
The dynamical system for the
integer quantum Hall effect
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1 Quantum Hall effect

Consider a flat electrically conducting probe contained in the x-y-plane and
with electric current I in x-direction. If the probe is additionally submersed
in a constant magnetic field B in z-direction, the Lorentz force on the charge
carriers results in a Hall voltage U in y-direction. Elementary physical con-
siderations give for the Hall resistance

RH :=
U

I
=
B

ne

where e is the electron charge and n the charge carrier density which varies
with the material. The linear behaviour in B was observed by Hall in 1879.
100 years later, in 1980, von Klitzing discovered that in very strong magnetic
fields the behaviour is different: The Hall resistence is a piecewise constant
(globally non-decreasing) function of the magnetic field. Over a certain range
of the magnetic field, the Hall resistance takes discrete values

1

RH

= ν
e2

2π~
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where ~ is Planck’s constant, and ν is to extraordinary precision an integer,
later also a certain fraction such as ν ∈ {1
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values are independent of the material, in particular of the charge carrier
density n. Therefore they are used today do define the ratio e2

2π~ of the
constants of Nature.

It was soon realised that the exact quantisation must be of topological
origin. For the integer case a complete description which explains all features
at once was given by Jean Bellissard within noncommutative geometry. This
seminar is devoted to this approach. As Jean explaned two weeks ago, the
magnetic translation operators are important. They generate a rotation al-
gebra which is sensitive to whether the magnetic flux is rational or irrational
in natural units. So the theory has to explain, among others, that rational
and irrtional fluxes give the same value for the Hall resistance. Roughly
speaking, it is the stability of K-theory which does the job.

If I understand it correctly, one can use for the integer case an effective
theory for a single electron. Typically a cm3 of material contains > 1023 par-
ticles, namely ions which may or may not sit at lattice sites and up to 1022

free electrons in metals, 1010 free electrons in pure semiconductors. These
form an effective potential experienced by a single free electron which oth-
erwise is considered as non-interacting with the other 1023 particles! The
fractional quantum Hall effects relies on the interaction between many elec-
trons and is not yet understood. Our SFB project C4 tries to improve this
situation.

2 Hamiltonian

Time evolution in quantum physics is described by a strongly-continuous
1-parameter family {U(t)}t∈R of unitary operators on a Hilbert space H,
U(t)U(t′) = U(t+t′). By Stones’ theorem, this family defines a distinguished
self-adjoint unbounded operator H defined (in the strong operator topology)
by Hψ = −i limt→0

1
t
(U(t)ψ−ψ) for a dense set of ψ. Unbounded self-adjoint

operators are a dangerous subject which can be very differnt from bounded
self-adjoint operators! It is not sufficient that 〈Hφ,ψ〉 = 〈φ,Hψ〉 for all φ, ψ
in the domain of H; in addition dom(H) = dom(H∗) is required which is
not automatic and not always possible! To circumvent the domain issues it
is often more convenient to work with the resolvent operators. The resolvent
set of a closed (e.g. self-adjoint) operator H is the set of z ∈ C for which
(z − H) : dom(H) → H is bijective; this set is open. Its complement in C
is the spectrum denoted sp(H). By the closed graph theorem, the resolvent
Rz(H) := (z − H)−1 is a bounded operator for every z /∈ sp(H). In many
situations, for instance in perfect crystals, the resolvents are even compact
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operators.
We have to introduce some notation. Let K be the space of the compact

operators on L2(RD). Let (Tyψ)(x) := ψ(x+y) be the translation by y ∈ RD.
In a perfect crystal the potential is periodic, (TaV )(x) = V (x + a) = V (x)
for some a ∈ Γ, where Γ ⊂ RD is a discrete subgroup. Its dual is the
group Γ∗ = {b ∈ RD : 〈a, b〉 ∈ 2πZ ∀a ∈ Γ}; it defines the Brillouin zone
B = RD/Γ∗. One has the following result:

Theorem 1 Let H = − ~2
2m

∆ + V be the Hamiltonian for a Γ-periodic
potential V (∆ the Laplace operator and m the (possibly renormalised)
mass of the electron). Then the C∗-algebra C(H) generated by the family
{TyRz(H)T−1

y : y ∈ R3} is, for any z /∈ sp(H), equal to C(B)⊗K, i.e. the
stabilised continuous functions on the Brillouin zome.

This fact has a far-reaching generalisation: The construction of the C∗-
algebra C(H) as generated by TyRz(H)T−1

y extends to the non-periodic case
and in presence of magnetic fields. First remark that this is the right C∗-
algebra of observables in macroscopic physics. On large scales the material
looks homogeneous so that averaging {TyHT−1

y : y ∈ RD} of the microscopic
Hamiltonian H is anyway necessary. We first extend this averaging to the
case relevant in presence of magnetic fields:

Definition 2 Let H be a separable Hilbert space and G be a locally compact
group with a unitary, projective, strongly continuous representation on H, i.e.
U(a)U(b) = U(a+b)eiφ(a,b) for some φ(a, b) ∈ R and G 3 a 7→ U(a)ψ continu-
ous for every ψ ∈ H. A self-adjoint operator H on H is homogeneous with re-
spect to G if for any z /∈ sp(H) the family S(z) = {U(a)Rz(H)U(a)−1 : a ∈
G} admits a compact strong closure.

Compact strong closure means the following approximation property: For
every ε > 0 and ψ1, . . . , ψN ∈ H there exist finitely many a1, . . . , an ∈ G
such that for every a ∈ G there is an i with ‖U(a)Rz(H)U(a)−1ψj −
U(ai)Rz(H)U(ai)

−1ψj‖ < ε for all j = 1, . . . , N . Let Ω(z) be the strong
closure of S(z), which is a compact metrisable space equipped with an action
(called T ) of G. The resolvent identities guarantee that any two Ω(z),Ω(z′)
are homeomorphic so that identifying them gives rise to an abstract com-
pact metrisable space Ω. The dynamical system (Ω, G, T ) associated with a
G-homogeneous operator H is called the hull.

The hull Ω to a homogeneous self-adjoint operator H involves not only the
translated resolvents but also limit points. Every ω ∈ Ω defines a self-adjoint
operator Hω on L2(RD) via the Trotter-Kato theorem for strong resolvent
limits. Then the map Ω 3 ω 7→ (z − Hω)−1 is strongly continuous and
U(a)Hω(U(a)−1) = HTaω.
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3 Magnetic field

The effect of an magnetic field B is captured by a Hamiltonian

HB = HB,0 + V , HB,0 =
1

2m

D∑
µ=1

(~
i
∂µ − eAµ

)2

. (1)

We have D = 2 for the quantum Hall effect, but also D = 3 might be
interesting. The Aµ are the components of a 1-form A which defines the
magnetic field B = dA. In D = 2 it is constant (times dx1 ∧ dx2) for
A = B

2
(x1dx2 − x2dx1). The free Hamiltonian HB,0 is the 2D-harmonic

oscillator with an additional angular momentum term. One can introduce1

an independent pair of creation-annihilation operators a†, a, b†, b in which
HB,0 = eB~

m
(a†a + 1

2
). Hence, HB,0 is self-adjoint with discrete but infinitely

degenerate spectrum so that its resolvent is not compact on L2(R2). By
the Kato-Rellich theorem, HB is self-adjoint for every essentially bounded
function V ∈ L∞(RD). The interaction V may resolve the degeneracy and
lead to compact resolvents.

The free Hamiltonian HB,0 is clearly not translation invariant. We pass
to magentic translation operators

(U(a)ψ)(x) = exp
(
− ie

~

∫ x

x−a
A
)
ψ(x− a)

B=const
= exp

(
− ieB

2~
(x1a2 − x2a1)

)
ψ(x− a) . (2)

At least for constant B it is easy to check that U(a) commutes with ~
i
∂µ−eAµ

so that U(a)HB,0U(a)−1 = HB,0. Since V is a multiplication operator, we
get (U(a)V U(a)−1)(x) = Va(x) := V (x − a) almost everywhere. Moreover,

U(a)U(b) = e
ieB
2~ (a1b2−a2b1)U(a + b) so that a projective representation of R2

is obtained. The magnetic translations by base vectors u = U(e1) and v =
U(e2) thus satisfy the commutation relation uv = e2πiθvu with θ = eB

2π~ of the
rotation algebra.

Then:

1

â =
1

2

√
eB

2~
(x̂− iŷ) +

i

2

√
2

eB~
(p̂x − ip̂y) , â† =

1

2

√
eB

2~
(x̂ + iŷ)− i

2

√
2

eB~
(p̂x + ip̂y)

b̂ =
1

2

√
eB

2~
(x̂ + iŷ) +

i

2

√
2

eB~
(p̂x + ip̂y) , b̂† =

1

2

√
eB

2~
(x̂− iŷ)− i

2

√
2

eB~
(p̂x − ip̂y)
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Theorem 3 Let the potential be essentially bounded, V ∈ L∞(RD). Then
the operator HB = HB,0 + V is homogeneous with respect to magnetic trans-
lations.

I think this requires a restriction to finite volume or further assumptions on
V to resolve the degeneracy!
Idea of the proof. HB,0 is already homogeneous (under assumptions!), and all
Va are essentially bounded. The ball in L∞(RD) with radius ‖V ‖ is weak-*
compact. It remains to show that the map L∞(RD) 3 V 7→ (z−HB,0−V )−1 ∈
B(L2(RD)) is continuous with respect to the weak-* topology on L∞(RD) and
the strong operator topology on B(L2(RD)). �

A C∗-algebra AB = C(Ω) o R2, called the noncommutative Brillouin
zone, is associated with the hull Ω of HB = HB,0 + V as follows. Define on
the space CK(Ω×RD) of continuous, compactly supported functions product
and involution by

(fg)(ω, x) :=

∫
R2

dy f(ω, y)g(T−yω, x− y) exp
( ie

2~
〈x,By〉

)
, (3)

f ∗(ω, x) := f(T−xω,−x) .

Here B is viewed as skew-symmetric matrix. This *-algebra is represented
on L2(R2) via the family of left-regular representations

(πω(f)ψ)(x) :=

∫
R2

dyf(T−xω, y − x) exp
( ie

2~
〈y,Bx〉

)
ψ(y) . (4)

It satisfies πω(fg) = πω(f)πω(g), πω(f ∗) = (πω(f))∗ and
U(a)πω(f)(U(a))−1 = πTaω(f).

The noncommutative Brillouin zone AB = C(Ω) o R2 is then the com-
pletion of CK(Ω× R2) with respect to the norm ‖f‖ = supω∈Ω ‖πω(f)‖.

Theorem 4 (Bellissard 1986) If HB is homogeneous, it is affiliated to its
C∗-algebra AB, i.e there is a ∗-homomorphism C0(R) 3 f 7→ f(HB) ∈ AB
such that πω(f(H)) = f(Hω) for all ω ∈ Ω.

According to the spectral theorem there is a 1:1-correspondence between a
self-adjoint operator H and a family {PΣ}Σ⊂R of projection-valued measures2

indexed by Borel sets of R. These pv-measures define an integral which allows
to write H =

∫∞
−∞ λ dPλ and f(H) =

∫∞
−∞ f(λ) dPλ for any bounded Borel

2Every PΣ is a projection, PΣPΣ′ = PSigma∩Σ′ is a projection, P∅ = 0 and PR = 1. If
Σ =

⋃∞
i=1 Σi for pairwise disjoint Σi, then PΣ = s-limn→∞

∑n
i=1 PΣi .
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function f on R. Stones’ theorem expresses certain projections in terms of
resolvents:

1
2
(P[a,b] + P]a,b[) = s-lim

ε↘0

1

2πi

∫ b

a

dλ
(
Rλ−iε(H)−Rλ+iε(H)

)
(5)

The characteristic function P]−∞,E] = χ(H ≤ E) =
∫ E
−∞ dPλ is a projector

that belongs to the von Neumann algebra, but in general not to the C∗-
algebra associated with H.

We let the C∗-algebra spectrum Sp(H) of H to be the union of the spectra
of all Hω, i.e. Sp(H) :=

⋃
ω∈Ω sp(Hω).

Theorem 5 (Bellissard 1986) If the orbit of ω ∈ Ω is dense then Sp(H) =
sp(Hω). If there is a periodic orbit in Ω then Sp(H) cannot be nowhere dense.

A gap is a connected component of R\Sp(H). For E in a gap one can deform
the characteristic function that defines χ(H ≤ E) to a continuous function,
thereby showing that χ(HB ≤ E) ∈ AB if (and only if) E is in a gap. This
will allow to characterise the gaps via K-theory K0(AB)

4 Integrated density of states (IDS)

Let P be a probability measure on the hull Ω, invariant and ergodic under
RD-action. Such measures exist by abstract properties of dynamical systems.
Then

τ(f) :=

∫
Ω

P(dω)f(ω, 0) , f ∈ CK(Ω× R2)

defines a trace on compactly supported functions. It can be used to define
various completions, a Hilbert space via GNS construction and a weak closure
to a von Neumann algebra. The trace can also be expressed as:

Theorem 6

τ(f) = lim
Λ↗R2

1

|Λ|
TrΛ(πω(f))

for P-almost every ω ∈ Ω. Here, TrΛ denotes the restriction of the L1-trace
on K(L2(R2)) to Λ.

Proof. The integral kernel of f ∈ CK(Ω × R2) is F (x, y) = f(T−xω, y −
x) exp(ie/(2~)〈y,Bx〉), see (4), hence its trace TrΛ(πω(f)) =

∫
Λ
dx F (x, x) =∫

Λ
dx f(T−xω, 0). The result follows from Birkhoff’s ergodic theorem. �

Let HΛ be the restriction of the Hamiltonian HB given in (1) to a rectan-
gular box Λ ⊂ RD, with certain boundary conditions. Then HΛ has discrete
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spectrum bounded from below. Let NΛ(E) be the number of eigenvalues
of HΛ less or equal to E. It is physically plausible that NΛ(E) is, up to
o(|Λ|)-corrections, invariant under translation of Λ and additive when gluing
disjoint Λ’s. Therefore, the limit

N (E) := lim
Λ↗RD

1

|Λ|
NΛ(E) ,

called the integrated density of states (IDS), should exist.
For HΛ of discrete spectrum one has equivalently NΛ(E) = Tr(χ(HΛ ≤

E)) for the number of eigenvalues of HΛ less or equal to E.

Definition 7 The Hamiltonian H obeys Schubin’s formula if N (E) =
τ(χ(H ≤ E)), where τ is the trace per volume in the C∗-algebra of H.

This is not automatic. It was proved by Shubin (1979) for uniformly ellip-
tic differential operators with almost-periodic coefficients and generalised by
Bellissard (1986).

Theorem 8 Let H be a homogeneous self-adjoint Hamiltonian (e.g. the one
in (1)) and A the C∗-algebra associated with its hull. Let τ be a translation-
invariant trace on A for which H obeys Shubin’s formula. Then its IDS
N (E) is a non-negative non-decreasing function which is constant on each
gap of Sp(H). If τ is faithful, then conversely the spectrum of H coincides
with the set of points E ∈ R in the vicinity of which the IDS is not constant.

Proof. The first claim is clear, the second follows from

N (E + δ)−N (E − δ) = τ(χ(E − δ < H ≤ E + δ)) ,

which is strictly positive if τ is faithful. �

Any discontinuity point corresponds to an eigenvalue of H with infinite
multiplicity (there are such examples!). It is believed that, under certain
assumptions, the IDS N (E) is continuous.

5 The current-current correlation

Let Xµ be the position operator, (Xµψ)(x) = xµψ(x). The current operator
is then defined as

Jµ(B) :=
e

i~
[Xµ, Hω(B)] =

e

m

(~
i
∂µ − eAµ

)
.
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It depends on the magnetic field but not on the interaction potential. The
current operators are used to define the following correlation functions be-
tween functions Φ,Φ′ of the Hamiltonian:

〈ΦΦ′〉µν := τ
(
Jµ(B)Φ(Hω)Jν(B)Φ′(Hω)

)
. (6)

Theorem 9 (Khorunzhy-Pastur, 1993) There exists a Radon measure
dmµν on R2 such that 〈ΦΦ′〉µν = e2

~2
∫
R×R dmµν(E,E

′) Φ(E)Φ(E ′). The sup-
port of the measure is Σ × Σ, where Σ is the P-almost sure non-random
spectrum of Hω(B).

Important physical quantities such as the conductivity and the Anderson
localisation length can be expressed as integrals which involve the current-
current correlation measure.
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