14. Übungsblatt zur Vorlesung "Geometrie von Eichtheorien"

(Zusammenhang im quaternionischen Hopf-Bündel, Instantonen)

Abgabe der Lösung bis Montag, 6.2.2006, vor Vorlesungsbeginn im Briefkasten 79 des Übungsleiters.

49. Aufgabe (7 Punkte)

Betrachtet werde das quaternionische Hopf-Bündel mit Strukturgruppe SU(2) aus Aufgabe 35. Für die Bündelmannigfaltigkeit $S^7 \subset \mathbb{H}^2$ realisiert durch $p = \{(q,r) \in \mathbb{H}^2, \|q\|^2 + \|r\|^2 = 1\}$ werde die kanonische Zusammenhangsform durch $\omega_{(q,r)} = q^*dq + r^*dr$ definiert. Diese symbolische Schreibweise ist folgendermaßen zu verstehen:

Quaternionen $q \in \mathbb{H}$ sind darstellbar durch $q = q_0 I + i \sum_{i=1}^{3} \sigma_i q_i$, wobei σ_i die Pauli-Matrizen sind und I die 2×2 -Einheitsmatrix ist. Die Identifikation von $q \in \mathbb{H}$ mit $q \in \mathbb{R}^4$ ist dann durch $q = (q_0, q_1, q_2, q_3)$ gegeben. Das Produkt von $q, r \in \mathbb{H}$ ist dann

$$qr = (q_0r_0 - \sum_{i=1}^{3} q_ir_i)I + i\sum_{i=1}^{3} (q_0r_i + q_ir_0 - \sum_{j,k=1}^{3} \epsilon_{ijk}q_jr_k)\sigma_i,$$

wobei ϵ_{ijk} antisymmetrisch unter Transposition zweier Indizes ist und $\epsilon_{123} = 1$ gilt. Mit diesen Bezeichnungen folgt

$$\omega_{(q,r)} = \left(q_0 dq_0 + \sum_{i=1}^3 q_i dq_i\right) \otimes I + \sum_{i=1}^3 \left(q_0 dq_i - q_i dq_0 + \sum_{j,k=1}^3 \epsilon_{ijk} q_j dq_k\right) \otimes i\sigma_i$$
$$+ \left(r_0 dr_0 + \sum_{i=1}^3 r_i dr_i\right) \otimes I + \sum_{i=1}^3 \left(r_0 dr_i - r_i dr_0 + \sum_{j,k=1}^3 \epsilon_{ijk} r_j dr_k\right) \otimes i\sigma_i.$$

Beweisen Sie, daß ω tatsächlich eine Zusammenhangsform ist. Stellen Sie dazu $A \in \mathfrak{g} = su(2)$ (Lie-Algebra von SU(2)) durch Pauli-Matrizen dar und bestimmen Sie das fundamentale Vektorfeld $\sigma_{(q,r)}(A)$. Zeigen Sie dann $\omega_{(q,r)}(\sigma_{(q,r)}(A)) = A$ sowie $(\psi_g^*\omega)_{(q,r)}(X) = \mathrm{Ad}(g^{-1})(\omega_{(q,r)}(X))$ für $g \in SU(2)$ und $X \in T_{(q,r)}S^7$.

50. Aufgabe (5 Punkte)

Zeigen Sie, daß für das lokale Eichpotential $\mathcal{A} = s^*\omega$ gilt

$$\mathcal{A}_x = \frac{1}{1 + \|x\|^2} \sum_{i=1}^3 \left(x_0 dx_i - x_i dx_0 + \sum_{i,k=1}^3 \epsilon_{ijk} x_j dx_k \right) \otimes i\sigma_i , \qquad x \in \mathbb{H} \simeq \mathbb{R}^4 .$$

Hinweis: Die Bündelmannigfaltigkeit S^4 des Hopf-Bündels wurde über die Projektion $\pi_N(q,r)=qr^{-1}\in\mathbb{H}\cup\infty$ erhalten, wobei $\mathbb{H}\cup\infty$ über die stereographische Projektion mit S^4 identifiziert wird. In einer lokalen Trivialisierung brauchen wir diese Identifikation nicht vorzunehmen, so daß wir $x\in U=\mathbb{R}^4\simeq\mathbb{H}$ betrachten und den kanonischen Schnitt $s:\mathbb{H}\to S^7$ suchen. In Aufgabe 35 wurde gezeigt, daß für s(x)=(q,r) dann $\kappa(s(x))=\frac{r}{\|r\|}$ ist. Das liefert $r=\|r\|I=r_0I$ für den kanonischen Schnitt. Andererseits haben wir $\|x\|^2=\|\pi(q,r)\|^2=\|q\|^2/\|r\|^2=\frac{1}{\|r\|^2}-1$, also $\|r\|=\frac{1}{\sqrt{1+\|x\|^2}}$. Damit ist der kanonische Schnitt durch

$$s(x) = \left(\frac{x}{\sqrt{1+||x||^2}}, \frac{1}{\sqrt{1+||x||^2}}\right) \qquad x \in \mathbb{H},$$

gegeben. Es gilt $x^*x = ||x||^2 I = \sum_{\mu=0}^{3} (x_{\mu})^2 I$.

51. Aufgabe (8 Punkte)

Berechnen Sie die lokale Feldstärke \mathcal{F} zum betrachteten Zusammenhang (Hinweis: Es gilt $\sum_{n=1}^{3} \epsilon_{nij} \epsilon_{nkl} = \delta_{ik} \delta_{jl} - \delta_{il} \delta_{jk}$) und untersuchen Sie \mathcal{F}_x für $x \to \infty$. Beweisen Sie, daß die Feldstärke selbstdual ist, d.h. $\mathcal{F} = *\mathcal{F}$ für den Hodge-Operator, der durch die flache Metrik $g_{\mu\nu} = \delta_{\mu\nu}$ auf \mathbb{R}^4 gegeben ist. Berechnen Sie das Integral $\int_{\mathbb{R}^4} \mathcal{F} \dot{\wedge} \mathcal{F}$ (welches auch die Yang-Mills-Wirkung ist). Das Skalarprodukt in der Lie-Algebra su(2) ist dabei durch die Spur des Produkts der Matrizen gegeben.