Übungen zu Mathematik für Physiker I

Abgabe: bis Donnerstag, 03.11.11 bis 10 Uhr, in den Briefkästen Blatt 3

Aufgabe 1. Bestimme Real- und Imaginärteil sowie Betrag von

(a)
$$\frac{1}{1-i}$$
, (b) $\frac{2+i}{3-4i}$, (c) $(1+i)^n$, (d) $(\frac{1-i}{1+i})^n$

für $n \in \mathbb{N}$. Hinweis: Arbeite gegebenenfalls mit Polarkoordinaten.

Aufgabe 2. (a) Sei z = x + iy mit $x, y \in \mathbb{R}$ und definiere

$$w := \frac{1}{\sqrt{2}} \left(\epsilon \sqrt{|z| + x} + i \sqrt{|z| - x} \right), \quad \text{wobei } \epsilon := \begin{cases} y/|y|, & y \neq 0, \\ 1, & y = 0. \end{cases}$$

Zeige, dass $\pm w$ die beiden Wurzeln aus z sind, also $w^2 = (-w)^2 = z$ gilt.

(b) Zeige, dass die Gleichung $z^2+pz+q=0$ mit $p,q\in\mathbb{C}$ die Lösungen

$$z_{1,2} = -\frac{p}{2} \pm \frac{1}{2}\sqrt{p^2 - 4q}$$

besitzt, wobei $\pm \sqrt{p^2-4q}$ die beiden Wurzeln (nach (a)) aus p^2-4q bezeichne.

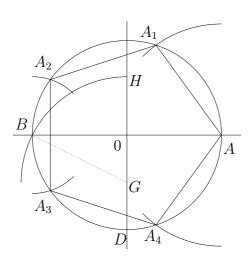
Aufgabe 3. Skizziere die folgenden Mengen:

(a)
$$\{z \in \mathbb{C} : |z-1| \le |\mathrm{i} z - 1|\},$$
 (b) $\{z \in \mathbb{C} : 0 < |z-1-\mathrm{i}| \le 1\}.$

Konstruktion des regelmäßigen Fünfecks mit Zirkel und Lineal

- 1. Konstruiere in der Gaußschen Zahlenebene den Einheitskreis S mit Mittelpunkt 0 und Radius 1. Die Schnittpunkte des Kreises mit der x-Achse seien $A=1\in\mathbb{C}$ und $B=-1\in\mathbb{C}$.
- 2. Konstruiere das Lot L auf \overline{AB} durch 0 (y-Achse). Sei D einer der Schnittpunkte mit dem Einheitskreis S. Konstruiere den Mittelpunkt G von $\overline{0D}$.
- 3. Zeichne um G einen Kreisbogen mit Radius $|\overline{GB}|$. Der Schnittpunkt des Kreisbogens mit L(=y-Achse), welcher innerhalb S liegt, sei H.
- 4. Zeichne um B einen Kreisbogen mit Radius $|\overline{0H}|$. Die beiden Schnittpunkte mit S seien A_2 und A_3 .
- 5. Zeichne um A einen Kreisbogen mit Radius $|\overline{A_2A_3}|$. Die beiden Schnittpunkte mit S seien A_1 und A_4 , wobei A_1 , A_2 auf der gleichen Seite von \overline{AB} liegen.

Dann sind (A, A_1, A_2, A_3, A_4) die Eckpunkte eines regelmäßigen Fünfecks.



- **Aufgabe 4.** (a) Zeige, dass die Länge $h := |\overline{0H}|$ das Inverse des goldenen Schnittes ist, also $h = \frac{\sqrt{5}-1}{2}$ gilt.
 - (b) Zeige, dass die Koordinaten $z_n = x_n + \mathrm{i} y_n$ der Eckpunkte A_n , mit n = 1, 2, 3, 4, gegeben sind durch

$$z_1 = \overline{z_4} = \frac{h}{2} + \frac{i}{2}\sqrt{3+h}$$
, $z_2 = \overline{z_3} = -\frac{1+h}{2} + \frac{i}{2}\sqrt{2-h}$.

(*Hinweis:* Für das Inverse des goldenen Schnittes gilt $h^2 = 1 - h$.)

(c) (Zusatzaufgabe, 2 Zusatzpunkte) Beweise die Identitäten $z_1^n=z_n$ für n=2,3,4 und $z_1^5=1$. (*Hinweis:* Es genügt, $z_1^2=z_2$, $z_2^2=z_4$, $z_1z_4=1$ zu zeigen — warum?)

2