Progress in solving a noncommutative QFT in four dimensions
 Raimar Wulkenhaar
 (joint work with Harald Grosse)

This report is based on [1].
In previous work [2] we have proven that the following action functional for a ϕ^{4}-model on four-dimensional Moyal space gives rise to a renormalisable quantum field theory:

$$
\begin{equation*}
S=\int d^{4} x\left(\frac{1}{2} \phi\left(-\Delta+\Omega^{2} \tilde{x}^{2}+\mu^{2}\right) \phi+\frac{\lambda}{4} \phi \star \phi \star \phi \star \phi\right)(x) . \tag{1}
\end{equation*}
$$

Here, \star refers to the Moyal product parametrised by the antisymmetric 4×4-matrix Θ, and $\tilde{x}=2 \Theta^{-1} x$. The model is covariant under the Langmann-Szabo duality transformation and becomes self-dual at $\Omega=1$. Evaluation of the β-functions for the coupling constants Ω, λ in first order of perturbation theory leads to a coupled dynamical system which indicates a fixed-point at $\Omega=1$, while λ remains bounded [3, 4]. The vanishing of the β-function at $\Omega=1$ was next proven in [5] at threeloop order and finally by Disertori, Gurau, Magnen and Rivasseau [6] to all orders of perturbation theory. It implies that there is no infinite renormalisation of λ, and a non-perturbative construction seems possible. The Landau ghost problem is solved.

The action functional (1) is most conveniently expressed in the matrix base of the Moyal algebra [2]. For $\Omega=1$ it simplifies to

$$
\begin{align*}
S & =\sum_{m, n \in \mathbb{N}_{\Lambda}^{2}} \frac{1}{2} \phi_{m n} H_{m n} \phi_{n m}+V(\phi) \tag{2}\\
H_{m n} & =Z\left(\mu_{b a r e}^{2}+|m|+|n|\right), \quad V(\phi)=\frac{Z^{2} \lambda}{4} \sum_{m, n, k, l \in \mathbb{N}_{\Lambda}^{2}} \phi_{m n} \phi_{n k} \phi_{k l} \phi_{l m},
\end{align*}
$$

The model only needs wavefunction renormalisation $\phi \mapsto \sqrt{Z} \phi$ and mass renormalisation $\mu_{\text {bare }} \rightarrow \mu$, but no renormalisation of the coupling constant [6] or of $\Omega=1$. All summation indices m, n, \ldots belong to \mathbb{N}^{2}, with $|m|:=m_{1}+m_{2}$, and \mathbb{N}_{Λ}^{2} refers to a cut-off in the matrix size.

The key step in the proof [6] that the β-function vanishes is the discovery of a Ward identity induced by inner automorphisms $\phi \mapsto U \phi U^{\dagger}$. Inserting into the connected graphs one special insertion vertex

$$
\begin{equation*}
V_{a b}^{i n s}:=\sum_{n}\left(H_{a n}-H_{n b}\right) \phi_{b n} \phi_{n a} \tag{4}
\end{equation*}
$$

is the same as the difference of graphs with external indices b and a, respectively, $Z(|a|-|b|) G_{[a b] \ldots}^{\text {ins }}=G_{b \ldots}-G_{a \ldots}$:

The Schwinger-Dyson equation for the one-particle irreducible two-point function $\Gamma^{a b}$ reads

The sum of the last two graphs can be reexpressed in terms of the two-point function with insertion vertex,

$$
\begin{align*}
\Gamma_{a b} & =Z^{2} \lambda \sum_{p}\left(G_{a p}+G_{a b}^{-1} G_{[a p] b}^{i n s}\right)=Z^{2} \lambda \sum_{p}\left(G_{a p}-G_{a b}^{-1} \frac{G_{b p}-G_{b a}}{Z(|p|-|a|)}\right) \tag{7}\\
& =Z^{2} \lambda \sum_{p}\left(\frac{1}{H_{a p}-\Gamma_{a p}}+\frac{1}{H_{b p}-\Gamma_{b p}}-\frac{1}{H_{b p}-\Gamma_{b p}} \frac{\left(\Gamma_{b p}-\Gamma_{a b}\right)}{Z(|p|-|a|)}\right) .
\end{align*}
$$

This is a closed equation for the two-point function alone. It involves the divergent quantities $\Gamma_{b p}$ and $Z, \mu_{b a r e}$ in H (3). Introducing the renormalised planar twopoint function $\Gamma_{a b}^{r e n}$ by Taylor expansion $\Gamma_{a b}=Z \mu_{b a r e}^{2}-\mu^{2}+(Z-1)(|a|+|b|)+\Gamma_{a b}^{r e n}$, with $\Gamma_{00}^{r e n}=0$ and $\left(\partial \Gamma^{r e n}\right)_{00}=0$, we obtain a coupled system of equations for $\Gamma_{a b}^{r e n}, Z$ and $\mu_{b a r e}$. It leads to a closed equation for the renormalised function $\Gamma_{a b}^{r e n}$ alone, which is further analysed in the integral representation.

We replace the indices in $a, b, \ldots \mathbb{N}$ by continuous variables in \mathbb{R}_{+}. Equation (7) depends only on the length $|a|=a_{1}+a_{2}$ of indices. The Taylor expansion respects this feature, so that we replace $\sum_{p \in \mathbb{N}_{\Lambda}^{2}}$ by $\int_{0}^{\Lambda}|p| d p$. After a convenient change of variables $|a|=: \mu^{2} \frac{\alpha}{1-\alpha},|p|=: \mu^{2} \frac{\rho}{1-\rho}$ and

$$
\begin{equation*}
\Gamma_{a b}^{r e n}=: \mu^{2} \frac{1-\alpha \beta}{(1-\alpha)(1-\beta)}\left(1-\frac{1}{G_{\alpha \beta}}\right), \tag{8}
\end{equation*}
$$

and using an identity resulting from the symmetry $G_{0 \alpha}=G_{\alpha 0}$, we arrive at [1]:
Theorem 1. The renormalised planar connected two-point function $G_{\alpha \beta}$ of selfdual noncommutative ϕ_{4}^{4}-theory satisfies the integral equation

$$
\begin{align*}
G_{\alpha \beta}=1 & +\lambda\left(\frac{1-\alpha}{1-\alpha \beta}\left(\mathcal{M}_{\beta}-\mathcal{L}_{\beta}-\beta \mathcal{Y}\right)+\frac{1-\beta}{1-\alpha \beta}\left(\mathcal{M}_{\alpha}-\mathcal{L}_{\alpha}-\alpha \mathcal{Y}\right)\right. \tag{9}\\
& +\frac{1-\beta}{1-\alpha \beta}\left(\frac{G_{\alpha \beta}}{G_{0 \alpha}}-1\right)\left(\mathcal{M}_{\alpha}-\mathcal{L}_{\alpha}+\alpha \mathcal{N}_{\alpha 0}\right) \\
& \left.-\frac{\alpha(1-\beta)}{1-\alpha \beta}\left(\mathcal{L}_{\beta}+\mathcal{N}_{\alpha \beta}-\mathcal{N}_{\alpha 0}\right)+\frac{(1-\alpha)(1-\beta)}{1-\alpha \beta}\left(G_{\alpha \beta}-1\right) \mathcal{Y}\right)
\end{align*}
$$

where $\alpha, \beta \in[0,1)$,

$$
\mathcal{L}_{\alpha}:=\int_{0}^{1} d \rho \frac{G_{\alpha \rho}-G_{0 \rho}}{1-\rho}, \quad \mathcal{M}_{\alpha}:=\int_{0}^{1} d \rho \frac{\alpha G_{\alpha \rho}}{1-\alpha \rho}, \quad \mathcal{N}_{\alpha \beta}:=\int_{0}^{1} d \rho \frac{G_{\rho \beta}-G_{\alpha \beta}}{\rho-\alpha}
$$

and $\mathcal{Y}=\lim _{\alpha \rightarrow 0} \frac{\mathcal{M}_{\alpha}-\mathcal{L}_{\alpha}}{\alpha}$.
The non-trivial renormalised four-point function fulfils a linear integral equation with the inhomogeneity determined by the two-point function [1].

These integral equations are the starting point for a perturbative solution. In this way, the renormalised correlation functions are directly obtained, without Feynman graph computation and further renormalisation steps. We obtain

$$
\begin{align*}
G_{\alpha \beta}= & 1+\lambda\left\{A\left(I_{\beta}-\beta\right)+B\left(I_{\alpha}-\alpha\right)\right\} \tag{10}\\
+ & \lambda^{2}\left\{A B\left(\left(I_{\bullet}^{\alpha}-\alpha\right)+\left(I_{\bullet}-\beta\right)+\left(I_{\alpha}-\alpha\right)\left(I_{\beta}-\beta\right)+\alpha \beta(\zeta(2)+1)\right)\right. \\
& +A\left(\beta I_{\bullet}^{\bullet}-\beta I_{\beta}\right)-\alpha A B\left(\left(I_{\beta}\right)^{2}-2 \beta I_{\beta}+I_{\beta}\right) \\
& \left.+B\left(\alpha I_{\bullet}^{\alpha}-\alpha I_{\alpha}\right)-\beta B A\left(\left(I_{\alpha}\right)^{2}-2 \alpha I_{\alpha}+I_{\alpha}\right)\right\}+\mathcal{O}\left(\lambda^{3}\right),
\end{align*}
$$

where $A:=\frac{1-\alpha}{1-\alpha \beta}, B:=\frac{1-\beta}{1-\alpha \beta}$ and the following iterated integrals appear:

$$
\begin{align*}
I_{\alpha} & :=\int_{0}^{1} d x \frac{\alpha}{1-\alpha x}=-\ln (1-\alpha) \tag{11}\\
I_{\bullet}^{\alpha} & :=\int_{0}^{1} d x \frac{\alpha I_{x}}{1-\alpha x}=\operatorname{Li}_{2}(\alpha)+\frac{1}{2}(\ln (1-\alpha))^{2}
\end{align*}
$$

We conjecture that $G_{\alpha \beta}$ is at any order a polynomial with rational coefficients in α, β, A, B and iterated integrals labelled by rooted trees.

References

[1] H. Grosse and R. Wulkenhaar, "Progress in solving a noncommutative quantum field theory in four dimensions," arXiv:0909.1389 [hep-th].
[2] H. Grosse and R. Wulkenhaar, "Renormalisation of ϕ^{4}-theory on noncommutative \mathbb{R}^{4} in the matrix base," Commun. Math. Phys. 256 (2005) 305 [arXiv:hep-th/0401128].
[3] H. Grosse and R. Wulkenhaar, "The β-function in duality-covariant noncommutative ϕ^{4} theory," Eur. Phys. J. C 35 (2004) 277 [arXiv:hep-th/0402093].
[4] H. Grosse and R. Wulkenhaar, "Renormalisation of ϕ^{4}-theory on non-commutative \mathbb{R}^{4} to all orders," Lett. Math. Phys. 71 (2005) 13.
[5] M. Disertori and V. Rivasseau, "Two and three loops beta function of non commutative ϕ_{4}^{4} theory," Eur. Phys. J. C 50 (2007) 661 [arXiv:hep-th/0610224].
[6] M. Disertori, R. Gurau, J. Magnen and V. Rivasseau, "Vanishing of beta function of non commutative ϕ_{4}^{4} theory to all orders," Phys. Lett. B 649 (2007) 95 [arXiv:hep-th/0612251].

