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We start from a regularisation of the λφ4
4-model on noncommutative Moyal

space in finite volume [1],
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where Z, λbare, µbare are functions of renormalised values λ, µ and of the regulators
Ω,Θ,N encoded in the oscillator potential and the ⋆-product. We expand φ(x) =
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which satisies fmn ⋆ fkl = δnkfml and
∫

dx
64π2 fmn(x) = V δmn with V := ( θ4 )

2. At

the special point Ω = 1 one then obtains a matrix model S[Φ] = V Tr(ZEΦ2 +
Z2λ
4 Φ4) with E = (Emδmn) =

µ2
bare

2 + 1√
V
diag(0, 1, 1, 2, 2, 2, . . . ) which admits a

natural cut-off N . The resulting partition function Z[J ] =
∫
DΦexp(−S[Φ] +

tr(JΦ)) is merely considered as a device to extract the equations of motions, i.e.
Schwinger-Dyson equations. The matrix model structure induces a refinement
of N -point functions into partitions N = N1 + · · · + NB and a corresponding
expansion
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The Ward identity for the U(N ) group action [2] is used to collapse — in a coupled

limit
√
V ,N → ∞ with their ratio fixed — the tower of Schwinger-Dyson equations

into a self-consistent formula for the 2-point function alone,
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1
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1
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)

,(4)

and a hierarchy of linear equations for all higher correlation functions [3]. These

equations are algebraic if one Ni > 2, e.g. G|abcd| = (−λ)
G|ab|G|cd|−G|ad|G|cb|

(Ea−Ec)(Eb−Ed)
which

proves that the β-function is zero, otherwise (e.g. for G|ab|cd|) complicated but
linear.

In a scaling limit N , V → ∞ with N√
V µ4

= Λ fixed, sums over p ∈ N
2
N converge

to Riemann integrals of continuous variables a, b ∈ [0,Λ2], and the finite Hilbert

transform HΛ
a(f) = 1

π
P
∫ Λ2

0
f(p) dp
p−a

arises. The limit Λ → ∞ requires renormali-

sation which, because of the vanishing β-function, can be directly implemented
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in (4). Noticing that the difference G(a, b) − G(a, 0) satisfies a linear equation,
the solution theory of Carleman-Tricomi gives the renormalised limiting function
G(a, b) in terms of the boundary G(a, 0):
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Surprisingly, instantons corresponding to solutions of the homogeneous equa-
tion, parametrised by a constant C and a function F (b), live at λ > 0. This
reversal is a consequence of renormalisation, to be discussed below. The remain-
ing equation for G(a, 0) reduces to symmetry G(b, 0) = G(0, b). For λ < 0 one
has
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A numerical iteration of (6) converges and shows a phase transition at λc ≈ −0.39
[4]. For λ > 0 the symmetry G(a, b) = G(b, a) is violated if the instantons are
ignored. In [5] we have proved by the Schauder fixed point theorem that a C1

0 -
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(1+b)1−|λ| ≤ G(0, b) ≤ 1

(1+b)
1−

|λ|
1−2|λ|

exists for − 1
6 ≤ λ < 0.

Returning to the original formulation (1) in position space, we define connected
Schwinger functions on R

4 as
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Inserting (3) one gets a partition into fmn-cycles. Expressing the correlation func-

tions as Laplace-Fourier transform produces
∑∞
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i L
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which we evaluated in [6]. For the choice of zi, the V → ∞ limit is ∼ V 0 for N

odd but ∼ V 1 for N even. Together with the V −1-prefactor in (3) for every B one
arrives at:

Theorem 2 ([6]). Defining Y := limb→0
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b
and sβ := N1+ . . .+Nβ−1, the

connected Schwinger functions are given by
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Only the face-diagonal matrix correlation functions contribute to the Schwinger
functions in position space. This can be viewed as confinement of noncommuta-
tivity: Whereas interactions involve the complete matrix structure, Schwinger
functions depend only on the projection to the diagonal. Euclidean symmetry is
manifest. The Schwinger functions show a restricted kinematics where scattering
is such that particle momenta are individually conserved, as it is the case in any
integrable model.

We have also pointed out in [6] that reflection positivity of the 2-point function

amounts to a Stieltjes representation G(a, a) =
∫∞
0 dt

ρ(t)
t+a

for a positive measure
ρ. This is excluded for λ > 0, whereas we accumulated a lot of evidence that
this is the case for λc < λ ≤ 0. The preferrence of λ < 0 is a renormalisation
effect. The Stieltjes property is related to the anomalous dimension η in Ŝ2(p) ∼

1
(‖p‖2+µ2)1−η/2 . Näıvely we have η > 0, in fact η = +∞, for λ > 0. It turns out

that the renormalised anomalous dimension is positive for λ < 0. Consequently,
there is no hope to construct a rigorous measure for the partition function, which
is why we based our approach on Schwinger-Dyson equations made rigorous.

Our best results so far (not yet published) start from an ansatz G(0, x) =

4F3

(
a,b1,b2,b3
c1,c2,c3

∣
∣− x

)
with 0 < a < 1 and 1 < bi < ci, which is a Stieltjes function.

Optimising for a, bi, ci we came to the conjecture a = 1− 1
π
arcsin(|λ|π) which we

were able to prove. Consequently, we expect the critical coupling constant to be
exactly λc = − 1

π
. Such a hypergeometric function ansatz solves the fixed point

equation (6) up to an error of 10−8. We can plug it into Theorem 1 and notice that
G(x2 ,

x
2 ) is very close, but not exactly equal, to G(0, x). We thus expect that also

G(x2 ,
x
2 ) is Stieltjes, with an intriguing behaviour of the Källén-Lehmann spectral

measure ρ: There is a mass gap [0, µ2[ but no further gap ]µ2, 4µ4[! Absence of
this second gap — remnant of the cured UV/IR-mixing problem — circumvents
several triviality theorems.

The exact solution of the model, its restricted kinematics, the vanishing of the
β-function and the striking value λc = − 1

π
of the critical coupling constant all

support the conjecture that these results are due to a hidden integrable structure.
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