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Abstrat. I reall the main motivation to study quantum �eld the-ories on nonommutative spaes and omment on the most-studiedexample, the nonommutative R4 . That algebra is given by the ?-produt whih an be written in (at least) two ways: in an integralform or an exponential form. These two forms of the ?-produt areadapted to di�erent lasses of funtions, whih, when using themto formulate �eld theory, lead to two versions of quantum �eld the-ories on nonommutative R4 . The integral form requires funtionsof rapid deay and a (preferably smooth) ut-o� in the path inte-gral, whih therefore should be evaluated by exat renormalisationgroup methods. The exponential form is adapted to analyti fun-tions with arbitrary behaviour at in�nity, so that Feynman graphsan be used to ompute the path integral (without ut-o�) pertur-batively.
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0 DislaimerThis is not a review. The organisers of the Hesselberg 2002 workshop on \Theoryof renormalisation and regularisation", Ryszard Nest, Florian Shek and ElmarVogt, asked me to present something about �-deformed quantum �eld theoriesand to prepare some notes for the proeedings. In the following I will present thelogi behind and the results of my own work on this subjet. Objetivity andompleteness are not the aim of this presentation. I have quoted referenes whereI knew of them, statements without itation do not mean that they are new.These notes go far beyond my presentation at the Hesselberg workshop. Theyreet my urrent point of view1, the formulation of whih evolved through thetyping of papers to be found in the hep-th arXiv and the preparation of invitedtalks for workshops, onferenes and invitations in Wien, Nottingham, Jena,Marseille, Leipzig, M�unhen, Hesselberg, Leipzig (again), Oberwolfah, Hamburgand Trieste (Wien will follow). I am grateful to the organisers of these events forinvitation and hospitality, as well as to my friends for disussions and ooperation.1 Farewell to manifoldsHalf a entury of high energy physis has drawn the following piture of themirosopi world: There are matter �elds and arriers of interations betweenthem. Four di�erent types of interations exist: eletromagneti, weak and stronginterations as well as gravity. The traditional mathematial language to desribethese strutures of physis is that of �bre bundles. The base manifoldM of thesebundles is a four-dimensional metri spae with line element ds2 = g��(x) dx�dx�.Matter �elds  are setions of a vetor bundle V over M . The arriers of ele-tromagneti, weak and strong interations are desribed by onnetion one-formsA of U(1), SU(2) and SU(3) prinipal �bre bundles, respetively. Gravity is thedetermination of the metri g by the one-forms A and setions  , and vie-versa.The dynamis of (A;  ; g) is governed by an ation funtional �[A;  ; g℄, whihyields the equations of motions when varied with respet to A;  ; g. The ompleteation funtional for the phenomenologially most suessful model, the standardmodel of partile physis, is an ugly pathwork of unrelated piees when expressedin terms of (A;  ; g).Next there is a lever alulus, alled quantum �eld theory, whih as theinput takes the ation funtional � and as the output returns numbers. Onthe other hand, there are experiments whih also produe numbers. There is a1Changes in v2 are due to an e-mail exhange with Mohammad Sheikh-Jabbari on thedi�erent ?-produts and disussions with Dorothea Bahns and Klaus Fredenhagen who, inpartiular, onvined me that Minkowskian nonommutative �eld theories are di�erent.Changes in v3 go bak to very useful omments by Edwin Langmann who explained to methat the two versions of the ?-produt whih in the previous versions were regarded as di�erentproduts are atually two extensions of the same produt to di�erent lasses of funtions.1



remarkable agreement2 of up to 10�11 between orresponding numbers alulatedby quantum �eld theory and those oming from experiment. This tells us twothings: The ation funtional (here: of the standard model) is very well hosenand, in partiular, quantum �eld theory is an extraordinarily suessful alulus.There is however, apart from the desription of strong interations at lowenergy, a tiny problem: one of the basi assumptions of quantum �eld theory isnot realised in nature. First, the metri g is onsidered in quantum �eld theoryas an external parameter, and|mostly|the alulus works only if the metri isthat of Eulidian or Minkowski spae, g�� = Æ�� or g�� = diag(1;�1;�1;�1),respetively. But let us ignore this and assume for a moment that quantum �eldtheory works on any (pseudo-) Riemannian manifold. Let us then ask how wemeasure tehnially the geometry. The building bloks of a manifold are thepoints labelled by oordinates fx�g in a given hart. Points enter quantum �eldtheory via the setions  (x) and A(x), i.e. the values of the �elds at the pointlabelled by fx�g. This observation provides a way to \visualize" the points: wehave to prepare a distribution of matter whih is sharply loalised around fx�g.For a perfet visualisation we need a Æ-distribution of the matter �eld. Thisis physially not possible, but one would think that a Æ-distribution ould bearbitrarily well approximated. However, that is not the ase, there are limits ofloalisability long before the Æ-distribution is reahed [1℄.Let us assume there is a matter distribution whih is believed to have twoseparated peaks within a spae-time region R of diameter d. How do we test thisonjeture? We perform a sattering experiment in the hope to �nd interfereneswhih tell us about the internal struture in the region R. We learly need testpartiles of de Broglie wave length � = ~E . d, otherwise we observe a singlepeak even if there is a double peak. For �! 0 the gravitational �eld of the testpartiles beomes important. The gravitational �eld reated by an energy E anbe measured in terms of the Shwarzshild radiusrs = 2GE4 = 2G~�3 & 2G~d3 ; (1)where G is Newton's onstant. If the Shwarzshild radius rs beomes larger thanthe radius d2 , the inner struture of the region R an no longer be resolved (it isbehind the horizon). Thus, d2 � rs leads to the onditiond2 & `P :=rG~3 ; (2)whih means that the Plank length `P is the fundamental length sale belowof whih length measurements beome meaningless. Spae-time annot be amanifold.2There are of ourse experimental data whih so far ould not be reprodued theoretially,suh as the energy spetrum of hadrons. 2



2 Spetral triplesWhat does this mean for quantum �eld theory? It means that we annot trust tra-ditional quantum �eld theories like the (quantum) standard model beause theyrely on non-existing information about the short-distane struture of physiswhih determines the loop alulations.What else an we take for spae-time? A lattie? The disadvantage of thelattie is that symmetries, whih are guiding priniples in quantum �eld theory,are lost. There are also problems with the spin struture. Lattie alulationsare regarded as a mathematially rigorous method, but at the end mostly theontinuum limit is desired in whih the symmetries are intended to be restored.The lattie approah points into the right diretion. A lattie is a metri spaebut not a di�erentiable manifold. What we would like to have as andidates forspae-time is a lass of metri spaes whih are equipped with a di�erential al-ulus and, additionally, a spin struture to allow for fermions. Suh objets existin mathematis, they are alled spetral triples [2, 3℄. They are nonommuta-tive geometries [4, 5℄ whih are the losest generalisation of di�erentiable spinmanifolds. There are good reasons to believe that spetral triples are the rightframework for physis.1. The language in terms of whih spetral triples are formulated omes from�eld theory: Besides the algebra A represented on a Hilbert spae H (whihalone are only good for measure theory), to desribe metri spaes with spinstruture one also needs a Dira operator D, the hirality 5 and the hargeonjugation J , see [3℄.2. The standard model of partile physis looks muh simpler when formu-lated in the language of spetral triples3. This is �rst of all due to theunderstanding of the Higgs �eld as a omponent of a gauge �eld living ona spetral triple. The (�4 � m2�2) Higgs potential omes from the samesoure as the Maxwell Lagrangian F��F ��, and the Yukawa oupling of theHiggs with the fermions has the same origin as the minimal oupling ofthe gauge �elds with the fermions. But the onnetion is muh deeper,for instane, the spetral triple desription enfores the following (in thelanguage of Yang-Mills-Higgs models unrelated) features [6℄:(i) weak interations break parity maximally(ii) weak interations su�er spontaneous breakdown(iii) strong interations do not break parity(iv) strong interations do not su�er spontaneous breakdown3. The separation of gauge �elds and gravity starts to disappear: Yang-Mills�elds, Higgs �elds and gravitons are all regarded as utuations of the free3In fat the axioms of spetral triples [3℄ are tailored suh that the (Eulidian) standardmodel is a spetral triple. 3



Dira operator [3℄. The spetral ation� = trae��zD2�2 � ; �(t) = � 1 for 0 � t � 10 for t > 1 (3)(whih is the weighted sum of the eigenvalues of D2 up to the ut-o� �2)of the single utuated Dira operator D gives the omplete bosoni a-tion of the standard model, the Einstein-Hilbert ation (with osmologialonstant) and an additional Weyl ation term in one stroke [7℄. The pa-rameter z in (3) is the \nonommutative oupling onstant" [6℄. Assumingthe spetral ation (3) to produe the bare ation at the (grand uni�ation)energy sale �, the renormalisation group equation based on the one-loop�-funtions leads to a Higgs mass of 182 : : : 201GeV [6℄.There are of ourse tehnial diÆulties with spetral triples, suh as therestrition to ompat spaes with Eulidian signature, but it is lear that spe-tral triples are a very promising strategy. For attempts to overome Eulidiansignature see [8, 9℄ and for an extension to non-ompat spaes [10℄.The strength of the spetral triple approah is that it leads immediately tolassial ation funtionals with a lot of symmetries, even on spaes other thanmanifolds. We an feed the spetral ation funtional into our alulus of quan-tum �eld theory in order to produe numbers to be ompared with experiments.One of the formulations of that alulus, the path integral approah, is perfetlyadapted to spetral triples. All one needs are labels � for the degrees of freedomof the spetral ation �l[�℄ in order to write down (at least formally) the measureD[�℄ for the (Eulidian) path integralZ[J ℄ = Z D[�℄ exp �� 1~�l[�℄� 
J;��� : (4)The soure J is an appropriate element of the dual spae of the �'s. Everythinginteresting (in a Eulidian quantum �eld theory) an be omputed out of Z[J ℄. Itis not important how one labels the degrees of freedom, beause Z[J ℄ is invariantunder a hange of variables [11℄.However, we annot ompletely exlude the possibility that quantum �eldtheory is impliitly built upon the assumption that the ation funtional takenas input lives on a manifold. The best way to test whether the standard alulusof quantum �eld theory extends to spetral triples is to apply it to examples whihare deformations of a manifold. Let us assume there is a family of spetral tripleswhih are distinguished by a set of parameters � suh that for � ! 0 we reover anordinary manifold. Then we should expet that the family of numbers omputedout of (4) for any � tends for � ! 0 to the numbers omputed for the manifoldase. Otherwise something is wrong. It is unlikely that the problem (if any) liesin the formula (4) itself, whih is very appealing. However, the evaluation of4



(4) often involves formal manipulations whih may work in one ase but fail inanother one. We should be areful.I should mention that the situation is muh more diÆult in the ase ofMinkowskian signature of the metri. Apart from the diÆulty to extend thede�nition of spetral triples to geometries with non-Eulidian signature and themathematial problems of the non-Eulidian path integral, there is evidene now[12℄ that formal Wik rotation in the Feynman graph omputations based on thepath integral (4) does not yield the orret theory in the nonommutative ase.Before going to the example let us remind ourselves what the hallenge was.We need a replaement for the spae-time manifold whih is not based on thenotion of points. The replaement is expeted to be a spetral triple, but inorder to ompare the outome with experiments, we have to be sure that thealulus of quantum �eld theory an be applied. This is why we are interestedin spetral geometries other than manifolds on whih quantum �eld theoretialomputations are possible to perform. We do not laim that our examples arethe orret desription of the real world.3 The nonommutative torusIt is time for an example. The simplest nonommutative spetral triple is thenonommutative d-torus, see e.g. [13℄. A basis for the algebra Td� of the non-ommutative d-torus is given by unitarities Up labelled by p = fp�g 2 Zd, withUp(Up)� = (Up)�Up = 1. The multipliation is de�ned byUpU q = ei����p�q�Up+q ; �; � = 1; : : : ; d ; ��� = ���� 2 R : (5)Elements a 2 Td� have the following form:a = Xp2ZdapUp ; ap 2 C ; kpknjapj ! 0 for kpk ! 1 : (6)If ��� =2 Q (rational numbers) one an de�ne partial derivatives��Up := �ip�Up ; (7)whih satisfy the Leibniz rule and Stokes' law with respet to the integralZ a = a0 ; (8)where a is given by (6). The algebra Td� gives rise to a Hilbert spae by GNSonstrution with respet to (8), and the partial derivatives (7) yield a Diraoperator. Algebra, Hilbert spae and Dira operator extend to a spetral triplesatisfying all axioms. For details (and a disussion of the rational ase ��� 2 Q)see [14℄. The nonommutative torus was the �rst nonommutative spae where�eld theory has been studied [15℄. 5



The spetral ation (3) for this spetral triple reads� = 14g2 Z F��F �� ; F�� = ��A� � ��A� � i(A�A� � A�A�) ; (9)where A� = A�� 2 Td� . Then the path integral (4) is evaluated in terms of Feynmangraphs, whih involve sums, not integrals, over the disrete loop momenta. At theone-loop level it is possible to extrat the pole parts of these sums via �-funtiontehniques [16℄. The result is that the quantum �eld theory assoiated to thelassial ation (9) is divergent but (for d = 4 dimensions) one-loop renormalisable(divergenes are multipliatively removable and the Ward identities are satis�ed)[16℄.Everything is perfet so far. Unfortunately, nobody was able to investigatethis model at two and more loops, for the simple reason that sums are morediÆult to evaluate than integrals. It is dangerous here to approximate the sumsby integrals, beause the ritial question is the behaviour at small p, see below.The most important property of the torus is that the zero mode p = 0 deouples,and the next-to-zero modes are \far away" from zero (p 2 Zd). Taking p 2 Rd todeal with integrals, the zero mode deouples as well, but the next-to-zero modesare in�nitesimally lose to zero. Due to the ease of the omputations, muh morework has been performed on the non-ompat analogue of the nonommutative4-torus|the nonommutative R4 .4 The nonommutative R4Therefore, let us pass to the nonommutative R4 . The algebra R4� is given bythe spae S(R4) of (pieewise) Shwartz lass funtions of rapid deay, equippedwith the multipliation rule [17℄(a ? b)(x) = Z d4k(2�)4 Z d4y a(x+12��k) b(x+y) eik�y ; (10)(��k)� = ���k� ; k�y = k�y� ; ��� = ���� :There is again a �, whih however is ompletely di�erent from the one in (6).The entries ��� in (10) have the dimension of an area whereas in (6) they arenumbers (for the torus everything an be measured in terms of the radii). Thereis also no rational situation for the R4� . Note that the produt (10) is assoiativebut nonommutative, and (a ? b)(x)���=0 = a(x)b(x).It is interesting to perform a Taylor expansion of (10) about � = 0:(a ?! b)(x) := 1Xn=0 1n!��1�1 � � � ��n�n� �n(a ? b)(x)���1�1 : : : ���n�n ��=0= �e i2 ��� ��y� ��z� a(x+y) b(x+z)�z=y=0 : (11)6



What is the relation between ? and ?!? I �rst thought that they are ompletelydi�erent produts. I am grateful to Edwin Langmann for explaining to me that ?and ?! are atually the same produts, the point is that the derivatives in (11) areatually generalised derivatives in the sense of distribution theory. There is a lassof funtions on whih ? and ?! (with the derivatives taken literally) oinide, theseare analyti funtions of rapid deay. Then, depending on how one extends thelass of funtions to less regular ones, di�erent forms for displaying the produtare preferred.The ?-produt (10) has exellent smoothing properties, and the multiplieralgebra M�, the set of all distributions whih when ?-multiplied with elementsof R4� give again elements of R4� , is very big [17℄. The ?-produt is learly non-loal : to the value of a ? b at x there ontribute values of a; b at points faraway from x. The form (10) is very onvenient for pieewise Shwartz lassfuntions, in partiular for funtions of ompat support, as the omputationof a two-dimensional example in Appendix A shows. This alulation showsthat the ?-produt has some surprising (at least to me) behaviour at very shortdistanes. Very similar alulations have already been performed in [18℄, withsimilar onlusions. The most impressive behaviour is shown in Figure 3. The?-produt ompletely smoothes away the (\extremely-loalised" [18℄) modes ofsupport within an area �. It is apparent that � ats as a ut-o� (or a horizon interms of gravitational physis), a ut-o� whih preserves all symmetries! Thus,the R4� with ?-produt (10) is an exellent model for spae-time.The fous of the ?!-produt is a di�erent one. In order to interpret thepartial derivatives literally, one has to stay within the lass of analyti funtions.However, there is no need of rapid deay at in�nity. The ?!-produt is e.g. de�nedfor polynomials of �nite degree or for plane waves:eip�x� ?! eiq�x� = e� i2 ���p�q� ei(p�+q�)x� : (12)There is no need to assemble the plane waves to wave pakets of rapid deay atin�nity. The non-loality of the ?!-produt (11) is hidden. To the value of a ?! bat x there ontribute values of a; b in an in�nitesimal neighbourhood of x only,but taking the derivatives literally requires a; b to be analyti, whih means thatthe in�nitesimal neighbourhood of x ontains all information about a; b on theentire R4 .5 The geometry of R4�In my opinion a thorough investigation of the spetral geometry of (R4� ;H;D)must preede any quantum �eld theoretial omputations of models on R4� . Un-fortunately history went di�erently, so let me explain what we have failed to doso far.The geometry of (R4� ;H;D) annot be the geometry of a spetral triple [3℄,beause the spetrum of the Dira operator D is ontinuous. It rather �ts into the7



axioms of \non-ompat spetral triples" [10℄. In this framework the dimensionof (R4� ;H;D) equals zero, not four4, beause f 2 S(R4) is trae-lass so thatf jDj�n has vanishing Dixmier trae. Thus, it is the requirement of rapid deayat in�nity whih brings the dimension down to zero. Taking the ?! produt fora suitable lass of analyti funtions, we an keep the spetral dimension at four.This is related to the notion of star triples in [10℄.The geometry is extrated from a spetral triple via states|linear funtionals� : R4� ! C suh that5 �(1) = 1 and �(a� ? a) � 0 for all a 2 R4� . We an viewsuh a state as an element of the multiplier algebra M� through the formula�(a) = Z d4x�(x)a(x) ; Z d4x�(x) = 1 ; Z d4x �� ? a� ? a�(x) � 0 : (13)The spae of states is made to a metri spae by means of Connes' distaneformula dist(�1; �2) = supa2A� n���1(a)� �2(a)�� : [D; a℄B(H) � 1o : (14)In the ommutative ase, for the states labelled by points aording to �y(x) =Æ4(x � y), this formula returns the geodesi distane of the points. For thestandard model one reovers a disrete Kaluza-Klein geometry in �ve dimensions[21℄.The states on ommutative spae suggest immediately to try whether �y(x) =Æ4(x � y) are states on R4� as well. The answer is no6. Aording to AppendixB (whih is opied from [17℄) for the two-dimensional ase, there are funtionsa 2 R2� and points x 2 R2 suh that (a� ? a)(x) < 0. Moreover, the algebra R2�(funtions of rapid deay at in�nity) is identi�ed with the algebra of matriesof in�nite size. The onsequene is that �eld theory on R4� is rather a matrixtheory than a traditional �eld theory on Eulidian spae, see [22℄. I would liketo mention that the matriial basis was ruial for Langmann's lass of exatlysolvable quantum �eld theories in odd dimensions [23℄.Moreover, Figure 3 in Appendix A tells us that the produt of two �elds,both of whih with support in the interior of the area �, is, to a high auray,zero. All this means that R2� is divided into ells of area �, and �elds on R2� areharaterised by assigning to eah ell a value. This piture is easily generalisedto R4� . Now, sine the interation of �elds on R4� is smeared over the ell of sizej det �j 12 , one would expet that a quantum �eld theory on R4� is free of divergenes[20℄. Performing the alulation of Feynman graphs, however, one does enounterdivergenes, and these are worse than on ommutative spae-time. See se. 7.4The spetral triple for the nonommutative 4-torus has dimension four, not zero! TheHohshild dimension of R4� drops down to zero as well [19℄.5The 1 in �(1) is thought to be the limit of a sequene of appropriate elements of R4� .6As a onsequene, Rd� is not the algebra of funtions on some manifold.8



How an we understand this puzzle? The Feynman rules are nothing butthe perturbative evaluation of the path integral (4). It seems that this kind ofevaluation of (4) somehow brings the dimension of Rd� bak to d. The ruialquestion here is the de�nition of the measure D[�℄ in the path integral. Theidea is to integrate over all possible �elds on Rd� . This is most onveniently doneby taking a basis, for instane the matriial basis fmn of Appendix B in thetwo-dimensional ase: �(x) = 1Xm;n=0�mnfmn(x) : (15)Thus, the measure should be D[�℄ = Q1m;n=0 d�mn. Next we have to speify thedomain of integration. The Feynman rules orrespond to integrating all �mnfrom �1 to 1. Obviously this is not ompatible with the requirement that thef�mng represent an element of R2� , whih imposes [17℄1Xm;n=0 �(2m+1)2k(2n+1)2k j�mnj2� 12 <1 for all k : (16)Integrating all �mn from�1 to1 we atually inlude funtions with unrestritedbehaviour at in�nity, and those funtions lead to a spetral dimension bigger thanzero. In other words, the disussion of the geometry of R4� tells us that the usualFeynman rules are not adequate7 to quantum �eld theory on R4� . It is neithersurprising nor a problem that the standard Feynman graph approah to quantum�eld theories on R4� fails miserably (see also the next setions).A possibility to stay within the lass of �elds of rapid deay at in�nity is tointrodue a ut-o� in the path integral measure, e.g. D[�℄ = QLm;n=0 d�mn. Adi�erent view of that ut-o� is to regard all modes �mn as inluded, but withthe integral performed over the interval [0; 0℄ instead of [�1;1℄ if m > L orn > L. This presription an then be deformed into a smooth ut-o� with all�mn inluded, but with j�mnj being of rapid deay at in�nity. In this way weintegrate indeed over �elds on Rd� . The ut-o� an be arbitrarily large and theut-o� funtion arbitrarily hosen; we stay within the allowed lass of �elds aslong as there is a ut-o� somewhere when approahing in�nity.Remarkably, this smooth ut-o� version of the path integral is exatly theway one proeeds in the exat renormalisation group approah to renormalisation[24℄, see also [25℄. We see thus that the smooth ut-o� in the exat renormal-isation group is not just a onvenient trik to ompute the path integral, it isthe diret onsequene of the zero-dimensional geometry8 of Rd� . The philosophy7The same ritiism applies to anonial quantisation beause the amplitudes annot bepromoted to harmoni osillators at quantum numbers approahing in�nity.8In that sense, the renormalisation group approah for ommutative �eld theories is linkedto �elds of rapid deay in momentum spae. It seems to be a degeneray of ommutativegeoemtry that this restrition leads to the same results as the Feynman graph appraoh.9



is then to rede�ne the theory in suh a way that|one speifying normalisationonditions|everything beomes independent of the ut-o� funtion and the valueof the ut-o�. There are �rst results [26℄ that at least salar �eld theories on R4�are renormalisable within the exat renormalisation group approah.6 The Feynman graph approah to quantum �eld theories on R4�We have argued in the last setion that the Feynman graph approah to quantum�eld theories on R4� does not orretly reet the geometry of R4� . There hasbeen, however, an enormous amount of work along this line, whih deserves afew omments. We need a notation to distinguish the Feynman graph approahfrom the true zero-dimensional R4� . Let us all the four-dimensional spae whereFeynman graph omputations are performed R4n .The �rst ontribution was the one-loop investigation of U(1) Yang-Mills the-ory on R4n by Mart��n and S�anhez-Ruiz [27℄. They found that all one-loop poleterms of this model in dimensional regularisation9 an be removed by multi-pliative renormalisation (minimal subtration) in a way preserving the BRSTsymmetry. This is ompletely analogous to the situation on the nonommutative4-torus [16℄. Shortly later there appeared also an investigation of super-Yang-Mills theory on C1(R) � T2� [28℄. In the following two years similar one-loopalulations were performed for the Rdn -analogue of any existing ommutativemodel.The reason why these models beame so attrative was the ompletely un-expeted disovery of quadrati infrared-like divergenes, �rst in quantum �eldtheories of salar �elds [29℄, whih ruled out a perturbative renormalisation athigher loop order. At that time it was an open question whether this is an artifatof salar �elds or really a general feature. We have shown in [30℄ using power-lawestimations for Bessel funtions that the sub-setor of Yang-Mills theory on R4ngiven by repeated one-loop ghost propagator self-insertions is renormalisable toany loop order. Shortly later it was demonstrated, however, that there are one-loop Green's funtions in Yang-Mills theory on R4n whih have quadrati andlinear infrared-like divergenes [31℄, whih prevent any renormalisation beyondone-loop.In my opinion the most valuable ontribution to �eld theories on Rdn are thetwo artiles [32, 33℄ by Chepelev and Roiban, in whih they investigated theonvergene behaviour of massive quantum �eld theories at any loop order. Theessential tehnique is the representation of Feynman graphs as ribbon graphs,drawn on an (oriented) Riemann surfae with boundary, to whih the externallegs of the graph are attahed. There are two important quali�ers for suh aribbon graph, the index and the yle number. The index is delared to be oneif the external lines attah to boundary omponents \inside" and \outside" of9There is of ourse a problem extending � to omplex dimensions, this is however disussedin [27℄. 10



the graph, otherwise zero. The yle number is the number of homologiallynon-trivial yles of the Riemann surfae of the total graph wrapped by the(sub)graph. Using this language and sophistiated triks for the manipulationof determinants, Chepelev and Roiban were able to prove that in order to haveonvergene of the integral, eah subgraph must have one of the following prop-erties:1. The index is one and the external momenta are non-exeptional.2. If the index is zero or the index is one but the external momenta are non-exeptional, then the power-ounting degree of divergene of the graph issmaller than the dimension d times the number of yles.Thus, nonommutativity (index one and presene of yles due to non-planarity)improves the onvergene of the integral. Integrals assoiated to planar setorsare to be renormalised as in ommutative quantum �eld theories, they are not aproblem. One has to make sure however, that there are no divergenes in non-planar setors. It turned out that there are two dangerous lasses of non-planardivergenes, whih in [33℄ are alled \Rings" and \Com". Rings onsists of a hainof divergent graphs staked onto the same yle, they indue the problem �rstobserved in [29℄. Com's are index-one graphs with exeptional external momentadue to momentum onservation, they orrespond to non-loal divergenes of thetype (R � ? �)2. In massless models they are atastrophi. Unfortunately thisproblem seems to be ompletely ignored in literature.7 The non-loality of the divergenesAll this is well-known by now and an be looked up in the literature, neverthelessI would like to demonstrate the problem with quantum �eld theories on R4n byomputing the ghost loop ontribution to the one-loop gluon two-point funtion.The neessary Feynman rules adapted to the (Eulidian) BPHZL renormalisationsheme [34℄ are given by�p �q = � 1p2 + (s�1)2M2 ; (17)
�q; ��p r = 2i p� sin(12���q�r�) ; (18)

11



for ghost propagator and ghost-gluon vertex, respetively. One has p+q = 0 in(17) and p+q+r = 0 in (18). We then ompute the graph��(p; s) =�p; � �p; �k�p
k

= ~ Z d4k(2�)4 k�(k�p)�n2� ei���p�k� � e�i���p�k�o(k2 + (s�1)2M2)((k�p)2 + (s�1)2M2) : (19)The integral as it stands in (19) is meaningless. We have to de�ne a renormali-sation sheme whih assigns to the graph in (19) a meaningful integral. Here onehas to distinguish between the planar part orresponding to the fator 2 in in f gand the non-planar part orresponding to the phase fators in f g. Let us �rstlook at the planar part. The integral is quadratially divergent, and aording tothe BPHZL sheme we replae the integrand I��(k; p; s) by the Taylor subtratedintegrand(1�R)[I��(k; p; s)℄���s=1 := (1� t1p;s�1)(1� t2p;s)[I��(k; p; s)℄���s=1 ; (20)where t!p;s0[I℄ is the Taylor expansion of I about p = 0 and s0 = 0 up to totaldegree !. In the example (19) we have for the integrand without the fator 2 inf g R[I��(k; p; s)℄ = k�k�(k2)2 + p��� k�g��(k2)2 + 2k�k�k�(k2)3 �+ p�p��� 2k�k�g��(k2 +M2)3 + 4k�k�k�k�(k2 +M2)4�+ (s�1)2� 2M2k�k�(k2 +M2)3 + 12M4k�k�(k2 +M2)4�+ p�(s�1)� 4M2k�g��(k2 +M2)3 � 12M2k�k�k�(k2 +M2)4 � : (21)Passing to s = 1 and omitting the integrand whih is odd under k ! �k, we nowget for the planar part in (19)��planar;ren(p;M) = 2~ Z d4k(2�)4 �k�(k�p)�k2(k�p)2 � k�k�(k2)2� p�p��� 2k�k�g��(k2 +M2)3 + 4k�k�k�k�(k2 +M2)4�� : (22)The integral (22) is absolutely onvergent, see [34℄.12



Let us now ompute the di�erene between ��planar and ��planar;ren in positionspae: Z d4p(2�)4���planar(p)� ��planar;ren(p;M)� e�ip�(x�y)�= 2~ Æ4(x� y) Z d4k(2�)4 k�k�(k2)2+ 2~ �2Æ4(x� y)�x��x� Z d4k(2�)4 � 2k�k�g��(k2 +M2)3 � 4k�k�k�k�(k2 +M2)4� : (23)The result is zero unless x = y. We reall now that the Fourier transforma-tion of (22) is the ghost loop ontribution to the gluon two-point orrelationfuntion 
A�(x)A�(y)�. In other words, replaing the meaningless integral (19)by the renormalised one (22), we have only rede�ned (in fat orretly de�ned)the produt of the distributions A�(x) and A�(y) at oiniding points. This ispreisely the freedom whih one has in a loal quantum �eld theory [35℄.But what about the non-planar part? Although not being absolutely onver-gent, the osillating phase (see also Figure 3 in Appendix A) renders the integralatually onvergent|provided that p 6= 0. Thus the �rst possibility is to keepthe non-planar part untouhed in the renormalisation sheme. But now there isa problem for p ! 0. Note that the original (ill-de�ned) integral (19) had noproblem at all for p ! 0, in fat the integral was zero for p = 0. But sine weremoved from the planar part its �rst Taylor oeÆients about p = 0 in orderto render the planar part integrable for k ! 1, the singular behaviour of thenon-planar part for p ! 0 is no longer ompensated. For the one-loop graph itis not a terrible problem10, but inserting this result delared as �nite as a sub-graph into a bigger divergent graph, the singular behaviour at p ! 0 makes thebigger graph non-integrable. We therefore �nd a fake infrared divergene, whihis only due to our (obviously wrong) renormalisation presription whih treatedthe planar and non-planar parts di�erently. This is the so-alled UV/IR-mixing,a name whih is not very appropriate.Sine the above treatment of the non-planar part was unsuessful, let us alsoremove the �rst Taylor oeÆients about p = 0 from the non-planar part. ThisTaylor expansion must not be applied to the momenta in the phases, beause theresult would be an even worser divergene in k and not a milder one. The onlypossibility is to de�ne the renormalised total graph as��ren(p;M) = ~ Z d4k(2�)4 n2� ei���p�k� � e�i���p�k�o�k�(k�p)�k2(k�p)2 � k�k�(k2)2� p�p��� 2g��k�k�(k2 +M2)3 + 4k�k�k�k�(k2 +M2)4�� : (24)10As long as one is not interested in produing numbers to be ompared with experiments!13



Now the integral onverges absolutely, in partiular there is no problem anymore for p ! 0. We have to verify, however, that the hange from ��(p) to��ren(p;M) is ompatible with loality. In the planar part this hange amountsto a rede�nition of the produt of distributions at oiniding points. Let us thusevaluate the hange in the non-planar part, again in position spae:Z d4p(2�)4���non�planar(p)� ��non�planar;ren(p;M)� e�ip�(x�y)�= �~ Z d4k(2�)4 Z d4p(2�)4 � k�k�(k2)2 � p�p�� 2g��k�k�(k2 +M2)3 � 4k�k�k�k�(k2 +M2)4��� ne�ip�((x�y)�+���k�) + e�ip�((x�y)�����k�)o= � 2~(2�)4 det ��(��1�(x�y))�(��1�(x�y))�((��1�(x�y))2)2 + 2 (��1)��(��1) ��((��1�(x�y))2 +M2)3+ 4(��2�(x�y))�(��2�(x�y))�((��1�(x�y))2 +M2)4 + 4(��1)��(��1)��(��1�(x�y))�(��1�(x�y))�((��1�(x�y))2 +M2)4� 8(��3�(x�y))�(��1�(x�y))�((��1�(x�y))2 +M2)4 � 8(��1�(x�y))�(��3�(x�y))�((��1�(x�y))2 +M2)4+ 32(��1�(x�y))�(��1�(x�y))� (��2�(x�y))�(��2�(x�y))�((��1�(x�y))2 +M2)5 �: (25)There are ontributions for x 6= y in the non-planar part. In other words, wehave hanged the non-planar part in a non-loal way in order to ahieve absoluteonvergene. This is not allowed in a loal quantum �eld theory, whih meansthat our model on R4n is not renormalisable in the framework of loal quantum�eld theories.On the other hand, the result (25) is exatly what one should expet for aquantum �eld theory on R4� : Sine the physial information annot be loalised atindividual points it must now be allowed to modify the produt of distributionsnot only at oiniding points but for the whole extended region of volume j det �j 12in whih information an be onentrated. Unfortunately, this idea is not verywell implemented in the above alulation. The subtration term is too muhloalised in the planar part is not enough loalised in the non-planar part. In myopinion, the origin of this problem is the wrong hoie of the measure in the pathintegral whih is used to derive the Feynman rules, see se 5.8 �-expanded �eld theories: general remarksLet us now ome to quantum �eld theories based on the Taylor-expanded ?!-produt (11) regarded order by order in �. The philosophy here is to onsiderthe Taylor expansion ?! up to some �nite order in � only. In this way we obtaina loal �eld theory on ordinary Eulidian or Minkowski spae for whih standard14



Feynman graph tehniques an safely be applied. The only novelty is the pres-ene of external �elds ��� of power-ounting dimension �2 whih ouple to theommutative �elds via partial derivatives. When restriting the produt(�1 ?! �2)(x) = �1(x)�2(x)+ i2������1(x) ���2(x)� 18����Æ���Æ�1(x) ����2(x) + : : : (26)to some �nite order, nothing is nonommutative, the seond term on the r.h.s.an equally well be written as i2������2(x) ���1(x).The most interesting �eld theories are gauge theories11. The prototype isMaxwell theory, the ation funtional of whih, written in terms of the ?!-produt, reads�[A℄ = Z d4x�� 14g2F��(x) ?! F ��(x)� ; (27)F�� = ��A� � ��A� � iA� ?! A� + iA� ?! A� (28)= ��A� � ��A� + �����A� ��A� � 124����Æ��������A� ���Æ��A� + : : : :Now, (27) is an ation funtional for ommutative boring photons, whih is in-variant under the in�nitesimal gauge transformationA� 7! A� + (���� iA� ?! �+ i� ?! A�) (29)= A� + ���+ �����A� ���� 124����Æ��������A� ���Æ���+ : : : :But how is this possible, an ation funtional for photons whih transform ina very strange way? The answer was given by Seiberg and Witten [36℄: Thephoton is written in (27) and (29) only in an extremely inonvenient way. Thereis a hange of variablesA� = A0� � 12���A0�(2��A0� � ��A0�) + : : : ;� = �0 � 12���A0����0 + : : : ; (30)whih brings (27) and (29) into the more pleasant form�[A0℄ = Z d4x�� 14g2F 0��(x)F 0��(x)� 12g2 ���F 0��(x)F 0��(x)F 0��(x) + 18g2 ���F 0��(x)F 0��(x)F 0��(x) + : : :� ;F 0�� = ��A0� � ��A0� ; �[A0℄ invariant under A0� 7! A0� + ���0 : (31)11To the best of our knowledge, there are no fundamental salar �elds in nature|rememberthat the Higgs �eld is a nonommutative gauge �eld, and that supersymmetry is not found sofar. 15



The last line in (31) is exat in �, it looks muh more familiar. Atually Seibergand Witten formulated their result di�erently. They interpreted the transfor-mation (30) leading from (27) to (31) as an equivalene between a nonommu-tative gauge theory and a ommutative gauge theory. Now there is a puzzle.Namely, from the nonommutative geometrial bakground, the nonommuta-tive �eld theory is given by a spetral triple whih an never be expressed in thelanguage of manifolds. How an there be a map to a ommutative �eld theory?The solution is simple, but it took me a long time to understand it: The initialformulation (27) was already in the framework of ommutative loal geometry,beause already there the ?! produt was restrited to some �nite order in �. Thetransformation (30) is merely a onvenient hange of variables within the sameommutative framework. The (very diÆult) limit where the order of � goes toin�nity is not disussed in this approah.9 Lorentz invariane and Seiberg-Witten di�erential equationOne may ask whether the Taylor expansion (11) leading from the non-loal ?-produt to the loal ?!-produt up to �nite order in �, applied to a truly nonom-mutative ation funtional �[Â℄, an produe the �-expanded ation funtional inthe Seiberg-Witten transformed form (31) in a single stroke, i.e. without passingthrough (27). This is possible indeed, it has something to do with symmetrytransformations of the nonommutative theory.There has been a lot of onfusion onerning the question of Lorentz invari-ane of �eld theories on R4� . One and for all, symmetries in the nonommutativeworld are automorphisms of the algebra [3℄. The algebra R4� is determined by �and the question is how � is haraterised. We follow [1℄ and agree that � is har-aterised by the two Lorentz invariants ������ and ����������� when disardingdilatation and by the ratio of these two when inluding dilatation. The individualomponents ��� (with respet to a given basis) do not have a physial meaning.The algebra is R4� , not R4��� .Let us be more expliit. In�nitesimal �eld transformations are implementedby Ward identity operatorsW =Xi DÆ�̂i[�̂k℄; ÆÆ�̂iE ; (32)where the index i labels the di�erent sorts of �elds, here denoted �̂i. The Wardidentity operator (32) ats on (suÆiently regular) funtionals �[�̂i℄ in a deriva-tional manner:W�[�̂i℄ =Xj DÆ�̂j[�̂k℄; Æ�[�̂i℄Æ�̂j E = lim�!0 1���[�̂i + �Æ�̂i[�̂k℄℄� �[�̂i℄� : (33)We are interested in a set S of symmetry transformations of the ation fun-tional, W I� = 0, I 2 S. This set is required to be omplete, [W I ;W I0℄ =16



PnW In, In 2 S. In partiular, we are interested in gauge transformation G andLorentz transformation L whih satisfy[WL;WL℄ � WL ; [WG;WG℄ � WG ; [WG;WL℄ � WG : (34)The Lorentz transformation has for the �eld Â of Yang-Mills theory on R4� thesymboli form WL = DÆLÂ; ÆÆÂE+ DÆL�; ÆÆ�E ; (35)it is a symmetry of the Yang-Mills ation funtional, and (34) is satis�ed [37℄.It is essential that in (35) the sum of the Â and the �-transformation appears,the individual transformations do not have any meaning. Neither they are sym-metries of the ation funtional, nor they ful�l (34). But if one really insists ontransforming Â only, then at least this transformation ~W L̂A , whih annot be asymmetry of the ation funtional, must satisfy[ ~W L̂A ;WG℄ � WG : (36)The ondition (36) guarantees that ~W L̂A�[Â℄ 6= 0, whih an be regarded as thepartile Lorentz symmetry breaking, is a gauge-invariant quantity [37℄. Otherwise~W L̂A is ompletely unphysial. It is then somehow natural to make the ansatzWL = ~W L̂A + ~WL� ;~W L̂A = DÆLÂ� ÆL� dÂd� ; ÆÆÂE ; ~WL� = DÆL�; ÆÆ�E+ DÆL� dÂd� ; ÆÆÂE ; (37)where dÂd� is, for the time being, just a symbol. The ondition (36) determinesdÂd� [Â℄, whih thus beomes a onrete (but not unique) funtion of Â. Theequation dÂd� = dÂd� [Â℄ looks formally like a di�erential equation|the Seiberg-Witten di�erential equation. Now we an de�ne the following Taylor expansionof the ation funtional �[Â℄:�(n)[A℄ := nXj=0 1j! (�)j�� ~W 1� �j�[Â℄��=0 ; Æ1� := 1 ; A := �Â��=0 : (38)By onstrution, the ation funtional �(n)[A℄ desribes a ommutative Yang-Mills theory (oupled to the external �eld �) whih is invariant under ommuta-tive gauge and Lorentz transformations at any ut-o� order n in �, see [37℄. Wehave thus obtained (31) up to any desired order in a single stroke.17



10 Quantisation of �-expanded �eld theoriesFrom a physial point of view, �-expanded quantum �eld theories are not so inter-esting, beause they are loal and therefore show all the the problems disussedin se. 1. They have a very interesting struture, though, beause the appear-ane of a �eld � of power-ounting dimension �2 makes them power-ountingnon-renormalisable. It ould seem, therefore, that it is not very useful to studysuh a model as a quantum �eld theory. However, at the same time where �leads to an explosion of the number of divergenes, it also provides the means toabsorb a onsiderable fration of these divergenes through �eld rede�nitions. A�eld rede�nition is a non-linear generalisation of the usual wave funtion renor-malisation, a generalisation whih is possible preisely beause there is a �eldof negative power-ounting dimension. And there ould be symmetries in the�-expanded ation whih would prevent the appearane of other divergenes.There is thus a rae between the number of divergenes reated by � and thenumber of divergenes absorbable by (unphysial) �eld rede�nitions or avoidedby symmetries.The winner is probably the reator of divergenes, but this is a onjetureonly. In this ase, although there is at any given order n in � a �nite numberof new interation terms only, the theory looses all preditability in the limitn ! 1. There are however signs for hope. First, all super�ial divergenes inthe photon self-energy in �-expanded Maxwell theory are �eld rede�nitions, toall order n in � and any loop order [38℄. For the photon self-energy the �eldrede�nitions win the rae.A diret searh for symmetries was not suessful so far so that the only haneto detet them is to perform some loop alulations. Due to the extremely rihtensorial struture in presene of �, these alulations are extremely diÆult toperform, even for the one-loop photon self-energy in �-deformed Maxwell theoryto seond order in � [39℄. The photon three-point funtion whih is of at leastthird order in � is already beyond the means.The simplest model to study other Green's funtions than the self-energy is �-deformed QED. I have omputed in [40℄ all divergent one-loop Green's funtionsup to �rst order in �. The result was astonishing. Although not renormalisable atthe onsidered order, there was in the massless ase only a single divergene morethan those absorbable by �eld rede�nitions, where four exeeding divergent termswere to expet. In the massive ase (where the mass term is inserted diretly intothe Dira ation) things beome really bad so that this work suggests that fermionmasses should be introdued via a Higgs mehanism.The results of [40℄ provide a very strong signal that new symmetries in �-expanded �eld theories exist indeed. Sine the initial ation funtional omes via(38) from an ation funtional on R4� , it seems plausible that these symmetriesare already present in the truly nonommutative �eld theory. For me this isthe justi�ation to study �-expanded quantum �eld theories: Although being18



ompletely di�erent from quantum �eld theories on R4� , the otherwise unphysial�-expanded models may provide valuable information about the symmetries of thereally interesting nonommutative models. My feeling is that these symmetriesome through the spetral ation. The spetral ation is invariant under allunitarities of the Hilbert spae, not only those oming from the algebra. Theproblem is to make this idea expliit.The loop alulations of [39, 40℄ were performed for the �-expanded ationwhih omes out of (38), with the standard ommutative gauge invariane (31).As we have shown in [41℄, very similar omputations are possible when startingdiretly from the ation funtional for the ?!-produt, see (27). The only di�er-ene is that now the gauge symmetry is non-linearly realised so that the wholemahinery of external �elds and Slavnov-Taylor identities must be used. It is notsuÆient to write down the BRST transformations only. We looked as in [40℄ at�-expanded QED up to �rst order in �, and to our great surprise we found|upto �eld rede�nitions|exatly the same result as in [40℄. This seems to indiatethat the Seiberg-Witten map (30) is an unphysial hange of variables also onquantum level.This is true to some extent, but there is a subtlety. One an performthe hange of variables before or after quantisation. Changing the variables�0 = �0[�℄ after quantization, i.e. performing a hange of the dummy integrationvariables in the path integral (4), one obtains exatly the same Green's funtions.This was to expet from the general equivalene theorem [11℄. The hanges in theFeynman rules from �0 to � are ompensated by graphs involving the modi�edsoure term hJ;�0[�℄i. In priniple one would also expet ontributions from �eldrede�nition ghosts, but here the propagator equals 1 so that there is no ontri-bution at least for ertain regularisation shemes. On the other hand, hangingthe variables in the ation funtional before inserting it into the path integral,the outome is expeted to be di�erent. However, at �rst order in � only, thedi�erene to the other method is a �eld rede�nition.11 OutlookTrial-and-error is the best method to start exploring a new world. We have ol-leted a big amount of empirial data on Feynman graph omputations of quan-tum �eld theories on nonommutative R4 . These theories are one-loop renor-malisable and show at higher loop order a new type of infrared-like non-loaldivergenes. Any model one an possibly think of has been studied. Everythingis overed by the power-ounting theorem [33℄ (when extended to the masslessase �a la Lowenstein). This is the most rigorous result so far. On the Taylorexpanded side, �-expanded �eld theories suggest that there are new symmetries.Further going loop alulations are not possible in future due to the enormousomplexity of the outome. Thus, the trial-and-error epoh has �nished.Now it is time for a more systemati approah. As argued in se. 5, the19



Feyman graph approah does not orretly reet the geometry of R4� . Instead,one has to introdue a smooth ut-o� in the path integral and to ompute itdiretly with methods of the exat renormalisation group approah [24, 25℄.A An example of the ?-produt in two dimensionsWe onsider the following funtion on R2f~a;~L(~x) = 2Yi=1 fai;Li(xi) ;fNai;Li(xi) = ( os(xi�aiLi ) for ai � (2N+1)�Li2 � xi � ai + (2N+1)�Li20 for jxi � aij > (2N+1)�Li2 (A.1)Clearly fN~a;~L(~x) 2 S(R2) (pieewise) for �nite N beause for multi-indies � =f�ig and � = f�ig one has j(x)�(�x)�fN~a;~L(~x)j � Q2i=1 L��ii �jaij+ (2N+1)�Li2 ��i. Itis now an elementary alulation to ompute the ?-produt (10) of two funtions(A.1):�fN~a;~L ? fN~b;~L0�(~x) (A.2)= �14 (�i)2� X�;�0=�1 e�i(�x1�a1L1 +�0 x2�b2L02 +��0 �2L1L02 )� X�00;�000=�1�00�000 G�2L1L02� (x1�a1L1 +�000 (2N+1)�2 +�0 �2L1L02 )(x2�b2L02 +�00 (2N+1)�2 +� �2L1L02 )��� �14 i2� X�;�0=�1 ei(�x2�a2L2 +�0 x1�b1L01 +��0 �2L2L01 )� X�00;�000=�1�00�000 G��2L2L01� (x2�a2L2 +�000 (2N+1)�2 +�0 �2L2L01 )(x1�b1L01 +�00 (2N+1)�2 +� �2L2L01 )�� ;where � � �12 = ��21,G[u℄ := 1Xn=1 (iu)nnn! = i(u)� E � ln(u) + i si(u) ; (A.3)i(u) = � Z 1u dt os tt = E + ln(u) + Z u0 dt (os t� 1)t ; si(u) = Z u0 dt sin tt ;and E = 0:577216 : : : . In the limit N !1 one reovers the ?! produt of theosine funtions:�f1~a;~L ?! f1~b;~L0�(~x)= �14 X�;�0=�1 e�i(�x1�a1L1 +�0 x2�b2L02 +��0 �2L1L02 )��14 X�;�0=�1 ei(�x2�a2L2 +�0 x1�b1L01 +��0 �2L2L01 )�= � os �x1�a1L1 � os �x2�a2L2 �� ?! � os �x1�b1L01 � os �x2�b2L02 �� : (A.4)20



It is illuminating to plot (A.2) for various values of � and N . For simpliitywe hoose ai = bi = 0 and Li = L0i = L. The result for N 2 f0; 1g is shown inFigure 1 for � = L2 and the ut with the plane x1 = x2 for � 2 f0:1L2; L2; 3L2g inFigure 2. Atually the way one should read Figure 2 is the following. One should
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f0 ? a?n ? �a = � n�(f0 ? a?(n�1)) for n � 10 for n = 0 (B.5)where a?n = a ? a ? � � � ? a (n fators) and similarly for �a?m. Now, de�ningfmn := 1pn!m! �m+n �a?m ? f0 ? a?n (B.6)= 1pn!m! �m+n min(m;n)Xk=0 �mk��nk� k! 2m+n�2k �k �am�k an�kf0 ;(the seond line is proved by indution) it follows from (B.5) and (B.2) that(fmn ? fkl)(x) = Ænkfml(x) : (B.7)The multipliation rule (B.7) identi�es the ?-produt with the ordinary matrixprodut: a(x) = 1Xm;n=0 amnfmn(x) ; b(x) = 1Xm;n=0 bmnfmn(x)) (a ? b)(x) = 1Xm;n=0(ab)mnfmn(x) ; (ab)mn = 1Xk=0 amkbkn : (B.8)In order to desribe elements of R2� the sequenes famng must be of rapid deay[17℄:1Xm;n=0 amnfmn 2 R2� i� 1Xm;n=0 �(2m+1)2k(2n+1)2kjamnj2� 12 <1 for all k :(B.9)Finally, using (B.2) we omputeZ d2x fmn(x) = 1pm!n! �m+n Z d2x ��a?m ? f0 ? f0 ? a?n�(x)= 1pm!n! �m+n Z d2x �f0 ? a?n ? �a?m ? f0�(x)= Æmn Z d2xf0(x) = 2��Æmn : (B.10)Now we return to the question of states. We learly have(f �mn ? fmn)(x) = (fnm ? fmn)(x) = fnn(x) ; (B.11)and f11(x) = 2��4x21 + 4x22 � ��e� 1� (x21+x22) < 0 for 4x21 + 4x22 < �. Thus, Æ-distributions annot be states on Rd� . On the other hand, (B.11) and (B.10)imply that �n(x) = 12��fnn(x) are states on R2� . The basis fmn was used in [23℄to onstrut a new lass of exatly solvable quantum �eld theories.23
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