
hep-th/0001182UWThPh-2000-9SISSA/6/2000/FMRenormalization of nonommutative Yang-Mills theories:A simple exampleHarald Grossea;1, Thomas Krajewskib;2 and Raimar Wulkenhaara;3a Institute for Theoretial Physis, University of ViennaBoltzmanngasse 5, 1090 Wien, Austriab Suola Internazionale Superiore di Studi Avanzativia Beirut 4, 34014 Trieste, ItalyAbstratWe prove by expliit alulation that Feynman graphs in nonommutative Yang-Mills theory made of repeated insertions into itself of arbitrarily many one-loop ghostpropagator orretions are renormalizable by loal ounterterms. This provides astrong support for the renormalizability onjeture of that model.1 IntrodutionIt is now ommonly admitted that our urrent onepts about spae and time have to behanged when exploring spae-time at a very small sale. Indeed, one an show that it isimpossible to loate a partile with an arbitrarily small unertainty when taking both intoaount the priniples of quantum mehanis and general relativity [1℄. Roughly speaking,one an say that measurements of oordinates on spae-time are subjet to unertaintyrelations, thus ruining all geometrial onepts that have proved to be a guidane priniplein elaborating many physial theories.Following the previously alluded analogy with quantum mehanis, one an try to solvethis puzzle by assuming that the oordinates themselves are nonommuting objets. Thus,the natural extension of geometrial ideas to this new type of oordinates has been alled\nonommutative geometry". Following even loser the ideas and methods of quantummehanis, we are led to assume that these nonommutative oordinates are represented asa subalgebra of the algebra of operators ating on a Hilbert spae. This is the frameworkof the theory pioneered by A. Connes [2℄, whih allows us to make use of the powerfultools of funtional analysis. Within this framework, an analogue of gauge theory has beendeveloped, even with non trivial topologial properties, and it has already proved to beuseful in various areas of physis, ranging from the lassial desription of the Higgs setorof the standard model (see [3℄ for a review) to reent ideas in string theory (see [4℄ andreferenes therein).This last example involves what we will all NonCommutative Yang-Mills (NCYM) the-ories in the sequel and an be thought of as a generalization of non-abelian gauge theories,whose gauge symmetry and interations involves the nonommutative nature of the oor-dinates. A �rst example of suh a theory appeared almost ten years ago, when Connesand Rie�el developed lassial two dimensional Yang-Mills theory on the nonommutativetorus [5℄. This idea has also been generalized to higher dimensions [6℄.1e-mail: grosse�doppler.thp.univie.a.at2e-mail: krajew�fm.sissa.it3e-mail: raimar�doppler.thp.univie.a.at 1



This naturally raises the question of the quantization of suh theories, whih has beentakled, at the one loop order, on the tori in [7℄ and on nonommutative RD in [8℄ and [9℄.Although these theories turned out to be non loal, i.e. their interating verties involvetrigonometri funtions of the inoming momenta, it turns that the one-loop behavior isquite similar to the standard non-abelian ase. This relies on an older work of Filk [10℄,who proved that the trigonometri fator of any planar graph (in a sense to be de�nedbelow) does not involve trigonometri funtions of the internal momenta owing into theloops, thus exhibiting the same divergene as the standard theory.However, this is not true for non planar diagrams whose trigonometri fator doesinvolve a phase depending on the internal momenta. Obviously suh a phase softens theultraviolet behavior of the orresponding diagram and it has been onjetured by severalauthors that suh a diagram is in fat �nite [7, 11, 12℄.Nevertheless, it has been pointed out that this is not always the ase [13℄. Indeed, if thenon planar diagram ontains some speial kind of non planar subdiagrams whose standarddegree of divergene is stritly greater that zero, whih is the ase in a salar �eld theory,the small momentum behavior of these diagrams yields a new kind of infrared divergeneintimately tied up with the non loality.This short paper is devoted to a survey of this problem in the simple ase of multilooporretions to the ghost propagator involving only nested and disjoint subdivergent oneloop orretions to the ghost propagator. In the following setion we shall briey reviewthe problem raised in [13℄ and then we shall present an expliit omputation of the orre-sponding diagrams, postponing a omplete probe into the renormalization of NCYM theoryto a future publiation.2 Small momentum singularities indued by non planar diagramsBefore entering into the details of NCYM theory, let us reall that the nonommutative RDis the algebra generated by D hermitean elements x� with ommutator [x�; x�℄ = �2i��� ,where ��� denotes a real antisymmetri matrix whih we will assume to be of maximal rankfor onveniene. Furthermore, one introdues Fourier modes U(k) = eik�x, with k �x = k�x�.We will always think of a smooth and at in�nity rapidly dereasing funtion as a Fouriertransform f = Z dDk f(k)U(k) ;where k 7! f(k) is itself a smooth and rapidly dereasing funtion on standard RD . Theommutation relations of the oordinates endow the algebra with the star produtf ?� g := Z dDk dDl f(k)g(l)U(k)U(l) ; (1)whih yields (f ?� g)(k) = Z dDl f(k�l)g(l) ei�(k;l)with �(k; l) = ���k�l�. Finally, this algebra is equipped with the analogue of an integralde�ned as Z f := f(0) (2)2



and partial derivatives ��f := Z dDk ik�f(k)U(k) ; (3)whih satisfy most of the properties of their ommutative ounterparts: positivity and def-initeness of the integral, Leibniz rule, ommutativity of partial derivatives and integrationby part, together with the traial property of the integralZ f ?� g = Z g ?� f ;whih proves to be fundamental in the onstrution of gauge invariant theories.At that point, two additional remarks are in order. First of all, let us notie thatthe matrix ��� expliitly breaks Lorentz invariane (or its eulidian ounterpart), whihis redued to the transformations ommuting with �, whereas translational invariane ispreserved. Furthermore, as ��� is dimensionful, it also breaks sale invariane already atthe lassial level, for instane, in the ase of four-dimensional NCYM theory or for atwo-dimensional salar �eld theory.From now on, one easily onstruts salar �eld theories, like �4, whose eulidian ationis S[�℄ = Z �12��� ?� ���+ m22 � ?� �+ g4!� ?� � ?� � ?� �� ; (4)or the NCYM ationS[A�℄ = �14 Z F�� ?� F �� ; with (5)F�� = ��A� � ��A� + g(A� ?� A� � A� ?� A�) :Beause of the traial properties of the integration, the latter enjoys invariane undernonommutative gauge transformationsÆ�A� = g(� ?� A� � A� ?� �)� ��� :Perturbative quantization of these theories is easily performed within a formal funtionalintegral point of view: The quadrati parts of the ations are equal to their ommutativeounterparts, whereas the interations are non loal and exhibit trigonometri funtionsof the inoming momenta of the interation verties. Thus, the total ontribution of anyFeynman diagram an be written as the produt of a rational funtion by a trigonometrifuntion. Beause trigonometri funtions are bounded, the standard rules of powerount-ing are unhanged so that Weinberg's onvergene theorem remains valid.It has been shown [10℄ that for planar diagrams the trigonometri funtion is indepen-dent of the internal momenta so that the Feynman integral redues to the one enounteredin a ommutative �eld theory. For non planar diagrams the situation is more involved andwe mainly have to distinguish two ases: whether the non planarity results from rossingof internal lines (i.e. from the non planar harater of the amputed diagram), whih we alltype I diagrams, or whether it solely omes from rossing of internal lines whith externallines (type E). The latter ase is muh more triky beause the phase vanishes when theorresponding external momenta satisfy some partiular relation.3



The orresponding Feynman integral has been evaluated in [13℄ within Shwinger'sregularization sheme. It turns out that a type I non planar diagram whose powerountingsubdivergent non planar diagrams are all of type I will be onvergent, the orrespondingsingularity when the Shwinger parameters goes to zero being removed. If the diagram isof type E, but does not ontain any subdivergene of type E, it is non singular, exept forsome exeptional values of its external momenta.Most of the trouble omes from the insertion of type E non planar subdivergenes.Indeed, the latter orrespond to Feynman integrals of the typeZ dnDk R(k1; : : : ; kn; p1; : : : ; pN) ei(�(k1;P1)+���+�(kn;Pn)); (6)where k1; : : : ; kn are the independent internal momenta, p1; : : : ; pN are the external mo-menta and P1; : : : ; Pn are linear ombinations of the external momenta. The rational fun-tion R(k1; : : : ; kn; p1; : : : ; pN) is responsible for the subdivergene.When all the Pi's whih ouple to internal momenta belonging to divergent integralsdo not vanish, the orresponding integral an be onsidered as �nite, being regularized bythe osillatory fator. Indeed, a omputation with a ut-o� introdued within Shwinger'sparametri formula yields suh a �niteness. However, whenever one of the Pi's oupled toa divergent loop integral vanishes, then the orresponding Feynman integral is just a usualdivergent loop integral and yields a singularity. When inserted into a larger diagram, thisould reate some trouble when integrating over momenta approahing the subspae Pi = 0.The question is how fast the divergene appears ompared with the smoothening propertyof the integration measure. A quadrati divergene seems to destroy the renormalizability[13℄ whereas a logarithmi divergene ould be harmless. This onjeture is supported byour simple example.In a mathematially more satisfying manner, one an also onsider suh an integralas a well de�ned distribution whih is nothing but the Fourier transform of the rationalfration R. However, we still have to fae a problem when inserting the distribution intoa larger Feynman diagram. In partiular, the example desribed in [13℄ orresponds to adistribution whih is nothing but the Feynman propagator and the infrared troubles whenp! 0 are quite similar to the usual small x singularities enountered in QFT.Finally, let us point out that we did not enounter suh a problem when quantizingNCYM theory on a torus [7℄. The onstrution of the latter is similar to that of NCYMon R4 exept for the quantization of the momenta appearing in the Fourier transform. Asa onsequene, there is no singularity when p ! 0 sine suh a limit annot be taken.However, we notied that a one loop non planar diagram with external momenta p exhibitsan extra UV singularity of the type Æ(p)=�. Quite miraulously, all these singularities turnout to anel, leaving us with �nite one loop renormalized orrelators.In the next setion, we shall evaluate the non planar ontribution to some of the oneloop orretions to the ghost self energy using Bessel funtions, showing that they do notlead to any singularities when inserted into larger diagrams. We shall use the Feynmanrules for NCYM theory without deriving them, the latter being obtained by replaing thestruture onstant of non-abelian gauge theory fab by 2i sin �(p; q) [8℄.
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3 A simple example. One-loop alulationOur goal is to ompute the following 1-loop orretion to the ghost propagator in NCYMtheory:
�p pk+pk (7)Wavy lines represent gluons and straight lines ghosts. The Feynman rules derived in [8℄and (for the nonommutative torus) [7℄ lead to the integralI1 = Z d4k 4g2�h(�p�k)� (�1)k2 �Æ�� � (1��)k�k�k2 � (�1)(k+p)2 (�p)� sin �(k; p) sin �(�k; k+p)= �4g2�h Z d4k sin2 �(k; p)� p2 + �pkk2(k + p)2 � (1��) (pk)2k2k2(k + p)2� : (8)We work in a D = 4 dimensional eulidian momentum spae with metri g�� = Æ�� anduse obvious abbreviations suh as pk = g��p�k�. Using Feynman parameters1ArBs = �(r+s)�(r)�(s) Z 10 xr�1(1�x)s�1 dx(Ax +B(1�x))r+s (9)we obtainI1 = �4g2�h Z d4k sin2 �(k; p) Z 10 dx� (p2+�pk)(k2+2pkx+p2x)2 � 2(1��)(1�x) (pk)2(k2+2pkx+p2x)3 � :In the denominator we write qk instead of pk so that we reprodue the k's in the numeratorby di�erentiation with respet to q:I1 = �4g2�h Z d4k sin2 �(k; p)�p2 Z 10 dx(k2 + 2qkx+ p2x)2 � p� ��q� Z 10 � dx2x(k2 + 2qkx + p2x)� p�p� ��q� ��q� Z 10 (1��)(1�x) dx4x2(k2 + 2qkx+ p2x)����q=p :Using 1An = 1�(n) R10 dt tn�1 e�tA we rewrite the integral intoI1 = 4g2�h Z 10 dx Z 10 dt��p2t+ �2xp� ��q� + (1��)(1�x)4x2 p�p� ��q� ��q� �K[t; p; q; x℄���q=p ;K[t; p; q; x℄ := Z d4k e�t(k2+2qkx+p2x) sin2 �(k; p) :Developing the sine into a Fourier series we obtain for the kernelK[t; p; q; x℄ = Z d4k �12e�t(k+qx)2�t(p2x�q2x2) � 14e�t(k+qx+i�(p)=t)2�t(p2x�q2x2)�2ix�(p;q)�pÆp=t� 14e�t(k+qx�i�(p)=t)2�t(p2x�q2x2)+2ix�(p;q)�pÆp=t� ;5



where �(p)� := ���p� and [13℄ p Æ p := g�����p� ���p� � (�(p))2. Then it is easy to performthe Gaussian integration:K[t; p; q; x℄ = �22t2 �e�t(p2x�q2x2) � e�t(p2x�q2x2)�pÆp=t os 2x�(p; q)� : (10)We an now perform the di�erentiations with the following result:I1 = �2g2�hZ 10 dx Z 10 dt�1t p2(3�x���1�x) + 2(p2)2(1��)x2(1�x)��� �e�tp2x(1�x) � e�tp2x(1�x)�pÆp=t� (11)= p2�2g2�h Z 10 dx Z 10 dt�1t (3�x���1�x) + 2(1��)x��e�t � e�t�x(1�x)p2pÆp=t� :The integration over t diverges logarithmially. We de�ne the projetion t2p onto the diver-gent part byt2p(I1) := p2�2g2�h Z 10 dx Z 10 dtt (3�x���1�x)e�t = �p2�2g2�h3��2 Z 10 e�t dtt : (12)The projetion to the onvergent part isR1 := (1� t2p)(I1) (13)= p2�2g2�h�(1��)�Z 10 dx Z 10 dt�3�x���1�xt + 2(1��)x�e�t�x(1�x)p2pÆp=t�:Instead of introduing a uto� as in [13℄ we prefer suh a momentum subtration beforeperforming the divergent integral, in analogy to the BPHZ sheme, as the notation t2pfor the projetion indiates. We believe this is advantageous for the renormalizabilityproof to all orders based on Zimmermann's forest formula. Please notie the di�erenebetween the power ounting degree 2 entering the forest formula and the atually onlylogarithmi divergene in (12). This is ruial for the insertion as subdivergenes andgives the reason why we will obtain loal ounterterms to all orders whereas there are truequadrati divergenes in the salar theory in [13℄. It should be not diÆult to extend suha subtration sheme to the entire NCYM theory. It is however important to de�ne tdpas the projetor onto the stritly divergent part of an integral in order to produe loalounterterms. This assumes one an prove that all divergent integrations give rise to suhloal terms, as we will do in this paper for repeated insertions of the ghost propagator.The x-integration in (13) yields R 10 dx x e�t�ax(1�x)=t = 12 R 10 dx e�t�ax(1�x)=t for any a sothat R1 = p2�2g2�h�(1��) + Z 10 dx Z 10 dt�3��2t � (1��)�e�t�x(1�x)p2pÆp=t�:The t-integration leads to Bessel funtions:R1 = p2�2g2�h (1��)�1� Z 10 dx 2px(1�x)p2p Æ pK1[2px(1�x)p2p Æ p℄�+ p2�2g2�h (3��) Z 10 dxK0[2px(1�x)p2p Æ p℄ : (14)6



The Bessel funtion K0[y℄ diverges logarithmially to +1 for y ! 0 and onverges expo-nentially to 0 for y ! +1. Hene, for any exponent r > 0 there exists a number 0r > 0suh that K0[y℄ � 0r=yr 8 0 < y <1 : (15)This will be proven algebraially in the Appendix. Graphially the situation is skethed inFigure 1. The funtion yK1[y℄ approahes 1 for y ! 0 and onverges exponentially to 0
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for y ! +1. It is nevertheless onvenient to regard it as K0[y℄ before: For any exponentr > 0 there exists a number 1r > 0 suh thatyK1[y℄ � 1r=yr 8 0 < y <1 : (16)The orresponding graphi is shown in Figure 2. Now the x-integration is easy to perform.
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It onverges for 0 < r < 1, whih means that infrared divergenes are absent (for nonexeptional momenta).We restrit ourselves to the ase where the rank of the tensor g�������� equals thespae-time dimension (maximal nonommutativity). Then there exists some parametermP of dimension of a mass (the `Plank mass') suh thatp Æ p � p2m4P ) pp2p Æ p � p2m2P : (17)This yields the estimationR1 = p2�2g2�h�(1��) +O�P 1r (�)�m2Pp2 �r �� ; (18)where P nr (�) is a polynomial of homogeneous degree n in (1��) and (3��) with oeÆientsof order 1. 7



4 Higher loop order alulationNow we insert n of these 1-loop propagator orretions into a propagator orretion, givingan n+1 loop diagram:�1 2 nn+1: : : (19)Using (8) and the Feynman rule [7℄ for the ghost propagator, the orresponding integral isof orderIn+1 = �4g2�h(��2g2�h)n Z d4k sin2 �(k; p)� p2 + �pkk2(k + p)2 � (1��) (pk)2k2k2(k + p)2 ��� nXj=0 P jr (�)(1��)n�j� m2P(k + p)2�jr; (20)with P 0r (�) = 1. Introdution of Feynman and Shwinger parameters as before and use ofx�(x) = �(x+1) leads toIn+1 = �4g2�h(��2g2�h)n nXj=0(1+jr)P jr (�) (1��)n�jm2jrP Z d4k sin2 �(k; p)�� Z 10dx� xjr(p2+�pk)(k2+2pkx+p2x)2+jr � (2+jr)(1��)(1�x)xjr(pk)2(k2+2pkx+p2x)3+jr �= 4g2�h(��2g2�h)n nXj=0 1�(1+jr) P jr (�) (1��)n�jm2jrP �� Z 10 dx Z 10 dt��xjrt1+jrp2 + 12�xjr�1tjrp� ��q�+ 14(1��)(1�x)xjr�2tjrp�p� ��q� ��q� �K[t; p; q; x℄���q=p= �(��2g2�h)n+1 nXj=0 1�(1+jr) P jr (�) (1��)n�jm2jrP �� Z 10 dx Z 10 dt�(3�x�x���1)xjrtjr�1p2 + 2(1��)(1�x)xjr+2tjr(p2)2��� �e�tp2x(1�x) � e�tp2x(1�x)�pÆp=t�= �(��2g2�h)n+1p2 nXj=0 1�(1+jr) P jr (�) (1��)n�j�m2Pp2 �jr Z 10 dx(1�x)jr�� Z 10 dt�(3�x�x���1)tjr�1 + 2(1��)xtjr��e�t � e�t�x(1�x)p2pÆp=t� : (21)The only divergent integral is for j = 0 the projetiont2p(In+1) := �(��2g2�h)n+1p2(1��)n Z 10 dx Z 10 dtt (3�x�x���1)e�t=(��2g2�h)n+1p2(1��)n 3��2 Z 10 dtt e�t : (22)8



The onvergent part an be evaluated toRn+1 = (1� t2p)(In+1)= �p2(��2g2�h)n+1(1��)n+1�1� Z 10 dx 2px(1�x)p2p Æ pK1[2px(1�x)p2p Æ p℄�� p2(��2g2�h)n+1(1��)n(3��) Z 10 dxK0[2px(1�x)p2p Æ p℄+ p2(��2g2�h)n+1 nXj=1 P jr (�)jr(2�jr) (1��)n�j(3��)�m2Pp2 �jr (23)+ p2(��2g2�h)n+1 nXj=1 1�(1+jr) P jr (�) (1��)n�j�m2Pp2 �jr�� Z 10 dx(1�x)jr Z 10 dt�(3�x�x���1)tjr�1 + 2(1��)xtjr�e�t�x(1�x)p2pÆp=t :The last two lines range from zero (for p = 1) to minus the value of the third last linefor p = 0. Thus, in our estimation we have to neglet the last two lines. The remainingintegrals over K0 and K1 are familiar to us, see Figures 1 and 2, and we hoose the essentialexponents in (15) and (16) to be (n+1)r instead of r. Then we arrive atRn+1 = �p2(��2g2�h)n+1�(1��)n+1 +O� n+1Xj=1 P n+1r;j (�)�m2Pp2 �jr �� : (24)But this was preisely our starting point we inserted into (8) to obtain (20). Hene,(24) provides the struture of any renormalized n+1 loop graph made of ghost propagatororretions. The ounterterm of suh an n-loop graph is given by (22), and we see expliitlythat the Feynman graphs made of nested 1-loop ghost propagator orretions
� (25)are renormalized by loal ounterterms for any order in �h. Here, loality means that themomentum dependene of the ounterterm and the kineti part of the ghost ation areidential. In order to renormalize an n-loop graph (to avoid infrared divergenes) theritial exponent has to be hosen 0 < r < 1=n.The essential step in this proof was the observation that the nonommutative Feynmangraphs under onsideration evaluate to Bessel funtions, whih an be estimated by a powerlaw. It seems plausible that any Feynman graph of nonommutative Yang-Mills theoryevaluates to Bessel funtions, and applying the same tehniques it should be possible toshow that loal ounterterms suÆe to renormalize this model.Appendix: Proof of Eq. (15)We prove that for eah r > 0 there is a number r > 0 suh thatC0(x) := rxr � K0(x) 8 0 < x <1 :9



The Bessel funtion K0(x) is one of the two solutions of the di�erential equationxK 000 +K 00 � xK0 = 0 ; 0 < x <1 : (26)It is however more onvenient to onsider the funtionK(x) := pxK0(x) ; K 00 + 1� 4x24x2 K = 0 ;and ompare it with C(x) := pxC0(x) ; C 00 + 1� 4r24x2 C = 0 :The derivative of the Wronskian W (K;C) := K 0C � C 0K isW 0 = x2 � r2x2 KC ; W 0 > 0 for x > rW 0 < 0 for x < rThe asymptoti development shows that for the solution K0 of (26) one has W (x) < 0 forx ! 1 and W (x) > 0 for x ! 0. Therefore, there is only one zero of the Wronskian, atx = xr, as illustrated in Figure 3.
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