Übungen zur Mathematik für Physiker I

Abgabe: Donnerstag, 17.01.08, vor der Vorlesung in den Briefkästen

Blatt 12

Aufgabe 1. Berechne für |x| < 1

a)
$$\sum_{n=1}^{\infty} n x^n$$
 b)
$$\sum_{n=1}^{\infty} n^2 x^n$$
 c)
$$\sum_{n=1}^{\infty} \frac{x^n}{n}$$

b)
$$\sum_{n=1}^{\infty} n^2 x^n$$

c)
$$\sum_{n=1}^{\infty} \frac{x^n}{n}$$

Aufgabe 2. Es sei $f:]-\varepsilon, \varepsilon[\to \mathbb{R}$ für alle $x \neq 0$ differenzierbar, $\varepsilon > 0$, und der Grenzwert $\lim_{x\to 0} f'(x) := \eta$ existiere.

Zeige: f ist in 0 differenzierbar, und es gilt $f'(0) = \eta$.

Aufgabe 3. Bestimme (falls existent)

a)
$$\lim_{x \to 0} \frac{x - \sin x}{x(1 - \cos x)}$$

b)
$$\lim_{x \to 1} \frac{x^{\alpha} - 1}{\ln x}$$

c)
$$\lim_{x \to \infty} \frac{x \ln x}{x^2 - 1}$$

d)
$$\lim_{x \to \infty} x \ln \left(1 + \frac{1}{x} \right)$$

Aufgabe 4. $f:[0,\infty[\to\mathbb{R}$ sei differenzierbar und der Grenzwert $\lim_{x\to\infty}f'(x)$ existiere. Zeige:

a)
$$\lim_{x \to \infty} (f(x+1) - f(x)) = \lim_{x \to \infty} f'(x)$$

b) Ist
$$f$$
 beschränkt, so gilt $\lim_{x\to\infty} f'(x) = 0$.