Integrability in a 4D QFT model

Raimar Wulkenhaar
(joint work with Harald Grosse)
We start from a regularisation of the $\lambda \phi_{4}^{4}$-model on noncommutative Moyal space in finite volume [1],

$$
\begin{equation*}
S[\phi]=\frac{1}{64 \pi^{2}} \int d^{4} x\left(\frac{Z}{2} \phi \star\left(-\Delta+\Omega^{2}\left\|2 \Theta^{-1} x\right\|^{2}+\mu_{\text {bare }}^{2}\right) \phi+\frac{\lambda_{\text {bare }} Z^{2}}{4} \phi \star \phi \star \phi \star \phi\right)(x), \tag{1}
\end{equation*}
$$

where $Z, \lambda_{\text {bare }}, \mu_{\text {bare }}$ are functions of renormalised values λ, μ and of the regulators $\Omega, \Theta, \mathcal{N}$ encoded in the oscillator potential and the \star-product. We expand $\phi(x)=$ $\sum_{\underline{m}, \underline{n} \in \mathbb{N}^{2}} \Phi_{\underline{m} \underline{n}} f_{m_{1} n_{1}}\left(x^{0}, x^{1}\right) f_{m_{2} n_{2}}\left(x^{3}, x^{4}\right)$ in the matrix basis of the Moyal product

$$
\begin{equation*}
f_{m n}\left(y^{0}, y^{1}\right)=2(-1)^{m} \sqrt{\frac{m!}{n!}}\left(\sqrt{\frac{2}{\theta}} y\right)^{n-m} L_{m}^{n-m}\left(\frac{2|y|^{2}}{\theta}\right) e^{-\frac{|y|^{2}}{\theta}} \tag{2}
\end{equation*}
$$

which satisies $f_{\underline{m} \underline{n}} \star f_{\underline{k} \underline{l}}=\delta_{\underline{n} \underline{k} \underline{m} \underline{\underline{l}}}$ and $\int \frac{d x}{64 \pi^{2}} f_{\underline{m} \underline{n}}(x)=V \delta_{\underline{m} \underline{n}}$ with $V:=\left(\frac{\theta}{4}\right)^{2}$. At the special point $\Omega=1$ one then obtains a matrix model $S[\Phi]=V \operatorname{Tr}\left(Z E \Phi^{2}+\right.$ $\left.\frac{Z^{2} \lambda}{4} \Phi^{4}\right)$ with $E=\left(E_{\underline{\underline{m}}} \delta_{\underline{m} \underline{n}}\right)=\frac{\mu_{\text {年的e }}^{2}}{2}+\frac{1}{\sqrt{V}} \operatorname{diag}(0,1,1,2,2,2, \ldots)$ which admits a natural cut-off \mathcal{N}. The resulting partition function $\mathcal{Z}[J]=\int \mathcal{D} \Phi \exp (-S[\Phi]+$ $\operatorname{tr}(J \Phi))$ is merely considered as a device to extract the equations of motions, i.e. Schwinger-Dyson equations. The matrix model structure induces a refinement of N-point functions into partitions $N=N_{1}+\cdots+N_{B}$ and a corresponding expansion

$$
\begin{equation*}
V^{-2} \log \frac{\mathcal{Z}[J]}{\mathcal{Z}[0]}=\sum_{B=1}^{\infty} \sum_{1 \leq N_{1} \leq \cdots \leq N_{B}}^{\infty} \sum_{\underline{p}_{1}^{1}, \ldots, \underline{p}_{N_{B}}^{B}} \frac{G_{\left|\underline{p}_{1}^{1} \ldots \underline{p}_{N_{1}}^{1}\right| \ldots\left|\underline{p}_{1}^{B} \ldots \underline{p}_{N_{B}}^{B}\right|}}{S_{N_{1} \ldots N_{B}}} \prod_{\beta=1}^{B} \frac{\underline{\underline{p}}_{1}^{\beta} \underline{p}_{2}^{\beta} \cdots J_{\underline{p}_{N_{\beta}}^{B} \underline{p}_{1}^{\beta}}}{V N_{\beta}} . \tag{3}
\end{equation*}
$$

The Ward identity for the $U(\mathcal{N})$ group action [2] is used to collapse - in a coupled limit $\sqrt{V}, \mathcal{N} \rightarrow \infty$ with their ratio fixed - the tower of Schwinger-Dyson equations into a self-consistent formula for the 2-point function alone,

$$
\begin{equation*}
G_{|\underline{a} \underline{b}|}=\frac{1}{Z\left(E_{\underline{a}}+E_{\underline{b}}\right)}-\frac{Z \lambda}{\left(E_{\underline{a}}+E_{\underline{b}}\right)} \frac{1}{V} \sum_{\underline{p} \in \mathbb{N}_{\mathcal{N}}^{2}}\left(G_{|\underline{\mid \underline{b}}|} G_{|\underline{a \underline{p}}|}-\frac{G_{|\underline{p} \underline{b}|}-G_{|\underline{a}|}}{Z\left(E_{\underline{p}}-E_{\underline{a}}\right)}\right) \tag{4}
\end{equation*}
$$

and a hierarchy of linear equations for all higher correlation functions [3]. These equations are algebraic if one $N_{i}>2$, e.g. $G_{|\underline{a b c} \underline{d}|}=(-\lambda) \frac{G_{\mid \underline{\underline{b} b}} G_{|\underline{d} \underline{d}|}-G_{\mid \underline{\underline{d}} \underline{d}} G_{|\underline{\underline{c}}|}}{\left.E_{\underline{\underline{g}}}-E_{\underline{\underline{c}}}\right)\left(E_{\underline{\underline{b}}}-E_{\underline{d}}\right)}$ which proves that the β-function is zero, otherwise (e.g. for $G_{|\underline{|a b| c|c|}|}$) complicated but linear.

In a scaling limit $\mathcal{N}, V \rightarrow \infty$ with $\frac{\mathcal{N}}{\sqrt{V \mu^{4}}}=\Lambda$ fixed, sums over $\underline{p} \in \mathbb{N}_{\mathcal{N}}^{2}$ converge to Riemann integrals of continuous variables $a, b \in\left[0, \Lambda^{2}\right]$, and the finite Hilbert transform $\mathcal{H}_{a}^{\Lambda}(f)=\frac{1}{\pi} \mathcal{P} \int_{0}^{\Lambda^{2}} \frac{f(p) d p}{p-a}$ arises. The limit $\Lambda \rightarrow \infty$ requires renormalisation which, because of the vanishing β-function, can be directly implemented
in (4). Noticing that the difference $G(a, b)-G(a, 0)$ satisfies a linear equation, the solution theory of Carleman-Tricomi gives the renormalised limiting function $G(a, b)$ in terms of the boundary $G(a, 0)$:
Theorem $1([3,4])$. Define $\tau_{b}(a):=\underset{[0, \pi]}{\arctan }\left(\frac{|\lambda| \pi a}{b+\frac{1+\lambda \pi a \mathcal{H}_{a}^{A}[G(\bullet, 0)]}{G(a, 0)}}\right)$. Then

$$
G(a, b)=\frac{\sin \left(\tau_{b}(a)\right)}{|\lambda| \pi a} \mathrm{e}^{\operatorname{sign}(\lambda)\left(\mathcal{H}_{0}\left[\tau_{0}(\bullet)\right]-\mathcal{H}_{a}\left[\tau_{b}(\bullet)\right]\right)}\left\{\begin{array}{cc}
1 & \text { for } \lambda<0 \tag{5}\\
\left(1+\frac{C a+b F(b)}{\Lambda^{2}-a}\right) & \text { for } \lambda>0
\end{array}\right.
$$

Surprisingly, instantons corresponding to solutions of the homogeneous equation, parametrised by a constant C and a function $F(b)$, live at $\lambda>0$. This reversal is a consequence of renormalisation, to be discussed below. The remaining equation for $G(a, 0)$ reduces to symmetry $G(b, 0)=G(0, b)$. For $\lambda<0$ one has

$$
\begin{equation*}
G(b, 0)=\frac{1}{1+b} \exp \left(-\lambda \int_{0}^{b} d t \int_{0}^{\infty} \frac{d p}{(\lambda \pi p)^{2}+\left(t+\frac{1+\lambda \pi \mathcal{H}_{p}[G(\bullet, 0)]}{G(p, 0)}\right)^{2}}\right) \tag{6}
\end{equation*}
$$

A numerical iteration of (6) converges and shows a phase transition at $\lambda_{c} \approx-0.39$ [4]. For $\lambda>0$ the symmetry $G(a, b)=G(b, a)$ is violated if the instantons are ignored. In [5] we have proved by the Schauder fixed point theorem that a $C_{0}^{1}{ }^{-}$ solution $\frac{1}{(1+b)^{1-|\lambda|}} \leq G(0, b) \leq \frac{1}{(1+b)^{1-\frac{1}{1-2|\lambda|}}}$ exists for $-\frac{1}{6} \leq \lambda<0$.

Returning to the original formulation (1) in position space, we define connected Schwinger functions on \mathbb{R}^{4} as

$$
\begin{align*}
& \mu^{N} S_{c}\left(\mu x_{1}, \ldots, \mu x_{N}\right) \tag{7}\\
& :=\left.\lim _{\mathcal{N}, V \rightarrow \infty} \sum_{\underline{m}_{i}, \underline{n}_{i} \in \mathbb{N}_{\mathcal{N}}^{2}} f_{\underline{m}_{1} \underline{n}_{1}}\left(x_{1}\right) \cdots f_{\underline{m}_{N} \underline{n}_{N}}\left(x_{N}\right) \frac{\left(V \mu^{4}\right)^{-2} \mu^{4 N} \partial^{N} \log \mathcal{Z}[J]}{\partial J_{\underline{m}_{1} \underline{n}_{1}} \cdots \partial J_{\underline{m}_{N} \underline{n}_{N}}}\right|_{J=0} .
\end{align*}
$$

Inserting (3) one gets a partition into $f_{\underline{\underline{m}} \underline{n}}$-cycles. Expressing the correlation functions as Laplace-Fourier transform produces $\sum_{m_{1}, \ldots, m_{N}=0}^{\infty} \prod_{i=1}^{N} z_{i}^{m_{i}} L_{m_{i}}^{m_{i+1}-m_{i}}\left(r_{i}\right)$ which we evaluated in [6]. For the choice of z_{i}, the $V \rightarrow \infty$ limit is $\sim V^{0}$ for N odd but $\sim V^{1}$ for N even. Together with the V^{-1}-prefactor in (3) for every B one arrives at:

Theorem $2([6])$. Defining $\mathcal{Y}:=\lim _{b \rightarrow 0} \frac{(1-G(0, b))}{b}$ and $s_{\beta}:=N_{1}+\ldots+N_{\beta-1}$, the connected Schwinger functions are given by
(8) $S_{c}\left(\mu x_{1}, \ldots, \mu x_{N}\right)$

$$
\begin{aligned}
& =\frac{1}{64 \pi_{\substack{2}}^{N_{1}+\ldots+N_{B}=N}} \sum_{\sigma \in \mathcal{S}_{N}}\left(\prod_{\beta=1}^{B} \frac{4^{N_{\beta}}}{N_{\beta}} \int_{\mathbb{R}^{4}} \frac{d^{4} p_{\beta}}{4 \pi^{2} \mu^{4}} e^{\mathrm{i}\left\langle p_{\beta}, \sum_{i=1}^{N_{\beta}}(-1)^{i-1} x_{\sigma\left(s_{\beta}+i\right)}\right)}\right) \\
& \quad \times \frac{1}{S_{N_{1} \ldots N_{B}}} G(\underbrace{\frac{\left\|p_{1}\right\|^{2}}{2 \mu^{2}(1+\mathcal{Y})}, \cdots, \frac{\left\|p_{1}\right\|^{2}}{2 \mu^{2}(1+\mathcal{Y})}}_{N_{1}}|\cdots| \underbrace{\frac{\left\|p_{B}\right\|^{2}}{2 \mu^{2}(1+\mathcal{Y})}, \cdots, \frac{\left\|p_{B}\right\|^{2}}{2 \mu^{2}(1+\mathcal{Y})}}_{N_{B}}) .
\end{aligned}
$$

Only the face-diagonal matrix correlation functions contribute to the Schwinger functions in position space. This can be viewed as confinement of noncommutativity: Whereas interactions involve the complete matrix structure, Schwinger functions depend only on the projection to the diagonal. Euclidean symmetry is manifest. The Schwinger functions show a restricted kinematics where scattering is such that particle momenta are individually conserved, as it is the case in any integrable model.

We have also pointed out in [6] that reflection positivity of the 2-point function amounts to a Stieltjes representation $G(a, a)=\int_{0}^{\infty} d t \frac{\rho(t)}{t+a}$ for a positive measure ρ. This is excluded for $\lambda>0$, whereas we accumulated a lot of evidence that this is the case for $\lambda_{c}<\lambda \leq 0$. The preferrence of $\lambda<0$ is a renormalisation effect. The Stieltjes property is related to the anomalous dimension η in $\hat{S}_{2}(p) \sim$ $\frac{1}{\left(\|p\|^{2}+\mu^{2}\right)^{1-\eta / 2}}$. Naïvely we have $\eta>0$, in fact $\eta=+\infty$, for $\lambda>0$. It turns out that the renormalised anomalous dimension is positive for $\lambda<0$. Consequently, there is no hope to construct a rigorous measure for the partition function, which is why we based our approach on Schwinger-Dyson equations made rigorous.

Our best results so far (not yet published) start from an ansatz $G(0, x)=$ $\left.{ }_{4} F_{3}\binom{a, b_{1}, b_{2}, b_{3}}{c_{1}, c_{2}, c_{3}}-x\right)$ with $0<a<1$ and $1<b_{i}<c_{i}$, which is a Stieltjes function. Optimising for a, b_{i}, c_{i} we came to the conjecture $a=1-\frac{1}{\pi} \arcsin (|\lambda| \pi)$ which we were able to prove. Consequently, we expect the critical coupling constant to be exactly $\lambda_{c}=-\frac{1}{\pi}$. Such a hypergeometric function ansatz solves the fixed point equation (6) up to an error of 10^{-8}. We can plug it into Theorem 1 and notice that $G\left(\frac{x}{2}, \frac{x}{2}\right)$ is very close, but not exactly equal, to $G(0, x)$. We thus expect that also $G\left(\frac{x}{2}, \frac{x}{2}\right)$ is Stieltjes, with an intriguing behaviour of the Källén-Lehmann spectral measure ρ : There is a mass gap $\left[0, \mu^{2}[\right.$ but no further gap $] \mu^{2}, 4 \mu^{4}[$! Absence of this second gap - remnant of the cured UV/IR-mixing problem - circumvents several triviality theorems.

The exact solution of the model, its restricted kinematics, the vanishing of the β-function and the striking value $\lambda_{c}=-\frac{1}{\pi}$ of the critical coupling constant all support the conjecture that these results are due to a hidden integrable structure.

References

[1] H. Grosse and R. Wulkenhaar, "Renormalisation of ϕ^{4}-theory on noncommutative \mathbb{R}^{4} in the matrix base," Commun. Math. Phys. 256 (2005) 305-374 [hep-th/0401128].
[2] M. Disertori, R. Gurau, J. Magnen and V. Rivasseau, "Vanishing of beta function of non commutative ϕ_{4}^{4} theory to all orders," Phys. Lett. B 649 (2007) 95-102 [hep-th/0612251].
[3] H. Grosse and R. Wulkenhaar, "Self-dual noncommutative ϕ^{4}-theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory," Commun. Math. Phys. 329 (2014) 1069-1130 [arXiv:1205.0465 [math-ph]].
[4] H. Grosse and R. Wulkenhaar, "Solvable 4D noncommutative QFT: phase transitions and quest for reflection positivity," arXiv:1406.7755 [hep-th].
[5] H. Grosse and R. Wulkenhaar, "On the fixed point equation of a solvable 4D QFT model," Vietnam J. Math. 44 (2016) 153-180 [arXiv:1505.05161 [math-ph]].
[6] H. Grosse and R. Wulkenhaar, "Solvable limits of a 4D noncommutative QFT," arXiv:1306.2816 [math-ph].

