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This report is based on [1].

In previous work [2] we have proven that the following action functional for a
¢*-model on four-dimensional Moyal space gives rise to a renormalisable quantum
field theory:
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Here, x refers to the Moyal product parametrised by the antisymmetric 4 x 4-matrix
O, and & = 20~ 'z. The model is covariant under the Langmann-Szabo duality
transformation and becomes self-dual at €2 = 1. Evaluation of the S-functions for
the coupling constants 2, A in first order of perturbation theory leads to a coupled
dynamical system which indicates a fixed-point at {2 = 1, while A remains bounded
[3, 4]. The vanishing of the S-function at 2 = 1 was next proven in [5] at three-
loop order and finally by Disertori, Gurau, Magnen and Rivasseau [6] to all orders
of perturbation theory. It implies that there is no infinite renormalisation of A,
and a non-perturbative construction seems possible. The Landau ghost problem
is solved.

The action functional (1) is most conveniently expressed in the matrix base of
the Moyal algebra [2]. For Q = 1 it simplifies to
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The model only needs wavefunction renormalisation ¢ — v/ Z¢ and mass renor-
malisation fipare — £, but no renormalisation of the coupling constant [6] or of
Q = 1. All summation indices m,n,... belong to N2, with |m| := m; + ma, and
N3 refers to a cut-off in the matrix size.

The key step in the proof [6] that the S-function vanishes is the discovery of
a Ward identity induced by inner automorphisms ¢ — U@UT. Inserting into the
connected graphs one special insertion vertex
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is the same as the difference of graphs with external indices b and a, respectively,
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The Schwinger-Dyson equation for the one-particle irreducible two-point func-
tion T'% reads

The sum of the last two graphs can be reexpressed in terms of the two-point
function with insertion vertex,
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This is a closed equation for the two-point function alone. It involves the divergent
quantities I'y, and Z, pipere in H (3). Introducing the renormalised planar two-
point function I'"¢" by Taylor expansion 'y, = Zpi,, . —p?+(Z—1)(|a|+[b])+ 75",
with T8 = 0 and (9I'"™)gp = 0, we obtain a coupled system of equations for
Irrer, Z and fipare. It leads to a closed equation for the renormalised function I'/7"
alone, which is further analysed in the integral representation.

We replace the indices in a, b, ... N by continuous variables in R . Equation (7)

depends only on the length |a| = a; +ag of indices. The Taylor expansion respects
this feature, so that we replace ZpeNi by fOA |p| dp. After a convenient change of

variables |a| =: p? 2=, |p| =: M21Tpp and
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and using an identity resulting from the symmetry Goo, = Go0, we arrive at [1]:

Theorem 1. The renormalised planar connected two-point function Gog of self-
dual noncommutative ¢}-theory satisfies the integral equation
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The non-trivial renormalised four-point function fulfils a linear integral equation
with the inhomogeneity determined by the two-point function [1].

These integral equations are the starting point for a perturbative solution. In
this way, the renormalised correlation functions are directly obtained, without
Feynman graph computation and further renormalisation steps. We obtain
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where A := 11:—;[3’ B = % and the following iterated integrals appear:
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We conjecture that G,s is at any order a polynomial with rational coefficients in
«, B, A, B and iterated integrals labelled by rooted trees.
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