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Quantum field theories on the Moyal plane characterised by the x-product (in
D dimensions)

(1) (axb)(z):= /dDy(g:)]; a(z+30-k)b(z+y) e, 0, =—0,, R

became fashionable after their appearance in string theory [1] and the discovery of
the UV/IR-mixing problem [2]. The UV/IR-mixing contains a clear message: If
we make the world noncommutative at very short distances, we must at the same
time modify the physics at large distances. The required modification is, to the
best of our knowledge, unique: It is given by an harmonic oscillator potential for
the free field action. In fact, we can prove the following

Theorem 1. The quantum field theory associated with the action
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for &, := 2(071) 2V, ¢-real, Euclidean metric, is perturbatively renormalisable
to all orders in .

There are by now three different proofs of the theorem.

(1) by exact renormalisation group equations in a matrix base of the Moyal
algebra [3],

(2) by multi-scale analysis again in a matrix base of the Moyal algebra [4]

(3) by multi-scale analysis directly in position space [5].

First proof [H. Grosse and R. Wulkenhaar] The x-product (1) leads in momentum
space to oscillating phase factors which result for some non-planar Feynman graphs
in convergent but not absolutely convergent integrals. Our starting point was the
conjecture that the selection of a certain order of integration by the renormalisation
scheme is at the origin of the UV /IR-mixing problem. Thus, our idea was to invent
a regularisation where the model with cut-off is well-defined and no ambiguity in
the order of integration appears.

We selected the renormalisation group approach as the right strategy. In order
to make use of the simplicity of renormalisation proofs based on exact renormal-
isation group equations, it was necessary to have amplitudes for vertices and the
propagator which are manifestly positive, not oscillating. This lead us to the use
of the matrix base of the Moyal algebra where, with respect to that base (given
by Laguerre polynomials), the *-product becomes a product of infinite matrices.
The price for this achievement was a rather complicated kinetic matrix of the ¢?*-
action. We eventually succeeded in computing the propagator in the matrix base
by identifying the eigenvectors of the kinetic matrix as Meixner polynomials. At
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the end, the matrix propagator was expressed as a finite sum over hypergeometric
functions. See [3].

The adaptation of the renormalisation group equation framework to the action
(2) requires two steps:

e Prove bounds for the cut-off propagator.
e Compute the amplitude of a graph as a function of these bounds.

We started with the second step. In [6] we proved a power counting theorem
for general dynamical matrix models, characterised by a scaling behaviour of the
propagator, in the exact renormalisation group approach. The proof is by induc-
tion in the number of vertices and loops. As Feynman graphs for matrix models
are ribbon graphs characterised by their topology, i.e. genus and number of holes
of the Riemann surface, the difficulty was:

e to guess the power counting theorem in terms of the topology,

e to prove that the scaling behaviour (in terms of the topology) is indepen-
dent of the history in which a graph of given topology arises from smaller
graphs with their topology.

The second step alone goes over 20 pages!

It turned out numerically [3] that the propagator obtained for Q = 0 in (2) has
scaling properties which make the perturbative renormalisation impossible. Of
course, this is a manifestation of UV /IR-mixing. With inclusion of the harmonic
oscillator piece, also motivated by a duality argument [7], the scaling behaviour
together with the power-counting theorem [6] implied that all non-planar graphs
and all graphs with more than 4 external legs are irrelevant. See [3].

As a result, only planar graphs with two or four external legs can be relevant
or marginal. However, these graphs are labelled by an infinite number of matrix
indices. Here, we invented a discrete Taylor expansion in the matrix indices of the
external legs which decomposes the (infinite number of) planar two- and four-leg
graphs into a linear combination of four relevant or marginal base functions and
an irrelevant remainder. The explicite realisation of the propagator in terms of
hypergeometric functions was essential in this estimation. These four universal
base functions have the same index dependence as the original action in matrix
formulation, which implies the renormalisability of the model [3]. A summary of
the main ideas and techniques can be found in [8].

We have also computed in [9] the one-loop S-functions of the model which
describe the dependence of the bare coupling constant and the bare oscillator fre-
quency on the cut-off matrix size. It turned out that % remains constant under
the renormalisation flow. As |Q| is bounded by 1, the running coupling constant
can be kept arbitrarily small over all scales for a sufficiently small renormalised
coupling constant. This is a sign that a constructive renormalisation of the non-
commutative ¢3-model is possible.

Second Proof [V. Rivasseau, F. Vignes-Tourneret, R. Wulkenhaar] In [3] the as-

ymptotic properties of the propagator are only numerically determined. This

shortcoming was cured in [4] where we proved these bounds rigorously, for ) large
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enough. The idea was to use the Schwinger representation of the matrix propaga-
tor and to cut it into slices M~% < o < M~ We proved bounds in the matrix
indices as a function of the scale index 3.

These bounds confirmed the previous numerically estimation, but also gave rise
to a different renormalisation proof. For given attribution of scale indices to each
propagator, we were able to sum all independent matrix indices of the graph, thus
giving the amplitude in terms of the scale attribution. In order to determine the
independent matrix summation indices, the SO(2) x SO(2) symmetry of the model
(2) was used, which is most conveniently realised in the dual of the graph. Then,
the lines of the dual graph are distinguished into tree lines (chosen according to
the scale attribution) and loop lines. The bounds implied that summation over
the loop angular momenta do not cost anything so that the power-counting degree
of divergence boils down to twice the number of completely inner vertices of the
dual graph minus the number of propagators. This is precisely the topological
degree of divergence found in [3]!

Third Proof [R. Gurau, J. Magnen, V. Rivasseau and F. Vignes-Tourneret] Renor-
malisation should be basis independent. In particular, the model (2) should also
be renormalisable in position space (or, which by duality [7] is the same, momen-
tum space). This was indeed confirmed in [5]. The advantage of position space is
that the propagator is simple: it is given by the Mehler kernel. The price to pay
are the oscillating phase factors in the vertex. The problem is elegantly circum-
vented by first proving that non-orientable graphs (which are always non-planar)
are irrelevant even if one bounds the oscillating phases by 1. And for orientable
graphs (which can be planar or non-planar) the phases can be globally handled.
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