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1. Quantum field theory of matrix models

We investigate the possibility to construct quantum field theories as limits of mod-
els defined on some Euclidean noncommutative space. Such models are essentially
matrix models with action S(Φ) = tr(EΦ2 + pol(Φ)), understood as limit of fi-
nite matrices. Here E is a positive selfadjoint operator which defines a dimension
D = inf{p > 0 : tr((1+E)−p/2) <∞}, and pol(Φ) =

∑r
k=1 λkΦk. The task could

be to give a meaning to the limit measure 1
Z e
−V S(Φ)dΦ, where V > 0 represents

the volume.
We do not suppose that the limit can be constructed. Instead we derive (for

N × N -matrices) equations between moments of the measure, simplify them by
further Ward-Takahashi identities [1] resulting from the U(N )-group action, take

the limit of the equations (which requires renormalisation Φ 7→
√
ZΦ and suitable

dependence Z(N ), λk(N ) onN , D) and look for exact solutions of these Schwinger-
Dyson equations.

This strategy was developed and investigated first for pol(Φ) = λ
4 Φ4 in D = 4

and in a special limit N , V →∞, with N
V 2/D = Λ2 fixed, followed by Λ→∞ [2]. In

examples, this limit corresponds to a large-deformation limit of noncommutative
geometries. We proved that this approach collapsed the tower of Schwinger-Dyson
equations into a closed non-linear integral equation for the matricial 2-point func-
tion and a hierarchy of affine integral equations for all higher correlation functions.
In fact higher functions were algebraically expressable in terms of fundamental
building blocks, which in particular proved that the β-function in this matricial
λΦ4-model is identically zero (perturbatively proved in [1]). The equation for
the 2-point function was reduced to a fixed point problem (for which we proved
existence of a solution) for the boundary 2-point function R+ 3 x 7→ G(x, 0).

Recent highlight is the λΦ3 model in D = 2 [3] and D ∈ {4, 6} [4] where
renormalisation requires (for D = 6) to consider

S(Φ) = tr
(
ZEΦ2 + (κ+ νE + ζE2)Φ + 1

2µ
2
bareΦ

2 + 1
3λbareΦ

3
)
.(1)

BPHZ normalisation conditions were directly implemented in the Schwinger-Dyson
equation, leading to exact formulae for Z, κ, ν, ζ, µ2

bare, λbare as function of N , V
and the given spectrum of E. It turns out that λbare is Z

3
2 times a running coupling

constant which corresponds to positive β-function for real λ, λbare. Nevertheless
there is no Landau ghost; the model can be solved up to any scale Λ. After
renormalisation we obtain a closed non-linear equation for the 1-point function.
This equation is exactly solvable similar to the Makeenko-Semenoff solution [5]

of f2(x) + λ2
∫ b
a
dt ρ(t) f(x)−f(t)

x−t = x by f(x) =
√
x+ c + λ2

2

∫ b
a

dt ρ(t)

(
√
x+c+

√
t+c)
√
t+c

(together with a consistency condition on c). We prove: Let the spectrum of
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E converge in the considered limit to a positive function e(x), and let X(x) :=
(2e(x) + 1)2. Then for D = 6 the 1-point function reads in the considered limit

G(x) =

√
(X+c)(1+c)−c−

√
X

2λ
(2)

+
λ

4

∫ ∞
1

dT (e−1(
√
T−1
2 ))2 (

√
X+c−

√
1+c)2

√
Te′(e−1(

√
T−1
2 ))(

√
X+c+

√
T+c)(

√
1+c+

√
T+c)2

√
T+c

,

with c(λ) the implicit solution of −c = λ2
∫∞

1

dT (e−1(
√
T−1
2 ))2

√
Te′(e−1(

√
T−1
2 ))(

√
1+c+

√
T+c)3

√
T+c

.

We checked that Taylor expansion to O(λ3) agrees with renormalised Feynman
graph computation. See [4].

Higher N -point functions can be viewed as representations of the permutation
group. Every permutation is a product of cycles. Collecting permutations of
the same cycle lengths (N1, . . . , NB) leads to a decomposition of (total) N -point
functions into N1+ . . .+NB-point functions G(x1

1, . . . , x
1
N1
| . . . |xB1 , . . . , xBNB ). It

was straightforward [3] to reduce them to 1+ . . .+1-point functions:

G(x1
1, . . . , x

1
N1
| . . . |xB1 , . . . , xBNB )(3)

=
1

λB

N1∑
k1=1

· · ·
NB∑
kB=1

G(x1
k1 | . . . |x

B
kB )︸ ︷︷ ︸

(∗)

B∏
β=1

Nβ∏
lβ=1

lβ 6=kβ

4λ

(2e(xβkβ )+1)2 − (2e(xβlβ )+1)2
,

where for B = 1 one should read e(x1
k1

) + 1
2 + λG(x1

k1
) instead of (∗). Solving the

equations for the 1+ . . .+1-functions is a difficult combinatorial problem. Making
essential use of Bell polynomials we proved (with X(xi) = (2e(xi) + 1)2):

G(x1|x2) =
4λ2√

X(x1) + c
√
X(x2) + c(

√
X(x1) + c+

√
X(x2) + c)2

G(x1| . . . |xB) =
dB−3

dtB−3

( (−2λ)3B−4

(R(t))B−2

1√
X(x1)+c−2t

3 · · ·
1√

X(xB)+c−2t
3

)∣∣∣∣∣
t=0

for B = 2 and B ≥ 3, respectively, where R(t) is an explicit integral [3, eq. (4.9)],
which depends on D,λ, e(.).

2. Schwinger functions and reflection positivity

It was speculated that space-time might be a noncommutative manifold. In its
Euclidean formulation, a scalar field would be an element of a noncommutative
algebraA which in many cases is approximated by matrices. A convenient example
is the D-dimensional Moyal space, the Rieffel deformation of Schwartz functions

by translation, (f ?g)(ξ) =
∫
R2D

d(k,y)
(2π)D

f(ξ+ 1
2Θk)g(ξ+y)ei〈k,y, where Θ is a skew-

symmetric real D×D-matrix. We describe the transition to matrices in D = 2 with

Θ =
(

0 θ
−θ 0

)
. The functions fmn(z) = 2(−1)m

√
m!
n!

(√
2
θ z
)n−m

Ln−mm

(
2|z|2
θ

)
e−
|z|
θ ,

with z ∈ C ≡ R2, satisfy (fmn ? fkl)(z) = δnkfml(z) and
∫
C dz fmn(z) = 2πθδmn.

Therefore, expanding an action functional for a scalar field φ =
∑
m,n Φmnfmn
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on Moyal space, where m = (m1, . . . ,mD/2) and fmn(z) =
∏D/2
i=1 fmini(zi), in

this matrix basis leads back to the starting point (1) of a matricial QFT model.
Connected Schwinger N -point functions on Moyal space can thus be obtained via

Sc(z1, . . . , zN ) := lim
N ,V→∞

∑
mi,ni

fm1n1
(z1) · · · fmNnN (zN )

(−i)N∂N log Ẑ(J)

∂Jm1n1 . . . ∂JmNnN

∣∣∣∣
J=0

,

(4)

where formally Ẑ(J) =
∫
DΦ exp(−S(Φ) + iV

∑
ab ΦabJab). We proved that only

the diagonals G(x1, . . . , x1| . . . |xB , . . . , xB) of the rigorously constructed matricial
correlation functions (3) contribute to the limit.

Inserting the explicit formulae we were able to check reflection positivity [6]. It
should be known that reflection positivity implies the following for the momentum
space Schwinger functions Ŝ: the temporal Fourier transform from independent
energies p0

j to time differences τj > 0 is, for all spatial momenta ~pj, a positive
definite function on Rm+ . By the Hausdorff-Bernstein-Widder theorem, (i) positive
definiteness is equivalent to (ii) being Laplace transform of a positive measure
and to (iii) being a completely monotonic function. The latter property is what
we check. We find that the 2-point function of λΦ3

D on Moyal space is reflection
positive iff D = 4, 6 (not D = 2!) and λ ∈ R (where the partition function does
not define a measure). The Källén-Lehmann measure was explicitly computed; it
consists of a ‘broadened mass shell’ of width 2µ2

√
−c centred at p2 = µ2 (with

c given after (2), |λ| ≤ λc expressed in terms of the Lambert W -function) and a
‘scattering part’ supported on p2 ≥ 2µ2. See [4, Thm 6.1+6.2].

In unpublished work we prove that the projection to diagonal matricial correla-
tion functions violates reflection positivity in higher Schwinger N -point functions.
Hence, the above limit procedure needs modification. A natural suggestion would
be to replace in (4) the pointwise product fm1n1

(z1) · · · fmNnN (zN ) by a state

ωz1,...,zN (fm1n1
⊗ · · ·⊗ fmNnN ) on A⊗N . It would be interesting to study whether

the choice of state permits enough flexibility to rescue reflection positivity.
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