Übungen zu Mathematik für Physiker II

Abgabe: Mittwoch, 16.4.2014 bis 12h00, in den Briefkästen

Blatt 1

Aufgabe 1. Für $n \in \mathbb{N}$ und $a \in \mathbb{R}$, a > 0, sei die Funktion $f_n : \mathbb{R} \longrightarrow \mathbb{R}$, $x \longmapsto x^n e^{-ax^2}$ gegeben. Bestimmen Sie die Nullstellen, lokalen und globalen Maxima und Minima von f_n , $n \in \mathbb{N}$. Bestimmen Sie alle Bereiche, in denen f_n konvex oder konkav ist, und skizzieren Sie den Graphen von f_n für n = 0, 1, 2, 3.

Aufgabe 2. Seien $n \in \mathbb{N}$ und die Funktionen $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ n-mal differenzierbar. Beweisen Sie die verallgemeinerte Leibniz-Regel für höhere Ableitungen

$$(fg)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k)}.$$

Aufgabe 3.

- (a) Geben Sie jeweils das Taylorpolynom des Grades ≤ 4 in a für die folgenden Funktionen an:
 - i) $x + e^x$, a = 1
 - ii) $\sin(\pi\sqrt{1+x^2}), a = 0.$
- (b) Berechnen Sie jeweils die ersten partiellen Ableitungen folgender Funktionen:
 - i) $e^{xy}\sin(x^2+y)$ auf \mathbb{R}^2
 - ii) $(xy)^z$ auf $(\mathbb{R}^+)^3$.

Aufgabe 4. Sei $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definiert durch

$$f(x,y) := \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} &, \text{ falls } (x,y) \neq 0\\ 0 &, \text{ falls } (x,y) = 0. \end{cases}$$

- (a) Berechnen Sie die ersten partiellen Ableitungen $(\partial_x f)(x,y)$ und $(\partial_y f)(x,y)$ für $(x,y) \in \mathbb{R}^2$.
- (b) Zeigen Sie, daß die zweiten partiellen Ableitungen $(\partial_x \partial_y f)(0,0)$ und $(\partial_y \partial_x f)(0,0)$ existieren und berechnen Sie diese. Warum widerspricht das Ergebnis nicht dem Satz von Schwarz?