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This abstract is based on [1] where we give strong evidence for

Conjecture 1. The non-linear integral equation for a function Gλ : R+×R+ → R,

(1 + a+ b)Gλ(a, b) = 1 + λ

∫ ∞
0

dp
(Gλ(p, b)−Gλ(a, b)

p− a
+
Gλ(a, b)

1 + p

)
+ λ

∫ ∞
0

dq
(Gλ(a, q)−Gλ(a, b)

q − b
+
Gλ(a, b)

1 + q

)
(1)

− λ2

∫ ∞
0

dp

∫ ∞
0

dq
Gλ(a, b)Gλ(p, q)−Gλ(a, q)Gλ(p, b)

(p− a)(q − b)
,

is for any real coupling constant λ > −1/(2 log 2) ≈ −0.721348 solved by

Gλ(a, b) = Gλ(b, a) =
(1 + a+ b) exp(Nλ(a, b))(

b+ λW
(

1
λe

(1+a)/λ
))(

a+ λW
(

1
λe

(1+b)/λ
)) , where(2)

Nλ(a, b) :=
1

2πi

∫ ∞
−∞

dt log
(

1−
λ log( 1

2 − it)

b+ 1
2 + it

) d
dt

log
(

1−
λ log( 1

2+it)

a+ 1
2 − it

)
.(3)

Here, W denotes the Lambert function, more precisely its principal branch W0

for λ > 0 and the other real branch W−1 for −1 < λ < 0 of the solution of
W (z)eW (z) = z. The function Nλ(a, b) defined for λ > −1/(2 log 2) has a pertur-
bative expansion into Nielsen polylogarithms.

Equation (1) arises from the Dyson-Schwinger equation for the 2-point function
of the λφ?4-model with harmonic propagation on 2-dimensional noncommutative
Moyal space in a special limit where the matrix size and the deformation parameter
are simultaneously sent to infinity. We refer to [1, 2] for details and treat here only
the solution of (1).

Starting point is the observation that (1) is equivalent to a boundary value
problem. Define by

Ψλ(z, w) := 1 + z + w − λ log(−z)− λ log(−w) + λ2

∫ ∞
0

dp

∫ ∞
0

dq
Gλ(p, q)

(p− z)(q − w)

a function holomorphic on (C \ [0,Λ2])2. Then (1) is equivalent to

(4) Ψλ(a+ iε, b+ iε)Ψλ(a− iε, b− iε) = Ψλ(a+ iε, b− iε)Ψλ(a− iε, b+ iε) .

Therefore, there is a real function τa(b) with

(5) Ψλ(a+ iε, b+ iε)e−iτa(b) = Ψλ(a+ iε, b− iε)eiτa(b) .

The Plemelj formulae give (after introducing a common cut-off Λ in the integrals
(1)) two equations for the real and imaginary part of (5). Both are Carleman-
type singular integral equations for Gλ(a, b) and for Gλ(a, b) := 1

λπ +Ha[Gλ(•, b)],
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where Ha[f(•)] := 1
π −
∫ Λ2

0
dp f(p)

p−a is the one-sided Hilbert transform (we denote by

−
∫

the Cauchy principal value). The equation for Gλ(a, b) is easily solved by

Gλ(a, b) =
sin τa(b)

λπ
eHb[τa(•)] .(6)

The solution for Gλ(a, b) is the symmetric partner a↔ b of the Gλ(a, b)-equation
provided that

λπ cot τb(a) = 1 + a+ b− λ log a+ Iλ(a) , where

Iλ(a) :=
1

π

∫ ∞
0

dp
(
e−Hp[τa(•)] sin τa(p)− λπ

1 + p

)
.

(7)

A solution of (7) as formal power series in λ leads surprisingly far. Using the
HyperInt package [3] we convinced ourselves that whereas Hp[τa(•)] recursively
evaluates to polylogarithms and more complicated hyperlogarithms, Iλ(a) itself
remains extremely simple and only contains powers of log(1 + a). The results for
Iλ(a) are of such striking simplicity and structure that we could obtain an explicit
formula. Concretely,

Iλ(a) = −λ log(1 + a) +

∞∑
n=1

λn+1
( (log(1 + a))n

nan
+

(log(1 + a))n

n(1 + a)n

)
+

∞∑
n=1

(n−1)!λn+1

(1+a)n

n−1∑
j=1

n∑
k=0

(−1)j
sj,n−k
k!j!

((1+a

a

)n−j
+ 1
)(

log(1+a)
)k(8)

correctly reproduces the first 10 terms of the expansion in λ. We conjecture that
it holds true to all orders. By sn,k we denote the Stirling numbers of the first
kind, with sign (−1)n−k. Using generating functions of Stirling numbers, (8) is
simplified to

Iλ(a) =

∞∑
n=1

λn

n!

dn−1

dan−1
(− log(1 + a))n − λ

∞∑
n=1

λn

n!

dn−1

dan−1

(− log(1 + a))n

a
.(9)

This structure is covered by the Lagrange inversion theorem which shows that

the first sum in (9) is the inverse w(λ) =
∑∞
n=1

λn

n!
dn−1

dwn−1 (φ(w))n
∣∣
w=0

of the

function λ(w) = w
φ(w) if we set φ(w) = − log(1 + a + w). On the other hand,

λ(w) = − w
log(1+a+w) is easily inverted to the Lambert-W function which solves

W (z)eW (z) = z. The second sum in (9) (without the preceeding −λ), written as∑∞
n=1

λn

n!
dn−1

dwn−1

(
H ′(w)φ(w)n

)∣∣
w=0

for H(w) = log(1 + w/a), is by the Lagrange-

Bürmann formula equal to H(w(λ)) for the same w(λ) as above. Putting every-
thing together, we we have resummed (9) to

(10) Iλ(a) = λW
( 1

λ
e

1+a
λ

)
− λ log

(
λW

( 1

λ
e

1+a
λ

)
− 1
)
− 1− a+ λ log a .

A closer discussion shows that for λ ≥ 0 the principal branch W0 of the Lambert
function is selected and for −1 < λ < 0 the other real branch W−1. It can be
shown that (10) is analytic at any λ > −1.
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This result gives τb(a) via (7). For Gλ(a, b) we need according to (6) the Hilbert
transform of that function. A lengthy calculation leads to

Ha[τb(•)] = log
√

(b+ λW ( 1
λe

(1+a)/λ)− λ log(λW ( 1
λe

(1+a)/λ)− 1))2 + (λπ)2

+ log
( (1 + a+ b) exp(Nλ(a, b))

(b+ λW ( 1
λe

(1+a)/λ))(a+ λW ( 1
λe

(1+b)/λ))

)
,

Nλ(a, b) :=
1

2πi

∫
γε

dz log
(

1− λ log(−z)
1 + b+ z

) d

dw
log
(

1− λ log(1+z+w)

1+a− (1+z+w)

)∣∣∣
w=0

,

(11)

where γε is the curve in the complex plane which encircles the positive real axis
clockwise at distance ε. Equation (11) holds for λ > −1 and can be rearranged for
λ > − 1

2 log 2 into (3). In particular, formula (2) follows.

Further information is obtained from the generating function Rα,β(a, b;w) de-

fined by Nλ(a, b) =
∑∞
m,n=1

(−λ)m+n

m!n! ∂m−1
a ∂n−1

b ∂mα ∂
n
β∂wRα,β(a, b;w)

∣∣
α=β=w=0

,

Rα,β(a, b;w) =
(1 + w)α+β

(1 + a+ b− w)

Γ(1− α− β)

Γ(1− α)Γ(1− β)

{
− 1

+
(1 + b)β

(1 + w)β
2F1

(−α, β
1− α

∣∣∣w − b
1 + w

)
+

(1 + a)α

(1 + w)α
2F1

(−β, α
1− β

∣∣∣w − a
1 + w

)}
.(12)

The hypergeometric function generates precisely the Nielsen polylogarithms

2F1

(−x, y
1− x

∣∣∣z) = 1−
∑
n,p≥1

Sn,p(z)x
nyp ,

Sn,p(z) :=
(−1)n+p−1

(n− 1)!p!

∫ 1

0

dt
(log(t))n−1(log(1− zt))p

t
,(13)

and Γ(1−α−β)
Γ(1−α)Γ(1−β) = exp

(∑∞
k=2((α + β)k − αk − βk) ζ(k)

k

)
gives rise to Riemann

zeta values.
Our result now permits to complete the exact solution of the whole λφ?4-model

on Moyal space [2]. Moreover, all experience shows that solving a non-linear
problem such as (1) by generalised radicals (here W (z), Nλ(a, b)) can only be
expected in presence of a hidden symmetry. We consider it worthwhile to explore
the corresponding integrable structure.
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