Prof. Dr. Raimar Wulkenhaar Alexander Hock

WS 19/20

Übungen zur Vorlesung Mathematik für Physiker I

Abgabe: Donnerstag, 14.11.2019 bis 10h00 in den Briefkästen

Blatt 5

Aufgabe 1. Seien $a, b \in \mathbb{R}$ und

$$u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \qquad u_2 = \begin{pmatrix} 2 \\ a \\ 1 \end{pmatrix}, \qquad u_3 = \begin{pmatrix} -1 \\ -1 \\ a \end{pmatrix}, \qquad v = \begin{pmatrix} 1 \\ 0 \\ b \end{pmatrix}.$$

- (a) Bestimme die Dimension von $U = \operatorname{span}_{\mathbb{R}}(u_1, u_2, u_3) \subseteq \mathbb{R}^3$ in Abhängigkeit von a.
- (b) Für welche (möglicherweise unendlich viele) Werte von a und b liegt v in U? Geben Sie die Koeffizienten $\lambda_1, \lambda_2, \lambda_3$ mit $v = \sum_{i=1}^3 \lambda_i u_i$ in Abhängigkeit von a, b an.

Aufgabe 2. Sei $W = \operatorname{span}_{\mathbb{R}}(w_1, w_2, w_3) \subset \mathbb{R}^4$ und $V = \operatorname{span}_{\mathbb{R}}(v_1, v_2) \subset \mathbb{R}^4$ mit

$$w_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \end{pmatrix}, \qquad w_2 = \begin{pmatrix} 1 \\ 2 \\ 2 \\ 1 \end{pmatrix}, \qquad w_3 = \begin{pmatrix} 0 \\ 2 \\ 1 \\ 1 \end{pmatrix}, \qquad v_1 = \begin{pmatrix} 3 \\ 0 \\ 1 \\ 2 \end{pmatrix}, \qquad v_2 = \begin{pmatrix} 1 \\ 3 \\ 2 \\ 2 \end{pmatrix}.$$

Bestimmen Sie $\dim(W), \dim(V), \dim(W+V), \dim(W\cap V)$. Geben Sie eine Basis für $W\cap V$ an.

Aufgabe 3. Die *Tschebyscheff-Polynome* T_n und die *Hermite-Polynome* H_n sind bestimmt durch die Rekursionsgleichungen

$$T_0(x) = 1,$$
 $T_1(x) = x$ und $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x),$
 $H_0(x) = 1,$ $H_1(x) = 2x$ und $H_{n+1}(x) = 2xH_n(x) - 2nH_{n-1}(x)$

für alle $n \geq 1$. Bezeichne $P_n[x]$ den \mathbb{C} -Vektorraum aller Polynome in x vom Grad kleiner oder gleich n mit komplexen Koeffizienten.

- (a) Zeigen Sie, daß für jedes $N \in \mathbb{N}$ die Polynome (T_0, \ldots, T_N) und die Polynome (H_0, \ldots, H_N) jeweils eine Basis von $P_N[x]$ bilden.
- (b) Bestimmen Sie die Koeffizienten des Polynoms H_3 bezüglich der Basis (T_0, \ldots, T_3) von P_3 und die Koeffizienten des Polynoms T_3 bezüglich der Basis (H_0, \ldots, H_3) .

Aufgabe 4. (a) Führen Sie die folgenden Polynomdivisionen durch (gegebenenfalls mit Rest):

(i)
$$\frac{2x^4 + x^3 - 6x^2 + 8x - 2}{2x^2 - 3x + 2}$$
, (ii) $\frac{(1+i)z^3 + (5+2i)z^2 + 3(1-i)z - 2 - 6i}{z + 3 - i}$

(b) Bestimmen Sie die Partialbruchzerlegung von

(i)
$$\frac{1}{(z-i)(z+1)}$$
, (ii) $\frac{1}{x(1+x)^2(2+x)}$.