Übungen zur Mathematik für Physiker III

Abgabe: Bis Mittwoch, den 11.01.2017, 10 Uhr, in den Briefkästen

Blatt 10

Aufgabe 1. (a) Bestimmen Sie alle Punkte $z \in \mathbb{C}$, in denen die Funktion $f: z \mapsto |z|^4 - 2|z|^2$ komplex differenzierbar ist.

(b) Finden Sie eine holomorphe Funktion $f: \mathbb{C} \to \mathbb{C}, x + iy \mapsto u(x,y) + iv(x,y)$, mit $u(x,y) = x^2 - y^2 - x$. (Erraten erlaubt.)

Aufgabe 2. Berechnen Sie folgende komplexe Kurvenintegrale (wie üblich mit z = x + iy)

- (a) $\int_{\gamma} \overline{z} dz$ mit $\gamma \colon [0,1] \to \mathbb{C}$ gegeben durch $\gamma(t) = e^{(i+1)t^2}$;
- (b) $\int_{\gamma} (x^2 iy^2) dz$ mit $\gamma \colon [0, 1] \to \mathbb{C}$ gegeben durch $\gamma(t) = (t+1) + 2i(t+1)^2$;

Aufgabe 3. Berechnen Sie mit der Cauchyschen Integralformel (und der daraus resultierenden Formel für die höheren Ableitungen) die Integrale

(a)
$$\int_{\gamma_a} \left(\frac{z}{z-1}\right)^n dz$$
, (b) $\int_{\gamma_b} \frac{\exp(z)}{(z-\pi i)^2 z} dz$, (c) $\int_{\gamma_c} \frac{\cos(2z)}{(z-2i)(z+3i)} dz$,

wobe
i $n\in\mathbb{N}$ und $\gamma_a,\gamma_b,\gamma_c\colon [0,2\pi]\to\mathbb{C}$ definiert sind durch

$$\gamma_a(t) = 1 + e^{it},$$
 $\gamma_b(t) = \pi i + e^{it},$ $\gamma_c(t) = 2i + 2e^{it}.$

(*Hinweis:* Betrachten Sie für (a) die Funktion $f(z) = z^n$.)