : K^r \to K^m$. Seien $(\mathcal{E}_1, \dots, \mathcal{E}_r)$ die Standardbasis im K^r , $(\epsilon_1, \dots, \epsilon_n)$ die Standardbasis im K^m .

Dann gilt

$$(F \circ G)(\mathcal{E}_k) = \sum_{i=1}^m c_{ik} \cdot e_i \qquad (\text{Satz } 45.3 \text{ für } F \circ G)$$

$$= F(G(\mathcal{E}_k)) \qquad (\text{Definition von } F \circ G)$$

$$= F\left(\sum_{j=1}^n b_{jk} \cdot \epsilon_j\right) \qquad (\text{Satz } 45.3 \text{ für } G)$$

$$= \sum_{j=1}^n b_{jk} \cdot F(\epsilon_j) \qquad (\text{Linearität von } F)$$

$$= \sum_{j=1}^n b_{jk} \cdot \left(\sum_{i=1}^m a_{ij} \cdot e_i\right) \qquad (\text{Satz } 45.3 \text{ für } F)$$

$$= \sum_{i=1}^m \left(\sum_{j=1}^n a_{ij} b_{jk}\right) \cdot e_i \qquad (\text{Umordnen der Summen})$$

Die Behauptung folgt nun aus der Eindeutigkeit der Koeffizienten zur Basis $(e_i)_{i=1,\dots,m}$ von K^m .

Ein Spezialfall dieser Rechenregel ist das schon zuvor erklärte Matrixprodukt $A \cdot v \in K^m$ einer Matrix $A \in M(m \times n, K)$ mit einem Spaltenvektor $v \in K^n$. Mit den Bezeichnungen aus Satz 45.8 gilt: Die *i*-te Zeile von A ist $(a_{i1} \ a_{i2} \ \dots \ a_{in})$,

und die j-te Spalte von B ist $\begin{pmatrix} b_{1j} \\ \vdots \\ b_{nj} \end{pmatrix}$. Damit folgt: Das Matrixelement c_{ij} von

 $C = A \cdot B$ ist das "Produkt" der *i*-ten Zeile von A mit der *j*-ten Spalte von B.

Beispiel 45.9 Sei
$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 2 & 2 \end{pmatrix}$$
 und $B = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 0 & 1 \end{pmatrix}$, dann gilt

$$A \cdot B = \begin{pmatrix} 3 & 2 & 5 \\ 1 & 0 & 1 \\ 4 & 4 & 8 \end{pmatrix} \quad \text{und} \quad B \cdot A = \begin{pmatrix} 7 & 10 \\ 3 & 4 \end{pmatrix} .$$

Daraus ist ersichtlich, daß selbst wenn sowohl $A \cdot B$ als auch $B \cdot A$ erklärt sind, im allgemeinen $A \cdot B \neq B \cdot A$ gilt.

Beispiel 45.10 Eine Drehung in der Ebene um den Ursprung mit Winkel α wird durch die Matrix $A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$ beschrieben. Entsprechend be-

schreibt $B = \begin{pmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{pmatrix}$ eine Drehung mit Winkel β . Die Hintereinanderausführung beider Drehungen ist durch das Matrixprodukt gegeben:

$$A \cdot B = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \cdot \begin{pmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$$
$$= \begin{pmatrix} \cos \alpha \cos \beta - \sin \alpha \sin \beta & -\sin \alpha \cos \beta - \cos \alpha \sin \beta \\ \sin \alpha \cos \beta + \cos \alpha \sin \beta & \cos \alpha \cos \beta - \sin \alpha \sin \beta \end{pmatrix}.$$

Andererseits ist die Hintereinanderausführung beider Drehungen wieder eine Drehung mit Gesamtwinkel $\alpha + \beta$. Daraus folgen die Additionstheoreme für Sinus und Cosinus,

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$
, $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$

Satz 45.11 Sind Matrizen $A, A' \in M(m \times n, K), B, B' \in M(n \times s, K)$ und $C \in M(r \times s, K)$ gegeben sowie $\lambda \in K$, so gilt:

- i) $A \cdot (B + B') = A \cdot B + A \cdot B'$ und $(A + A') \cdot B = A \cdot B + A' \cdot B$ (Distributivgesetze)
- ii) $A \cdot (\lambda \cdot B) = (\lambda \cdot A) \cdot B = \lambda \cdot (A \cdot B)$
- iii) $(A \cdot B) \cdot C = A \cdot (B \cdot C)$ (Assoziativgesetz)
- iv) $E_m \cdot A = A \cdot E_n = A$ (Neutralität der Einheitsmatrix)

Beweis. i) und ii) folgen aus der Summendarstellung des Matrixprodukts, iv) ist leicht nachzurechnen.

iii) Die Komposition beliebiger Abbildungen ist assoziativ. Die Isomorphismen M_s^r übertragen die Assoziativität auf das Matrixprodukt. \square

Im weiteren schreiben wir oft AB statt $A \cdot B$ für das Produkt der Matrizen.

Definition 45.12 Die Abbildung $t: M(m \times n, K) \to M(n \times m, K)$ definiert durch $t: A = (a_{ij}) \mapsto A^t := (a_{ji})$ heißt *Transposition von Matrizen*.

Satz 45.13 Wenn das Matrixprodukt AB erklärt ist, dann gilt $(A \cdot B)^t = B^t \cdot A^t$.

Beweis. Sei $A = (a_{ij}) \in M(m \times n, K)$, $B = (b_{jk}) \in M(n \times r, K)$ und $C = AB = (c_{ik}) \in M(m \times r, K)$. Dann ist $c_{ik} = \sum_{j=1}^{n} a_{ij}b_{jk}$ und $C^{t} = (c'_{ki})$ mit $c'_{ki} = c_{ik}$. Weiter ist $B^{t} = (b'_{kj})$ mit $b'_{kj} = b_{jk}$ und $A^{t} = (a'_{ji})$ mit $a'_{ji} = a_{ij}$. Dann ist $B^{t}A^{t} = D = (d_{ki})$ mit $d_{ki} = \sum_{j=1}^{n} b'_{kj}a'_{ji} = \sum_{j=1}^{n} b_{jk}a_{ij} = \sum_{j=1}^{n} a_{ij}b_{jk} = c_{ik} = c'_{ki}$ und somit $D = C^{t}$.

Wir bezeichnen mit $M(n,K) := M(n \times n,K)$ die Menge der quadratischen Matrizen. Das Matrixprodukt ist dann eine Verknüpfung in M(n,K), die kompatiblel mit Addition und Multiplikation mit Skalaren ist. Dadurch wird M(n,K) zu einer sogenannten Algebra. Ein weiteres wichtiges Beispiel einer Algebra ist die Menge der stetigen Funktionen auf einem metrischen Raum.

Definition 45.14 Eine quadratische Matrix $A \in M(n, K)$ heißt *invertierbar*, wenn es ein $A^{-1} \in M(n, K)$ gibt mit $A \cdot A^{-1} = A^{-1} \cdot A = E_n$.

Satz 45.15 Die Menge

$$GL(n, K) = \{A \in M(n, K) : A \text{ ist invertierbar}\}$$

der invertierbaren Matrizen ist eine Gruppe mit der Matrixmultiplikation als Verknüpfung und der Einheitsmatrix E_n als neutralem Element.

Diese Gruppe GL(n, K) heißt die allgemeine lineare Gruppe.

Beweis. Da E_n ein neutrales Element ist, ist nur zu zeigen, daß aus $A, B \in GL(n, K)$ auch $AB \in GL(n, K)$ folgt. Die Matrix $B^{-1}A^{-1}$ erfüllt $(B^{-1}A^{-1})AB = E_n$ unter Verwendung des Assoziativgesetzes. Aus den allgemeinen Gruppeneigenschaften folgt, daß das neutrale Element und das zu A inverse Element eindeutig sind.

Satz 45.16

- i) $A \in M(n, K)$ ist genau dann invertierbar, wenn rang(A) = n.
- ii) Für $A \in GL(n, K)$ gilt $(A^t)^{-1} = (A^{-1})^t$.

Beweis. i) Ist rang(A) = rang(F) = n, dann ist F surjektiv nach Satz 43.5.ii) und dann bijektiv nach Satz 43.9.

ii) Wir haben $(A^{-1})^t A^t = (AA^{-1})^t = E_n^t = E_n$, so daß $(A^{-1})^t$ das Inverse zu A^t ist.

46 Zur Theorie linearer Gleichungssysteme

Definition 46.1 Eine Teilmenge $X \subset V$ eines K-Vektorraums V heißt affiner Unterraum, falls es ein $v \in V$ und einen Untervektorraum $W \subset V$ gibt, so daß

$$X=v+W:=\{x\in V\ :\ \text{ es gibt ein }w\in W\text{ mit }x=v+w\}\;.$$

Beispiel 46.2 Ist $V=\mathbb{R}^2$ die reelle Zahlenebene, dann sind die eindimensionalen Untervektorräume $W\subset V$ die Geraden durch den Nullpunkt. Ein aus der Geraden W durch 0 hervorgehender affiner Unterraum X=v+W ist dann die Parallele zu W durch v.

Satz 46.3 Ist X = v + W ein affiner Unterraum von V, dann gilt

- i) Für beliebiges $v' \in X$ ist X = v' + W.
- ii) Ist $v' \in V$ und $W' \subset V$ ein Untervektorraum mit v' + W' = v + W, so folgt W = W' und $v' v \in W$.

Beweis. i) Wegen $v' \in X$ gibt es ein $w' \in W$ mit v' = v + w'. Sei $x = v + w \in X$ ein beliebiges Element, so schreibt sich x = v' + w - w'. Also ist $X \subset v' + W$. Durch Vertauschen von v, v' folgt v' + W = X.

ii) Seien $x, x' \in X = v + W$, dann ist $x - x' \in W$. Gäbe es eine zweite Darstellung X = v' + W', dann ist $x - x' \in W'$ für alle x, x', also W = W'. Dann folgt $v' - v \in W$.

Da also in einem affinen Unterraum X = v + W der Untervektorraum eindeutig ist, definieren wir die Dimension $\dim(X) := \dim(W)$ wenn X = v + W.

Wir untersuchen den Lösungsraum

$$L\ddot{o}s(A,b) := \{ x \in K^n : Ax = b \}$$

eines linearen Gleichungssystems Ax = b zu gegebener Matrix $A \in M(m \times n, K)$ und gegebenem Vektor $b \in K^m$. Ist $F : K^n \to K^m$ die durch $A \in M(m \times n, K)$ definierte lineare Abbildung, $F(x) = A \cdot x$, so ist $\text{L\"os}(A, b) = F^{-1}(b)$ und insbesondere $\text{L\"os}(A, 0) = F^{-1}(0) = \text{ker}(F)$. Damit gilt stets $0 \in \text{L\"os}(A, 0)$, und diese L\"osung heißt die triviale L\"osung des homogenen Systems. Geht die erweiterte Koeffizientenmatrix (A|b) durch elementare Zeilenumformungen in eine erweiterte Koeffizientenmatrix $(\tilde{A}|\tilde{b})$ über, dann gilt $\text{L\"os}(A, b) = \text{L\'os}(\tilde{A}, \tilde{b})$ nach Satz 13.3.

Satz 46.4 Gegeben sei das lineare Gleichungssystem Ax = b aus m Gleichungen mit n Unbekannten. Ist rang(A) = r, dann gilt für die Lösungsräume:

- i) $L\ddot{o}s(A,0) \subset K^n$ ist ein Untervektorraum der Dimension n-r.
- ii) $L\ddot{o}s(A,b) \subset K^n$ ist entweder leer oder ein affiner Raum der Dimension n-r. Ist $v \in L\ddot{o}s(A,b)$ eine beliebige $L\ddot{o}sung$, dann gilt $L\ddot{o}s(A,b) = v + L\ddot{o}s(A,0)$.

Beweis. i) Sei $F: K^n \to K^m$ die durch $F(x) = A \cdot x$ definierte lineare Abbildung. Nach Satz 43.5 ist Lös $(A, 0) = \ker(F)$ ein Untervektorraum. Nach Satz 43.7 ist seine Dimension $\dim(\ker(F)) = \dim(K^n) - \dim(\operatorname{im}(F)) = n - r$ wegen $\operatorname{rang}(A) := \dim(\operatorname{im}(F))$.

ii) Seien $v, v' \in \text{L\"{o}s}(A, b)$ zwei L\"{o}sungen des linearen Gleichungssystems, also Av = b und Av' = b. Dann ist A(v - v') = 0, also $v - v' \in \text{L\"{o}s}(A, 0)$.

Der Satz besagt, daß man eine allgemeine Lösung des inhomogenen linearen Gleichungssystems erhält, indem man zu einer speziellen Lösung des inhomogenen Systems die allgemeine Lösung des homogenen Systems addiert. Sei also (w_{r+1}, \ldots, w_n) eine Basis von Lös(A, 0) (wenn r < n) und $v \in \text{Lös}(A, b)$ eine beliebige spezielle Lösung des inhomogenen Systems, so ist

$$L\ddot{o}s(A, b) = v + Kw_{r+1} + \dots + Kw_n \quad \text{mit } Kw := \operatorname{span}_K(w)$$
.

Satz 46.5 Der Lösungsraum eines linearen Gleichungssystems Ax = b ist genau dann nicht leer, wenn rang(A, b) = rang(A).

Beweis. Die Matrizen $A \in M(m \times n, K)$ und $(A, b) \in M(m \times (n + 1), K)$ beschreiben lineare Abbildungen $A : K^n \to K^m$ bzw. $A' : K^{n+1} \to K^m$ mit $A(e_j) = A'(e_j) = \sum_{i=1}^m a_{ij}e_i$ für $1 \le j \le n$ und $A'(e_{n+1}) = b$. Damit ist im $(A) \subset \operatorname{im}(A')$, also $\operatorname{rang}(A) \le \operatorname{rang}(A')$, sowie $b \in \operatorname{im}(A')$. Ist nun $\operatorname{rang}(A) = \operatorname{rang}(A')$, dann ist $\operatorname{im}(A) = \operatorname{im}(A')$ und damit $b \in \operatorname{im}(A)$, das Gleichungssystem ist also lösbar.

Ist $\operatorname{rang}(A) < \operatorname{rang}(A')$, dann muß es Vektoren $v \in \operatorname{im}(A')$ geben, die nicht in $\operatorname{im}(A)$ liegen. Da $\operatorname{span}(A'(e_j))_{j=1,\dots,n} \subset \operatorname{im}(A)$, bleiben nur die b enthaltenden Linearkombinationen, welche nicht in $\operatorname{im}(A)$ liegen. Das bedeutet $b \notin \operatorname{im}(A)$. \square

Insbesondere ist der Lösungsraum Lös(A,b) für $A \in M(m \times n,K)$ nichtleer, wenn rang(A) = m, da dann die durch A beschriebene lineare Abbildung surjektiv ist. Das bedeutet, daß Ax = b für jedes $b \in K^m$ lösbar ist. In diesem Fall heißt das lineare Gleichungssystem universell lösbar. Ist rang(A) < m, so gibt es nicht für alle $b \in K^m$ eine Lösung. Es ist nur für jene $b \in K^m$ lösbar, für die die rang $(A) = \operatorname{rang}(A,b)$ gilt.

Wir sagen, das lineare Gleichungssystem Ax = b ist eindeutig lösbar, wenn Lös(A, b) nur aus einem Element besteht.

Satz 46.6 Das lineare Gleichungssystem Ax = b für $A \in M(m \times n, K)$ und $b \in K^m$ ist genau dann eindeutig lösbar, wenn $\operatorname{rang}(A) = \operatorname{rang}(A, b) = n$.

Beweis. Nach Satz 46.5 gibt es eine Lösung, und nach Satz 46.4 ist diese eindeutig. \Box

Satz 46.7 Die Definitionen 44.2 und 13.11 für den Rang einer Matrix $A \in M(m \times n, K)$ stimmen überein.

Beweis. Es sei $\tilde{A} \in M(m \times n, K)$ eine aus A durch elementare Zeilenumformungen hervorgehende Matrix. Der Lösungsraum eines LGS bleibt unverändert bei elementaren Zeilenumformungen, d.h. es gilt $\text{Lös}(A,0) = \text{Lös}(\tilde{A},0)$ und damit $r := \dim(\text{im}(A)) = \dim(\text{im}(\tilde{A}))$ nach der Dimensionsformel aus Satz 43.7. Sei \tilde{r} die Anzahl der Nicht-Null-Zeilen von \tilde{A} und $V_{\tilde{r}} = \text{span}(e_1, \dots, e_{\tilde{r}}) \subset K^m$ der durch die ersten \tilde{r} Basisvektoren $e_1, \dots, e_{\tilde{r}} \in K^m$ aufgespannte Untervektorraum. Dann gilt $\tilde{A} \cdot x \in V_{\tilde{r}}$ für beliebige $x \in K^n$. Andererseits ist nach dem Gaußschen Eliminationsverfahren die Gleichung $\tilde{A} \cdot x = \tilde{b}$ für beliebige $\tilde{b} \in V_{\tilde{r}}$ lösbar, d.h. $\text{im}(\tilde{A}) = V_{\tilde{r}}$ und somit $\tilde{r} = r$.

Ist $A \in M(n, K)$ invertierbar, dann ist das lineare Gleichungssystem Ax = b wegen $\operatorname{rang}(A) = n$ eindeutig lösbar mit Lösung $x = A^{-1}b$ für beliebiges $b \in K^n$. Im nächsten Abschnitt werden wir eine Methode zur Bestimmung der inversen Matrix gewinnen.

47 Elementarmatrizen

Die elementaren Zeilenumformungen, die eine Matrix $B \in M(m \times n, K)$ (z.B. die erweiterte Koeffizientenmatrix (A, b), welche ein ein lineares Gleichungssystem beschreibt) in Zeilenstufenform bringen, lassen sich durch Linksmultiplikation von B mit geeigneten $(m \times m)$ -Matrizen beschreiben. Diese Elementarmatrizen sind, ausgedrückt durch Einheitsmatrix und Standardmatrixbasis nach Beispiel 15.2:

Typ I: $B \xrightarrow{\mathbf{I}_{ik}} \tilde{B}$ ist Matrix multiplikation $\tilde{B} = P_{ik} \cdot B$ mit

(Angedeutet sind die i-te und k-te Zeile und Spalte. Alle nicht bezeichneten Einträge sind 0.)

Typ II: ist Spezialfall $\lambda=1$ von Typ IV

Typ III: $B \xrightarrow{\text{III}_i} \tilde{B}$ ist Matrix multiplikation $\tilde{B} = S_i(\lambda) \cdot B$ mit

$$S_{i}(\lambda) = \begin{pmatrix} 1 & & | & & \\ & \ddots & & & & \\ & & 1 & | & & \\ & & - & - & \lambda & - & - & - \\ & & | & 1 & & \\ & & & \ddots & & \\ & & & | & & 1 \end{pmatrix} = E_{m} + (\lambda - 1)E_{ii}$$

Typ IV: $B \xrightarrow{\mathrm{IV}_{ik}(\lambda)} \tilde{B}$ ist Matrix multiplikation $\tilde{B} = Q_{ik}(\lambda) \cdot B$ mit

$$Q_{ik}(\lambda) = \begin{pmatrix} 1 & & & & & & & & \\ & \ddots & & & & & & & \\ & & 1 & | & & & | & & \\ & & 1 & | & & & | & & \\ & - & - & 1 & - & - & - & 0 & - & - & - \\ & & & | & 1 & & | & & \\ & & & \ddots & & & & \\ & & & | & & 1 & | & & \\ & & & & | & & 1 & | & \\ & & & & | & & | & & 1 \end{pmatrix} = E_m + \lambda E_{ki}$$

(Angedeutet sind die *i*-te und *k*-te Zeile und Spalte.)

Analog sind elementare Spaltenumformungen einer Matrix $A \in M(m \times n, K)$ gegeben durch die entsprechenden Rechtsmultiplikationen von A mit Elementarmatrizen $P, Q, S \in M(n \times n, K)$.

Tatsächlich genügen die Matrizen $\{S_i(\lambda)\}$ und $\{Q_{ik}(1)\}$ für Typ II und III, denn Typ I eine Kombination aus mehreren Umformungen vom Typ II und III (ersteres als Spezialfall von IV):

$$P_{ik} = Q_{ik}(1) S_k(-1)Q_{ki}(-1)S_i(-1)Q_{ik}(1)S_i(-1) ,$$

denn

$$(i,k) \xrightarrow{\mathrm{III}_{i}(-1)} (-i,k) \xrightarrow{\mathrm{II}_{ik}} (-i,k-i) \xrightarrow{\mathrm{III}_{i}(-1)} (i,k-i) \xrightarrow{\mathrm{II}_{ki}} (k,k-i) \xrightarrow{\mathrm{III}_{k}(-1)} (k,i-k) \xrightarrow{\mathrm{III}_{ik}} (k,i) .$$

Für Typ IV gilt

$$Q_{ij}(\lambda) = S_i(\frac{1}{\lambda})Q_{ik}(1)S_i(\lambda) ,$$

denn

$$(i,k) \stackrel{\mathrm{III}_{i}(\lambda)}{\longrightarrow} (\lambda i,k) \stackrel{\mathrm{II}_{ik}}{\longrightarrow} (\lambda i,k+\lambda i) \stackrel{\mathrm{III}_{i}(\frac{1}{\lambda})}{\longrightarrow} (i,k+\lambda i)$$

Die Elementarmatrizen sind invertierbar mit

$$P_{ik}^{-1} = P_{ik}$$
, $(Q_{ik}(\lambda))^{-1} = Q_{ik}(-\lambda)$, $(S_i(\lambda))^{-1} = S_i(\frac{1}{\lambda})$.

Eine wichtige Anwendung der Elementarmatrizen ist der folgende Satz:

Satz 47.1 Jede invertierbare Matrix $A \in GL(n, K)$ ist ein endliches Produkt von Elementarmatrizen.

Beweis. Da rang(A)=n, führen elementare Zeilenumformungen mit Typ I und IV erst zu einer Dreiecksmatrix mit Diagonalelementen $d_{ii}\neq 0$ für alle $1\leq i\leq n$, nach weiterer Umformung mit Typ IV dann zu einer Diagonalmatrix mit gleichen Diagonalelementen $d_{ii}\neq 0$, und schließlich mit Typ III zur Einheitsmatrix. Damit gilt $B_r\cdots B_2\cdot B_1\cdot A=E_n$, wobei jedes B_s eine Elementarmatrix $Q_{ik}(\lambda)$ oder $S_i(\lambda)$ ist. Folglich gilt $A=B_1^{-1}\cdot B_2^{-1}\cdots B_r^{-1}$ und $A^{-1}=B_r\cdots B_2\cdot B_1$.

Eine nützliche Anwendung dieses Beweises besteht in einer effizienten Berechnungsmethode für die *inverse Matrix*. Durch Vergleich von $B_r \cdots B_2 \cdot B_1 \cdot A = E_n$ mit $A^{-1} = B_r \cdots B_2 \cdot B_1 \cdot E_n$ lesen wir ab:

Satz 47.2 Dieselben Zeilenumformungen, welche eine invertierbare Matrix $A \in GL(n, K)$ in E_n überführen, überführen E_n in A^{-1} .

Beispiel 47.3

$$\begin{pmatrix} 9 & 4 & 1 & 0 \\ 11 & 5 & 0 & 1 \end{pmatrix} \xrightarrow{Q_{12}(-\frac{11}{9})} \begin{pmatrix} 9 & 4 & 1 & 0 \\ 0 & \frac{1}{9} & -\frac{11}{9} & 1 \end{pmatrix} \xrightarrow{Q_{21}(-36)} \begin{pmatrix} 9 & 0 & 45 & -36 \\ 0 & \frac{1}{9} & -\frac{11}{9} & 1 \end{pmatrix}$$

$$\xrightarrow{S_1(\frac{1}{9})S_2(9)} \begin{pmatrix} 1 & 0 & 5 & -4 \\ 0 & 1 & -11 & 9 \end{pmatrix}$$

Folglich ist $\begin{pmatrix} 9 & 4 \\ 11 & 5 \end{pmatrix}^{-1} = \begin{pmatrix} 5 & -4 \\ -11 & 9 \end{pmatrix}$, was durch Ausmultiplizieren leicht zu überprüfen ist.

Ein anderer Weg, diese Rechnung zu verstehen, interpretiert $A \cdot A^{-1} = E_n$ als n lineare Gleichungssysteme $A \cdot x^{(p)} = b^{(p)}$. Dabei sind die $x^{(p)}$ bzw. $b^{(p)}$ mit $1 \leq p \leq n$ gerade die n Spalten von A^{-1} bzw. E_n . Anstatt nun die Berechnung von $x^{(p)}$ durch Zeilenumformung jeder dieser erweiterten Koeffizientenmatrizen $(A, b^{(p)})$ separat durchzuführen, schreiben wir alle Spalten $b^{(p)}$ nebeneinander und formen die entstehende Matrix (A, E_n) gleichzeitig um. (Es ist stets dieselbe Rechnung, die A in E_n überführt, unabhängig von b).

Man muß zunächst nicht wissen, ob A invertierbar ist, um dieses Verfahren durchzuführen. Wir können sogar nichtquadratische Matrizen $A \in M(m \times n, K)$ zulassen. Sei also rang(A) = r, dann führen die Zeilenumformungen zu (m - r) Zeilen, in denen sämtliche Einträge gleich 0 sind. Wir erreichen dann bestenfalls die Blockdarstellung

$$(A, E_m) \mapsto \begin{pmatrix} D_{r \times n} & L_{r \times m} \\ 0_{(m-r) \times n} & M_{(m-r) \times m} \end{pmatrix},$$

wobei die Größe der Matrizen entsprechend $D_{r\times n} \in M(r \times n, K)$ usw. gekennszeichnet ist. Nach Konstruktion als Matrix in spezieller Zeilenstufenform sind r der $n \geq r$ Spalten von $D_{r\times n}$ die paarweise verschiedenen Standardbasisvektoren $e_1, \ldots, e_r \in K^r$. Es gibt also Elementarmatrizen $B_1,\ldots,B_r\in GL(m,K)$ mit $B_r\cdots B_1\cdot A=\begin{pmatrix} D_{r\times n}\\ 0_{(m-r)\times n} \end{pmatrix}$ und $B_r\cdots B_1\cdot E_m=\begin{pmatrix} L_{r\times m}\\ M_{(m-r)\times m} \end{pmatrix}=:L^{-1}.$ Durch Transposition entsteht die Matrix $\begin{pmatrix} D_{r\times n}\\ 0_{(m-r)\times n} \end{pmatrix}^t=\begin{pmatrix} D_{t\times n}^t & 0_{n\times (m-r)} \end{pmatrix}\in M(n\times m,K),$ wobei nun r der $n\geq r$ Zeilen von $D_{r\times n}^t=:\tilde{D}_{n\times r}$ die transponierten Standardbasisvektoren $e_1^t,\ldots,e_r^t\in K^r$ sind. Elementare Zeilenumformungen überführen diese Matrix in $\begin{pmatrix} E_r & 0_{r\times (m-r)}\\ 0_{(n-r)\times r} & 0_{(n-r)\times (m-r)}\\ 0_{(n-r)\times r} & 0_{(n-r)\times (m-r)} \end{pmatrix}\in M(n\times m,K).$ Es gibt also Elementarmatrizen $C_1,\ldots,C_s\in GL(n,K)$ mit

$$C_s \cdots C_2 \cdot C_1 \cdot \begin{pmatrix} D_{r \times n} \\ 0_{(m-r) \times n} \end{pmatrix}^t = \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix}$$

und somit nach Rücktransposition

$$\begin{pmatrix} D_{r\times n} \\ 0_{(m-r)\times n} \end{pmatrix} \cdot (C_s \cdots C_2 \cdot C_1)^t = \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix}.$$

Das Produkt dieser Elementarmatrizen $\tilde{R} = C_s \cdots C_2 \cdot C_1$ erhalten wir wieder durch die korrespondierende Zeilenumformung der Einheitsmatrix:

$$\left(\begin{array}{cc} \tilde{D}_{n\times r} & 0_{n\times (m-r)} & \left\| E_n \right) \mapsto \left(\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right\| \tilde{R} \right) .$$

Damit haben wir folgenden Satz bewiesen:

Satz 47.4 Zu jeder Matrix $A \in M(m \times n, K)$ mit $\operatorname{rang}(A) = r$ gibt es invertierbare Matrizen $L \in GL(m, K)$ und $R \in GL(n, K)$, so daß $A = L \cdot \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix} \cdot R^{-1}$. (Dabei ist $R = \tilde{R}^t$.)

Beispiel 47.5

$$\begin{pmatrix} 1 & 2 & 3 & 1 & 0 \\ 4 & 5 & 6 & 0 & 1 \end{pmatrix} \xrightarrow{Q_{12}(-4)} \begin{pmatrix} 1 & 2 & 3 & 1 & 0 \\ 0 & -3 & -6 & -4 & 1 \end{pmatrix}$$

$$\xrightarrow{Q_{21}(\frac{2}{3})} \begin{pmatrix} 1 & 0 & -1 & -\frac{5}{3} & \frac{2}{3} \\ 0 & -3 & -6 & -4 & 1 \end{pmatrix} \xrightarrow{S_2(-\frac{1}{3})} \begin{pmatrix} 1 & 0 & -1 & -\frac{5}{3} & \frac{2}{3} \\ 0 & 1 & 2 & \frac{4}{3} & -\frac{1}{3} \end{pmatrix} .$$

Damit ist $L^{-1}=\begin{pmatrix} -\frac{5}{3} & \frac{2}{3} \\ \frac{4}{3} & -\frac{1}{3} \end{pmatrix}$. Die übliche Rechnung für das Inverse liefert $L=\begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix}$.

Nach Transposition berechnen wir

$$\begin{pmatrix}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
-1 & 2 & 0 & 0 & 1
\end{pmatrix} \xrightarrow{Q_{13}(1)Q_{23}(-2)} \begin{pmatrix}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & -2 & 1
\end{pmatrix},$$

also $\tilde{R}^t = R = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$. Diese Matrix ist nun leicht zu invertieren: $R^{-1} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$

$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}.$$
Folglich gilt

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array}\right) = \left(\begin{array}{ccc} 1 & 2 \\ 4 & 5 \end{array}\right) \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right) \left(\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{array}\right) \ .$$

Man kann Satz 47.4 auch abstrakt verstehen: Die Matrix $A = (a_{ij}) \in M(m \times n, K)$ entspricht einer linearen Abbildung $F : K^n \to K^m$ mit $F(e_j) = \sum_{i=1}^m a_{ij} \cdot e_i$. Ist rang(F) = rang(A) = r, dann existieren nach Satz 45.7 Basen $\mathcal{A} = (v_1, \ldots, v_n)$ von K^n und $\mathcal{B} = (w_1, \ldots, w_m)$ von K^m , so daß $M_{\mathcal{B}}^{\mathcal{A}}(F) = \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix} = \tilde{A} = (\tilde{a}_{kl})$. Die mit L und R bewirkte Umrechnung von A in \tilde{A} ist ein Beispiel für eine Koordinatentransformation.

Satz 47.6 Für $A \in M(m \times n, K)$ ist rang $(A) = \text{rang}(A^t)$.

Beweis. Sei rang(A) = r. Nach Satz 45.7 gibt es angepaßte Basen \mathcal{A} in K^n und \mathcal{B} in K^m , so daß $A = L \cdot \begin{pmatrix} E_r & 0_{r \times (n-r)} \\ 0_{(m-r) \times r} & 0_{(m-r) \times (n-r)} \end{pmatrix} \cdot R^{-1}$ für invertierbare Matrizen $L \in GL(m,K)$ und $R \in GL(n,K)$. Dann ist $A^t = (R^{-1})^t \cdot B_r \cdot L^t$ mit $B_r := \begin{pmatrix} E_r & 0_{r \times (m-r)} \\ 0_{(n-r) \times r} & 0_{(n-r) \times (m-r)} \end{pmatrix}$. Mit R ist auch R^t invertierbar, also ist $(R^{-1})^t : K^n \to K^n$ ein Isomorphismus. Somit gilt $\dim(\operatorname{im}(A^t)) = \dim(\operatorname{im}(B_r \cdot L^t) \leq r$. Durch Umkehrung von $A \mapsto A^t$ (oder Verwendung der Surjektivität von L^t) folgt die Behauptung.

48 Kommutative Diagramme und Basiswechsel

Koordinatentransformationen werden hervorgerufen durch einen Basiswechsel in einem Vektorraum. Sind in einem Vektorraum V zwei Basen $\mathcal{A}=(v_1,\ldots,v_n)$ und $\tilde{\mathcal{A}}=(\tilde{v}_1,\ldots,\tilde{v}_n)$ gegeben, so existieren nach Satz 45.2 Isomorphismen $\Phi_{\mathcal{A}}:K^n\to V$ und $\Phi_{\tilde{\mathcal{A}}}:K^n\to V$ mit $\Phi_{\mathcal{A}}(e_i)=v_i$ und $\Phi_{\tilde{\mathcal{A}}}(e_i)=v_i$. Die identitische Abbildung

auf V induziert dann einen Isomorphismus $\mathcal{T}_{\mathcal{A}}^{\tilde{\mathcal{A}}} := \Phi_{\tilde{\mathcal{A}}}^{-1} \circ \Phi_{\mathcal{A}} : K^n \to K^n$, den man am besten als $kommutatives\ Diagramm$ schreibt:

$$K^{n} \xrightarrow{\Phi_{\mathcal{A}}} V$$

$$T_{\tilde{\mathcal{A}}}^{\mathcal{A}} = \Phi_{\tilde{\mathcal{A}}}^{-1} \circ \Phi_{\mathcal{A}} \bigvee_{id_{V}} id_{V} \qquad bzw. \qquad T_{\tilde{\mathcal{A}}}^{\mathcal{A}} = \Phi_{\tilde{\mathcal{A}}}^{-1} \circ \Phi_{\mathcal{A}} \bigvee_{\Phi_{\tilde{\mathcal{A}}}} V$$

Dabei bedeutet Kommutativität, daß die Komposition der Abbildungen unabhängig vom Weg ist.

Die darstellende Matrix der identischen Abbildung ist somit $T_{\tilde{\mathcal{A}}}^{\mathcal{A}} = (T_{ij}) = \mathcal{M}_{\tilde{\mathcal{A}}}^{\mathcal{A}}(id_V)$ mit $id_V(v_j) = v_j = \sum_{i=1}^n T_{ij}\tilde{v}_i$. Sei $v = \sum_{j=1}^n x_j v_j = \sum_{i=1}^n y_i \tilde{v}_i \in V$, dann gilt

$$v = \sum_{j=1}^{n} x_j v_j = \sum_{i,j=1}^{n} T_{ij} x_j \tilde{v}_i = \sum_{i=1}^{n} y_i \tilde{v}_i \qquad \Rightarrow \qquad y = T_{\tilde{\mathcal{A}}}^{\mathcal{A}} \cdot x .$$

Kennt man also die Transformationsmatrix $T_{\tilde{\mathcal{A}}}^{\mathcal{A}}$, so kann man die neuen Koordinaten y von $v \in V$ bezüglich der Basis $\tilde{\mathcal{A}}$ aus den alten Koordinaten x bezüglich der Basis \mathcal{A} berechnen. Besonders wichtig ist der Fall $V = K^n$. Dann sind $\Phi_{\mathcal{A}} =: A \in M(n \times n, K)$ und $\Phi_{\tilde{\mathcal{A}}} = \tilde{A} \in M(n \times n, K)$ selbst Matrizen, gegeben durch die jeweiligen Basisvektoren als Spalten. In diesem Fall ist nach Definition des Matrixprodukts $T_{\tilde{\mathcal{A}}}^{\mathcal{A}} = \tilde{A}^{-1} \cdot A$. An Stelle der Lösung eines linearen Gleichungssystems tritt nun die einfachere Aufgabe der Berechnung einer inversen Matrix.

Allgemein läßt sich die darstellende Matrix einer linearen Abbildung $F:V\to W$ bezüglich Basen \mathcal{A} von V und \mathcal{B} von W als kommutatives Diagramm auffassen:

$$K^{n} \xrightarrow{\Phi_{\mathcal{A}}} V$$

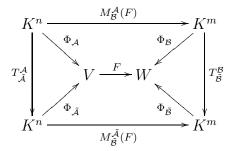
$$M_{\mathcal{B}}^{\mathcal{A}}(F) = \Phi_{\mathcal{B}}^{-1} \circ F \circ \Phi_{\mathcal{A}} \downarrow \qquad \qquad \downarrow F$$

$$K^{m} \xrightarrow{\Phi_{\mathcal{B}}} W$$

Durch Kombination mit dem Basiswechsel erhalten wir:

Satz 48.1 (Transformationsformel) Es sei $F: V \to W$ eine lineare Abbildung sowie $\mathcal{A}, \tilde{\mathcal{A}}$ Basen von V und $\mathcal{B}, \tilde{\mathcal{B}}$ Basen von W, mit $\dim(V) = n$ und

 $\dim(W) = m$. Dann ist folgendes Diagramm kommutativ:



Insbesondere gilt $M_{\tilde{\mathcal{B}}}^{\tilde{\mathcal{A}}}(F) = T_{\tilde{\mathcal{B}}}^{\mathcal{B}} \cdot M_{\mathcal{B}}^{\mathcal{A}}(F) \cdot (T_{\tilde{\mathcal{A}}}^{\mathcal{A}})^{-1}$.

Beweis. Alle Dreiecke und Teilvierecke sind kommuativ, also auch das gesamte Diagramm. \Box

Insbesondere läßt sich die darstellende Matrix einer linearen Abbildung $F:K^n\to K^m$ bezüglich anderer als der Standardbasen sehr leicht berechnen. Wir betrachten erneut Beispiel 45.5:

Beispiel 48.2 Wir betrachten die durch F((x, y, z)) = (x - y, 2x + y - z) definierte lineare Abbildung $F: \mathbb{R}^3 \to \mathbb{R}^2$ bezüglich der Basen $\tilde{\mathcal{A}} = (v_1, v_2, v_3)$ von \mathbb{R}^3 und $\tilde{\mathcal{B}} = (w_1, w_2)$ von \mathbb{R}^2 mit

$$v_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, w_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, w_2 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}.$$

Bezüglich der Standardbasen ist $M_n^m(F) = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 1 & -1 \end{pmatrix}$ (Bilder der Basisvektoren als Spalten). Die Transformationsmatrizen sind nach Satz 45.2 und wegen $\Phi_{\mathcal{A}} = id$ und $\Phi_{\mathcal{B}} = id$ gegeben als

$$\mathcal{T}_{\tilde{\mathcal{A}}}^{\mathcal{A}} = \Phi_{\tilde{\mathcal{A}}}^{-1} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}^{-1}$$

und

$$T_{\tilde{\mathcal{B}}}^{\mathcal{B}} = \Phi_{\tilde{\mathcal{B}}}^{-1} = \begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix}^{-1} = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix}.$$

Somit gilt

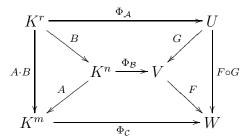
$$M_{\tilde{\mathcal{B}}}^{\tilde{\mathcal{A}}}(F) = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 0 \\ 2 & 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} -\frac{1}{3} & 1 & 2 \\ -\frac{1}{3} & 0 & -1 \end{pmatrix} ,$$

in Übereinstimmung mit der ersten Rechnung.

Schließlich können wir den Zusammenhang zwischen Matrixprodukt und Komposition linearer Abbildungen für beliebige endlich-dimensionale Vektorräume formulieren:

Satz 48.3 Gegeben seien Vektorräume U, V, W mit Basen $\mathcal{A}, \mathcal{B}, \mathcal{C}$ sowie lineare Abbildungen $G: U \to V$ und $F: V \to W$. Dann gilt $\mathcal{M}_{\mathcal{C}}^{\mathcal{A}}(F \circ G) = \mathcal{M}_{\mathcal{B}}^{\mathcal{A}}(F) \cdot \mathcal{M}_{\mathcal{C}}^{\mathcal{B}}(G)$.

Beweis. Wir betrachten das folgende Diagramm:



mit $A = \mathcal{M}_{\mathcal{B}}^{\mathcal{A}}(F) = \Phi_{\mathcal{C}}^{-1} \circ F \circ \Phi_{\mathcal{B}} : K^n \to K^m$ und $B = \mathcal{M}_{\mathcal{C}}^{\mathcal{B}}(G) = \Phi_{\mathcal{B}}^{-1} \circ G \circ \Phi_{\mathcal{A}} : K^r \to K^n$. Alle Teildiagramme sind kommutativ, damit auch das äußere Viereck.

49 Determinanten

Bei der Determinante hantelt es sich um eine wichtige Charakterisierung quadratischer Matrizen. Die Determinante ist ein Kriterium für die Invertierbarkeit einer Matrix. Sie tritt außerdem auf beim Eigenwertproblem für Matrizen.

Definition 49.1 Eine Abbildung

$$\det: M(n, K) \to K$$
, $\det: A \mapsto \det A$

heißt Determinante, wenn folgendes gilt:

(D1) det ist linear in jeder Zeile, d.h. ist die *i*-te Zeile $a_i = \lambda' a_i' + \lambda'' a_i'' \in K^n$, so gilt

$$\det \begin{pmatrix} \vdots \\ a_i \\ \vdots \end{pmatrix} = \lambda' \det \begin{pmatrix} \vdots \\ a_i' \\ \vdots \end{pmatrix} + \lambda'' \det \begin{pmatrix} \vdots \\ a_i'' \\ \vdots \end{pmatrix}.$$

(Die mit \vdots symbolisierten Zeilen $a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n$ sind in jeder der drei Matrizen identisch.)

Insbesondere gilt: Entsteht B aus A durch Multiplikation der i-ten Zeile mit $\lambda \neq 0$, ist also eine Zeilenumformung vom Typ III mit $B = S_i(\lambda) \cdot A$, so ist $\det B = \lambda \cdot \det A$.

- (D2) det ist alternierend, d.h. hat A zwei gleiche Zeilen, so gilt det A=0.
- (D3) det ist normiert auf det $E_n = 1$.

Wir zeigen später, daß solche Determinanten existieren. An dieser Stelle beschränken wir uns auf den Beweis der Eindeutigkeit der Determinante. Dazu leiten wir aus der Definition weitere Eigenschaften her, die insbesondere eine Berechnungsmethode beinhalten:

Satz 49.2 Die Determinante hat folgende weitere Eigenschaften:

- $(D4) \det(\lambda \cdot A) = \lambda^n \det A \quad \forall \lambda \in K.$
- (D5) Ist eine Zeile von A identisch Null, so folgt $\det A = 0$.
- (D6) Die Determinante ändert das Vorzeichen bei Zeilenumformungen von Typ I: Entsteht B aus A durch Zeilenvertauschung, also $B = P_{ik} \cdot A$, so gilt det $B = -\det A$.
- (D7) Zeilenumformungen von Typ IV lassen die Determinante unverändert: Entsteht B aus A durch Addition der λ -fachen i-ten Zeile zur k-ten Zeile, also $B = Q_{ik}(\lambda) \cdot A$, so gilt det $B = \det A$.
- (D8) Ist $A = \begin{pmatrix} a_{11} & \cdots & \cdots & \cdots \\ 0 & a_{22} & \cdots & \cdots & \cdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & a_{nn} \end{pmatrix}$ eine obere Dreiecksmatrix, so gilt $\det A = a_{11}a_{22}\cdots a_{nn}.$
- (D9) Sei $n \geq 2$, und $A \in M(n, K)$ habe die folgende Blockdarstellung:

$$A = \begin{pmatrix} A_1 & C \\ 0 & A_2 \end{pmatrix}$$
, $A_1 \in M(n_1, K)$, $A_2 \in M(n_2, K)$, $n_1 + n_2 = n$.

Dann qilt $\det A = \det A_1 \cdot \det A_2$.

- $(D10) \det A = 0 \quad \Leftrightarrow \quad \operatorname{rang}(A) < n.$
- (D11) Es gilt der Determinantenmultiplikationssatz $\det(A \cdot B) = \det A \cdot \det B$ für alle $A, B \in M(n, K)$. Insbesondere ist $\det A^{-1} = \frac{1}{\det A}$ für $A \in GL(n, K)$. Anders formuliert: $\det : GL(n, K) \to K^*$ ist ein Gruppenhomomorphismus.

Beweis. D4) Nach (D1) gilt

$$\det \begin{pmatrix} \lambda a_1 \\ \lambda a_2 \\ \vdots \\ \lambda a_n \end{pmatrix} = \lambda \det \begin{pmatrix} a_1 \\ \lambda a_2 \\ \vdots \\ \lambda a_n \end{pmatrix} = \lambda^2 \det \begin{pmatrix} a_1 \\ a_2 \\ \lambda a_3 \\ \vdots \\ \lambda a_n \end{pmatrix} = \dots = \lambda^n \det \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$

- D5) folgt aus (D1) mit $\lambda = 0$
- D6) Ist $B = P_{ik}A$, so berechnen wir

(D7) Ist $B = Q_{ik}(\lambda)A$, so gilt

$$\det B = \det \begin{pmatrix} \vdots \\ a_i \\ \vdots \\ a_k + \lambda a_i \\ \vdots \end{pmatrix} \stackrel{(D1)}{=} \det \begin{pmatrix} \vdots \\ a_i \\ \vdots \\ a_k \\ \vdots \end{pmatrix} + \lambda \det \begin{pmatrix} \vdots \\ a_i \\ \vdots \\ a_i \\ \vdots \end{pmatrix} \stackrel{(D2)}{=} \det A$$

(D8) Für Diagonalmatrizen folgt durch wiederholte Anwendung von (D1)

$$\det \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & a_{nn} \end{pmatrix} \stackrel{(D1)}{=} a_{11} \det \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & a_{nn} \end{pmatrix} \stackrel{(D1)}{=} \dots$$

$$\stackrel{(D1)}{=} a_{11} a_{22} \cdots a_{nn} \det E_n \stackrel{(D3)}{=} a_{11} a_{22} \cdots a_{nn}$$

Sind für eine allgemeine obere Dreiecksmatrix alle $a_{ii} \neq 0$, so bringen wir sie durch Zeilenumformung vom Typ IV in Diagonalform mit den gleichen Diagonalelementen. Ist $a_{ii} = 0$ und $a_{kk} \neq 0$ für alle k > i, so führt Zeilenumformung vom Typ IV auf die Zeile $a_i = 0$.

(D9) Wir können Zeilenumformungen verwenden, die die beiden Blöcke nicht mischen. Durch Umformungen nur der ersten n_1 Zeilen und dann nur der letzten n_2 Zeilen erreicht man

$$\det A = (-1)^{s_1 + s_2} \det \begin{pmatrix} D_1 & C' \\ 0 & D_2 \end{pmatrix} ,$$

wobei D_1, D_2 obere Dreiecksmatrizen sind und s_1, s_2 die Anzahl der Zeilenumformungen vom Typ I im oberen bzw unteren Block sind. Die Behauptung folgt nun aus (D8).

(D10) Durch elementare Zeilenumformung überführen wir A in eine obere Dreiecksmatrix mit Diagonalelementen a_{11}, \ldots, a_{nn} . Dann ist det $A = \pm a_{11} \cdots a_{nn}$. Aus det A = 0 und der Zeilenstufenform folgt $a_{nn} = 0$ and damit det A = 0 nach (D5), also rang(A) < n. Ist umgekehrt rang(A) < n, so führt elementare Zeilenumformung auf eine obere Dreiecksmatrix mit $a_{nn} = 0$, so daß det A = 0.

(D11) Ist rang(A) < n, so ist auch rang(AB) < n als Dimension des Bildes der Hintereinanderausführung linearer Abbildungen. Dann ist $\det(A) = \det(AB) = 0$. Ist rang(A) = n, so ist A invertierbar und nach Satz 47.1 ein endliches Produkt von Elementarmatrizen. Also ist $\det(AB) = \det(C_1 \cdots C_r \cdot B)$, wobei $C_p = Q_{ik}(\lambda)$ oder $C_p = S_i(\lambda)$ für $1 \le p \le r$. Es gilt $\det(Q_{ik}(\lambda)B) = \det B$ nach (D7) und $\det(S_i(\lambda)B) = \lambda \det B$ nach (D1). Also ist $\det(AB) = \lambda_1 \cdots \lambda_s \det B$, wobei λ_p die Koeffizienten in den Umformungen vom Typ III sind. Andererseits ist $\det(A) = \det(AE_n) = \lambda_1 \cdots \lambda_s$, was die Behauptung liefert.

Zusammengefaßt haben wir damit aus den Axiomen ein Berechnungsverfahren für die Determinante einer Matrix abgeleitet: Wir überführen mit elementaren Zeilenumformungen vom Typ I und IV die Matrix $A \in M(n, K)$ in Zeilenstufenform $\tilde{A} = (a_{ij})$: Sind dabei s Vertauschungen von Zeilen (Typ I) notwendig, dann ist det $A = (-1)^s a_{11} \cdots a_{nn}$. Das Verfahren beweist die Eindeutigkeit der Determinante: Gäbe es zwei Abbildungen det und det, die (D1), (D2) und (D3) erfüllen, so folgt aus beiden die Berechnungsvorschrift für die durch Zeilenumformung erhaltene Dreiecksmatrix $\tilde{A} = (a_{ij})$ mit det $A = \det A = (-1)^s a_{11} \cdots a_{nn}$.

Beispiel 49.3

$$\det \begin{pmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \\ 6 & 7 & 9 \end{pmatrix} \stackrel{I_{12}}{=} - \det \begin{pmatrix} 3 & 4 & 5 \\ 0 & 1 & 2 \\ 6 & 7 & 9 \end{pmatrix} \stackrel{IV_{13}(-2)}{=} - \det \begin{pmatrix} 3 & 4 & 5 \\ 0 & 1 & 2 \\ 0 & -1 & -1 \end{pmatrix}$$

$$\stackrel{IV_{23}(1)}{=} - \det \begin{pmatrix} 3 & 4 & 5 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} = -3.$$

Satz 49.4 Es gilt $det(A^t) = det(A)$ für alle $A \in M(n, K)$.

Beweis. Ist $\det A = 0$, so ist $\operatorname{rang}(A^t) = \operatorname{rang}(A) < n$ und damit $\det(A^t) = 0$. Ist $\det A \neq 0$, so ist A invertierbar und damit darstellbar als endliches Produkt von Elementarmatrizen $A = C_1 \cdots C_r$ mit $C_p = Q_{ik}(\lambda)$ oder $C_p = S_i(\lambda)$. Nach dem Determinatenmultiplikationssatz ist $\det A = \det C_1 \cdots \det C_r$ und $\det A^t = \det C_1^t \cdots \det C_r^t$. Es gilt $(Q_{ik}(\lambda))^t = Q_{ki}(\lambda)$ und $(S_i(\lambda))^t = S_i(\lambda)$. Die Behauptung folgt nun aus $\det(Q_{ik}(\lambda)) = 1$ für alle i, k, λ und $\det(S_i(\lambda)) = \lambda$.

Daraus ergeben sich mehrere Folgerungen:

Satz 49.5 (D2') Die Determinate ist linear in jeder Spalte. (D3') besitzt
$$A \in M(n, K)$$
 zwei gleiche Spalten, so gilt det $A = 0$.

Satz 49.6 Für $A \in M(n, K)$ sind äquivalent:

- i) $\det A \neq 0$
- ii) rang(A) = n
- iii) A ist invertierbar
- iv) Die Zeilen von A sind linear unabhängig.
- v) Die Spalten von A sind linear unabhängig.

Satz 49.7 Die Gruppe

$$SL(n, K) := \{ A \in GL(n, K) : \det A = 1 \}$$

ist eine Untergruppe von GL(n, K). Sie heißt die die spezielle lineare Gruppe.

Beweis. Für $A, B \in SL(n, K)$ folgt aus den Eigenschaften der Determinante $\det(AB) = 1$ und $\det A^{-1} = 1$.

Die Determinantenbildung für Matrizen läßt sich sofort auf die Determinate für Endomorphismen endlich-dimensionaler Vektorräume verallgemeinern. Sei V ein n-dimensionaler Vektorraum über K und $F:V\to V$ eine lineare Abbildung (ein Endomorphismus). Wir wählen eine beliebige Basis $\mathcal{B}=(v_1,\ldots,v_n)$ von V und stellen F in dieser Basis dar:

$$F(v_j) = \sum_{i=1}^n a_{ij} \cdot v_i , \qquad a_{ij} \in K .$$

Dann ist $A = (a_{ij}) = M_{\mathcal{B}}^{\mathcal{B}}(F)$ die darstellende Matrix von F bezüglich der Basis \mathcal{B} . Wir definieren det $F := \det(M_{\mathcal{B}}^{\mathcal{B}}(F))$. Diese Definition ist sinnvoll, denn sie hängt nicht von der Wahl der Basis ab: Sei \mathcal{A} eine andere Basis von V, dann gilt nach Satz $48.1 M_{\mathcal{B}}^{\mathcal{B}}(F) = T_{\mathcal{B}}^{\mathcal{A}} \cdot M_{\mathcal{A}}^{\mathcal{A}}(F) \cdot (T_{\mathcal{B}}^{\mathcal{A}})^{-1}$ und deshalb $\det(M_{\mathcal{B}}^{\mathcal{B}}(F)) = \det(M_{\mathcal{A}}^{\mathcal{A}}(F))$.

In direkter Verallgemeinerung der Determinanteneigenschaften gilt:

Satz 49.8 Sind $F, G \in \text{End}(V)$, so gilt

- i) $\det F \neq 0 \Leftrightarrow F \in \operatorname{Aut}(V)$
- ii) $F \in \operatorname{Aut}(V) \implies \det F^{-1} = \frac{1}{\det F}$
- iii) $\det(F \circ G) = \det F \cdot \det G$

Eine weitere nützliche Anwendung ist die Definition der *Orientierung* von Automorphismen und von Basen.

Definition 49.9 Sei V ein endlich-dimensionaler Vektorraum über K. Ein Automorphismus $F \in \operatorname{Aut}(V)$ heißt *orientierungstreu*, falls $\det F > 0$, ansonsten *orientierngsuntreu*.

Zwei Basen \mathcal{A} und \mathcal{B} von V heißen gleich orientiert, wenn für die darstellende Matrix der Identität gilt $\det(M_{\mathcal{B}}^{\mathcal{A}}(\mathrm{id}_V)) > 0$, ansonsten ungleich orientiert.

Offenbar gilt:

Satz 49.10 Die Menge

$$\operatorname{Aut}^+(V) := \{ F \in \operatorname{Aut}(V) : \det F > 0 \}$$

der orientierungstreuen Automorphismen von V ist eine Untergruppe von $\mathrm{Aut}(V)$. Insbesondere ist

$$GL^+(m,K) := \{ A \in GL(n,K) : \det A > 0 \}$$

eine Untergruppe von GL(n, K).

50 Laplacescher Entwicklungssatz und komplementäre Matrix

In Beweisen und für speziell gewählte Matrizen sind auch rekursive und abstrakte Berechnungsformeln nützlich:

Satz 50.1 (Entwicklungssatz von Laplace) Ist $A = (a_{ij}) \in M(n, K)$ und seien die Matrizen $A_{ij} \in M(n-1, K)$ aus A durch Streichen der i-ten Zeile und der j-ten Spalte erhalten. Dann gilt für beliebiges $1 \le i \le n$

$$\det A = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det A_{ij} \qquad Entwicklung \ nach \ der \ i\text{-ten Zeile}$$

und für beliebiges 1 < j < n

$$\det A = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det A_{ij} \qquad Entwicklung \ nach \ der \ j\text{-ten Spalte}.$$

Beweis. (für die Zeilenentwicklung). Wir schreiben die *i*-te Zeile $a_i = (a_{i1}, a_{i2}, \ldots, a_{in})$ von $A = (a_{ij})$ als Linearkombination der kanonischen Basen

$$a_i = a_{i1}(1, 0, 0, \dots, 0) + a_{i2}(0, 1, 0, \dots, 0) + \dots + a_{in}(0, 0, \dots, 0, 1)$$

Anwenden von (D1) ergibt

$$\det A = \sum_{j=1}^{n} a_{ij} \det A'_{ij} ,$$

$$A'_{ij} = \begin{pmatrix} a_{11} & \dots & a_{1,j-1} & a_{1,j} & a_{1,j+1} & \dots & a_{1n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{i-1,1} & \dots & a_{i-1,j-1} & a_{i-1,j} & a_{i-1,j+1} & \dots & a_{i-1,n} \\ 0 & \dots & 0 & 1 & 0 & \dots & 0 \\ a_{i+1,1} & \dots & a_{i+1,j-1} & a_{i+1,j} & a_{i+1,j+1} & \dots & a_{i+1,n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{n,j-1} & a_{nj} & a_{n,j+1} & \dots & a_{nn} \end{pmatrix} .$$

In jeder der Matrizen A'_{ij} bringen wir mit Zeilenumformungen vom Typ IV (welche die Determinante nicht ändern) alle anderen Einträge der j-ten Spalte auf 0:

$$\det A'_{ij} = \det A''_{ij} , \quad A''_{ij} = \begin{pmatrix} a_{11} & \dots & a_{1,j-1} & 0 & a_{1,j+1} & \dots & a_{1n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{i-1,1} & \dots & a_{i-1,j-1} & 0 & a_{i-1,j+1} & \dots & a_{i-1,n} \\ 0 & \dots & 0 & 1 & 0 & \dots & 0 \\ a_{i+1,1} & \dots & a_{i+1,j-1} & 0 & a_{i+1,j+1} & \dots & a_{i+1,n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{n,j-1} & 0 & a_{n,j+1} & \dots & a_{nn} \end{pmatrix}.$$

Durch Vertauschen mit jeweils benachbarten Zeilen bringen wir die i-te Zeile von A''_{ij} an die j-te Stelle, wobei sich die Reihenfolge aller anderen Zeilen nicht ändert. Dazu sind |i-j| Zeilenvertauschungen erforderlich. Die 1 steht nun auf der Diagonale: Für i < j erhalten wir:

$$\det A_{ij}'' = (-1)^{|i-j|} \det A_{ij}''', \quad A_{ij}''' = \begin{pmatrix} a_{11} & \dots & a_{1,j-1} & 0 & a_{1,j+1} & \dots & a_{1n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{i-1,1} & \dots & a_{i-1,j-1} & 0 & a_{i-1,j+1} & \dots & a_{i-1,n} \\ a_{i+1,1} & \dots & a_{i+1,j-1} & 0 & a_{i+1,j+1} & \dots & a_{i+1,n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{j,1} & \dots & a_{j,j-1} & 0 & a_{j,j+1} & \dots & a_{j,n} \\ 0 & \dots & 0 & 1 & 0 & \dots & 0 \\ a_{j+1,1} & \dots & a_{j+1,j-1} & 0 & a_{j+1,j+1} & \dots & a_{j+1,n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{n,j-1} & 0 & a_{n,j+1} & \dots & a_{nn} \end{pmatrix}$$

Durch elementare Zeilenumformung vom Typ I und IV überführen wir $A_{ij}^{\prime\prime\prime}$ in eine obere Dreiecksmatrix und lesen die Determinante ab. Bei diesen Umformungen wird an der j-ten Zeile und Spalte von $A_{ij}^{\prime\prime\prime}$ nichts geändert. Deshalb stimmt det $A_{ij}^{\prime\prime\prime}$ mit der Determinante jener Matrix $A_{ij} \in M(n-1,K)$ überein, die aus $A_{ij}^{\prime\prime\prime}$ durch Weglassen des Kreuzes aus j-ter Zeile und j-ter Spalte erhalten wird. Dieselbe Matrix A_{ij} entsteht aber auch aus $A_{ij}^{\prime\prime}$ und damit auch aus A selbst durch Weglassen der i-ten Zeile und der j-ten Spalte. Unter Verwendung von $(-1)^{|i-j|} = (-1)^{i+j}$ folgt die Behauptung. Analog für die Spaltenentwicklung. \square

Wir können nun über den Laplaceschen Entwicklungssatz die Existenz der Determinante beweisen:

Satz 50.2 Für alle $n \in \mathbb{N}^{\times}$ gibt es eine Abbildung det : $M(n, K) \to K$ mit den Eigenschaften (D1), (D2) und (D3) aus Definition 49.1.

Beweis. Durch Induktion nach n. Für n=1 setzen wir $\det(a):=a$. Dann ist (D2) eine leere Aussage, (D1) und (D3) sind klar. Sei die Existenz bis M(n-1,K) bewiesen. Wir definieren det : $M(n,K) \to K$ über den Laplaceschen Entwicklungssatz und Entwicklung nach der j-ten Spalte. Zu zeigen sind (D1) - (D3).

- (D1) Betrachtet werde die k-te Zeile von $A \in M(n, K)$. Es gilt det $A = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det A_{ij} = (-1)^{k+j} a_{kj} A_{kj} + \sum_{i\neq k} (-1)^{i+j} a_{ij} \det A_{ij}$. Im ersten Term ist A_{kj} unabhängig von der k-ten Zeile, und a_{kj} ist linear. In jedem anderen Term $i \neq k$ ist det A_{ij} linear in der k-ten Zeile nach Induktionsvoraussetzung, und a_{ij} ist unabhängig von der k-ten Zeile.
- (D2) Seien die k-te und l-te Zeile von $A \in M(n, K)$ gleich, und k < l. Ist $i \neq k$ und $i \neq l$, so sind die entsprechenden Zeilen auch in $A_{ij} \in M(n-1, K)$ gleich, damit det $A_{ij} = 0$. Im Entwicklungssatz verbleibt det $A = (-1)^{k+j} a_{kj}$ det $A_{kj} + (-1)^{l+j} a_{lj}$ det A_{lj} . Die Annahme (Gleichheit det k-ten und l-ten Zeile von A) ergibt zunächst $a_{kj} = a_{lj}$. Ist n = 2, so ist k = 1 und l = 2, damit $(-1)^{k+j} = -(-1)^{l+j}$ und det $A_{1j} = \det A_{2j}$ wegen Gleichheit beider Zeilen von $A \in M(n, K)$. Sei also $n \geq 3$ und $a_i \in K^n$ die i-te Zeile von A mit $a_k = a_l =: b \in K^n$. Seien $a'_i, b' \in K^{n-1}$ die aus a_i, b durch Weglassen des j-ten Eintrags entstehenden

Zeilenvektoren. Dann ist

$$A = \begin{pmatrix} a_{1} \\ \vdots \\ a_{k-1} \\ b \\ a_{k+1} \\ \vdots \\ a_{l-1} \\ b \\ a_{l+1} \\ \vdots \\ a_{n} \end{pmatrix}, \qquad A_{kj} = \begin{pmatrix} a'_{1} \\ \vdots \\ a'_{k-1} \\ a'_{k+1} \\ \vdots \\ a'_{l-1} \\ b' \\ a'_{l+1} \\ \vdots \\ a'_{n} \end{pmatrix}, \qquad A_{lj} = \begin{pmatrix} a'_{1} \\ \vdots \\ a'_{k-1} \\ b' \\ a'_{k+1} \\ \vdots \\ a'_{l-1} \\ a'_{l+1} \\ \vdots \\ a'_{n} \end{pmatrix}.$$

Durch l-1-k Vertauschungen benachbarter Zeilen bringen wir die (l-1)-te Zeile b' von A_{kj} in die k-te Zeile, alle Zeilen $a'_{k+1}, \ldots, a_{l-1'}$ verschieben sich um eine Zeile nach unten. Das Ergebnis dieser l-1-k Zeilenvertauschungen ist A_{lj} , d.h. es gilt det $A_{kj} = (-1)^{l-1-k} \det A_{lj}$ und damit $(-1)^{k+j} \det A_{kj} - (-1)^{l+k} \det A_{lj}$. Das liefert (D2).

(D3) Es gilt
$$\det E_n = \sum_{i=1}^n (-1)^{i+j} \delta_{ij} \det(E_n)_{ij} = (-1)^{2j} \det(E_n)_{jj} = \det(E_{n-1}) = 1.$$

Die Berechnung der Determinante von $A \in M(n,K)$ wird durch Satz 50.1 auf die Berechnung der Determinanten kleinerer Matrizen zurückgeführt. Als Beispiel berechnen wir

$$\det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = (-1)^{1+1} a_{11} \det(a_{22}) + (-1)^{1+2} a_{12} \det(a_{21}) = a_{11} a_{22} - a_{12} a_{21}.$$

Einfache Rechenregel: Für 2×2 -Matrizen ist die Determinante gleich dem Produkt der Hauptdiagonalelemente minus dem Produkt der Nebendiagonalelemente. Eine ähnliche graphische Rechenregel gibt es auch für 3×3 -Matrizen (Regel von Sarrus). Ein Analogon für M(n,K) mit $n \geq 4$ wäre falsch!

Beispiel 50.3 Wir berechnen erneut Beispiel 49.3 durch Entwicklung nach der 1. Zeile:

$$\det \begin{pmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \\ 6 & 7 & 9 \end{pmatrix} = 0 \cdot \det \begin{pmatrix} 4 & 5 \\ 7 & 9 \end{pmatrix} + (-1) \cdot \det \begin{pmatrix} 3 & 5 \\ 6 & 9 \end{pmatrix} + 2 \cdot \det \begin{pmatrix} 3 & 4 \\ 6 & 7 \end{pmatrix}$$
$$= -1 \cdot 3 \cdot 9 + 1 \cdot 6 \cdot 5 + 2 \cdot 3 \cdot 7 - 2 \cdot 6 \cdot 4 = -27 + 30 + 42 - 48 = -3,$$

in Übereinstimmung mit der ersten Rechnung.

Allgemein wird durch den Entwicklungssatz die Determinante von $A=(a_{ij})$ rekursiv durch Summen und Differenzen von Produkten $a_{i_1j_1}\cdots a_{i_nj_n}$ der Einträge a_{ij} berechnet. Durch Entwicklung nach der jeweils obersten Zeile sieht man, daß in jedem dieser Produkte jeder Zeilenindex genau einmal vorkommt. Andererseits kommt auch jeder Spaltenindex genau einmal vor: Damit a_{ij} in einem Produkt vorkommen kann, darf zuvor kein a_{kj} aufgetreten sein, da sonst die j-te Spalte gestrichen wäre. Nach dem Auftreten von a_{ij} wird die j-te Spalte weggelassen und weitere a_{kj} können im Produkt nicht vorkommen. Eine solche injektive/surjektive/bijektive Zuordnung eines Spaltenindex $j=\sigma(i)\in\{1,\ldots,n\}$ zu jedem Zeilenindex $i\in\{1,\ldots,n\}$ heißt Permutation. Ein Beispiel ist durch folgende Tabelle gegeben: $\frac{i \mid 1 \mid 2 \mid 3 \mid 4 \mid 5}{\sigma(i) \mid 2 \mid 5 \mid 3 \mid 1 \mid 4}$

Sei S_n die Menge (und Gruppe) aller Permutationen der Menge $\{1, 2, \ldots, n\}$, dann gilt

$$\det A = \sum_{\sigma \in S_n} \lambda(\sigma) \ a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)} \ .$$

Dabei ist $\lambda(\sigma) \in \pm 1$, denn jede Permutation kommt vor und zwar mit Vorfaktor +1 oder -1 entsprechend dem Entwicklungssatz. Man kann zeigen, daß $\lambda(\sigma) = \text{sign}(\sigma)$ das Vorzeichen der Permutation ist, das wie folgt berechnet werden kann: Eine Permutation τ heißt Transposition, wenn sie zwei Elemente aus $\{1,\ldots,n\}$ austauscht und alle anderen an ihrer Stelle beläßt. Jede Permutation kann als (nicht eindeutige) Hintereinanderausführung von Transpositionen erhalten werden. Dann ist

$$sign(\sigma) = (-1)^{Zahl \text{ der Transpositionen in } \sigma}.$$

Das Vorzeichen ist eindeutig, auch wenn die Zahl der Transpositionen selbst nicht eindeutig ist.

Alternativ kann man das Vorzeichen aus der Zahl der Fehlstellen der Permutation ablesen. Eine Fehlstelle ist ein Paar (i, j) mit i < j und $\sigma(i) > \sigma(j)$. Dann ist

$$sign(\sigma) = (-1)^{Zahl \text{ der Fehlstellen in } \sigma}$$
.

Damit gilt (insgesamt hier ohne Beweis)

Satz 50.4 (Formel von Leibniz)

$$\det A = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) \ a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)} \ .$$

Es gibt n! Permutationen $\sigma \in S_n$, so daß die Zahl der Produkte in der Formel von Leibniz mit wachsendem n sehr groß wird. Deshalb ist die Formel von Leibniz vor allem aus theoretischer Sicht bedeutsam. Sind z.B. die Einträge der Matrix stetige/differenzierbare Funktionen, so ist auch die Determinante eine stetige/differenzierbare Funktion. Für praktische Berechnungen sind Zeilenumformungen geeigneter.

Definition 50.5 Sei $A = (a_{ij}) \in M(n, K)$. Dann heißt die Matrix

$$A^{\sharp} = (a_{ij}^{\sharp}) \in M(n, K) , \qquad a_{ij}^{\sharp} := (-1)^{i+j} \det A_{ji} .$$

die zu A komplementäre Matrix, wobei $A_{ji} \in M(n-1,K)$ durch Streichen der j-ten Zeile und der i-ten Spalte entsteht.

Man beachte die Vertauschung der Reihenfolge von i, j: Im Matrixelement a_{ij}^{\sharp} steht A_{ji} , nicht A_{ij} !

Satz 50.6 Ist $A \in M(n, K)$ und sei A^{\sharp} die zu A komplementäre Matrix, dann gilt $A \cdot A^{\sharp} = A^{\sharp} \cdot A = (\det A)E_n$. Insbesondere gilt $A^{-1} = \frac{1}{\det A}A^{\sharp}$ für invertierbare Matrizen $A \in GL(n, K)$.

Beweis. Wir berechnen die Komponenten von $A^{\sharp} \cdot A$:

$$(A^{\sharp} \cdot A)_{kj} = \sum_{i=1}^{n} a_{ki}^{\sharp} a_{ij} = \sum_{i=1}^{n} (-1)^{i+k} a_{ij} \det A_{ik}$$
.

Ist j=k beliebig, so entsteht gerade der Spaltenentwicklungssatz von Laplace: det $A=\sum_{i=1}^n (-1)^{i+j}a_{ij}$ det A_{ij} . Für $j\neq k$ betrachten wir die Matrix $B=(b_{il})\in M(n,K)$, die aus A entsteht, wenn man die k-te Spalte von A durch die j-te Spalte von A ersetzt. Es ist also $b_{il}=a_{il}$ für $l\neq k$ und $b_{ik}=a_{ij}$. Da B zwei gleiche Spalten besitzt, ist det B=0. Wir entwickeln det B nach der k-ten Spalte:

$$0 = \det B = \sum_{i=1}^{n} (-1)^{i+k} b_{ik} \det B_{ik} = \sum_{i=1}^{n} (-1)^{i+k} a_{ij} \det A_{ik}$$

wegen $A_{ik} = B_{ik}$. Folglich ist $(A^{\sharp} \cdot A)_{kj} = (\det A)\delta_{kj}$.

Mit $A^{-1} = \frac{1}{\det A} A^{\sharp}$ für $A \in GL(n,K)$ haben wir eine weitere Methode zur Berechnung der inversen Matrix kennengelernt. Für n > 3 ist diese Methode jedoch sehr aufwendig. Allerdings ist diese abstrakte Darstellung in der Analysis sehr nützlich, denn die Determinantenbildung hängt als Produkt der a_{ij} stetig und sogar differenzierbar von den Einträgen a_{ij} ab. Daraus folgt, daß für $A \in GL(n,K)$ die Abbildung $A \mapsto A^{-1}$ differenzierbar ist.

Eine weitere Anwendung der Determinanten besteht in einem Lösungsverfahren für lineare Gleichungssysteme mit invertierbaren Matrizen:

Satz 50.7 (Cramersche Regel) Seien $A = (a_{ij}) \in GL(n,K)$ und $b \in K^n$ gegeben und sei $x = (x_1, \ldots, x_n)^t \in K^n$ die eindeutig bestimmte Lösung des linearen Gleichungssystems $A \cdot x = b$. Bezeichnen wir mit a_1, \ldots, a_n die Spalten von A, also $a_j = (a_{1j}, \ldots, a_{nj})^t$, dann gilt

$$x_j = \frac{\det(a_1, \dots, a_{j-1}, b_j, a_{j+1}, \dots, a_n)}{\det A}$$
.

Beweis. Die endeutig bestimmte Lösung des linearen Gleichungssystems ist durch $x=A^{-1}\cdot b$ gegeben. In Komponenten gilt damit

$$x_j = \sum_{i=1}^n (A^{-1})_{ji} b_i = \frac{1}{\det A} \sum_{i=1}^n (-1)^{i+j} b_i (\det A_{ij}).$$

Nach dem Spaltenentwicklungssatz von Laplace ist $\sum_{i=1}^{n} (-1)^{i+j} b_i(\det A_{ij})$ gerade die Determinante einer Matrix $B = (b_{il})$, deren Einträge auf der j-ten Spalte durch $b_{ij} = b_i$ gegeben sind und deren andere Spalten identisch sind mit den Spalten von A.

Wieder liegt die Bedeutung der Cramerschen Regel in theoretischen Betrachtungen wie der Schlußfolgerung, daß die Lösung des linearen Gleichungssystems Ax = b für $A \in GL(n, K)$ differenzierbar von der rechten Seite $b \in K^n$ sowie den Einträgen der Matrix $A \in GL(n, K)$ abhängt.

Zum Abschluß geben wir ohne Beweis noch die Verallgemeinerung von $\det(A \cdot B) = \det A \cdot \det B$, hier mit $A, B \in M(n, K)$, auf Produkte nichtquadratischer Matrizen an:

Satz 50.8 (Binet-Cauchy) Es seien $A = (a_1, \ldots, a_{n+k}) \in M(n \times (n+k), K)$ und $B = (b_1, \ldots, b_{n+k}) \in M(n \times (n+k), K)$ zwei rechteckige Matrizen, gebildet aus den Spaltenvektoren $a_i, b_i \in K^n$, und $k \in \mathbb{N}$. Für $1 \le m_1 < m_2 < \cdots < m_n \le n+k$ seien quadratische Matrizen $A^{m_1m_2...m_n} := (a_{m_1}, a_{m_2}, \ldots, a_{m_n}) \in M(n, K)$ und $B^{m_1m_2...m_n} := (b_{m_1}, b_{m_2}, \ldots, b_{m_n}) \in M(n, K)$ definiert. Dann gilt

$$\det(A \cdot B^t) = \sum_{1 \le m_1 < m_2 < \dots < m_n \le n+k} (\det A^{m_1 m_2 \dots m_n}) (\det B^{m_1 m_2 \dots m_n}).$$

Die Summe läuft über die $\binom{n+k}{k} = \frac{(n+k)!}{n!k!}$ verschiedenen Möglichkeiten, n der n+k Spalten der Matrizen auszuwählen.

Ein Beweis findet sich z.B. in G. Fischer: Lineare Algebra, Kapitel 3.3. Man kann sich auf Matrizen $A, B \in M(n \times l, K)$ mit $l \ge n$ beschränken, da sich zeigen läßt, daß für $A, B \in M(n \times l, K)$ mit l < n stets $\det(A \cdot B^t) = 0$ gilt. Aus Satz 50.8 folgt insbesondere $\det(A \cdot A^t) = \sum_{1 \le m_1 < m_2 < \dots < m_n \le n+k} (\det A^{m_1 m_2 \dots m_n})^2$ (Gramsche

Determinante), d.h. für reellwertige Matrizen ist $det(A \cdot A^t) \ge 0$.

51 Eigenwerte und Diagonalisierbarkeit

Wir hatten im Abschnitt über Matrizen (Satz 45.7) gesehen, daß zu jeder linearen Abbildung $F:V\to W$ angepaßte Basen $\mathcal A$ von V und $\mathcal B$ von W existieren, so daß die darstellende Matrix die Form $M_{\mathcal B}^{\mathcal A}(F)=\begin{pmatrix}E_r&0\\0&0\end{pmatrix}$ hat. Natürlich können

wir W=V wählen und dann entsprechende Basen \mathcal{A},\mathcal{B} von V finden. Die Frage ist: Gibt es zu einem Endomorphismus $F:V\to V$ auch eine Basis \mathcal{B} von V, so daß für die darstellende Matrix gilt: $M_{\mathcal{B}}^{\mathcal{B}}(F)=\begin{pmatrix}E_r&0\\0&0\end{pmatrix}$? Die Antwort ist: Nein!

Es geht nun darum, zu gegebenem Endomorphismus die Basis so sinnvoll wie möglich zu wählen.

Definition 51.1 Sei $F:V\to V$ Endomorphismus eines Vektorraums V über K. Ein Skalar $\lambda\in K$ heißt *Eigenwert* von F, wenn es einen Vektor $v\neq 0$ von V gibt, so daß $F(v)=\lambda\cdot v$. Jeder Vektor $v\neq 0$ von V mit $F(v)=\lambda\cdot v$ heißt *Eigenvektor* von F zum Eigenwert λ .

Zu beachten ist, daß es zu einem Eigenwert λ mehrere Eigenvektoren geben kann.

Definition 51.2 Ein Endomorphismus $F \in \text{End}(V)$ heißt *diagonalisierbar*, wenn es eine Basis von V aus Eigenvektoren von F gibt.

In diesem Fall gilt:

Satz 51.3 Ist $\dim(V) = n$, so ist $F \in \operatorname{End}(V)$ genau dann diagonalisierbar, wenn es eine Basis $\mathcal{B} = (v_1, \ldots, v_n)$ von V gibt, so da β $M_{\mathcal{B}}^{\mathcal{B}}(F) =$

$$\left(\begin{array}{ccc}
\lambda_1 & & 0 \\
& \ddots & \\
0 & & \lambda_n
\end{array}\right)$$

Beweis. Für die darstellende Matrix $M_{\mathcal{B}}^{\mathcal{B}}(F) = (a_{ij})$ gilt $F(v_j) = \sum_{i=1}^n a_{ij} \cdot v_i$. Damit sind die v_i die Eigenvektoren zu den Eigenwerten λ_i .

Das ist die optimalste Situation für eine Basis zu gegebenem Endomorphismus. Jedoch ist nicht klar, daß jeder Endomorphismus auch diagonalisierbar ist. Zunächst untersuchen wir, ob die Eigenvektoren linear unabhängig sind:

Satz 51.4 Sei $F \in \text{End}(V)$ ein Endomorphismus und seien v_1, \ldots, v_m Eigenvektoren zu paarweise verschiedenen Eigenwerten $\lambda_1, \ldots, \lambda_m$ von V. Dann sind die (v_1, \ldots, v_m) linear unabhängig.

Beweis. Wir beweisen den Satz durch Induktion nach der Anzahl m linear unabhängiger Eigenvektoren. Für m=1 ist nichts zu zeigen. Angenommen, v_2,\ldots,v_m seien linear unabhängig. Wir betrachten

$$\mu_1 v_1 + \dots + \mu_m v_m = 0$$

Anwenden von F einerseits und Subtraktion des λ_1 -fachen dieser Gleichung ergibt

$$0 = \mu_1(\lambda_1 - \lambda_1)v_1 + \mu_2(\lambda_2 - \lambda_1)v_2 + \dots + \mu_m(\lambda_m - \lambda_1)v_2.$$

Da $\lambda_1 \neq \lambda_i$ für $2 \leq i \leq m$ und (v_2, \ldots, v_m) linear unabhängig, folgt $\mu_j = 0$ für alle $1 \leq j \leq m$. Damit ist (v_1, \ldots, v_m) linear unabhängig.

Als direkte Konsequenz ergibt sich:

Satz 51.5 Seien $\lambda_1, \ldots, \lambda_m$ paarweise verschiedene Eigenwerte eines Endomorphismus $F \in \text{End}(V)$ und sei $\dim(V) = n$. Dann gilt:

- i) m < n
- ii) Ist m = n, dann ist F diagonalisierbar.

Beweis. i) Für m > n wären nach dem vorigen Satz mehr als n Vektoren aus V, nämlich Eigenvektoren zu $\lambda_1, \ldots, \lambda_m$, linear unabhängig. Das ist durch die Dimension ausgeschlossen.

ii) Ist $\dim(V) = n$, dann bilden n linear unabhängige Vektoren eine Basis. Damit ist (v_1, \ldots, v_n) eine Basis aus Eigenvektoren, und F ist diagonalisierbar. \square

Es gibt natürlich Endomorphismen mit weniger als $\dim(V)$ paarweise verschiedenen Eigenwerten, die trotzdem diagonalisierbar sind. Ein Beispiel ist $\mathrm{id}_V \in \mathrm{End}(V)$. Es gibt nur einen Eigenwert $\lambda = 1$, aber jede Basis von V diagonalisiert id_V . Die Untersuchung der Eigenräume zu gegebenem Eigenwert ist also entscheidend:

Definition 51.6 Ist $F \in \text{End}(V)$ und ist $\lambda \in K$ Eigenwert von F, dann heißt

$$\mathrm{Eig}(F;\lambda) := \{v \in V \ : \ F(v) = \lambda \cdot v\}$$

der *Eigenraum* von F zum Eigenwert λ .

Zu beachten ist, daß der Nullvektor im Eigenraum liegt, $0 \in \text{Eig}(F; \lambda)$, obwohl er kein Eigenvektor ist. Der Grund ist i) im folgenden Satz:

Satz 51.7 Sei $\mathrm{Eig}(F;\lambda)$ der Eigenraum von $F \in \mathrm{End}(V)$ zum Eigenwert λ . Dann gilt:

- i) $\operatorname{Eig}(F;\lambda) \subset V$ ist Untervektorraum
- ii) λ ist Eigenwert von $F \Leftrightarrow \operatorname{Eig}(F;\lambda) \neq \{0\} \Leftrightarrow \operatorname{dim}(\operatorname{Eig}(F;\lambda)) > 0$
- iii) Eig(F; λ) \ {0} ist die Menge der Eigenvektoren von F zum Eigenwert λ
- iv) $\operatorname{Eig}(F; \lambda) = \ker(F \lambda \cdot \operatorname{id}_V)$
- v) Ist $\lambda_1 \neq \lambda_2$, so folgt $\operatorname{Eig}(F; \lambda_1) \cap \operatorname{Eig}(F; \lambda_2) = \{0\}$

Beweis. i) Sind $v_1, v_2 \in \text{Eig}(F; \lambda)$ und $\mu_1, \mu_2 \in K$, so folgt

$$F(\mu_1 v_1 + \mu_2 v_2) = \mu_1 F(v_1) + \mu_2 F(v_2) = \mu_1 (\lambda v_1) + \mu_2 (\lambda v_2) = \lambda (\mu_1 v_1 + \mu_2 v_2)$$

und damit $\mu_1 v_1 + \mu_2 v_2 \in \text{Eig}(F; \lambda)$.

- ii) Es gibt ein $v \neq 0$ mit $F(v) = \lambda v$. Dann ist $v \in \text{Eig}(F; \lambda) \neq \{0\}$.
- iii) ist klar
- iv) Sei $v \in \text{Eig}(F; \lambda)$. Dann gilt:

$$(F - \lambda \cdot id_V)(v) = \lambda v - \lambda v = 0$$
,

also $v \in \ker(F - \lambda \cdot id_V)$. Ebenso folgt die Umkehrung.

v) Ist $\lambda_1 \neq \lambda_2$ und $v \in \text{Eig}(F; \lambda_1)$, so ist

$$(F - \lambda_2 \cdot id_V)(v) = (\lambda_1 - \lambda_2)v$$
.

Damit ist $v \in \ker(F - \lambda_2 \cdot \mathrm{id}_V)$ genau dann, wenn v = 0.

52 Das charakteristische Polynom

Es geht nun um ein Verfahren zur Bestimmung der Eigenwerte und Eigenvektoren eines Endomorphismus, wobei die Determinante eine entscheidende Rolle spielt.

Satz 52.1 Sei $F \in \text{End}(F)$ Endomorphismus eines endlich-dimensionalen Vektorraums V. Ein Skalar $\lambda \in K$ ist genau dann Eigenwert von F, wenn

$$\det(F - \lambda \cdot \mathrm{id}_V) = 0 .$$

Beweis. Nach Satz 51.7.ii) und Satz 51.7.iv) ist λ genau dann Eigenwert von F, wenn $\dim(\ker(F - \lambda \cdot \mathrm{id}_V)) > 0$. Das ist gleichbedeutend mit

$$\dim(\operatorname{im}(F - \lambda \cdot \operatorname{id}_V)) = \operatorname{rang}(F - \lambda \cdot \operatorname{id}_V) < \dim(V).$$

Nach der Determinanteneigenschaft (D10) ist diese Eigenschaft äquivalent zu $\det(F - \lambda \cdot \mathrm{id}_V) = 0$.

Die Determinante eines Endomorphismus $F \in \text{End}(V)$ berechnet sich als die Determinante der darstellenden Matrix $M_{\mathcal{A}}^{\mathcal{A}}(F) = A = (a_{ij}) \in M(n, K)$ bezüglich einer beliebigen Basis $\mathcal{A} = (w_1, \ldots, w_n)$ von V. Es gilt

$$M_{\mathcal{A}}^{\mathcal{A}}(F - t \cdot \mathrm{id}_{V}) = A - t \cdot E_{n}$$
,

denn $M_{\mathcal{A}}^{\mathcal{A}}$ ist eine lineare Abbildung (Satz 45.3) und $M_{\mathcal{A}}^{\mathcal{A}}(\mathrm{id}_{V}) = E_{n}$ unabhängig von der Wahl der Basis. Damit ist die Suche nach Eigenwerten von $F \in \mathrm{End}(V)$ zurückgeführt auf die Bestimmung der Nullstellen der Abbildung

$$P_A: K \to K : P_A: t \mapsto \det(A - t \cdot E_n)$$
.

Nach der Formel von Leibniz gilt

$$\det(A - t \cdot E_n) = (a_{11} - t)(a_{22} - t) \cdots (a_{nn} - t) + Q,$$

wobei in Q aus Summen und Differenzen von Produkten der Matrixelemente besteht, in denen mindestens zwei Nichtdiagonalelemente a_{ij} mit $i \neq j$ auftreten (welche kein t beinhalten): Wenn in einem solchen Produkt a_{ij} auftritt, dann berechnen sich nach dem Entwicklungssatz von Laplace die weiteren Faktoren zu $(-1)^{i+j}$ det A_{ij} , aber A_{ij} enthält nicht die Diagonalelemente $a_{ii} - t$ und $a_{jj} - t$. Ausmultiplikation der Produkte und Ordnen nach Potenzen von t ergibt:

$$\det(A - t \cdot E_n) = \sum_{k=0}^{n} \alpha_k t^k ,$$

$$\alpha_n = (-1)^n , \ \alpha_{n-1} = (-1)^{n-1} (a_{11} + \dots + a_{nn}) , \dots, \ \alpha_0 = \det A .$$

Dabei heißt im zweithöchsten Term $\operatorname{tr}(A) := a_{11} + \dots + a_{nn}$ die Spur der Matrix $A \in M(n,K)$. Der niedrigste Term ist unabhängig von t und stimmt damit mit der Rechnung für t=0 überein, was gerade die Determinante von A ergibt. Die anderen Koeffizienten $\alpha_1, \dots, \alpha_{n-2}$ sind schwieriger zu charakterisieren. Insgesamt entsteht mit

$$\sum_{k=0}^{n} \alpha_k t^k \,, \qquad \alpha_k \in K$$

ein Polynom in t mit Koeffizienten im Körper K vom Grad n. In Verallgemeinerung von Abschnitt 10 aus dem letzten Semester bezeichnen wir mit K[t] den Vektorraum der Polynome in t mit Koeffizienten aus K.

Definition 52.2 Das spezielle Polynom $P_A(t) = \det(A - t \cdot E_n) \in K[t]$ heißt das charakteristische Polynom der Matrix $A \in M(n, K)$.

Sinnvollerweise heißt ein $\lambda \in K$ Nullstelle eines Polynoms $f \in K[t]$, wenn $f(\lambda) = 0$. In Verbindung mit Satz 52.1 gilt:

Satz 52.3 Sei $F \in \text{End}(V)$ Endomorphismus eines endlich-dimensionalen Vektorraums. Dann sind die Nullstellen des charakteristischen Polynoms $\det(F - t \cdot \mathrm{id}_V) \in K[t]$ die Eigenwerte von F.

Wir erinnern an einige Eigenschaften, die wir für $K = \mathbb{C}$ im letzten Semester bewiesen haben, deren Beweis sich aber auf beliebige Körper überträgt. Aus der Eindeutigkeit der Division mit Rest ergab sich:

Satz 52.4 Ist $\lambda \in K$ eine Nullstelle von $f \in K[t]$, so gibt es ein eindeutig bestimmtes Polynom $g \in K[t]$ mit

i)
$$f = (t - \lambda) \cdot g$$

ii)
$$deg(g) = deg(f) - 1$$

Der Grad deg eines Polynoms $f = \sum_{i=0}^{n} a_i t^i \in K[t]$ war der höchste Exponent $\deg(f) = \max(i: a_i \neq 0)$, mit $\deg(f) = -\infty$ für f = 0. Ist $\lambda \in K$ Nullstelle von $f \in K[t]$ und sei $g \in K[t]$ durch $f = (t - \lambda) \cdot g$ definiert, dann kann das gleiche λ auch Nullstelle von g sein. Wir sagen, daß λ eine vielfache Nullstelle ist:

Definition 52.5 Ist $f \in K[t]$ verschieden vom Nullpolynom und $\lambda \in K$, so heißt

$$\mu(f;\lambda) := \max\{r \in \mathbb{N} : f = (t - \lambda)^r \cdot g \text{ für } g \in K[t]\}$$

die Vielfachkeit der Nullstelle λ .

Ist $f = (t - \lambda)^r \cdot g$ und $r = \mu(f; \lambda)$, so ist $g(\lambda) \neq 0$. Durch wiederholtes Abdividieren der Nullstellen läßt sich jedes Polynom $f \in K[t]$ darstellen als

$$f = (t - \lambda_1)^{r_1} (t - \lambda_2)^{r_2} \cdots (t - \lambda_k)^{r_k} \cdot g$$
, $\deg(g) = \deg(f) - r_1 - r_2 - \cdots - r_k \ge 0$,

wobei g ein Polynom ohne Nullstellen ist. Insbesondere besitzt jedes Polynom n-ten Grades höchstens n mit Vielfachheit gezählte Nullstellen (damit auch höchstens n paarweise verschiedene Nullstellen). Ist $\deg(g) = 0$, dann sagen wir, daß f in Linearfaktoren zerfällt. Von größter Bedeutung ist

Theorem 52.6 (Fundamentalsatz der Algebra) Jedes Polynom $f \in \mathbb{C}[t]$ zerfällt in Linearfaktoren, d.h. es gibt $a \in \mathbb{C}$ und (nicht notwendig verschiedene) $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ mit $n = \deg(f)$, so da β

$$f(t) = a(t - \lambda_1) \cdots (t - \lambda_n)$$
.

Wir hatten einen Beweis in Satz 24.12 gegeben.

Im reellen Fall $K = \mathbb{R}$ zerfällt ein Polynom im allgemeinen nicht in Linearfaktoren. Das einfachste Beispiel ist $f(t) = t^2 + 1$, welches keine reelle Nullstelle besitzt. Man kann aber $\mathbb{R} \subset \mathbb{C}$ ausnutzen und somit für jedes reelle Polynom $f \in \mathbb{R}[t]$ mit $\deg(f) = n$ genau n komplexe Nullstellen $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ (gezählt mit Vielfachheit) finden. Es gibt zwei Möglichkeiten: Ist $\lambda_i \in \mathbb{R} \subset \mathbb{C}$, dann ist λ_i auch eine Nullstelle von $f \in \mathbb{R}[t]$. Ist $\lambda_i \notin \mathbb{R}$, dann ist auch $\bar{\lambda_i}$ eine komplexe Nullstelle, was durch komplexe Konjugation folgt:

$$f(t) = \sum_{i=0}^{n} \alpha_i t^i$$
 mit $\alpha_i \in \mathbb{R}$ und $f(\lambda) = 0$ für $\lambda \notin \mathbb{R}$

$$\Rightarrow \quad \bar{f}(\bar{t}) = \sum_{i=0}^{n} \alpha_i \bar{t}^i = f(\bar{t}) \qquad \text{hat Nullstelle } \bar{t} = \lambda, \text{ also } t = \bar{\lambda} \text{ Nullstelle von } f.$$

Außerdem ist die Vielfachheit der komplexen Nullstellen $\lambda, \bar{\lambda}$ gleich, d.h.

$$\mu(f;\lambda) = \mu(f,\bar{\lambda}) \qquad \forall \ f \in \mathbb{R}[t] \ .$$

Angenommen, wir hätten $f(t) = (t - \lambda)^r (t - \bar{\lambda})^{r'} g(t)$ mit $r \neq r'$ und $\lambda, \bar{\lambda}$ sind keine Nullstellen von $g \in \mathbb{C}[t]$. Dann sind $\lambda, \bar{\lambda}$ auch keine Nullstellen von $\bar{g} \in \mathbb{C}[t]$, und es gilt

$$\overline{f(t)} = f(\overline{t}) = (\overline{t} - \overline{\lambda})^r (\overline{t} - \lambda)^{r'} \overline{g(t)}.$$

Durch Austausch der formalen Variable $t \mapsto \bar{t}$ folgt, daß nun $\mu(f; \bar{\lambda}) = r$ und $\mu(f; \lambda) = r'$, also r = r'. Aus

$$(t - \lambda)(t - \bar{\lambda}) = t^2 - 2\operatorname{Re}(\lambda)t + |\lambda|^2 \in \mathbb{R}[t]$$

folgt nun, daß für jedes reelle Polynom $f \in \mathbb{R}[t]$ gilt:

$$f = a(t - \lambda_1) \cdots (t - \lambda_{n-2r}) \cdot g_1 \cdots g_r , \qquad g_j = (t - \alpha_j)^2 + \beta_j^2 > 0 ,$$

$$a, \lambda_i, \alpha_j, \beta_j \in \mathbb{R} , \quad \beta_j \neq 0 , \qquad r, n - 2r \geq 0 .$$

Die analytische Berechnung (zunächst komplexer Nullstellen) ist im allgemeinen nur für Polynome vom Grad ≤ 4 möglich. Für Polynome mit höherem Grad ist man auf numerische Näherungsverfahren angewiesen. Der Fundamentalsatz der Algebra und für reelle Polynome zusätzlich die Gleichheit der Vielfachheit komplexer Nullstellen ist dann eine wichtige Kontrolle, ob man wirklich alle Nullstellen numerisch gefunden hat!

53 Diagonalisierung

Wir kommen nun zurück auf Eigenwerte und Diagonalisierbarkeit.

Satz 53.1 Sei $F \in \text{End}(V)$ und $A = M_{\mathcal{A}}^{\mathcal{A}}(F)$ die darstellende Matrix bezüglich einer beliebigen Basis $\mathcal{A} = (w_1, \dots, w_n)$ von V. Dann gilt

$$\operatorname{Eig}(F;\lambda) = \Phi_{\mathcal{A}}(\operatorname{L\ddot{o}s}(A - \lambda \cdot E_n, 0))$$
.

Dabei ist

$$\Phi_{\mathcal{A}}: K^n \to V$$
, $\Phi_{\mathcal{A}}(e_i) = w_i$,

der Isomorphismus, der die Standardbasis des K^n in die Basis $\mathcal A$ überführt, und

$$L\ddot{o}s(A - \lambda \cdot E_n, 0) = \{x \in K^n : (A - \lambda \cdot E_n)x = 0\}.$$

Beweis. Sei $v \in \text{Eig}(F; \lambda)$, dann ist

$$F(v) = \lambda v \quad \Leftrightarrow \quad \Phi_A^{-1} \circ F \circ \Phi_A \circ \Phi_A^{-1}(v) = \lambda \Phi_A^{-1}(v) \ .$$

Wir setzen $x = \Phi_{\mathcal{A}}^{-1}(v) \in K^n$. Mit $A = M_{\mathcal{A}}^{\mathcal{A}}(F) := \Phi_{\mathcal{A}}^{-1} \circ F \circ \Phi_{\mathcal{A}} \in M(n, K)$ folgt

$$v \in \text{Eig}(F; \lambda) \quad \Leftrightarrow \quad A \cdot x = \lambda \cdot x \quad \Leftrightarrow \quad (A - \lambda \cdot E_n)x = 0$$

Damit haben wir ein Verfahren zur Bestimmung von Eigenwerten und zugehörigen Eigenräumen von $F \in \text{End}(V)$ gefunden:

1. Wähle eine beliebige Basis $\mathcal{A} = (w_1, \dots, w_n)$ von V. Bestimme die darstellende Matrix $A = (a_{ij})$ durch Zerlegen der n Vektoren $F(w_i)$ nach der Basis \mathcal{A} ,

$$F(w_j) = \sum_{i=1}^n a_{ij} \cdot w_i .$$

2. Berechne das charakteristische Polynom $P_A(t) = \det(A - t \cdot E_n) \in K[t]$ und bestimme seine Nullstellen $\lambda_1, \ldots, \lambda_m \in K$ (paarweise verschieden) und ihre Vielfachheit $r_i := \mu(P_A; \lambda_i)$ aus der Darstellung

$$P_A(t) = (t - \lambda_1)^{r_1} \cdots (t - \lambda_m)^{r_m} \cdot g(t) ,$$

wobe
i $g \in K[t]$ keine Nullstelle in Kbesitzt. Die
 $\lambda_1, \dots, \lambda_m$ sind dann genau die Eigenwerte von F. Für $K = \mathbb{C}$ gilt $n = r_1 + \cdots + r_m$.

3. Löse zu jeder Nullstelle λ_i des charakteristischen Polynoms das lineare Gleichungssystem $(A - \lambda_i \cdot E_n)x^{(i)} = 0$. Der Lösungsraum ist ein s_i -dimensionaler Untervektorraum von K^n . Ist $x^{(i)} = \sum_{j=1}^n x_j^{(i)} e_j \in$ $\text{L\"os}(A - \lambda_i \cdot E_n, 0)$, dann ist $v^{(i)} = \Phi_{\mathcal{A}}(x^{(i)}) = \sum_{j=1}^n x_j^{(i)} w_j \in \text{Eig}(F; \lambda_i)$ $mit \dim(\operatorname{Eig}(F; \lambda_i)) = s_i$

Beispiel 53.2 Es sei
$$F: \mathbb{R}^3 \to \mathbb{R}^3$$
 in der Standardbasis gegeben durch $F(x) = A \cdot x$ mit $A = \begin{pmatrix} 2 & 2 & 3 \\ 1 & 2 & 1 \\ 2 & -2 & 1 \end{pmatrix}$. Schritt 1 entfällt.

Schritt 2. Es gilt

$$\det(A - tE_n) = \det\begin{pmatrix} 2 - t & 2 & 3 \\ 1 & 2 - t & 1 \\ 2 & -2 & 1 - t \end{pmatrix}$$

$$= (2 - t) \cdot \det\begin{pmatrix} 2 - t & 1 \\ -2 & 1 - t \end{pmatrix} - 2 \cdot \det\begin{pmatrix} 1 & 1 \\ 2 & 1 - t \end{pmatrix} + 3 \cdot \det\begin{pmatrix} 1 & 2 - t \\ 2 & -2 \end{pmatrix}$$

$$= (2 - t) \cdot (t^2 - 3t + 4) + 2(t + 1) + 3(2t - 6) = -t^3 + 5t^2 - 2t - 8$$

$$= -(t + 1)(t^2 - 6t + 8) = -(t + 1)(t - 4)(t - 2).$$

Damit hat F die Eigenwerte $\lambda_1 = -1$, $\lambda_2 = 2$, $\lambda_3 = 4$. Insbesondere ist F diagonalisierbar.

Schritt 3. Die Eigenräume bestimmen sich (dank der Standardbasis) zu $\operatorname{Eig}(F;\lambda_i) = \ker(A - \lambda_i \cdot E_3)$, sie werden also als Lösung eines homogenen LGS erhalten. Wir bestimmen $\text{Eig}(F;-1) = \{v_1 \in \mathbb{R}^3 : (A-(-1)E_3)v_1 = 0\}$ durch Zeilenumformungen zu

$$\begin{pmatrix} 3 & 2 & 3 \\ 1 & 3 & 1 \\ 2 & -2 & 2 \end{pmatrix} \xrightarrow{IV_{12}(-\frac{1}{3}), IV_{13}(-\frac{2}{3})} \begin{pmatrix} 3 & 2 & 3 \\ 0 & \frac{7}{3} & 0 \\ 0 & -\frac{10}{3} & 0 \end{pmatrix} \xrightarrow{IV_{23}(\frac{10}{7}), III_{2}(\frac{3}{7})} \begin{pmatrix} 3 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\stackrel{IV_{21}(-2), III_{1}(\frac{1}{3})}{\longmapsto} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \Rightarrow \quad v_{1} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} t_{1} , \qquad t_{1} \in \mathbb{R} .$$

Analog findet man
$$v_2=\begin{pmatrix}2\\3\\-2\end{pmatrix}t_2$$
 und $v_3=\begin{pmatrix}8\\5\\2\end{pmatrix}t_3$. Sämtliche Eigenräume

sind eindimensional.

Für $t_i \neq 0$ bildet $\mathcal{B} = (v_1, v_2, v_3)$ eine Basis von \mathbb{R}^3 . Aufgefaßt als Matrix vermittelt $S = (v_1, v_2, v_3) \in GL(3, \mathbb{R})$ die Transformation von der Standardbasis $\mathcal{A} = \mathcal{E}$ in die Eigenbasis \mathcal{B} von F, d.h. es gilt $\Phi_{\mathcal{B}}(x) = S \cdot x$ in den Bezeichnungen von Satz 45.2. Nach Satz 48.1 (bzw. dem kommuativen Diagramm davor) gilt $M_{\mathcal{B}}^{\mathcal{B}}(F) = \Phi_{\mathcal{B}}^{-1} \circ F \circ \Phi_{\mathcal{B}} = S^{-1} \cdot A \cdot S$. Für $t_1 = t_2 = t_3 = 1$ ist

$$S = \begin{pmatrix} 1 & 2 & 8 \\ 0 & 3 & 5 \\ -1 & -2 & 2 \end{pmatrix} \quad \Rightarrow \quad S^{-1} = \frac{1}{30} \begin{pmatrix} 16 & -20 & -14 \\ -5 & 10 & -5 \\ 3 & 0 & 3 \end{pmatrix}$$

und

$$S^{-1} \cdot A \cdot S = \left(\begin{array}{rrr} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{array} \right)$$

Sei $F \in \text{End}(V)$ mit $\dim(V) = n$ und $A = M_{\mathcal{A}}^{\mathcal{A}}(F) \in M(n, K)$ die darstellende Matrix bezüglich einer beliebigen Basis \mathcal{A} von V. Wir wissen:

- i) Ist F diagonalisierbar, dann ist $P_A(t) = (-1)^n (t \lambda_1)^{r_1} \cdots (t \lambda_m)^{r_m}$, d.h. das charakteristische Polynom zerfällt in Linearfaktoren (wähle eine Basis aus Eigenvektoren).
- ii) Ist $P_A(t) = (-1)^n (t \lambda_1) \cdots (t \lambda_n)$ und alle λ_i sind paarweise verschieden, dann ist F diagonalisierbar.

Es verbleibt also zu untersuchen, wann F diagonalisierbar ist im Falle von Vielfachheiten der Eigenwerte.

Satz 53.3 Sei $F \in \text{End}(V)$ und A seine darstellende Matrix bezüglich einer beliebigen Basis von V. Ist λ ein Eigenwert von F, dann gilt

$$1 \le \dim(\operatorname{Eig}(F;\lambda)) \le \mu(P_A;\lambda)$$
.

Beweis. Sei (v_1, \ldots, v_s) eine Basis von Eig $(F; \lambda)$. Dann ist $s \geq 1$, da λ Eigenwert. Wir ergänzen (v_1, \ldots, v_s) zu einer Basis $\mathcal{A} = (v_1, \ldots, v_s, v_{s+1}, \ldots, v_n)$ von V. Für

die darstellende Matrix $A = M_A^A(F) = (a_{ij})$ gilt

$$A = \begin{pmatrix} \lambda & 0 & \\ & \ddots & B \\ 0 & \lambda & \\ & 0 & C \end{pmatrix},$$

wobei oben links der Block λE_s steht. Dann gilt für das charakteristische Polynom

$$P_A(t) := \det(A - tE_n) = (-1)^s (t - \lambda)^s \det(C - tE_{n-s})$$
.

Folglich ist $s \leq \mu(P_A; \lambda)$.

Der Fall dim(Eig($F; \lambda$)) = $\mu(P_A; \lambda)$ ist von besonderem Interesse:

Satz 53.4 Sei V ein n-dimensionaler Vektorraum, $F \in \text{End}(V)$ und $A = M_{\mathcal{A}}^{\mathcal{A}}(F) \in M(n,K)$ die darstellende Matrix bezüglich einer beliebigen Basis \mathcal{A} von V. Dann sind die folgenden Eigenschaften äquivalent:

- i) F ist diagonalisierbar.
- ii) Das charakteristische Polynom zerfällt in Linearfaktoren und es gilt $\dim(\text{Eig}(F;\lambda)) = \mu(P_A;\lambda)$ für jeden Eigenwert λ von F.
- iii) Sind $\lambda_1, \ldots, \lambda_k$ die paarweise verschiedenen Eigenwerte von F, dann gilt $V = \text{Eig}(F; \lambda_1) \oplus \cdots \oplus \text{Eig}(F; \lambda_k)$.

Bemerkung: ii) liefert damit das entscheidende Kriterium für Diagonalisierbarkeit: Das charakteristische Polynom muß in Linearfaktoren zerfallen und die Dimensionen der Eigenräume müssen gleich den Vielfachheiten der Nullstellen sein.

Beweis. i) \Rightarrow ii) Ist F diagonalisierbar, so ordnen wir die zugehörige Basis aus Eigenvektoren wie folgt:

$$\mathcal{B} = (v_1^{(1)}, \dots, v_{s_1}^{(1)}, v_1^{(2)}, \dots, v_{s_2}^{(2)}, \dots, v_1^{(k)}, \dots, v_{s_k}^{(k)}).$$

Dabei ist $(v_1^{(i)}, \dots, v_{s_i}^{(i)})$ eine Basis von $\text{Eig}(F; \lambda_i)$, und insbesondere gilt $F(v_j^{(i)}) = \lambda_i v_j^{(i)}$ für $1 \leq j \leq s_i$. In dieser Basis gilt für das charakteristische Polynom

$$P_F(t) = (\lambda_1 - t)^{s_1} (\lambda_2 - t)^{s_2} \cdots (\lambda_k - t)^{s_k}$$
,

welches somit die Eigenschaften ii) besitzt.

ii) \Rightarrow iii) Durch $W = \text{Eig}(F; \lambda_i) + \cdots + \text{Eig}(F; \lambda_k)$ werde ein Untervektorraum von V definiert. Da Eigenvektoren zu verschiedenen Eigenwerten linear

unabhängig sind, gilt $W = \text{Eig}(F; \lambda_1) \oplus \cdots \oplus \text{Eig}(F; \lambda_k)$. Dann folgt $\dim(W) = s_1 + \cdots + s_k = n$ und somit W = V.

iii) \Rightarrow i) Sei $\mathcal{B}_i = (v_1^{(i)}, \dots, v_{s_i}^{(i)})$ eine Basis von Eig $(F; \lambda_i)$. Dann ist

$$\mathcal{B} = (v_1^{(1)}, \dots, v_{s_1}^{(1)}, v_1^{(2)}, \dots, v_{s_2}^{(2)}, \dots, v_1^{(k)}, \dots, v_{s_k}^{(k)})$$

eine Basis von V. Wegen $F(v_j^{(i)}) = \lambda_i v_j^{(i)}$ für $1 \leq j \leq s_i$ ist \mathcal{B} eine Basis aus Eigenvektoren von F, d.h. F ist diagonalisierbar.

Wir sehen uns ein Beispiel zur Diagonalisierung an:

Beispiel 53.5 Es sei $F \in \text{End}(\mathbb{R}^3)$ gegeben durch

$$F(x, y, z) := (y - z, 3x + 2y - 3z, 2x + 2y - 3z)$$
.

1. Schritt: Bestimmung der darstellenden Matrix bezüglich einer Basis. Die Vektoren v=(x,y,z) und $w=(y-z,\ 3x+2y-3z,\ 2x+2y-3z)$ sind bereits in der Standardbasis $\mathcal{A}=(e_1,e_2,e_3)$ des \mathbb{R}^3 dargestellt. Daraus lesen wir

$$F(e_1) = 3e_2 + 2e_3$$
, $F(e_2) = e_1 + 2e_2 + 2e_3$, $F(e_3) = -e_1 - 3e_2 - 3e_3$

ab. Dann ist die darstellende Matrix bezüglich der Standardbasis $A=(a_{ij})=M_{\mathcal{A}}^{\mathcal{A}}(F)$ gegeben durch $F(e_j)=\sum_{i=1}^3 a_{ij}\cdot e_i$. Wir lesen ab:

$$A = \left(\begin{array}{ccc} 0 & 1 & -1 \\ 3 & 2 & -3 \\ 2 & 2 & -3 \end{array}\right) .$$

(Die Bilder der Basisvektoren ergeben die Spalten von A.)

2. Schritt: Berechnung des charakteristischen Polynoms. Zu berechnen ist $det(A-t \cdot E_3)$, z.B. durch elementare Zeilenumformungen in eine obere Dreiecksmatrix:

$$\det(A - t \cdot E_3) = \det\begin{pmatrix} -t & 1 & -1 \\ 3 & 2 - t & -3 \\ 2 & 2 & -3 - t \end{pmatrix} \stackrel{P_{13}}{=} - \det\begin{pmatrix} 2 & 2 & -3 - t \\ 3 & 2 - t & -3 \\ -t & 1 & -1 \end{pmatrix}$$

$$\stackrel{Q_{12}(-\frac{3}{2}) \cdot Q_{13}(\frac{t}{2})}{=} - \det\begin{pmatrix} 2 & 2 & -3 - t \\ 0 & -1 - t & \frac{3}{2} + \frac{3}{2}t \\ 0 & 1 + t & -1 - \frac{3}{2}t - \frac{1}{2}t^2 \end{pmatrix}$$

$$\stackrel{Q_{23}(1)}{=} - \det\begin{pmatrix} 2 & 2 & -3 - t \\ 0 & -1 - t & \frac{3}{2} + \frac{3}{2}t \\ 0 & 0 & \frac{1}{2} - \frac{1}{2}t^2 \end{pmatrix} = -2(-1 - t)(\frac{1}{2} - \frac{1}{2}t^2) = (1 + t)(1 - t^2)$$

$$= -(t - 1)(t - (-1))^2.$$

Damit zerfällt das charakteristische Polynom in Linearfaktoren. Seine Nullstellen sind $\lambda_1 = 1$ mit Vielfachheit $\mu(P_A, 1) = 1$ und $\lambda_2 = -1$ mit Vielfachheit

$$\mu(P_A, -1) = 2.$$

3. Schritt: Bestimmen der Eigenräume. Zum Eigenwert $\lambda_1 = 1$ lösen wir das lineare Gleichungssystem $(A - \lambda_1 \cdot E_3)x = 0$ durch elementare Zeilenumformungen:

$$\begin{pmatrix} -1 & 1 & -1 \\ 3 & 1 & -3 \\ 2 & 2 & -4 \end{pmatrix} \xrightarrow{Q_{12}(3)} \xrightarrow{Q_{13}(2)} \begin{pmatrix} -1 & 1 & -1 \\ 0 & 4 & -6 \\ 0 & 4 & -6 \end{pmatrix} \xrightarrow{Q_{23}(-1)} \begin{pmatrix} -1 & 1 & -1 \\ 0 & 4 & -6 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{Q_{12}(-\frac{1}{4})} \begin{pmatrix} -1 & 0 & \frac{1}{2} \\ 0 & 4 & -6 \\ \hline 0 & 0 & 0 \end{pmatrix} \xrightarrow{S_1(-1)} \xrightarrow{S_2(\frac{1}{4})} \begin{pmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & -\frac{3}{2} \\ \hline 0 & 0 & 0 \end{pmatrix}.$$

Damit gilt $\dim(\text{Eig}(F;1)) = 1$, genauer

$$\operatorname{Eig}(F;1) = \mathbb{R}v_1^{(1)}, \quad v_1^{(1)} = \begin{pmatrix} 1\\3\\2 \end{pmatrix}.$$

Zur Bestimmung des Eigenraums Eig(F; -1) ist das LGS $(A + E_3)x = 0$ zu lösen:

$$\begin{pmatrix} 1 & 1 & -1 \\ 3 & 3 & -3 \\ 2 & 2 & -2 \end{pmatrix} \xrightarrow{Q_{12}(-3)} \xrightarrow{Q_{13}(-2)} \begin{pmatrix} 1 & 1 & -1 \\ \hline 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Damit gilt $\dim(\text{Eig}(F;1)) = 2$, und die Lösungsvektoren sind

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \frac{-1}{1} & \frac{1}{0} \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = \begin{pmatrix} -w_1 + w_2 \\ w_1 \\ w_2 \end{pmatrix}.$$

Damit finden wir die beiden Basisvektoren

$$v_1^{(2)} = \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \quad v_2^{(2)} = \begin{pmatrix} 1\\0\\1 \end{pmatrix}.$$

Also sind die Dimensionen der Eigenräume gleich der Vielfachheit der Nullstellen, und F ist diagonalisierbar. Eine Basis von V, welche F diagonalisiert, ist also

$$\mathcal{B} = \left(\begin{pmatrix} 1\\3\\2 \end{pmatrix}, \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix} \right), \Rightarrow S = \begin{pmatrix} 1&-1&1\\3&1&0\\2&0&1 \end{pmatrix}.$$

In dieser Basis gilt also

$$\Lambda := M_{\mathcal{B}}^{\mathcal{B}}(F) = S^{-1} \cdot A \cdot S = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Über die Diagonalisierung lassen sich Polynome und sogar geeignete Potenzreihen von Matrizen bequem ausrechnen. Es sei $A = S \cdot \Lambda \cdot S^{-1} \in M(n,K)$ diagonalisierbar, wobei $\Lambda = (\lambda_{ij})$ mit $\lambda_{ij} = \delta_{ij}\lambda_i \in M(n,K)$ die aus den Eigenwerten gebildete Diagonalmatrix ist und $S \in GL(n,K)$ die Transformation in die Eigenbasis vermittelt, d.h. die *i*-te Spalte von S ist Eigenvektor zu λ_i . Dann gilt $A^k = S \cdot \Lambda^k \cdot S^{-1}$ mit $\Lambda^k = (\lambda'_{ij})$ und $\lambda_{ij'} = \lambda^k_i \delta_{ij}$. Insbesondere ist $A^0 = E_n$ zu setzen. In der Lösungstheorie für Differentialgleichungen besonders wichtig ist $\exp(A) := \sum_{k=0}^{\infty} \frac{1}{k!} A^k$. Diese Matrix-Exponentialreihe konvergiert für beliebige $A \in M(n,K)$. Für diagonalisierbare Matrizen läßt sie sich ausrechnen zu $\exp(A) = S \cdot \exp(\Lambda) \cdot S^{-1}$.

Beispiel 53.6 Es sei
$$A = \begin{pmatrix} 2 & 2 & 3 \\ 1 & 2 & 1 \\ 2 & -2 & 1 \end{pmatrix}$$
 aus Beispiel 53.2. Dann ist

$$\exp(A) = \begin{pmatrix} 1 & 2 & 8 \\ 0 & 3 & 5 \\ -1 & -2 & 2 \end{pmatrix} \begin{pmatrix} e^{-1} & 0 & 0 \\ 0 & e^{2} & 0 \\ 0 & 0 & e^{4} \end{pmatrix} \frac{1}{30} \begin{pmatrix} 16 & -20 & -14 \\ -5 & 10 & -5 \\ 3 & 0 & 3 \end{pmatrix}$$
$$= \frac{1}{30} \begin{pmatrix} 16e^{-1} - 10e^{2} + 24e^{4} & -20e^{-1} + 20e^{2} & -14e^{-1} - 10e^{2} + 24e^{4} \\ -15e^{2} + 15e^{4} & 30e^{2} & -15e^{2} + 15e^{4} \\ -16e^{-1} + 10e^{2} + 6e^{4} & 20e^{-1} - 20e^{2} & 14e^{-1} + 10e^{2} + 6e^{4} \end{pmatrix}.$$

In Beispiel 53.5 ist $\Lambda^2 = E_3$ und damit auch $A^2 = (S\Lambda S^{-1}) \cdot (S\Lambda S^{-1}) = E_3$ oder $(A - \lambda_1 E_3)(A - \lambda_2 E_3) = 0.$

Ganz allgemein gilt, wenn man im charakteristischen Polynom $P_A(t)$ die formale Variable t durch A ersetzt, der

Satz 53.7 (Cayley-Hamilton) Es sei $F \in \text{End}(V)$ Endomorphismus eines endlich-dimensionalen Vektorraums und $P_F \in K[t]$ das charakteristische Polynom. Dann gilt $P_F(F) = 0 \in \text{End}(V)$. Ausgedrückt durch Matrizen: Für beliebige $A \in M(n, K)$ mit charakteristischem Polynom $P_A \in K[t]$ gilt $P_A(A) = 0$.

Der Beweis findet sich z.B. in G. Fischer, Lineare Algebra, §4.5. □

In Beispiel 53.5 hatten wir $P_A(t) = (t-1)(t+1)^2$ und damit $(A - E_3)(A + E_3)^2 = 0$. Tatsächlich gilt bereits $(A - E_3)(A + E_3) = 0$ für ein Polynom kleineren Grades. Allgemein läßt sich zu $F \in \text{End}(V)$ ein eindeutiges Minimal polynom $M_F[t]$ finden mit $M_F(F) = 0$ bzw. $M_A(A) = 0$. Das Minimal polynom ist stets Teiler des charakteristischen Polynoms und ein wichtiges Hilfsmittel in Beweisen.

Zum Abschluß der Betrachtungen zur Diagonalisierbarkeit untersuchen wir folgendes Problem: Gegeben seien zwei diagonalisierbare Endomorphismen $F, G \in \text{End}(V)$. Unter welchen Bedingungen sind F, G simultan diagonalisierbar, d.h. es gibt eine Basis von V aus Eigenvektoren von F und G gleichzeitig?

Satz 53.8 Zwei diagonalisierbare Endomorphismen $F, G \in \text{End}(V)$ sind genau dann simultan diagonalisierbar, wenn sie miteinander kommutieren, d.h. wenn $F \circ G = G \circ F$.

Beweis. (\Rightarrow) Sind F, G simultan diagonalisierbar, dann existiert eine Basis $\mathcal{B} = (v_1, \ldots, v_n)$ von V mit $F(v_i) = \lambda_i v_i$ und $G(v_i) = \mu_i v_i$. Dann gilt für einen beliebigen Vektor $v = \sum_{i=1}^n \kappa_i v_i \in V$

$$(F \circ G)(v) = F(G(\sum_{i=1}^{n} \kappa_i v_i)) = \sum_{i=1}^{n} \lambda_i \kappa_i \mu_i v_i = (G \circ F)(v) .$$

 (\Leftarrow) 1) Wir zerlegen den Vektorraum V in die Eigenräume:

$$V = \operatorname{Eig}(F; \lambda_1) \oplus \cdots \oplus \operatorname{Eig}(F; \lambda_k)$$

= \text{Eig}(G; \mu_1) \oplus \cdots \oplus \text{Eig}(G; \mu_l).

Kommutieren F und G, dann gilt $F(\text{Eig}(G; \mu_j)) \subset \text{Eig}(G; \mu_j)$ für alle $1 \leq j \leq l$, denn für $w_j \in \text{Eig}(G; \mu_j)$ folgt

$$G(F(w_i)) = F(G(w_i)) = F(\mu_i w_i) = \mu_i F(w_i)$$
.

2) Sei nun $W_{ij} := \operatorname{Eig}(F; \lambda_i) \cap \operatorname{Eig}(G; \mu_j)$. Dann ist $W_{ij} \subset V$ ein Untervektorraum, und es gilt $\operatorname{Eig}(F; \lambda_i) = W_{i1} \oplus \cdots \oplus W_{il}$. Denn sei $v_i \in \operatorname{Eig}(F; \lambda_i)$, dann gibt es $w_1 \in \operatorname{Eig}(G; \mu_1), \ldots, w_l \in \operatorname{Eig}(G; \mu_l)$ mit $v_i = w_1 + \cdots + w_l$ (verwende Basis von V aus Eigenvektoren von G). Anwenden von F liefert

$$F(v_i) = F(w_1) + \dots + F(w_l) = \lambda_i v_i = \lambda_i w_1 + \dots + \lambda_i w_l.$$

Nun ist $F(w_j) \subset \text{Eig}(G; \mu_j)$, und da Vektoren w_j, w'_j linear unabhängig sind für $j \neq j'$, folgt $F(w_j) = \lambda_i w_j$ für alle $1 \leq j \leq l$. Damit ist $w_j \subset \text{Eig}(F; \lambda_i)$, also $\text{Eig}(F; \lambda_i) = W_{i1} + \cdots + W_{il}$, und aus der linearen Unabhängigkeit folgt die Behauptung.

3) Sei
$$\mathcal{B}_{ij} = (v_1^{(ij)}, \dots v_{s_{ij}}^{(ij)})$$
 eine Basis von W_{ij} , dann ist

$$(\mathcal{B}_{11},\ldots,\mathcal{B}_{1l},\mathcal{B}_{21},\ldots,\mathcal{B}_{2l},\ldots,\mathcal{B}_{k1},\ldots,\mathcal{B}_{kl})$$

eine Basis von V, in der F und G simultan diagonalisierbar sind, mit $F(v_r^{(ij)}) = \lambda_i v_r^{(ij)}$ und mit $G(v_r^{(ij)}) = \mu_j v_r^{(ij)}$.

Simultane Diagonalisierbarkeit (in verallgemeinerter Form) ist wichtig in der Quantenmechanik, wo man in einem System zwei physikalische Größen nur dann gleichzeitig messen kann, wenn die entsprechenden Endomorphismen (des Hilbert-Raums) miteinander kommutieren. Im Wasserstoffatom sind das die Energie, der Gesamtdrehimpuls, eine Komponente des Drehimpulses (üblicherweise die z-Komponente) und der Spin. Entsprechend schreibt sich der Hilbert-Raum als direkte Summe von Eigenunterräumen der linearen Abbildungen, welche diesen physikalischen Größen entsprechen.

54 Orthonormalsysteme

Es sei $\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$ und V ein euklidischer bzw. unitärer Vektorraum (Definition 16.1),d.h. ein reeller bzw. komplexer Vektorraum mit Skalarprodukt $\langle \; , \; \rangle : V \times V \to \mathbb{K}$. Durch $\|v\| = \sqrt{\langle v, v \rangle}$ wurde eine Norm auf V erklärt, durch $d(v, w) = \|v - w\| = \sqrt{\langle v - w, v - w \rangle}$ ein Abstand zwischen Vektoren $v, w \in V$. Außerdem läßt sich in $euklidischen \ Vektorräumen$ der Winkel zwischen Vektoren erklären als

$$\cos \angle(v, w) = \frac{\langle v, w \rangle}{\|v\| \|w\|}.$$

Wegen Cauchy-Schwarz ist die rechte Seite eine reelle Zahl aus [-1,1]. Im \mathbb{R}^n mit dem Standardskalarprodukt ist das die geometrische Winkelformel. Sie überträgt sich auf allgemeine euklidischen Vektorräume, ist aber nicht sinnvoll in unitären Vektorräumen. Jedoch übertägt sich der Begriff "senkrecht" auch auf den unitären Fall:

Definition 54.1 Sei V ein euklidischer bzw. unitärer Vektorraum.

- i) Zwei Vektoren $v, w \in V$ heißen orthogonal (bezüglich des Skalarprodukts), geschrieben $v \perp w$, wenn $\langle v, w \rangle = 0$.
- ii) Zwei Untervektorräume $U,W\subset V$ heißen orthogonal, geschrieben $U\perp W$, wenn $u\perp w$ für alle $u\in U$ und $w\in W$.
- iii) Ist $U \subset V$ ein Untervektorraum, dann heißt

$$U^{\perp} := \{ v \in V : v \perp u \ \forall u \in U \}$$

das orthogonale Komplement von U in V.

iv) Eine Familie (v_1,\ldots,v_n) von Vektoren $v_i\in V$ heißt *orthogonal* oder *Orthogonalsystem*, wenn $v_i\perp v_j$ für alle $i\neq j$. Die Familie heißt *orthonormal* oder *Orthonormalsystem* (ONS), falls $\langle v_i,v_j\rangle=\delta_{ij}$ gilt, und *Orthonormalbasis* (ONB), falls (v_1,\ldots,v_n) außerdem eine Basis von V ist.

Bemerkung: Orthonormalbasen gibt es auch in unendlich-dimensionalen euklidischen/unitären Vektorräumen. Die allgemeine Definition erfordert weitere Hilfsmittel aus der Analysis.

Ist in einer orthogonalen Familie (v_1, \ldots, v_n) der Nullvektor nicht enthalten, $v_i \neq 0$, so gilt:

- i) $(\frac{1}{\|v_1\|}v_1, \dots, \frac{1}{\|v_n\|}v_n)$ eine orthonormale Familie.
- ii) (v_1, \ldots, v_n) linear unabhängig: Sei $0 = \lambda_1 v_1 + \cdots + \lambda_n v_n$, dann ergibt das Skalarprodukt mit sich selbst

$$0 = |\lambda_1|^2 ||v_1||^2 + \dots + |\lambda_n|^2 ||v_n||^2 \qquad \Rightarrow \quad \lambda_1 = \dots = \lambda_n = 0.$$

Einige wichtige Eigenschaften der Orthogonalität:

Satz 54.2 (Pythagoras) Ist (v_1, \ldots, v_n) ein Orthogonalsystem, so gilt $\left\| \sum_{i=1}^n v_i \right\|^2 = \sum_{i=1}^n \|v_i\|^2.$

Beweis.
$$\left\|\sum_{i=1}^{n} v_i\right\|^2 = \left\langle\sum_{i=1}^{n} v_i\sum_{j=1}^{n} v_j\right\rangle = \sum_{i,j=1}^{n} \langle v_i, v_j\rangle = \sum_{i=1}^{n} \langle v_i, v_i\rangle.$$

Satz 54.3 Es sei (V, \langle , \rangle) euklidischer oder unitärer Vektorraum, U Untervektorraum von V und U^{\perp} das orthogonale Komplement. Dann ist U^{\perp} ebenfalls Untervektorraum von V, und es gilt $U \cap U^{\perp} = \{0\}$.

Beweis. Seien $w_1, w_2 \in U^{\perp}$ und $\lambda_1, \lambda_2 \in \mathbb{K}$, so gilt für beliebiges $u \in U$

$$\langle u, \lambda_1 w_1 + \lambda_2 w_2 \rangle = \lambda_1 \langle u, \lambda_1 \rangle + \lambda_2 \langle u, \lambda_2 \rangle = 0$$
,

also $\lambda_1 w_1 + \lambda_2 w_2 \in U^{\perp}$. Ist $u \in U \cap U^{\perp}$, so ist $0 = \langle u, u \rangle$, also u = 0.

Satz 54.4 Es sei (V, \langle , \rangle) euklidischer oder unitärer Vektorraum, $U \subset V$ ein Untervektorraum und $v \in V$. Dann gibt es höchstens einen Vektor $P_U(v) \in U$ mit $v - P_U(v) \in U^{\perp}$. Falls existent, so heißt $P_U(v)$ die orthogonale Projektion von v auf U.

Beweis. Seien $u_1, u_2 \in U$ mit $v - u_1 \in U^{\perp}$ und $v - u_2 \in U^{\perp}$. Dann ist

$$\underbrace{u_1 - u_2}_{\in U} = \underbrace{(v - u_2) - (v - u_1)}_{\in U^{\perp}} \in U \cap U^{\perp} \quad \Rightarrow \quad u_1 - u_2 = 0 \ .$$

Satz 54.5 Es sei (V, \langle , \rangle) euklidischer oder unitärer Vektorraum und (v_1, \ldots, v_n) ein Orthonormalsystem. Sei $U := \operatorname{span}(v_1, \ldots, v_n) \subset V$. Dann gilt:

- i) $P_U(v) = \sum_{i=1}^n \langle v_i, v \rangle v_i \text{ für alle } v \in V.$
- ii) $||P_U(v)||^2 = \sum_{i=1}^n |\langle v_i, v \rangle|^2 \le ||v||^2$ für alle $v \in V$ (Besselsche Ungleichung)
- iii) Ist $v \in V$, so gilt $||v P_U(v)|| < ||v u||$ für alle $u \in U$ mit $u \neq P_U(v)$.
- iv) $0 \le ||v P_U(v)||^2 = ||v||^2 ||P_U(v)||^2 \le ||v||^2$.

Beweis. i) Wir zeigen: $v - P_U(v) \in U^{\perp}$. Nach Satz 54.4 ist $P_U(v)$ dann eindeutig. Auf Grund der Linearität genügt es zu zeigen: $\langle v - P_U(v), v_j \rangle = 0$ für alle $j = 1, \ldots, n$:

$$\langle v_j, v - P_U(v) \rangle = \left\langle v_j, v - \sum_{i=1}^n \langle v_i, v \rangle v_i \right\rangle = \left\langle v_j, v \right\rangle - \sum_{i=1}^n \langle v_i, v \rangle \langle v_j, v_i \rangle$$
$$= \left\langle v_j, v \right\rangle - \left\langle v_j, v \right\rangle = 0.$$

ii) und iv) Es gilt $v - P_U(v) \perp P_U(v)$ und damit nach Pythagoras

$$||v||^2 = ||(v - P_U(v)) + P_U(v)||^2 = ||v - P_U(v)||^2 + ||P_U(v)||^2 \ge ||P_U(v)||^2.$$

Andererseits folgt $||v - P_U(v)||^2 = ||v||^2 - ||P_U(v)||^2 \le ||v||^2$.

iii) Wegen $u \neq P_U(v)$ ist $\|P_U(v) - u\|^2 > 0$ und deshalb nach Pythagoras

$$||v - u||^2 = ||\underbrace{v - P_U(v)}_{\in U^{\perp}} + \underbrace{P_U(v) - u}_{\in U}||^2 = ||v - P_U(v)||^2 + ||P_U(v) - u||^2$$

$$> ||v - P_U(v)||^2.$$

Eigenschaft iii) aus Satz 54.5 hat folgende interessante Folgerung: Es sei $\emptyset \neq W \subset V$ eine Teilmenge. Definieren wir durch $d(v, W) := \inf_{w \in W} \|v - w\|$ den Abstand von v zu W, so gilt mit obigen Bezeichnungen $d(v, U) = \|v - P_U(v)\|$. Ist (v_1, \ldots, v_n) ein Orthonormalsystem und $U = \operatorname{span}(v_1, \ldots, v_n)$, so folgt

$$d(v, U) = \left\| v - \sum_{i=1}^{n} \langle v_i, v \rangle v_i \right\| = \sqrt{\|v\|^2 - \sum_{i=1}^{n} |\langle v_i, v \rangle|^2}.$$

Der folgende Satz hebt die Bedeutung der Orthonormalbasen hervor:

Satz 54.6 (Fourier-Entwicklung) Sei (V, \langle , \rangle) euklidischer oder unitärer Vektorraum und (v_1, \ldots, v_n) ein Orthonormalsystem von V. Dann sind äquivalent:

- i) (v_1, \ldots, v_n) ist Orthonormalbasis.
- ii) Für alle $v \in V$ gilt $v = \sum_{i=1}^{n} \langle v_i, v \rangle v_i$ (Fourier-Entwicklung)
- iii) Für alle $v, w \in V$ gilt $\langle v, w \rangle = \sum_{i=1}^{n} \langle v, v_i \rangle \langle v_i, w \rangle$ (Parsevalsche Gleichung)
- iv) Für alle $v \in V$ gilt $||v||^2 = \sum_{i=1}^n |\langle v_i, v \rangle|^2$
- v) Ist $v \in V$ mit $\langle v_i, v \rangle = 0$ für alle i = 1, ..., n, so gilt v = 0.

Beweis. i) \Rightarrow ii) Insbesondere ist (v_1, \ldots, v_n) Basis, also gilt $v = \sum_{i=1}^n \lambda_i v_i$ mit eindeutig bestimmten $\lambda_i \in \mathbb{K}$. Dann ist $\langle v_j, v \rangle = \sum_{i=1}^n \lambda_i \langle v_j, v_i \rangle = \lambda_j$.

$$\langle v, w \rangle = \left\langle \sum_{i=1}^{n} \langle v_i, v \rangle v_i, \sum_{i=1}^{n} \langle v_i, w \rangle v_i \right\rangle = \sum_{i,j=1}^{n} \overline{\langle v_i, v \rangle} \langle v_i, w \rangle \langle v_i, v_j \rangle = \sum_{i=1}^{n} \langle v, v_i \rangle \langle v_i, w \rangle.$$

iii) \Rightarrow iv) Setze w = v.

iv) \Rightarrow v) Sei $\langle v_i, v \rangle = 0$ für alle i = 1, ..., n, so folgt $||v||^2 = \sum_{i=1}^n |\langle v_i, v \rangle| = 0$, also v = 0.

v) \Rightarrow i) Sei $U := \operatorname{span}(v_1, \ldots, v_n)$. Zu zeigen ist V = U. Angenommen, es gäbe ein $w \in V$ mit $w \notin U$. Also ist $w - P_U(w) \neq 0$. Wegen $w - P_U(w) \in U^{\perp}$ gilt $\langle w - P_u(w), v_j \rangle = 0$ für alle $i = 1, \ldots, n$ und somit $w - P_u(w) = 0$ nach v), Widerspruch.

Satz 54.7 (Orthonormalisierungssatz) Sei V ein endlich-dimensionaler euklidischer oder unitärer Vektorraum und sei $W \subset V$ ein Untervektorraum mit Orthonormalbasis (w_1, \ldots, w_m) . Dann gibt es eine Ergänzung zu einer Orthonormalbasis $(w_1, \ldots, w_m, w_{m+1}, \ldots, w_n)$ von V.

Insbesondere besitzt jeder endlich-dimensionale euklidische oder unitäre Vektorraum eine Orthonormalbasis.

Beweis ([Gram-]Schmidtsches Orthonormalisierungsverfahren). Für W=V ist alles klar. Andernfalls gibt es einen Vektor $v \in V$ mit $v \notin W$. Seine Projektion auf W ist

$$P_W(v) = \langle w_1, v \rangle w_1 + \dots + \langle w_m, v \rangle w_m .$$

Damit ist $v-P_W(v) \in W^\perp$ und $v-P_W(v) \neq 0$ (sonst wäre $v \in W$). Setze $w_{m+1} := \frac{1}{\|v-P_W(v)\|}(v-P_W(v))$, dann ist die Familie (w_1,\ldots,w_m,w_{m+1}) orthonormal, und $W' := \operatorname{span}(w_1,\ldots,w_m,w_{m+1})$ ist (m+1)-dimensionaler Untervektorraum von V mit Orthonormalbasis (w_1,\ldots,w_{m+1}) . Durch Wiederholung des Verfahrens erhält man eine Orthonormalbasis von V.

Beispiel 54.8 Sei $V = \mathbb{R}^3$ und $U \subset V$ die von den Vektoren $u_1 = (2, 1, 2)$ und $u_2 = (1, 2, 7)$ aufgespannte Ebene. Gesucht ist die Projektion des Vektors v = (1, 4, 9) auf U und der Abstand von v zu U.

Zunächst wird durch das Schmidtsche Orthonormalisierungsverfahren das System (u_1, u_2) in ein Orthonormalsystem überführt. Dazu ist $w_1 := \frac{u_1}{\|u_1\|} = \frac{1}{3}(2,1,2)$ und dann $P_{\mathbb{R}w_1}(u_2) = \langle w_1, u_2 \rangle w_1 = \frac{1}{9}(2+2+14) \cdot (2,1,2) = (4,2,4)$. Es folgt $u_2 - P_{\mathbb{R}w_1}(u_2) = (-3,0,3)$ und damit $w_2 = \frac{1}{\sqrt{2}}(-1,0,1)$. Somit gilt

$$P_U(v) = \langle w_1, v \rangle w_1 + \langle w_2, v \rangle w_2$$

= $\frac{1}{9}(2+4+18) \cdot (2,1,2) + \frac{1}{2}(-1+0+9) \cdot (-1,0,1)$
= $\left(\frac{16}{3}, \frac{8}{3}, \frac{16}{3}\right) + (-4,0,4) = \left(\frac{4}{3}, \frac{8}{3}, \frac{28}{3}\right)$.

Schließlich ist

$$v - P_U(v) = (1, 4, 9) - (\frac{4}{3}, \frac{8}{3}, \frac{28}{3}) = (-\frac{1}{3}, \frac{4}{3}, -\frac{1}{3})$$

und damit $d(v, U) = ||v - P_U(v)|| = \sqrt{2}$.

Schließlich können wir für endlich-dimensionale Untervektorräume das orthogonale Komplement genauer charakterisieren.

Satz 54.9 Es sei (V, \langle , \rangle) ein euklidischer oder unitärer Vektorraum und $U \subset V$ ein endlich-dimensionaler Untervektorraum. Dann gilt:

- i) $V = U \oplus U^{\perp}$. In diesem Fall heißt $U \oplus U^{\perp}$ die orthogonale direkte Summe.
- ii) Ist $P_U: V \to U$ die orthogonale Projetion auf U, so ist $P_{U^{\perp}} = \mathrm{id}_V P_U: V \to U^{\perp}$ die orthogonale Projetion auf U^{\perp} .

Beweis. i) Nach Satz 54.7 besitzt U eine Orthonormalbasis (w_1, \ldots, w_n) . Nach Satz 54.5 ist dann die orthogonale Projektion eines beliebigen Vektors $v \in V$ auf U gegeben durch $P_U(v) = \sum_{i=1}^n \langle w_i, v \rangle w_i$. Damit ist $v = \underbrace{v - P_U(v)}_{\in U^{\perp}} + \underbrace{P_u(v)}_{\in U} \in V$

$$U^{\perp} + U$$
, also $V = U + U^{\perp}$ und $U \cap U^{\perp} = \{0\}$ nach Satz 54.9.

ii) folgt aus
$$(id_V - P_U)(v) = v - P_U(v)$$
 und i).

55 Selbstadjungierte und unitäre Endomorphismen. I

Definition 55.1 Sei V ein euklidischer bzw. unitärer Vektorraum und $F \in \text{End}(V)$. Ein Endomorphismus $F^* \in \text{End}(V)$ heißt zu F adjungiert, wenn

$$\langle v, F(w) \rangle = \langle F^*(v), w \rangle \qquad \forall v, w \in V .$$

Satz 55.2 Sei V ein euklidischer bzw. unitärer Vektorraum. Falls der zu F adjungierte Endomorphismus $F^* \in \text{End}(V)$ existiert, so gilt:

- i) F^* ist eindeutig.
- ii) $\ker(F^*) = (\operatorname{im}(F))^{\perp}$
- iii) $\operatorname{im}(F^*) = (\ker(F))^{\perp}$

Beweis. i) Gäbe es zwei Lösungen F_1^* und F_2^* mit $\langle v, F(w) \rangle = \langle F_1^*(v), w \rangle = \langle F_2^*(v), w \rangle$ für alle $v, w \in V$, so folgt

$$0 = \langle F_1^*(v), w \rangle - \langle F_2^*(v), w \rangle = \langle F_1^*(v) - F_2^*(v), w \rangle$$

für alle v, w, insbesondere für $w = F_1^*(v) - F_2^*(v)$. Damit ist $F_1^* = F_2^*$.

- ii) Sei $v \in (\operatorname{im}(F))^{\perp}$, so ist $0 = \langle v, F(w) \rangle = \langle F^*(v), w \rangle$ für alle $w \in V$, und damit $\ker(F^*) = (\operatorname{im}(F))^{\perp}$.
- iii) Sei $w \in \ker(F)$, dann ist $0 = \langle v, F(w) \rangle = \langle F^*(v), w \rangle$ für alle $v \in V$. Das bedeutet $\operatorname{im}(F^*) = (\ker(F))^{\perp}$.

Satz 55.3 Sei V ein endlich-dimensionaler euklidischen bzw. unitären Vektorraums Dann gibt es zu jedem $F \in \text{End}(V)$ den adjungierten Endomorphismus F^* , und bezüglich einer Orthonormalbasis \mathcal{B} von V gilt $M_{\mathcal{B}}^{\mathcal{B}}(F^*) = (M_{\mathcal{B}}^{\mathcal{B}}(F))^* := (M_{\mathcal{B}}^{\mathcal{B}}(F))^t$.

Beweis. Nach Satz 54.7 besitzt V eine Orthonormalbasis $\mathcal{B} = (v_1, \dots, v_n)$. In dieser Basis sei $F(v_j) = \sum_{i=1}^n a_{ij} v_i$, d.h. $M_{\mathcal{B}}^{\mathcal{B}}(F) = (a_{ij})$. Dann gilt

$$\langle v_k, F(v_j) \rangle = \sum_{i=1}^n a_{ij} \langle v_k, v_i \rangle = a_{kj} = \sum_{i=1}^n \langle \overline{a_{ki}} v_i, v_j \rangle$$
.

Damit hat $F^*(v_k) := \sum_{i=1}^n b_{ik} v_i$ mit $b_{ik} = \overline{a_{ki}}$ die Eigenschaft eines adjungierten Endomorphismus, und $M_{\mathcal{B}}^{\mathcal{B}}(F^*) = (b_{ij}) = \overline{(a_{ij})^t}$.

Definition 55.4 Es sei (V, \langle , \rangle) ein endlich-dimensionaler euklidischer oder unitärer Vektorraum. Ein Endomorphismus $F \in \operatorname{End}(V)$ heißt

- i) selbstadjungiert (für $\mathbb{K}=\mathbb{R}$ auch symmetrisch), wenn $F=F^*$ gilt, d.h. $\langle v,F(w)\rangle=\langle F(v),w\rangle$ für alle $v,w\in V$,
- ii) orthogonal bzw. unitär, wenn $F \circ F^* = F^* \circ F = \mathrm{id}_V$ gilt, d.h. $\langle F(v), F(w) \rangle = \langle v, w \rangle$ für alle $v, w \in V$,
- iii) normal, falls $F \circ F^* = F^* \circ F$ gilt.

Orthogonale, unitäre und selbstadjungierte Endomorphismen sind folglich auch normal. Die Definition überträgt sich wegen Satz 55.3 auf Matrizen: Eine Matrix $A \in M(n,K)$ heißt selbstadjungiert oder hermitesch, wenn $A = A^* = \overline{A^t}$ gilt, und orthogonal bzw. unitär, wenn $A^* = A^{-1}$ ist. Es folgt $|\det A| = 1$ für orthogonale bzw. unitäre Matrizen. Die Bedingungen $A^t \cdot A = E_n$ bzw. $A^* \cdot A = E_n$ bedeuten, daß die Spalten von A eine Orthonormalbasis von \mathbb{K}^n bilden. Analog bedeutet $A \cdot A^t = E_n$ bzw. $A \cdot A^* = E_n$, daß die Zeilen von A eine Orthonormalbasis von \mathbb{K}^n bilden.

Satz 55.5 • $O(n) := \{A \in GL(n; \mathbb{R}) : A^{-1} = A^t\}$ ist Untergruppe der $GL(n; \mathbb{R})$ (orthogonale Gruppe).

- $SO(n) := \{A \in O(n) : \det A = 1\}$ ist Untergruppe der $GL(n; \mathbb{R})$ (spezielle orthogonale Gruppe).
- $U(n) := \{A \in GL(n; \mathbb{C}) : A^{-1} = A^*\}$ ist Untergruppe der $GL(n; \mathbb{C})$ (unitäre Gruppe).
- $SU(n) := \{A \in U(n) : \det A = 1\}$ ist Untergruppe der $GL(n; \mathbb{C})$ (spezielle unitäre Gruppe).

Beweis. Für $A, B \in O(n)$ ist $(AB)^{-1} = B^{-1}A^{-1} = B^tA^t = (AB)^t$ sowie $(A^{-1})^{-1} = A = (A^{-1})^t$, damit ist O(n) Untergruppe. Für $A, B \in SO(n)$ ist $\det(AB) = (\det A)(\det B) = 1$, damit ist SO(n) Untergruppe. Analog für U(n) und SU(n).

Beispiel 55.6 Im \mathbb{R}^2 mit dem kanonischen Skalarprodukt ist die Standardbasis eine Orthonormalbasis. Die Bedingung für orthogonale Matrizen lautet

$$O(2) := \left\{ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{R}, A^t \cdot A = E_2 \\ \Leftrightarrow a^2 + b^2 = c^2 + d^2 = 1 \text{ und } ac + bd = 0 \right\}.$$

Setzen wir $a = \cos \phi$, $b = \sin \phi$, $c = \sin \theta$, $d = \cos \theta$, so verbleibt $\sin(\phi + \theta) = 0$ mit den beiden verschiedenen Lösungen $\phi = -\theta$ und $\phi = \pi - \theta$. Somit gilt:

$$O(2) = \left\{ \left(\begin{array}{cc} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array} \right) : \ \theta \in [0, 2\pi[\right\} \cup \left\{ \left(\begin{array}{cc} \cos \phi & \sin \phi \\ \sin \phi & -\cos \phi \end{array} \right) : \ \phi \in [0, 2\pi[\right\}.$$

Die erste Menge beschreibt Drehungen im \mathbb{R}^2 und die zweite eine Kombination aus Drehungen und einer Spiegelung. Das sind gerade die Transformationen im \mathbb{R}^2 , welche Winkel und Abstände erhalten. Die Gruppe SO(2) besteht nur aus der ersten durch θ parametrisierten Menge.

Satz 55.7 Ist $F \in \text{End}(V)$ orthogonal bzw. unitär, so gilt

- i) $||F(v)|| = ||v|| \quad \forall v \in V.$
- ii) Ist umgekehrt ||F(v)|| = ||v|| für alle $v \in V$, so ist F orthogonal bzw. unitär.
- iii) $v \perp w \Rightarrow F(v) \perp F(w)$.
- iv) F ist Isomorphismus und F^{-1} ist ebenfalls orthogonal bzw. unitär.
- v) Ist $\lambda \in \mathbb{K}$ Eigenwert von F, so ist $|\lambda| = 1$.

Beweis. i) und iii) sind klar.

- ii) Nach den Polarisationsformeln aus Satz 16.10 folgt aus ii) auch $\langle F(v), F(w) \rangle = \langle v, w \rangle$ für alle $v, w \in V$.
- iv) Aus i) folgt, daß F injektiv ist: Wäre F(v) = F(w), so ist 0 = ||F(v w)|| = ||v w||. Wegen $F(F^*(v)) = v$ ist F surjektiv, also bijektiv. Die Ersetzung $v \mapsto F^{-1}(v)$ liefert Orthogonalität/Unitarität von F^{-1} .
 - v) Ist v Eigenvektor von F zum Eigenwert λ , so ist

$$||v|| = ||F(v)|| = ||\lambda v|| = |\lambda|||v|| \Rightarrow |\lambda| = 1 \text{ we gen } v \neq 0.$$

Damit erhalten orthogonale/unitäre Endomorphismen die Normen, Abstände und Winkel und haben somit eine wichtige geometrische Interpretation als *Isometrien*.

Satz 55.8 Ist $F \in \text{End}(V)$ selbstadjungiert, dann sind alle Eigenwerte von F reell. Insbesondere hat eine hermitesche Matrix nur reelle Eigenwerte.

Beweis. Ist $F(v) = \lambda v$ mit $v \neq 0$, so gilt

$$\lambda \langle v, v \rangle = \langle v, F(v) \rangle = \langle F(v), v \rangle = \overline{\lambda} \langle v, v \rangle$$

und damit $\lambda = \overline{\lambda}$.

56 Trigonalisierung

Diagonalisierbarkeit eines Endomorphismus erfordert zwei Bedingungen:

- (1) Das charakteristische Polynom zerfällt in Linearfaktoren.
- (2) Die Vielfachheit der Nullstellen ist gleich der Dimension der Eigenräume. Wir werden nun sehen, daß für Endomorphismen, die nur (1) erfüllen, eine Basis existiert, so daß die darstellende Matrix eine obere Dreiecksmatrix ist. Das genügt zur Lösung von Gleichungssystemen.

Definition 56.1 Sei $F \in \text{End}(V)$. Ein Untervektorraum $W \subset V$ heißt F-invariant, wenn $F(W) \subset W$.

Offenbar sind die Eigenräume $\text{Eig}(F;\lambda)$ automatisch F-invariant. Für die Triagonalisierung sind invariante Unterräume interessant, die keine Eigenräume sind.

Satz 56.2 Sei $W \subset V$ ein F-invarianter Unterraum und $F|_W : W \to W$ die Einschränkung von F auf W. Dann ist das charakteristische Polynom $P_{F|_W}(t)$ ein Teiler von $P_F(t)$.

Beweis. Sei $\dim(V) = n$ und $\dim(W) = r \le n$. Wir ergänzen eine Basis $\mathcal{B}|_W$ von W zu einer Basis $\mathcal{B} = (\mathcal{B}|_W, \mathcal{B}')$ von V. Sei $A|_W := M_{\mathcal{B}|_W}^{\mathcal{B}|_W}(F|_W)$, dann gilt

$$A = M_{\mathcal{B}}^{\mathcal{B}}(F) = \left(\begin{array}{cc} A|_{W} & * \\ 0 & A' \end{array}\right) .$$

Damit ist $P_A(t) = \det(A - t \cdot E_n) = P_{A|_W}(t) \cdot \det(A' - t \cdot E_{n-r}).$

Sei $F \in \operatorname{End}(K^n)$ in der Standardbasis durch eine obere Dreiecksmatrix $A \in M(n,K)$, d.h. $a_{ij}=0$ für i>j, dargestellt. Definieren wir $W_i:=\operatorname{span}(e_1,\ldots,e_r)$, dann gilt $F(W_r)\subset W_r$, d.h. alle W_r mit $1\leq r\leq n$ sind F-invariant. Abstrakter formuliert:

Definition 56.3 Eine Fahne (V_r) in einem n-dimensionalen Vektorraum V ist eine Kette

$$\{0\} = V_0 \subset V_1 \subset V_2 \cdots \subset V_n = V$$

von Untervektorräumen mit $\dim(V_r)=r$. Ist $F\in \mathrm{End}(V)$, dann heißt die Fahne F-invariant, wenn $F(V_r)\subset V_r$ für alle $0\leq r\leq n$.

Jede Basis von V definiert eine Fahne. Entscheidend ist, daß in einer F-invarianten Fahne gilt $F(V_1) \subset V_1$ mit $\dim(V_1) = 1$, so daß es einen Eigenvektor von F geben muß. Aus der Definition folgt direkt:

Satz 56.4 Für $F \in \text{End}(V)$ sind folgende Bedingungen äquivalent:

- i) Es gibt eine F-invariante Fahne von V.
- ii) Es gibt eine Basis \mathcal{B} von V, so da β $M_{\mathcal{B}}^{\mathcal{B}}(F)$ eine obere Dreiecksmatrix ist.

Ist das der Fall, dann heißt F trigonalisierbar.

Nun der entscheidende Satz:

Satz 56.5 Für $F \in \operatorname{End}(V)$ mit $\dim(V) = n$ sind folgende Bedingungen äquivalent:

- i) F ist trigonalisierbar.
- ii) Das charakteristische Polynom von F zerfällt in Linearfaktoren, d.h.

$$P_F(t) = (-1)^n (t - \lambda_1)(t - \lambda_2) \cdots (t - \lambda_n) , \qquad \lambda_1, \dots, \lambda_n \in K .$$

Insbesondere gilt: Jeder Endomorphismus eines endlich-dimensionalen komplexen Vektorraums ist trigonalisierbar.

Beweis. i) \Rightarrow ii) ist klar, denn ist die darstellende Matrix A von F bezüglich der Basis \mathcal{B} aus Satz 56.4 eine obere Dreiecksmatrix, so gilt $T_F(t) = P_A(t) = \det(A - t \cdot E_n) = (a_{11} - t) \cdot \cdot \cdot \cdot (a_{nn} - t)$, d.h. $\lambda_i = a_{ii}$.

ii) \Rightarrow i) durch Induktion nach $n = \dim(V)$. Der Fall n = 1 ist klar. Sei also $n \ge 2$, dann wählen wir einen Eigenvektor v_1 zum Eigenwert (Nullstelle) λ_1 und ergänzen v_1 zu einer Basis $\mathcal{B} = (v_1, w_1, \ldots, w_{n-1})$ von V. Dann ist

$$V = V_1 \oplus W$$
 mit $V_1 := \operatorname{span}(v_1)$, $W = \operatorname{span}(w_1, \dots, w_{n-1})$.

Nun ist V_1 ein F-invarianter Untervektorraum, W im allgemeinen aber nicht:

$$A = M_{\mathcal{B}}^{\mathcal{B}}(F) = \begin{pmatrix} \lambda_1 & a_1 & \dots & a_{n-1} \\ \hline 0 & & & \\ \vdots & & B & \\ 0 & & & \end{pmatrix}.$$

Diese Darstellung definiert zwei lineare Abbildungen

$$G: W \to W$$
,
$$G(w_j) = \sum_{i=1}^{n-1} B_{ij} \cdot w_i$$
,

$$H: W \to V_1$$
, $H(w_i) = a_i \cdot v_1$.

Nun gilt für das charakteristische Polynom $P_A(t) = -(t-\lambda_1)P_B(t)$. Da $P_A(t)$ nach Voraussetzung in Linearfaktoren zerfällt, zerfällt auch $P_B(t)$ in Linearfaktoren. Nach Induktionsvoraussetzung ist die durch B definierte lineare Abbildung $G \in \operatorname{End}(W)$ trigonalisierbar. Es gibt also eine G-invariante Fahne $\{0\} = W_0 \subset W_1 \subset \cdots \subset W_{n-1} = W$. Wir setzen $V_r := V_1 + W_{r-1}$ für $1 \le r \le n$. Ist $v = \mu v_1 + w \in V_r$, also $w \in W_{r-1}$, dann gilt

$$F(v) = \mu F(v_1) + F(w) = \mu \lambda_1 v_1 + G(w) + H(w) \in V_1 + W_{r-1}$$

wegen $H(w) \in V_1$ und $G(w) \in W_{r-1}$. Somit ist $\{0\} = V_0 \subset V_1 \subset \cdots \subset V_n = V$ eine F-invariante Fahne, und F ist trigonalisierbar.

Beispiel 56.6 Eine gedämpfte Schwingung wird durch die Differentialgleichung

$$\ddot{x}(t) + 2\mu\dot{x}(t) + \omega^2 x(t) = 0$$
, $x(0) = x_0$, $\dot{x}(0) = v_0$

beschrieben. Wir setzen $y_1(t) = x(t)$, $y_2(t) = \dot{x}(t)$, dann ergibt sich ein System von zwei gekoppelten linearen Differentialgleichungen erster Ordnung

$$\dot{y} = A \cdot y$$
 mit $y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 1 \\ -\omega^2 & -2\mu \end{pmatrix}$, $y(0) = \begin{pmatrix} x_0 \\ v_0 \end{pmatrix}$.

Da A unabhängig von t ist, ist die formale (und korrekte) Lösung gegeben durch

$$y(t) = \exp(At) \cdot y(0)$$
 mit $\exp(At) = E_2 + \sum_{n=1}^{\infty} \frac{t^n}{n!} \underbrace{A \cdots A}_{n}$,

jedoch lassen sich diese Produkte so nicht leicht berechnen. Der Ausweg besteht in der Trigonalisierung von A.

Zunächst hat $P_A(t) = t^2 + 2\mu t + \omega^2$ die komplexen Nullstellen $\lambda_{1,2} = -\mu \pm \sqrt{\mu^2 - \omega^2}$. Für $\mu = \omega$ hat die Nullstelle $\lambda = -\mu$ die Vielfachheit 2, die uns näher interessieren wird. Für $\mu = \omega$ bestimmen wir den Eigenraum zu $\lambda = -\omega$:

$$(A + \omega \cdot E_2) \cdot v = \begin{pmatrix} \omega & 1 \\ -\omega^2 & -\omega \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} \omega & 1 \\ -\omega^2 & -\omega \end{pmatrix} \xrightarrow{IV_{12}(\omega)} \begin{pmatrix} \omega & 1 \\ 0 & 0 \end{pmatrix} \qquad \Rightarrow v = \begin{pmatrix} 1 \\ -\omega \end{pmatrix} \cdot t.$$

Damit ist $\dim(\text{Eig}(A; -\omega)) = 1$, aber die Nullstelle hat Vielfachheit 2. Folglich ist A nicht diagonalisierbar.

Zur Trigonalisierung wählen wir die Basis $\mathcal{B} = (v, e_2)$, dann ist

$$A = \underbrace{\begin{pmatrix} 1 & 0 \\ -\omega & 1 \end{pmatrix}}_{S} \begin{pmatrix} -\omega & 1 \\ 0 & -\omega \end{pmatrix} \underbrace{\begin{pmatrix} 1 & 0 \\ \omega & 1 \end{pmatrix}}_{S^{-1}}.$$

Somit gilt

$$A^{n} = S \begin{pmatrix} -\omega & 1 \\ 0 & -\omega \end{pmatrix}^{n} S^{-1} = S \begin{pmatrix} (-\omega)^{n} & n\omega^{n-1} \\ 0 & (-\omega)^{n} \end{pmatrix} S^{-1}$$
$$\Rightarrow \exp(At) = S \begin{pmatrix} e^{-\omega t} & te^{\omega t} \\ 0 & e^{-\omega t} \end{pmatrix} S^{-1}$$

und damit insbesondere

$$(S^{-1}y)(t) = \begin{pmatrix} e^{-\omega t} & te^{\omega t} \\ 0 & e^{-\omega t} \end{pmatrix} S^{-1}y(0)$$

Unter Verwendung von $S^{-1}y=\begin{pmatrix} x\\ \omega x+\dot{x} \end{pmatrix}$ erhalten wir für die 2. Komponente

$$\omega x + \dot{x} = e^{-\omega t} (\omega x_0 + v_0)$$

$$\Rightarrow \qquad e^{-\omega t} \frac{d}{dt} (e^{\omega t} x) = e^{-\omega t} (\omega x_0 + v_0)$$

$$\Rightarrow \qquad (e^{\omega t} x) = const + t(\omega x_0 + v_0), \quad t = 0 \Rightarrow const = x_0$$

$$\Rightarrow \qquad x(t) = e^{-\omega t} (x_0 + t\omega x_0 + tv_0).$$

Die Lösung beschreibt die Auslenkung x(t) im aperiodischen Grenzfall.

57 Selbstadjungierte und unitäre Endomorphismen. II

Satz 57.1 Es sei $(V, \langle ... \rangle)$ ein endlich-dimensionaler euklidischer oder unitärer Vektorraum und $F \in \text{End}(V)$ normal. Dann gilt:

- i) $\ker F = \ker F^*$
- ii) Ist λ Eigenwert von F, dann ist $\bar{\lambda}$ Eigenwert von F^* , und es gilt $\operatorname{Eig}(F;\lambda) = \operatorname{Eig}(F^*;\bar{\lambda})$.
- iii) Sind λ_1, λ_2 Eigenwerte von F mit $\lambda_1 \neq \lambda_2$, so gilt $\operatorname{Eig}(F; \lambda_1) \perp \operatorname{Eig}(F; \lambda_2)$.

Beweis. i) Sei $v \in \ker F$, so folgt

$$0 = \langle F(v), F(v) \rangle = \langle F^* \circ F(v), v \rangle = \langle F \circ F^*(v), v \rangle = \langle F^*(v), F^*(v) \rangle ,$$

also auch $v \in \ker F^*$. Ebenso $\ker F^* \subset \ker F$.

ii) Es gilt $(F - \lambda \mathrm{id}_V)^* = F^* - \overline{\lambda} \mathrm{id}_V$. Mit F ist auch $F - \lambda \mathrm{id}_V$ normal. Dann folgt aus i)

$$\operatorname{Eig}(F;\lambda) = \ker(F - \lambda \operatorname{id}_V) = \ker(F - \lambda \operatorname{id}_V)^* = \ker(F^* - \overline{\lambda} \operatorname{id}_V) = \operatorname{Eig}(F^*; \overline{\lambda}).$$

Sei $v \in \text{Eig}(F; \lambda_1), w \in \text{Eig}(F; \lambda_2)$, so folgt

$$\lambda_2 \langle v, w \rangle = \langle v, \lambda_2 w \rangle = \langle v, F(w) \rangle = \langle F^*(v), w \rangle = \langle \overline{\lambda_1} v, w \rangle = \lambda_1 \langle v, w \rangle$$
 also $0 = (\lambda_2 - \lambda_1) \langle v, w \rangle$.

Trigonalisierung ist entscheidend für:

Theorem 57.2 Es sei $(V, \langle ... \rangle)$ ein endlich-dimensionaler <u>unitärer</u> Vektorraum und $F \in \text{End}(V)$ normal. Dann besitzt V eine Orthonormalbasis $\mathcal{B} = (v_1, \ldots, v_n)$ aus Eigenvektoren von F. Insbesondere ist F diagonalisierbar.

Es seien $\lambda_1, \ldots, \lambda_k$ die paarweise verschiedenen Eigenwerte von F und Eig $(F; \lambda_i)$, $i = 1, \ldots, k$ die zugehörigen paarweise orthogonalen Eigenräume. Nach Satz 54.7 besitzt Eig $(F; \lambda_i)$ eine Orthonormalbasis $\mathcal{B}_i = (v_{i1}, \ldots, v_{in_i})$. Nach Satz 57.1 ist $\mathcal{B}' = \mathcal{B}_1 \cup \cdots \cup \mathcal{B}_k$ ein Orthonormalbystem aus Eigenvektoren von F. Wir zeigen: \mathcal{B}' ist Orthonormalbasis von V.

Sei $W := \bigoplus_{i=1}^k \operatorname{Eig}(F; \lambda_i)$. Nach Satz 54.9 ist $V = W \oplus W^{\perp}$. Angenommen, es gäbe ein $0 \neq v \in W^{\perp}$. Dann gilt für beliebiges $w \in W$ die Identität $\langle F(v), w \rangle = \langle v, F^*(w) \rangle = 0$, da $F^*(W) \subset W$. Somit ist $F|_{W^{\perp}} \in \operatorname{End}(W^{\perp})$ und damit nach Satz 56.5 in W^{\perp} trigonalisierbar. Insbesondere besitzt $F|_{W^{\perp}}$ einen Eigenvektor (Definition 56.3). Dieser ist aber auch Eigenvektor von $F \in \operatorname{End}(V)$ und damit bereits in W enthalten, Widerspruch.

Wir können nicht erwarten, daß sich dieses Theorem auf den reellen Fall überträgt, da Endomorphismen eines reellen Vektorraums nicht triagonalisierbar sein müssen. Insbesondere lassen sich die Matrizen aus SO(2) nicht diagonalisieren. Es gilt aber:

Satz 57.3 Jeder <u>selbstadjungierte</u> Endomorphismus eines endlich-dimensionalen euklidischen Vektorraums V ist diagonalisierbar.

Beweis. Wie im vorigen Theorem bis zur Konstruktion von $F \in \operatorname{End}(W^{\perp})$. Einziger Unterschied ist, daß $W^{\perp} = V$ sein könnte. Offenbar ist $F|_{W^{\perp}}$ auch auf W^{\perp} selbstadjungiert. Das charakteristische Polynom zerfällt zunächst über $\mathbb C$ in komplexe Linearfaktoren. Nach Satz 55.8 sind alle Eigenwerte reell, d.h. das charakteristische Polynom zerfällt sogar in reelle Linearfaktoren. Damit ist $F|_{W^{\perp}} \in \operatorname{End}(W^{\perp})$ in W^{\perp} reell trigonalisierbar, und es gibt einen Eigenvektor. \square

Satz 57.4 Ist $A \in M(n, \mathbb{K})$ eine reelle symmetrische bzw. hermitesche Matrix, dann gibt es eine orthogonale bzw. unitäre Matrix $T \in O(n)$ bzw. $T \in U(n)$ mit

$$A = T\Lambda T^*$$
, $\Lambda = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & \lambda_n \end{pmatrix}$,

wobei $\lambda_i \in \mathbb{R}$ die Eigenwerte von A sind.

Beweis. Die Matrix $A = \overline{A^t} = (a_{ij})$, also $a_{ji} = \overline{a_{ij}}$, definiert einen selbstadjungierten Endomorphismus $F = F^* \in \operatorname{End}(\mathbb{K}^n)$ durch $F(e_j) = \sum_{i=1}^n a_{ij}e_i$, wobei (e_1, \ldots, e_n) die Standardbasis ist. Sei (v_1, \ldots, v_n) eine orthonormale Basis von \mathbb{K}^n aus Eigenvektoren von F, d.h. $F(v_i) = \lambda_i v_i$. Wir zerlegen v_i nach der Standardbasis: $v_i = \sum_{k=1}^n t_{ki}e_k$. Aus der Orthonormalität folgt $\langle v_i, v_j \rangle = \sum_{k=1}^n \overline{t_{ki}}t_{kj} = \delta_{ij}$, und damit $T^*T = E_n$ für $T = (t_{ij})$. Andererseits gilt nach der Parsevalschen Gleichung

$$\delta_{kj} = \langle e_k, e_j \rangle = \sum_{i=1}^n \langle e_k, v_i \rangle \langle v_i, e_j \rangle = \sum_{i=1}^n t_{ki} \overline{t_{ji}}$$

also $TT^* = E_n$ und damit $T \in O(n)$ bzw. $T \in U(n)$. Nun gilt

$$F(v_k) = \sum_{j=1}^{n} t_{jk} F(e_j) = \sum_{i,j=1}^{n} t_{jk} a_{ij} e_i = \lambda_k v_k = \sum_{l=1}^{n} \lambda_k t_{lk} e_l.$$

Da die e_i linear unabhängig sind, folgt $\sum_{j=1}^n a_{ij}t_{jk} = t_{ik}\lambda_k$ für alle k. Wir multiplizieren mit $\overline{t_{lk}}$ und summieren über k:

$$\sum_{k,j=1}^{n} a_{ij} t_{jk} \overline{t_{lk}} = a_{il} = \sum_{k=1}^{n} t_{ik} \lambda_k \overline{t_{lk}} = (T\Lambda T^*)_{il} . \qquad \Box$$

Wir wissen, daß die Spalten (v_1, \ldots, v_n) von T eine Orthonormalbasis bilden, mit $Av_i = \lambda_i v_i$. Die Matrix T dreht also die Standardorthonormalbasis (e_i) in die Eigenbasis (v_1, \ldots, v_n) , in der A diagonal ist. Diese Drehung heißt Hauptachsentransformation. Sie ist z.B. wichtig bei der Rotation asymmetrischer Körper. Solchen Körpern läßt sich ein Trägheitstensor zuornden, was im wesentlichen einer symmetrischen Matrix $I = (I_{kl})$ entspricht. Dann läßt sich das Trägheitsmoment des Körpers bezüglich Rotation um eine durch den Schwerpunkt gehende Achse $\omega = (\omega_1, \omega_2, \omega_3)$ berechnen zu

$$J_{\omega} = \frac{1}{\|\omega^2\|} \langle \omega, I\omega \rangle = \frac{1}{\|\omega^2\|} \sum_{k,l=1}^{3} I_{kl} \omega_k \omega_l .$$

Wir wissen, daß I als symmetrische Matrix diagonalisierbar ist und der \mathbb{R}^3 eine Orthonormalbasis aus Eigenvektoren von I besitzt. Diese Basisvektoren heißen die $Haupttr\"{a}gheitsachsen$ des Körpers. Es zeigt sich, daß im allgemeinen nur die Rotation um zwei orthogonale Achsen stabil ist, nämlich um die Eigenvektoren von I zum größten und kleinsten Eigenwert. (Aus physikalischen Gründen sind sämtliche Eigenwerte von I positiv.)

Die Drehung der Standardbasis in die Basis der Hauptträgheitsachsen vermittelt duch ein $T \in SO(3)$ parametrisiert man zweckmäßigwerweise durch Eulersche Winkel:

$$T = \begin{pmatrix} \cos \gamma & -\sin \gamma & 0\\ \sin \gamma & \cos \gamma & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos \beta & -\sin \beta\\ 0 & \sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

Zuerst wird die ONB (e_1, e_2, e_3) um einen Winkel α um e_3 gedreht. Es entsteht die ONB (e'_1, e'_2, e_3) . Es folgt eine Rotation um den Winkel β um e'_1 zur ONB (e'_1, e''_2, e''_3) . Schließlich dreht man um den Winkel γ um e''_3 .

Ist (V, \langle , \rangle) ein euklidischer bzw. unitärer Vektorraum, dann definiert jeder Endomorphismus $F \in \operatorname{End}(V)$ eine Abbildung $L: V \times V \to \mathbb{K}$ durch $L(v, w) := \langle v, F(w) \rangle$, die linear in der 2. Komponente (Axiom (S1) aus Definition 16.1) und semilinar in der 1. Komponente ist. Abbildungen $L: V \times V \to \mathbb{K}$ mit diesen beiden Eigenschaften heißen Bilinearformen bzw. Sesquilinearformen. Gilt zusätzlich (S2) aus Definition 16.1, so heißt die Bilinearform symmetrisch bzw. die Sesquilinearform hermitesch. Wegen

$$\langle v, F(w) \rangle = \langle F^*(v), w \rangle = \overline{\langle w, F^*(v) \rangle}$$

(falls F^* existiert) gilt (S2) für $L(v, w) := \langle v, F(w) \rangle$ genau dann, wenn F selbst-adjungiert ist. Schließlich kann man sich fragen, wann (S3) gilt:

Definition 57.5 Sei V ein Vektorraum über \mathbb{K} . Eine symmetrische Bilinearform bzw. hermitesche Sesquilinearform $L:V\times V\to \mathbb{K}$ heißt

- positiv semidefinit, wenn $L(v,v) \geq 0$ für alle $v \in V$,
- *nicht ausgeartet*, wenn $L(v,v)=0 \Leftrightarrow v=0$,
- positiv definit, wenn L positiv semidefinit und nicht-ausgeartet ist.

Ein Skalarprodukt auf V ist damit eine positiv definite symmetrische Bilinearform bzw. positiv definite hermitesche Sesquilinearform.

Wir interessieren uns nun für die Frage, wie man entscheiden kann, ob eine symmetrische Bilinearform positiv definit ist (und somit ein Skalarprodukt definiert).

Satz 57.6 Es sei (V, \langle , \rangle) ein euklidischer bzw. unitärer Vektorraum. Die durch einen selbstadjungierten Endomorphismus $F = F^* \in \text{End}(V)$ über $L(v, w) = \langle v, F(w) \rangle$ definierte Bilinearform bzw. Sesquilinearform L ist genau dann positiv definit, wenn alle Eigenwerte von F positiv sind.

Beweis. Nach Theorem 57.2 bzw. Satz 57.3 besitzt V eine Orthonormalbasis $\mathcal{B}=(v_1,\ldots,v_n)$ aus Eigenvektoren von F. Es sei $F(v_i)=\lambda_i v_i$ mit $\lambda_i\in\mathbb{R}$ nach Satz 55.8. Dann gilt für einen beliebigen Vektor $v=\mu_1 v_1+\cdots+\mu_n v_n\in V$

$$L(v,v) = \langle v, F(v) \rangle = \left\langle \sum_{j=1}^{n} \mu_j v_j, \sum_{j=1}^{n} \mu_i F(v_i) \right\rangle = \sum_{i,j=1}^{n} \overline{\mu_j} \mu_i \lambda_i \langle v_i, v_j \rangle$$
$$= \lambda_1 |\mu_1|^2 + \dots + \lambda_n |\mu_n|^2.$$

Daraus folgt die Behauptung.

Allerdings ist die Bestimmung der Eigenwerte meist nur numerisch möglich. Ein einfacheres Kriterium im reellen Fall kann wie folgt erhalten werden

Satz 57.7 Sei $A \in M(n, \mathbb{R})$ eine symmetrische Matrix und $A_k \in M(k, \mathbb{R})$ die linke obere Teilmatrix von A aus k Zeilen und Spalten. Dann ist A genau dann positiv definit, wenn $\det A_k > 0$ für alle $1 \le k \le n$.

Beweis. (\Rightarrow) Ist $A = A^t \in M(n, \mathbb{R})$ positiv definit, dann ist det $A = \det(T\Lambda T^t) = \det \Lambda(\det T)^2 = \lambda_1 \cdots \lambda_n > 0$. Die Matrix A_k beschreibt die Einschränkung der durch A definierten Bilinearform auf den Untervektorraum

$$V_k := \{ x = (x_1, \dots, x_n) \in \mathbb{R}^n : x_{k+1} = \dots = x_n = 0 \} .$$

Ist A positiv definit, dann ist auch $\langle x, Ax \rangle > 0$ für alle $x \in V_k$ mit $x \neq 0$. Folglich ist det $A_k > 0$.

 (\Leftarrow) wird durch Induktion nach n bewiesen. Sei in Blockdarstellung

$$A = A^t = \left(\begin{array}{c|c} B & b \\ \hline b^t & c \end{array}\right) \in M(n, \mathbb{R}) \qquad B = B^t \in M(n-1, \mathbb{R}) \;, \quad c \in \mathbb{R}$$

$$b \in \mathbb{R}^{n-1} \; \text{(Spaltenvektor)} \;.$$

Nach Induktionsvoraussetzung folgt aus det $A_k = \det B_k > 0$ für $1 \le k \le n-1$, daß B positiv definit ist. Damit gilt $B = T\Lambda T^t$, wobei $T \in O(n-1)$ und $\Lambda \in M(n-1,\mathbb{R})$ eine Diagonalmatrix mit positiven Eigenwerten $\lambda_1,\ldots,\lambda_{n-1}$ von B auf der Diagonale ist. Dann ist

$$A = \begin{pmatrix} T & 0 \\ \hline 0 & 1 \end{pmatrix} \begin{pmatrix} \Lambda & T^t b \\ \hline b^t T & c \end{pmatrix} \begin{pmatrix} T & 0 \\ \hline 0 & 1 \end{pmatrix}^t$$

$$= \begin{pmatrix} T & 0 \\ \hline 0 & 1 \end{pmatrix} \begin{pmatrix} E_{n-1} & 0 \\ \hline b^t T \Lambda^{-1} & 1 \end{pmatrix} \begin{pmatrix} \Lambda & 0 \\ \hline 0 & c - b^t T \Lambda^{-1} T^t b \end{pmatrix} \begin{pmatrix} E_{n-1} & \Lambda^{-1} T^t b \\ \hline 0 & 1 \end{pmatrix} \begin{pmatrix} T & 0 \\ \hline 0 & 1 \end{pmatrix}^t.$$

Nun ist $\det A = (\det T)^2 (\det \Lambda) (c - b^t T \Lambda^{-1} T^t b)$ genau dann positiv, wenn $c - b^t T \Lambda^{-1} T^t b > 0$. Andererseits ist $x^t A x > 0$ für alle $x \in \mathbb{R}^n$ genau dann, wenn $y^t \left(\begin{array}{c|c} \Lambda & 0 \\ \hline 0 & c - b^t T \Lambda^{-1} T^t b \end{array}\right) y > 0$ für alle $y \in \mathbb{R}^n$.

Achtung: In obiger Darstellung für A ist $\left(\frac{E_{n-1} \mid \Lambda^{-1}T^tb}{0 \mid 1}\right)$ keine orthogonale Matrix für $b \neq 0$, so daß $\lambda_1, \ldots, \lambda_{n+1}, c - b^tT\Lambda^{-1}T^tb$ nicht die Eigenwerte von A sind!

58 Der Rieszsche Darstellungssatz

Definition 58.1 Es sei $(V, \| \ \|)$ ein normierter Vektorraum über \mathbb{K} . Eine lineare Abbildung $f: V \to \mathbb{K}$ heißt *beschränkt*, wenn es ein $0 \le C < \infty$ gibt, so daß für alle $v \in V$ gilt $|f(v)| \le C ||v||$.

Satz 58.2 Es sei (V, || ||) ein normierter Vektorraum über \mathbb{K} . Die Menge

$$V' = \mathcal{B}(V, \mathbb{K}) := \{ f : V \to \mathbb{K} : f \text{ linear und beschränkt } \}$$

aller linearen beschränkten Abbildungen von V nach \mathbb{K} ist ein Banach-Raum bezüglich der Operator-Norm

$$||f||_{op} := \sup_{v \in V, ||v|| \le 1} |f(v)|.$$

Dieser Banach-Raum V' heißt der Dualraum von V.

Beweis. Betrachtet man nur die Linearität, dann ist $V' = \operatorname{Hom}(V, \mathbb{K})$ als Homomorphismus von Vektorräumen selbst wieder ein Vektorraum. Zu zeigen ist jedoch, daß aus $f,g \in V'$ auch $f+g \in V'$ folgt. Das ergibt sich jedoch aus dem Beweis, daß $\| \ \|_{op}$ eine Norm ist. $\|\lambda f\|_{op} = |\lambda| \|f\|_{op}$ ist klar. Die Dreiecksungleichung folgt aus

$$||f + g||_{op} = \sup_{v \in V, ||v|| \le 1} |f(v) + g(v)| \le \sup_{v \in V, ||v|| \le 1} (|f(v)| + |g(v)|)$$

$$\le \sup_{v \in V, ||v|| \le 1} |f(v)| + \sup_{w \in V, ||w|| \le 1} |g(v)| = ||f||_{op} + ||g||_{op}.$$

Schließlich bedeutet $||f||_{op} = 0$, daß f(v) = 0 für alle $v \in V$, also ist f die Nullabbildung.

Wegen $|f(v) - f(w)| = ||f||_{op}||v - w||$ ist f Lipschitz-stetig mit Lipschitz-Konstante $||f||_{op}$, insbesondere stetig. Sei $X = \{v \in V : ||v|| = 1\}$ die Einheitssphäre in V, dann ist die Einschränkung $f|_X : X \to \mathbb{K}$ ebenfalls stetig. In Satz 39.4 hatten wir bewiesen, daß für einen metrischen Raum X der Vektorraum $C_b(X) = \{f : X \to \mathbb{K} \text{ stetig } : ||f|| := \sup_{x \in X} |f(x)| < \infty\}$ vollständig ist. Hier ist $||f|| = ||f||_{op}$.

In Hilbert-Räumen (vollständigen unitären/euklidischen Verktorräumen) entsteht der Dualraum durch eine besondere Konstruktion. Ein Untervektorraum U eines Hilbert-Raums heißt abgeschlossen, wenn $U \subset H$ als Teilmenge metrischer Räume abgeschlossen ist, d.h. wenn der Grenzwert jeder in H konvergenten Folge von Punkten aus U bereits in U enthalten ist.

Satz 58.3 Sei (H, \langle , \rangle) ein Hilbert-Raum und $U \subset H$ ein abgeschlossener Untervektorraum. Dann gilt:

- i) Zu jedem $v \in H$ existiert genau ein $w \in U$ mit $||v w|| = \min_{u \in U} ||v u|| =: d(v, U)$.
- ii) Es gilt $v w \in U^{\perp}$, so daß $P_U(v) := w$ die orthogonale Projektion von v auf U definiert.
- iii) $H = U \oplus U^{\perp}$.

Beweis. i) Sei $\gamma := \inf_{u \in U} \|v - u\|$. Dann gibt es eine Folge $(u_n)_{n \in \mathbb{N}}$ von Vektoren $u_n \in U$, so daß die Folge $(\gamma_n)_{n \in \mathbb{N}}$ mit $\gamma_n := \|v - u_n\|$ gegen γ konvergiert. Wir zeigen mit der Parallelogrammgleichung, daß $(u_n)_{n \in \mathbb{N}}$ eine Cauchy-Folge ist. Wegen der Vollständigkeit konvergiert diese gegen ein $w \in H$, und wegen der Abgeschlossenheit von U gilt sogar $w \in U$.

$$||u_m - u_n||^2 = ||(v - u_n) - (v - u_m)||^2$$

= 2||v - u_n||^2 + 2||v - u_m||^2 - 4||v - \frac{1}{2}(u_n + u_m)||^2.

Wegen $\frac{1}{2}(u_n + u_m) \in U$ ist $\gamma \leq \|v - \frac{1}{2}(u_n + u_m)\| \leq \frac{1}{2}(\|v - u_n\| + \|v - u_m\|)$. Da $\|v - u_n\|$ und $\|v - u_m\|$ gegen γ konvergieren, konvergiert auch $\|v - \frac{1}{2}(u_n + u_m)\|^2$ gegen γ und $\|u_m - u_n\|^2$ gegen 0 für $m, n \to \infty$.

Wir zeigen anschließend $v-w\in U^\perp,$ dann folgt die Eindeutigkeit von w wie in Satz 54.4.

ii) Sei also $0 \neq u \in U$ beliebig und $\lambda := \frac{\langle v - w, u \rangle}{\|u\|^2} \in \mathbb{K}$. Dann bedeutet die Minimalität $\|v - w\|^2 \leq \|v - w - \lambda u\|^2$. Andererseits ist

$$||v - w - \lambda u||^2 = ||v - w||^2 + |\lambda|^2 ||u||^2 - \lambda \langle v - w, u \rangle - \overline{\lambda} \langle u, v - w \rangle$$

= $||v - w||^2 - |\lambda|^2 ||u||^2$,

also $\lambda = 0$ und damit $v - w \in U^{\perp}$.

iii) Somit ist $v=(v-P_U(v))+P_U(v)\in U^\perp+U$, also $H=U+U^\perp$ und $U\cap U^\perp=\{0\}$ nach Satz 54.9. \square

Satz 58.4 (Riesz) Sei H ein Hilbert-Raum, $(H', || ||_{op})$ sein Dualraum und $j: H \to H'$ definiert durch $j(v)(w) := \langle v, w \rangle$. Dann gilt:

- i) j ist antilinear, d.h. $j(\lambda v + \mu w) = \overline{\lambda}j(v) + \overline{\mu}j(w)$.
- ii) j ist isometrisch, also injektiv.
- iii) j ist surjektiv, also ein Anti-Isomorphismus. (gilt nicht für Prä-Hilbert-Räume!)

Beweis. i) folgt aus der Definition.

ii) Zu zeigen ist $||j(v)||_{op} = ||v||$ für alle $v \in H$. Das ist klar für v = 0. Ansonsten $(v \neq 0)$ betrachten wir

$$||j(v)||_{op} = \sup_{w \in H, ||w|| \le 1} |j(v)(w)| = \sup_{w \in H, ||w|| \le 1} |\langle v, w \rangle| \le ||v||,$$

also $||j(v)||_{op} \leq ||v||$. Andererseits ist für die spezielle Wahl $j(v)\left(\frac{v}{||v||}\right) = ||v||$ und damit $||j(v)||_{op} \geq ||v||$.

iii) Sei $0 \neq f \in H'$ und sei $U := \ker f \subset H$. Wir zeigen, daß der Untervektorraum $U \subset H$ abgeschlossen bezüglich der durch $\| \ \|$ induzierten Topologie ist. Sei $(v_n)_{n \in \mathbb{N}}$ eine in H konvergente Folge von Vektoren $v_n \in U$ mit

 $v:=\lim_{n\to\infty}v_n\in H$, dann ist $f(v_n)=0$ für alle $n\in\mathbb{N}$. Da f beschränkt ist, folgt mit

$$|f(v)| \le |f(v) - f(v_n)| + |f(v_n)| = |f(v - v_n)| \le ||f||_{op} ||v - v_n|| \to 0 \text{ für } n \to \infty$$

daß f(v) = 0 gilt. Damit ist $v \in \ker f$, und U ist abgeschlossen.

Da $f \neq 0$, gibt es Vektoren $0 \neq v \in H$ mit $f(v) \neq 0$, insbesondere ist $U \neq H$. Wegen $H = U \oplus U^{\perp}$ gibt es $0 \neq v \in U^{\perp}$ mit ||v|| = 1. Sei $\lambda := f(v)$. Dann gilt für alle $w \in H$

$$f(f(w)v - f(v)w) = f(w)f(v) - f(v)f(w) = 0$$
,

also $f(w)v - f(v)w \in U$ und weiter

$$0 = \langle \underbrace{v}_{\in U^{\perp}}, \underbrace{f(w)v - f(v)w}_{\in U} \rangle = f(w) \|v\|^2 - f(v) \langle v, w \rangle,$$

also
$$f(w) = \lambda \langle v, w \rangle = \langle \overline{\lambda}v, w \rangle$$
 und damit $f = j(\overline{\lambda}v)$.

Insbesondere gilt in H' die Parallelogrammgleichung, so daß H' mit dem Skalarprodukt aus der Polarisationsformel selbst ein Hilbert-Raum ist.

Wir nutzen den Rieszschen Darstellungssatz, um die Existenz des adjungierten Operators zu beweisen.

Definition 58.5 Es sei H ein Hilbert-Raum. Ein linearer beschränkter Operator A auf H ist eine lineare Abbildung $A: H \to H$ mit $\|A\|_{op} := \sup_{v \in H, \|v\| \le 1} \|Av\| < \infty$. Mit $\mathcal{B}(H)$ wird die Menge aller linearen beschränkten Operatoren auf H bezeichnet.

Analog zu Satz 58.2 beweist man, daß $\mathcal{B}(H)$ ein Banach-Raum ist.

Satz 58.6 Es sei H ein Hilbert-Raum und $A \in \mathcal{B}(H)$ ein linearer beschränkter Operator. Dann existiert genau ein linearer beschränkter Operator $A^* \in \mathcal{B}(H)$, der zu A adjungierte Operator, mit $\langle A^*v, w \rangle = \langle v, Aw \rangle$ für alle $v, w \in H$. Es gilt $\|A^*\|_{op} = \|A\|_{op}$.

Beweis. Für jedes $v \in H$ ist das lineare Funktional $f_v : H \to \mathbb{K}$ mit $f_v(w) := \langle v, Aw \rangle$ beschränkt wegen

$$|f_v(w)| = |\langle v, Aw \rangle| \le ||v|| ||Aw|| \le ||A||_{op} ||v|| ||w||.$$

Nach dem Rieszschen Darstellungssatz existiert genau ein Vektor $A^*v \in H$ mit $f_v = j(A^*v)$, d.h. $f_v(w) = \langle v, Aw \rangle = \langle A^*v, w \rangle$. Die so konstruierte Abbildung $A^*: H \to H$ ist linear:

$$\langle A^*(\lambda_1 v_1 + \lambda_2 v_2), w \rangle = \langle (\lambda_1 v_1 + \lambda_2 v_2), Aw \rangle = \overline{\lambda_1} \langle v_1, Aw \rangle + \overline{\lambda_2} \langle v_2, Aw \rangle$$

= $\overline{\lambda_1} \langle A^*(v_1), w \rangle + \overline{\lambda_2} \langle A^*(v_2), w \rangle = \langle \lambda_1 A^*(v_1) + \lambda_2 A^*(v_2), w \rangle,$

also $\langle A^*(\lambda_1 v_1 + \lambda_2 v_2) - (\lambda_1 A^*(v_1) + \lambda_2 A^*(v_2)), w \rangle = 0$ für alle $w \in H$, und daraus $A^*(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 A^*(v_1) + \lambda_2 A^*(v_2)$. Für die Operatornormen sei $v \in H$ mit $||v|| \leq 1$ gegeben, dann gilt mit Cauchy-Schwarz

$$||A^*v||^2 = \langle A^*v, A^*v \rangle = \langle v, AA^*v \rangle \le ||v|| ||AA^*v|| \le ||A||_{op} ||A^*v||,$$

also $||A^*||_{op} \leq ||A||_{op}$. Durch analoge Abschätzung von ||Aw|| beweist man die Umkehrung $||A^*||_{op} \leq ||A||_{op}$. Daraus folgt $A^* \in \mathcal{B}(H)$.

Somit lassen sich in Hilbert-Räumen selbstadjungierte, unitäre und normale Operatoren definieren und untersuchen. Insbesondere gibt es Analogien zu den Eigenwertproblemen im endlich-dimensionalen Fall.