Übungen zu "Mathematische Modelle der Statistischen Physik und Quantenfeldtheorie"

Abgabe: Bis 22.05.2015, 10 Uhr Blatt 05

Aufgabe 1. Wir betrachten den Hilbert-Raum $L^2(\mathbb{R}^3, d\mu_m)$ mit dem Skalarprodukt $\langle \hat{v}, \hat{w} \rangle = \int_{\mathbb{R}^3} \frac{d\vec{p}}{2\sqrt{m^2 + ||\vec{p}||^2}} \frac{d\vec{p}}{\hat{v}(\vec{p})} \hat{w}(\vec{p}).$

- i) Nach (dreidimensionaler) Fourier-Transformation läßt sich dieses Skalarprodukt als $\langle \hat{v}, \hat{w} \rangle = \int_{\mathbb{R}^3 \times \mathbb{R}^3} d\vec{x} \, d\vec{y} \, \overline{v(\vec{x})} K(\vec{x} \vec{y}) w(\vec{y})$ schreiben. Geben Sie den Intergralkernoperator $K(\vec{\xi})$ an.
- ii) Verwenden Sie die Identität $\frac{1}{\sqrt{m^2+\|\vec{p}\|^2}}=\frac{1}{\Gamma(\frac{1}{2})}\int_0^\infty \frac{d\alpha}{\sqrt{\alpha}}e^{-\alpha(m^2+\|\vec{p}\|^2)}$, um in $K(\vec{\xi})$ das \vec{p} -Integral zu berechnen (Vertauschen der \vec{p} , α -Integrale darf als erlaubt angesehen werden).
- iii) Diskutieren Sie das Verhalten von $K(\vec{\xi})$ für $||\vec{\xi}|| \to 0$ und $||\vec{\xi}|| \to \infty$. Bemerkung: Das α -Integral ist eine modifizierte Bessel-Funktion.

Aufgabe 2. Der (eindimensionale) harmonische Oszillator $H = \frac{1}{2}(P^2 + Q^2 - 1)$ kann als (D = 1)-dimensionale Quantenfeldtheorie aufgefaßt werden. Dabei ist $\Omega = \psi_0$ der Grundzustand und $\Phi(f) := \sqrt{2} \int_{-\infty}^{\infty} dt \ f(t) e^{iHt} Q e^{-iHt}$ das Quantenfeld.

- i) Zeigen Sie, daß $U_{(a)}\psi = e^{iHa}\psi$ das Axiom [WA1] erfüllt. Hinweis: Die Poincaré-Gruppe besteht nur aus Translationen in \mathbb{R} .
- ii) Auf welche Forderung reduziert sich die Spektrumsbedingung [WA2]? Ist diese erfüllt?
- iii) Berechnen Sie $Q(t) := e^{\mathrm{i}Ht}Qe^{-\mathrm{i}Ht}$. Hinweis: Man drücke Q, H durch a, a^* aus und löse die aus $\frac{d}{dt}e^{\mathrm{i}Ht}ae^{-\mathrm{i}Ht}$ und $\frac{d}{dt}e^{\mathrm{i}Ht}a^*e^{-\mathrm{i}Ht}$ folgenden Differentialgleichungen.
- iv) Berechnen Sie die Wightman-Distributionen $W_n(f_1, \ldots, f_n) := \langle \Omega, \Phi(f_1) \cdots \Phi(f_n) \Omega \rangle.$

Aufgabe 3. Diese Aufgabe konstruiert die Zeit-0-Felder, symbolisch $\varphi_m(\vec{x}) = \Phi(0, \vec{x})$ und $\pi_m(\vec{x}) = \partial_t \Phi(t, \vec{x})|_{t=0}$. Sie sind nicht Poincaré-kovariant, sondern liefern Anfangsdaten für die Lösung $\Phi(t, \vec{x})$ der Klein-Gordon-Gleichung. Wir können z.B. D=4 annehmen, d.h. $\vec{p}, \vec{x} \in \mathbb{R}^3$.

Ausgehend von der in der Vorlesung behandelten QFT $(\mathcal{H}, \mathcal{D}, \Phi, U, \Omega)$ des freien Skalarfeldes werde eingeführt:

- eine Abbildung $C: L^2(X_m, d\mu_m) \to L^2(X_m, d\mu_m)$ durch $(Cv)(p_m) := \overline{v(\widetilde{p_m})}, \, \operatorname{mit} \, (p^0, \vec{p}) = (p^0, -\vec{p}),$
- zu jedem $f \in \mathcal{S}(\mathbb{R}^4)$ Operatoren $\varphi_m(f), \pi_m(f) : \mathcal{D} \to \mathcal{D}$, definiert für reellwertige f durch

$$\varphi_m(f) = a^*(\mathcal{F}_m f) + a(C\mathcal{F}_m f)$$
, $\pi_m(f) = ia^*(\omega_m \cdot \mathcal{F}_m f) - ia(\omega_m \cdot C\mathcal{F}_m f)$, dann \mathbb{C} -linear fortgesetzt wie in der Konstruktion von $\Phi(f)$.

- i) Zeigen Sie: $[\varphi_m(f_1), \varphi_m(f_2)] = [\pi_m(f_1), \pi_m(f_2)] = 0$ für alle $f_1, f_2 \in \mathcal{S}(\mathbb{R}^4)$.
- ii) Berechnen Sie $[\varphi_m(f_1), \pi_m(f_2)].$
- iii) Zeigen Sie, daß der Kommutator $[\varphi_m(f_1), \pi_m(f_2)]$ sinnvoll bleibt, wenn $f_i(x^0, \vec{x}) \to (\delta \check{f}_i)(x^0, \vec{x}) := \delta(x^0)\check{f}_i(\vec{x})$ konvergiert. Dabei ist δ die Dirac-Distribution, $\int_{-\infty}^{\infty} dx^0 \ \delta(x^0)f(x^0) = f(0)$. [Hintergrund: $\mathcal{S}(\mathbb{R}^k)$ ist dicht in $(\mathcal{S}(\mathbb{R}^k))'$]. Geben Sie $[\varphi_m(\delta \check{f}_1), \pi_m(\delta \check{f}_2)]$ an.

Aufgabe 4. Ist W_N die Wightman-Distribution einer Quantenfeldtheorie, dann definieren wir eine Distribution

$$\mathcal{TW}_{N}(x_{1},...,x_{N}) := \sum_{\sigma \in \mathcal{S}_{N}} \Theta(x_{\sigma(1)}^{0} - x_{\sigma(2)}^{0}) \Theta(x_{\sigma(2)}^{0} - x_{\sigma(3)}^{0}) \cdots \Theta(x_{\sigma(N-1)}^{0} - x_{\sigma(N)}^{0}) \mathcal{W}_{N}(x_{\sigma(1)},...,x_{\sigma(N)}).$$

Dabei ist $\Theta(x) = \begin{cases} 1 & \text{für } x \geq 0 \\ 0 & \text{für } x < 0 \end{cases}$ die Heaviside-Funktion (eigentlich eine Distribution). Summiert wird über alle Permutationen, wobei jedoch für paarweise verschiedene x_j diese Summe aus nur einem einzigen Summanden besteht. Die Multiplikation von Distributionen erfordert große Vorsicht; in diesem Fall läßt sich aber alles rechtfertigen. Entsprechend setzt man

$$\mathcal{TW}_N(f_1,\ldots,f_N) := \int_{\mathbb{R}^{ND}} d(x_1,\ldots,x_N) \, \mathcal{TW}_N(x_1,\ldots,x_N) f_1(x_1) \cdots f_N(x_N)$$
$$\equiv \langle \Omega, \mathcal{T}\Phi(f_1) \cdots \Phi(f_N) \Omega \rangle .$$

Man nennt den so definierten Operator $\mathcal{T}\Phi(f_1)\cdots\Phi(f_N)$ das zeitgeordnete Produkt. Die folgenden Teilaufgaben beziehen sich auf das freie Skalarfeld:

- i) Geben Sie den Integralkern $\mathcal{TW}_2(x,y)$ an.
- ii) Zeigen Sie: $\mathcal{TW}_2(x,y) = \lim_{\epsilon \to 0} \frac{\mathrm{i}}{(2\pi)^D} \int_{\mathbb{R}^D} dp \, \frac{e^{-\mathrm{i} p \cdot \widetilde{(x-y)}}}{p \cdot \tilde{p} m^2 + \mathrm{i} \epsilon} \text{ für } x \neq y.$
- iii) Drücken Sie $\mathcal{TW}_N(x_1,\ldots,x_N)$ als Funktion von \mathcal{TW}_2 aus.

Bemerkungen: Die Distribution $\mathcal{TW}_2(x,y)$ heißt kausale 2-Punktfunktion oder Feynman-Propagator. Der Beweis von ii) benutzt den Residuensatz. Der Limes $\epsilon \to 0$ ist erst nach Anwendung des Residuensatzes zu bilden.