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Abstra
t. I re
all the main motivation to study quantum �eld the-ories on non
ommutative spa
es and 
omment on the most-studiedexample, the non
ommutative R4 . That algebra is given by the ?-produ
t whi
h 
an be written in (at least) two ways: in an integralform or an exponential form. These two forms of the ?-produ
t areadapted to di�erent 
lasses of fun
tions, whi
h, when using themto formulate �eld theory, lead to two versions of quantum �eld the-ories on non
ommutative R4 . The integral form requires fun
tionsof rapid de
ay and a (preferably smooth) 
ut-o� in the path inte-gral, whi
h therefore should be evaluated by exa
t renormalisationgroup methods. The exponential form is adapted to analyti
 fun
-tions with arbitrary behaviour at in�nity, so that Feynman graphs
an be used to 
ompute the path integral (without 
ut-o�) pertur-batively.
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0 Dis
laimerThis is not a review. The organisers of the Hesselberg 2002 workshop on \Theoryof renormalisation and regularisation", Ryszard Nest, Florian S
he
k and ElmarVogt, asked me to present something about �-deformed quantum �eld theoriesand to prepare some notes for the pro
eedings. In the following I will present thelogi
 behind and the results of my own work on this subje
t. Obje
tivity and
ompleteness are not the aim of this presentation. I have quoted referen
es whereI knew of them, statements without 
itation do not mean that they are new.These notes go far beyond my presentation at the Hesselberg workshop. Theyre
e
t my 
urrent point of view1, the formulation of whi
h evolved through thetyping of papers to be found in the hep-th arXiv and the preparation of invitedtalks for workshops, 
onferen
es and invitations in Wien, Nottingham, Jena,Marseille, Leipzig, M�un
hen, Hesselberg, Leipzig (again), Oberwolfa
h, Hamburgand Trieste (Wien will follow). I am grateful to the organisers of these events forinvitation and hospitality, as well as to my friends for dis
ussions and 
ooperation.1 Farewell to manifoldsHalf a 
entury of high energy physi
s has drawn the following pi
ture of themi
ros
opi
 world: There are matter �elds and 
arriers of intera
tions betweenthem. Four di�erent types of intera
tions exist: ele
tromagneti
, weak and strongintera
tions as well as gravity. The traditional mathemati
al language to des
ribethese stru
tures of physi
s is that of �bre bundles. The base manifoldM of thesebundles is a four-dimensional metri
 spa
e with line element ds2 = g��(x) dx�dx�.Matter �elds  are se
tions of a ve
tor bundle V over M . The 
arriers of ele
-tromagneti
, weak and strong intera
tions are des
ribed by 
onne
tion one-formsA of U(1), SU(2) and SU(3) prin
ipal �bre bundles, respe
tively. Gravity is thedetermination of the metri
 g by the one-forms A and se
tions  , and vi
e-versa.The dynami
s of (A;  ; g) is governed by an a
tion fun
tional �[A;  ; g℄, whi
hyields the equations of motions when varied with respe
t to A;  ; g. The 
ompletea
tion fun
tional for the phenomenologi
ally most su

essful model, the standardmodel of parti
le physi
s, is an ugly pat
hwork of unrelated pie
es when expressedin terms of (A;  ; g).Next there is a 
lever 
al
ulus, 
alled quantum �eld theory, whi
h as theinput takes the a
tion fun
tional � and as the output returns numbers. Onthe other hand, there are experiments whi
h also produ
e numbers. There is a1Changes in v2 are due to an e-mail ex
hange with Mohammad Sheikh-Jabbari on thedi�erent ?-produ
ts and dis
ussions with Dorothea Bahns and Klaus Fredenhagen who, inparti
ular, 
onvin
ed me that Minkowskian non
ommutative �eld theories are di�erent.Changes in v3 go ba
k to very useful 
omments by Edwin Langmann who explained to methat the two versions of the ?-produ
t whi
h in the previous versions were regarded as di�erentprodu
ts are a
tually two extensions of the same produ
t to di�erent 
lasses of fun
tions.1



remarkable agreement2 of up to 10�11 between 
orresponding numbers 
al
ulatedby quantum �eld theory and those 
oming from experiment. This tells us twothings: The a
tion fun
tional (here: of the standard model) is very well 
hosenand, in parti
ular, quantum �eld theory is an extraordinarily su

essful 
al
ulus.There is however, apart from the des
ription of strong intera
tions at lowenergy, a tiny problem: one of the basi
 assumptions of quantum �eld theory isnot realised in nature. First, the metri
 g is 
onsidered in quantum �eld theoryas an external parameter, and|mostly|the 
al
ulus works only if the metri
 isthat of Eu
lidian or Minkowski spa
e, g�� = Æ�� or g�� = diag(1;�1;�1;�1),respe
tively. But let us ignore this and assume for a moment that quantum �eldtheory works on any (pseudo-) Riemannian manifold. Let us then ask how wemeasure te
hni
ally the geometry. The building blo
ks of a manifold are thepoints labelled by 
oordinates fx�g in a given 
hart. Points enter quantum �eldtheory via the se
tions  (x) and A(x), i.e. the values of the �elds at the pointlabelled by fx�g. This observation provides a way to \visualize" the points: wehave to prepare a distribution of matter whi
h is sharply lo
alised around fx�g.For a perfe
t visualisation we need a Æ-distribution of the matter �eld. Thisis physi
ally not possible, but one would think that a Æ-distribution 
ould bearbitrarily well approximated. However, that is not the 
ase, there are limits oflo
alisability long before the Æ-distribution is rea
hed [1℄.Let us assume there is a matter distribution whi
h is believed to have twoseparated peaks within a spa
e-time region R of diameter d. How do we test this
onje
ture? We perform a s
attering experiment in the hope to �nd interferen
eswhi
h tell us about the internal stru
ture in the region R. We 
learly need testparti
les of de Broglie wave length � = ~
E . d, otherwise we observe a singlepeak even if there is a double peak. For �! 0 the gravitational �eld of the testparti
les be
omes important. The gravitational �eld 
reated by an energy E 
anbe measured in terms of the S
hwarzs
hild radiusrs = 2GE
4 = 2G~�
3 & 2G~d
3 ; (1)where G is Newton's 
onstant. If the S
hwarzs
hild radius rs be
omes larger thanthe radius d2 , the inner stru
ture of the region R 
an no longer be resolved (it isbehind the horizon). Thus, d2 � rs leads to the 
onditiond2 & `P :=rG~
3 ; (2)whi
h means that the Plan
k length `P is the fundamental length s
ale belowof whi
h length measurements be
ome meaningless. Spa
e-time 
annot be amanifold.2There are of 
ourse experimental data whi
h so far 
ould not be reprodu
ed theoreti
ally,su
h as the energy spe
trum of hadrons. 2



2 Spe
tral triplesWhat does this mean for quantum �eld theory? It means that we 
annot trust tra-ditional quantum �eld theories like the (quantum) standard model be
ause theyrely on non-existing information about the short-distan
e stru
ture of physi
swhi
h determines the loop 
al
ulations.What else 
an we take for spa
e-time? A latti
e? The disadvantage of thelatti
e is that symmetries, whi
h are guiding prin
iples in quantum �eld theory,are lost. There are also problems with the spin stru
ture. Latti
e 
al
ulationsare regarded as a mathemati
ally rigorous method, but at the end mostly the
ontinuum limit is desired in whi
h the symmetries are intended to be restored.The latti
e approa
h points into the right dire
tion. A latti
e is a metri
 spa
ebut not a di�erentiable manifold. What we would like to have as 
andidates forspa
e-time is a 
lass of metri
 spa
es whi
h are equipped with a di�erential 
al-
ulus and, additionally, a spin stru
ture to allow for fermions. Su
h obje
ts existin mathemati
s, they are 
alled spe
tral triples [2, 3℄. They are non
ommuta-tive geometries [4, 5℄ whi
h are the 
losest generalisation of di�erentiable spinmanifolds. There are good reasons to believe that spe
tral triples are the rightframework for physi
s.1. The language in terms of whi
h spe
tral triples are formulated 
omes from�eld theory: Besides the algebra A represented on a Hilbert spa
e H (whi
halone are only good for measure theory), to des
ribe metri
 spa
es with spinstru
ture one also needs a Dira
 operator D, the 
hirality 
5 and the 
harge
onjugation J , see [3℄.2. The standard model of parti
le physi
s looks mu
h simpler when formu-lated in the language of spe
tral triples3. This is �rst of all due to theunderstanding of the Higgs �eld as a 
omponent of a gauge �eld living ona spe
tral triple. The (�4 � m2�2) Higgs potential 
omes from the samesour
e as the Maxwell Lagrangian F��F ��, and the Yukawa 
oupling of theHiggs with the fermions has the same origin as the minimal 
oupling ofthe gauge �elds with the fermions. But the 
onne
tion is mu
h deeper,for instan
e, the spe
tral triple des
ription enfor
es the following (in thelanguage of Yang-Mills-Higgs models unrelated) features [6℄:(i) weak intera
tions break parity maximally(ii) weak intera
tions su�er spontaneous breakdown(iii) strong intera
tions do not break parity(iv) strong intera
tions do not su�er spontaneous breakdown3. The separation of gauge �elds and gravity starts to disappear: Yang-Mills�elds, Higgs �elds and gravitons are all regarded as 
u
tuations of the free3In fa
t the axioms of spe
tral triples [3℄ are tailored su
h that the (Eu
lidian) standardmodel is a spe
tral triple. 3



Dira
 operator [3℄. The spe
tral a
tion� = tra
e��zD2�2 � ; �(t) = � 1 for 0 � t � 10 for t > 1 (3)(whi
h is the weighted sum of the eigenvalues of D2 up to the 
ut-o� �2)of the single 
u
tuated Dira
 operator D gives the 
omplete bosoni
 a
-tion of the standard model, the Einstein-Hilbert a
tion (with 
osmologi
al
onstant) and an additional Weyl a
tion term in one stroke [7℄. The pa-rameter z in (3) is the \non
ommutative 
oupling 
onstant" [6℄. Assumingthe spe
tral a
tion (3) to produ
e the bare a
tion at the (grand uni�
ation)energy s
ale �, the renormalisation group equation based on the one-loop�-fun
tions leads to a Higgs mass of 182 : : : 201GeV [6℄.There are of 
ourse te
hni
al diÆ
ulties with spe
tral triples, su
h as therestri
tion to 
ompa
t spa
es with Eu
lidian signature, but it is 
lear that spe
-tral triples are a very promising strategy. For attempts to over
ome Eu
lidiansignature see [8, 9℄ and for an extension to non-
ompa
t spa
es [10℄.The strength of the spe
tral triple approa
h is that it leads immediately to
lassi
al a
tion fun
tionals with a lot of symmetries, even on spa
es other thanmanifolds. We 
an feed the spe
tral a
tion fun
tional into our 
al
ulus of quan-tum �eld theory in order to produ
e numbers to be 
ompared with experiments.One of the formulations of that 
al
ulus, the path integral approa
h, is perfe
tlyadapted to spe
tral triples. All one needs are labels � for the degrees of freedomof the spe
tral a
tion �
l[�℄ in order to write down (at least formally) the measureD[�℄ for the (Eu
lidian) path integralZ[J ℄ = Z D[�℄ exp �� 1~�
l[�℄� 
J;��� : (4)The sour
e J is an appropriate element of the dual spa
e of the �'s. Everythinginteresting (in a Eu
lidian quantum �eld theory) 
an be 
omputed out of Z[J ℄. Itis not important how one labels the degrees of freedom, be
ause Z[J ℄ is invariantunder a 
hange of variables [11℄.However, we 
annot 
ompletely ex
lude the possibility that quantum �eldtheory is impli
itly built upon the assumption that the a
tion fun
tional takenas input lives on a manifold. The best way to test whether the standard 
al
ulusof quantum �eld theory extends to spe
tral triples is to apply it to examples whi
hare deformations of a manifold. Let us assume there is a family of spe
tral tripleswhi
h are distinguished by a set of parameters � su
h that for � ! 0 we re
over anordinary manifold. Then we should expe
t that the family of numbers 
omputedout of (4) for any � tends for � ! 0 to the numbers 
omputed for the manifold
ase. Otherwise something is wrong. It is unlikely that the problem (if any) liesin the formula (4) itself, whi
h is very appealing. However, the evaluation of4



(4) often involves formal manipulations whi
h may work in one 
ase but fail inanother one. We should be 
areful.I should mention that the situation is mu
h more diÆ
ult in the 
ase ofMinkowskian signature of the metri
. Apart from the diÆ
ulty to extend thede�nition of spe
tral triples to geometries with non-Eu
lidian signature and themathemati
al problems of the non-Eu
lidian path integral, there is eviden
e now[12℄ that formal Wi
k rotation in the Feynman graph 
omputations based on thepath integral (4) does not yield the 
orre
t theory in the non
ommutative 
ase.Before going to the example let us remind ourselves what the 
hallenge was.We need a repla
ement for the spa
e-time manifold whi
h is not based on thenotion of points. The repla
ement is expe
ted to be a spe
tral triple, but inorder to 
ompare the out
ome with experiments, we have to be sure that the
al
ulus of quantum �eld theory 
an be applied. This is why we are interestedin spe
tral geometries other than manifolds on whi
h quantum �eld theoreti
al
omputations are possible to perform. We do not 
laim that our examples arethe 
orre
t des
ription of the real world.3 The non
ommutative torusIt is time for an example. The simplest non
ommutative spe
tral triple is thenon
ommutative d-torus, see e.g. [13℄. A basis for the algebra Td� of the non-
ommutative d-torus is given by unitarities Up labelled by p = fp�g 2 Zd, withUp(Up)� = (Up)�Up = 1. The multipli
ation is de�ned byUpU q = ei����p�q�Up+q ; �; � = 1; : : : ; d ; ��� = ���� 2 R : (5)Elements a 2 Td� have the following form:a = Xp2ZdapUp ; ap 2 C ; kpknjapj ! 0 for kpk ! 1 : (6)If ��� =2 Q (rational numbers) one 
an de�ne partial derivatives��Up := �ip�Up ; (7)whi
h satisfy the Leibniz rule and Stokes' law with respe
t to the integralZ a = a0 ; (8)where a is given by (6). The algebra Td� gives rise to a Hilbert spa
e by GNS
onstru
tion with respe
t to (8), and the partial derivatives (7) yield a Dira
operator. Algebra, Hilbert spa
e and Dira
 operator extend to a spe
tral triplesatisfying all axioms. For details (and a dis
ussion of the rational 
ase ��� 2 Q)see [14℄. The non
ommutative torus was the �rst non
ommutative spa
e where�eld theory has been studied [15℄. 5



The spe
tral a
tion (3) for this spe
tral triple reads� = 14g2 Z F��F �� ; F�� = ��A� � ��A� � i(A�A� � A�A�) ; (9)where A� = A�� 2 Td� . Then the path integral (4) is evaluated in terms of Feynmangraphs, whi
h involve sums, not integrals, over the dis
rete loop momenta. At theone-loop level it is possible to extra
t the pole parts of these sums via �-fun
tionte
hniques [16℄. The result is that the quantum �eld theory asso
iated to the
lassi
al a
tion (9) is divergent but (for d = 4 dimensions) one-loop renormalisable(divergen
es are multipli
atively removable and the Ward identities are satis�ed)[16℄.Everything is perfe
t so far. Unfortunately, nobody was able to investigatethis model at two and more loops, for the simple reason that sums are morediÆ
ult to evaluate than integrals. It is dangerous here to approximate the sumsby integrals, be
ause the 
riti
al question is the behaviour at small p, see below.The most important property of the torus is that the zero mode p = 0 de
ouples,and the next-to-zero modes are \far away" from zero (p 2 Zd). Taking p 2 Rd todeal with integrals, the zero mode de
ouples as well, but the next-to-zero modesare in�nitesimally 
lose to zero. Due to the ease of the 
omputations, mu
h morework has been performed on the non-
ompa
t analogue of the non
ommutative4-torus|the non
ommutative R4 .4 The non
ommutative R4Therefore, let us pass to the non
ommutative R4 . The algebra R4� is given bythe spa
e S(R4) of (pie
ewise) S
hwartz 
lass fun
tions of rapid de
ay, equippedwith the multipli
ation rule [17℄(a ? b)(x) = Z d4k(2�)4 Z d4y a(x+12��k) b(x+y) eik�y ; (10)(��k)� = ���k� ; k�y = k�y� ; ��� = ���� :There is again a �, whi
h however is 
ompletely di�erent from the one in (6).The entries ��� in (10) have the dimension of an area whereas in (6) they arenumbers (for the torus everything 
an be measured in terms of the radii). Thereis also no rational situation for the R4� . Note that the produ
t (10) is asso
iativebut non
ommutative, and (a ? b)(x)���=0 = a(x)b(x).It is interesting to perform a Taylor expansion of (10) about � = 0:(a ?! b)(x) := 1Xn=0 1n!��1�1 � � � ��n�n� �n(a ? b)(x)���1�1 : : : ���n�n ��=0= �e i2 ��� ��y� ��z� a(x+y) b(x+z)�z=y=0 : (11)6



What is the relation between ? and ?!? I �rst thought that they are 
ompletelydi�erent produ
ts. I am grateful to Edwin Langmann for explaining to me that ?and ?! are a
tually the same produ
ts, the point is that the derivatives in (11) area
tually generalised derivatives in the sense of distribution theory. There is a 
lassof fun
tions on whi
h ? and ?! (with the derivatives taken literally) 
oin
ide, theseare analyti
 fun
tions of rapid de
ay. Then, depending on how one extends the
lass of fun
tions to less regular ones, di�erent forms for displaying the produ
tare preferred.The ?-produ
t (10) has ex
ellent smoothing properties, and the multiplieralgebra M�, the set of all distributions whi
h when ?-multiplied with elementsof R4� give again elements of R4� , is very big [17℄. The ?-produ
t is 
learly non-lo
al : to the value of a ? b at x there 
ontribute values of a; b at points faraway from x. The form (10) is very 
onvenient for pie
ewise S
hwartz 
lassfun
tions, in parti
ular for fun
tions of 
ompa
t support, as the 
omputationof a two-dimensional example in Appendix A shows. This 
al
ulation showsthat the ?-produ
t has some surprising (at least to me) behaviour at very shortdistan
es. Very similar 
al
ulations have already been performed in [18℄, withsimilar 
on
lusions. The most impressive behaviour is shown in Figure 3. The?-produ
t 
ompletely smoothes away the (\extremely-lo
alised" [18℄) modes ofsupport within an area �. It is apparent that � a
ts as a 
ut-o� (or a horizon interms of gravitational physi
s), a 
ut-o� whi
h preserves all symmetries! Thus,the R4� with ?-produ
t (10) is an ex
ellent model for spa
e-time.The fo
us of the ?!-produ
t is a di�erent one. In order to interpret thepartial derivatives literally, one has to stay within the 
lass of analyti
 fun
tions.However, there is no need of rapid de
ay at in�nity. The ?!-produ
t is e.g. de�nedfor polynomials of �nite degree or for plane waves:eip�x� ?! eiq�x� = e� i2 ���p�q� ei(p�+q�)x� : (12)There is no need to assemble the plane waves to wave pa
kets of rapid de
ay atin�nity. The non-lo
ality of the ?!-produ
t (11) is hidden. To the value of a ?! bat x there 
ontribute values of a; b in an in�nitesimal neighbourhood of x only,but taking the derivatives literally requires a; b to be analyti
, whi
h means thatthe in�nitesimal neighbourhood of x 
ontains all information about a; b on theentire R4 .5 The geometry of R4�In my opinion a thorough investigation of the spe
tral geometry of (R4� ;H;D)must pre
ede any quantum �eld theoreti
al 
omputations of models on R4� . Un-fortunately history went di�erently, so let me explain what we have failed to doso far.The geometry of (R4� ;H;D) 
annot be the geometry of a spe
tral triple [3℄,be
ause the spe
trum of the Dira
 operator D is 
ontinuous. It rather �ts into the7



axioms of \non-
ompa
t spe
tral triples" [10℄. In this framework the dimensionof (R4� ;H;D) equals zero, not four4, be
ause f 2 S(R4) is tra
e-
lass so thatf jDj�n has vanishing Dixmier tra
e. Thus, it is the requirement of rapid de
ayat in�nity whi
h brings the dimension down to zero. Taking the ?! produ
t fora suitable 
lass of analyti
 fun
tions, we 
an keep the spe
tral dimension at four.This is related to the notion of star triples in [10℄.The geometry is extra
ted from a spe
tral triple via states|linear fun
tionals� : R4� ! C su
h that5 �(1) = 1 and �(a� ? a) � 0 for all a 2 R4� . We 
an viewsu
h a state as an element of the multiplier algebra M� through the formula�(a) = Z d4x�(x)a(x) ; Z d4x�(x) = 1 ; Z d4x �� ? a� ? a�(x) � 0 : (13)The spa
e of states is made to a metri
 spa
e by means of Connes' distan
eformula dist(�1; �2) = supa2A� n���1(a)� �2(a)�� : 

[D; a℄

B(H) � 1o : (14)In the 
ommutative 
ase, for the states labelled by points a

ording to �y(x) =Æ4(x � y), this formula returns the geodesi
 distan
e of the points. For thestandard model one re
overs a dis
rete Kaluza-Klein geometry in �ve dimensions[21℄.The states on 
ommutative spa
e suggest immediately to try whether �y(x) =Æ4(x � y) are states on R4� as well. The answer is no6. A

ording to AppendixB (whi
h is 
opied from [17℄) for the two-dimensional 
ase, there are fun
tionsa 2 R2� and points x 2 R2 su
h that (a� ? a)(x) < 0. Moreover, the algebra R2�(fun
tions of rapid de
ay at in�nity) is identi�ed with the algebra of matri
esof in�nite size. The 
onsequen
e is that �eld theory on R4� is rather a matrixtheory than a traditional �eld theory on Eu
lidian spa
e, see [22℄. I would liketo mention that the matri
ial basis was 
ru
ial for Langmann's 
lass of exa
tlysolvable quantum �eld theories in odd dimensions [23℄.Moreover, Figure 3 in Appendix A tells us that the produ
t of two �elds,both of whi
h with support in the interior of the area �, is, to a high a

ura
y,zero. All this means that R2� is divided into 
ells of area �, and �elds on R2� are
hara
terised by assigning to ea
h 
ell a value. This pi
ture is easily generalisedto R4� . Now, sin
e the intera
tion of �elds on R4� is smeared over the 
ell of sizej det �j 12 , one would expe
t that a quantum �eld theory on R4� is free of divergen
es[20℄. Performing the 
al
ulation of Feynman graphs, however, one does en
ounterdivergen
es, and these are worse than on 
ommutative spa
e-time. See se
. 7.4The spe
tral triple for the non
ommutative 4-torus has dimension four, not zero! TheHo
hs
hild dimension of R4� drops down to zero as well [19℄.5The 1 in �(1) is thought to be the limit of a sequen
e of appropriate elements of R4� .6As a 
onsequen
e, Rd� is not the algebra of fun
tions on some manifold.8



How 
an we understand this puzzle? The Feynman rules are nothing butthe perturbative evaluation of the path integral (4). It seems that this kind ofevaluation of (4) somehow brings the dimension of Rd� ba
k to d. The 
ru
ialquestion here is the de�nition of the measure D[�℄ in the path integral. Theidea is to integrate over all possible �elds on Rd� . This is most 
onveniently doneby taking a basis, for instan
e the matri
ial basis fmn of Appendix B in thetwo-dimensional 
ase: �(x) = 1Xm;n=0�mnfmn(x) : (15)Thus, the measure should be D[�℄ = Q1m;n=0 d�mn. Next we have to spe
ify thedomain of integration. The Feynman rules 
orrespond to integrating all �mnfrom �1 to 1. Obviously this is not 
ompatible with the requirement that thef�mng represent an element of R2� , whi
h imposes [17℄1Xm;n=0 �(2m+1)2k(2n+1)2k j�mnj2� 12 <1 for all k : (16)Integrating all �mn from�1 to1 we a
tually in
lude fun
tions with unrestri
tedbehaviour at in�nity, and those fun
tions lead to a spe
tral dimension bigger thanzero. In other words, the dis
ussion of the geometry of R4� tells us that the usualFeynman rules are not adequate7 to quantum �eld theory on R4� . It is neithersurprising nor a problem that the standard Feynman graph approa
h to quantum�eld theories on R4� fails miserably (see also the next se
tions).A possibility to stay within the 
lass of �elds of rapid de
ay at in�nity is tointrodu
e a 
ut-o� in the path integral measure, e.g. D[�℄ = QLm;n=0 d�mn. Adi�erent view of that 
ut-o� is to regard all modes �mn as in
luded, but withthe integral performed over the interval [0; 0℄ instead of [�1;1℄ if m > L orn > L. This pres
ription 
an then be deformed into a smooth 
ut-o� with all�mn in
luded, but with j�mnj being of rapid de
ay at in�nity. In this way weintegrate indeed over �elds on Rd� . The 
ut-o� 
an be arbitrarily large and the
ut-o� fun
tion arbitrarily 
hosen; we stay within the allowed 
lass of �elds aslong as there is a 
ut-o� somewhere when approa
hing in�nity.Remarkably, this smooth 
ut-o� version of the path integral is exa
tly theway one pro
eeds in the exa
t renormalisation group approa
h to renormalisation[24℄, see also [25℄. We see thus that the smooth 
ut-o� in the exa
t renormal-isation group is not just a 
onvenient tri
k to 
ompute the path integral, it isthe dire
t 
onsequen
e of the zero-dimensional geometry8 of Rd� . The philosophy7The same 
riti
ism applies to 
anoni
al quantisation be
ause the amplitudes 
annot bepromoted to harmoni
 os
illators at quantum numbers approa
hing in�nity.8In that sense, the renormalisation group approa
h for 
ommutative �eld theories is linkedto �elds of rapid de
ay in momentum spa
e. It seems to be a degenera
y of 
ommutativegeoemtry that this restri
tion leads to the same results as the Feynman graph apprao
h.9



is then to rede�ne the theory in su
h a way that|on
e spe
ifying normalisation
onditions|everything be
omes independent of the 
ut-o� fun
tion and the valueof the 
ut-o�. There are �rst results [26℄ that at least s
alar �eld theories on R4�are renormalisable within the exa
t renormalisation group approa
h.6 The Feynman graph approa
h to quantum �eld theories on R4�We have argued in the last se
tion that the Feynman graph approa
h to quantum�eld theories on R4� does not 
orre
tly re
e
t the geometry of R4� . There hasbeen, however, an enormous amount of work along this line, whi
h deserves afew 
omments. We need a notation to distinguish the Feynman graph approa
hfrom the true zero-dimensional R4� . Let us 
all the four-dimensional spa
e whereFeynman graph 
omputations are performed R4n
 .The �rst 
ontribution was the one-loop investigation of U(1) Yang-Mills the-ory on R4n
 by Mart��n and S�an
hez-Ruiz [27℄. They found that all one-loop poleterms of this model in dimensional regularisation9 
an be removed by multi-pli
ative renormalisation (minimal subtra
tion) in a way preserving the BRSTsymmetry. This is 
ompletely analogous to the situation on the non
ommutative4-torus [16℄. Shortly later there appeared also an investigation of super-Yang-Mills theory on C1(R) � T2� [28℄. In the following two years similar one-loop
al
ulations were performed for the Rdn
 -analogue of any existing 
ommutativemodel.The reason why these models be
ame so attra
tive was the 
ompletely un-expe
ted dis
overy of quadrati
 infrared-like divergen
es, �rst in quantum �eldtheories of s
alar �elds [29℄, whi
h ruled out a perturbative renormalisation athigher loop order. At that time it was an open question whether this is an artifa
tof s
alar �elds or really a general feature. We have shown in [30℄ using power-lawestimations for Bessel fun
tions that the sub-se
tor of Yang-Mills theory on R4n
given by repeated one-loop ghost propagator self-insertions is renormalisable toany loop order. Shortly later it was demonstrated, however, that there are one-loop Green's fun
tions in Yang-Mills theory on R4n
 whi
h have quadrati
 andlinear infrared-like divergen
es [31℄, whi
h prevent any renormalisation beyondone-loop.In my opinion the most valuable 
ontribution to �eld theories on Rdn
 are thetwo arti
les [32, 33℄ by Chepelev and Roiban, in whi
h they investigated the
onvergen
e behaviour of massive quantum �eld theories at any loop order. Theessential te
hnique is the representation of Feynman graphs as ribbon graphs,drawn on an (oriented) Riemann surfa
e with boundary, to whi
h the externallegs of the graph are atta
hed. There are two important quali�ers for su
h aribbon graph, the index and the 
y
le number. The index is de
lared to be oneif the external lines atta
h to boundary 
omponents \inside" and \outside" of9There is of 
ourse a problem extending � to 
omplex dimensions, this is however dis
ussedin [27℄. 10



the graph, otherwise zero. The 
y
le number is the number of homologi
allynon-trivial 
y
les of the Riemann surfa
e of the total graph wrapped by the(sub)graph. Using this language and sophisti
ated tri
ks for the manipulationof determinants, Chepelev and Roiban were able to prove that in order to have
onvergen
e of the integral, ea
h subgraph must have one of the following prop-erties:1. The index is one and the external momenta are non-ex
eptional.2. If the index is zero or the index is one but the external momenta are non-ex
eptional, then the power-
ounting degree of divergen
e of the graph issmaller than the dimension d times the number of 
y
les.Thus, non
ommutativity (index one and presen
e of 
y
les due to non-planarity)improves the 
onvergen
e of the integral. Integrals asso
iated to planar se
torsare to be renormalised as in 
ommutative quantum �eld theories, they are not aproblem. One has to make sure however, that there are no divergen
es in non-planar se
tors. It turned out that there are two dangerous 
lasses of non-planardivergen
es, whi
h in [33℄ are 
alled \Rings" and \Com". Rings 
onsists of a 
hainof divergent graphs sta
ked onto the same 
y
le, they indu
e the problem �rstobserved in [29℄. Com's are index-one graphs with ex
eptional external momentadue to momentum 
onservation, they 
orrespond to non-lo
al divergen
es of thetype (R � ? �)2. In massless models they are 
atastrophi
. Unfortunately thisproblem seems to be 
ompletely ignored in literature.7 The non-lo
ality of the divergen
esAll this is well-known by now and 
an be looked up in the literature, neverthelessI would like to demonstrate the problem with quantum �eld theories on R4n
 by
omputing the ghost loop 
ontribution to the one-loop gluon two-point fun
tion.The ne
essary Feynman rules adapted to the (Eu
lidian) BPHZL renormalisations
heme [34℄ are given by�p �q = � 1p2 + (s�1)2M2 ; (17)
�q; ��p r = 2i p� sin(12���q�r�) ; (18)

11



for ghost propagator and ghost-gluon vertex, respe
tively. One has p+q = 0 in(17) and p+q+r = 0 in (18). We then 
ompute the graph
��(p; s) =�p; � �p; �k�p
k

= ~ Z d4k(2�)4 k�(k�p)�n2� ei���p�k� � e�i���p�k�o(k2 + (s�1)2M2)((k�p)2 + (s�1)2M2) : (19)The integral as it stands in (19) is meaningless. We have to de�ne a renormali-sation s
heme whi
h assigns to the graph in (19) a meaningful integral. Here onehas to distinguish between the planar part 
orresponding to the fa
tor 2 in in f gand the non-planar part 
orresponding to the phase fa
tors in f g. Let us �rstlook at the planar part. The integral is quadrati
ally divergent, and a

ording tothe BPHZL s
heme we repla
e the integrand I��(k; p; s) by the Taylor subtra
tedintegrand(1�R)[I��(k; p; s)℄���s=1 := (1� t1p;s�1)(1� t2p;s)[I��(k; p; s)℄���s=1 ; (20)where t!p;s0[I℄ is the Taylor expansion of I about p = 0 and s0 = 0 up to totaldegree !. In the example (19) we have for the integrand without the fa
tor 2 inf g R[I��(k; p; s)℄ = k�k�(k2)2 + p��� k�g��(k2)2 + 2k�k�k�(k2)3 �+ p�p��� 2k�k�g��(k2 +M2)3 + 4k�k�k�k�(k2 +M2)4�+ (s�1)2� 2M2k�k�(k2 +M2)3 + 12M4k�k�(k2 +M2)4�+ p�(s�1)� 4M2k�g��(k2 +M2)3 � 12M2k�k�k�(k2 +M2)4 � : (21)Passing to s = 1 and omitting the integrand whi
h is odd under k ! �k, we nowget for the planar part in (19)
��planar;ren(p;M) = 2~ Z d4k(2�)4 �k�(k�p)�k2(k�p)2 � k�k�(k2)2� p�p��� 2k�k�g��(k2 +M2)3 + 4k�k�k�k�(k2 +M2)4�� : (22)The integral (22) is absolutely 
onvergent, see [34℄.12



Let us now 
ompute the di�eren
e between 
��planar and 
��planar;ren in positionspa
e: Z d4p(2�)4�
��planar(p)� 
��planar;ren(p;M)� e�ip�(x�y)�= 2~ Æ4(x� y) Z d4k(2�)4 k�k�(k2)2+ 2~ �2Æ4(x� y)�x��x� Z d4k(2�)4 � 2k�k�g��(k2 +M2)3 � 4k�k�k�k�(k2 +M2)4� : (23)The result is zero unless x = y. We re
all now that the Fourier transforma-tion of (22) is the ghost loop 
ontribution to the gluon two-point 
orrelationfun
tion 
A�(x)A�(y)�. In other words, repla
ing the meaningless integral (19)by the renormalised one (22), we have only rede�ned (in fa
t 
orre
tly de�ned)the produ
t of the distributions A�(x) and A�(y) at 
oin
iding points. This ispre
isely the freedom whi
h one has in a lo
al quantum �eld theory [35℄.But what about the non-planar part? Although not being absolutely 
onver-gent, the os
illating phase (see also Figure 3 in Appendix A) renders the integrala
tually 
onvergent|provided that p 6= 0. Thus the �rst possibility is to keepthe non-planar part untou
hed in the renormalisation s
heme. But now there isa problem for p ! 0. Note that the original (ill-de�ned) integral (19) had noproblem at all for p ! 0, in fa
t the integral was zero for p = 0. But sin
e weremoved from the planar part its �rst Taylor 
oeÆ
ients about p = 0 in orderto render the planar part integrable for k ! 1, the singular behaviour of thenon-planar part for p ! 0 is no longer 
ompensated. For the one-loop graph itis not a terrible problem10, but inserting this result de
lared as �nite as a sub-graph into a bigger divergent graph, the singular behaviour at p ! 0 makes thebigger graph non-integrable. We therefore �nd a fake infrared divergen
e, whi
his only due to our (obviously wrong) renormalisation pres
ription whi
h treatedthe planar and non-planar parts di�erently. This is the so-
alled UV/IR-mixing,a name whi
h is not very appropriate.Sin
e the above treatment of the non-planar part was unsu

essful, let us alsoremove the �rst Taylor 
oeÆ
ients about p = 0 from the non-planar part. ThisTaylor expansion must not be applied to the momenta in the phases, be
ause theresult would be an even worser divergen
e in k and not a milder one. The onlypossibility is to de�ne the renormalised total graph as
��ren(p;M) = ~ Z d4k(2�)4 n2� ei���p�k� � e�i���p�k�o�k�(k�p)�k2(k�p)2 � k�k�(k2)2� p�p��� 2g��k�k�(k2 +M2)3 + 4k�k�k�k�(k2 +M2)4�� : (24)10As long as one is not interested in produ
ing numbers to be 
ompared with experiments!13



Now the integral 
onverges absolutely, in parti
ular there is no problem anymore for p ! 0. We have to verify, however, that the 
hange from 
��(p) to
��ren(p;M) is 
ompatible with lo
ality. In the planar part this 
hange amountsto a rede�nition of the produ
t of distributions at 
oin
iding points. Let us thusevaluate the 
hange in the non-planar part, again in position spa
e:Z d4p(2�)4�
��non�planar(p)� 
��non�planar;ren(p;M)� e�ip�(x�y)�= �~ Z d4k(2�)4 Z d4p(2�)4 � k�k�(k2)2 � p�p�� 2g��k�k�(k2 +M2)3 � 4k�k�k�k�(k2 +M2)4��� ne�ip�((x�y)�+���k�) + e�ip�((x�y)�����k�)o= � 2~(2�)4 det ��(��1�(x�y))�(��1�(x�y))�((��1�(x�y))2)2 + 2 (��1)��(��1) ��((��1�(x�y))2 +M2)3+ 4(��2�(x�y))�(��2�(x�y))�((��1�(x�y))2 +M2)4 + 4(��1)��(��1)��(��1�(x�y))�(��1�(x�y))�((��1�(x�y))2 +M2)4� 8(��3�(x�y))�(��1�(x�y))�((��1�(x�y))2 +M2)4 � 8(��1�(x�y))�(��3�(x�y))�((��1�(x�y))2 +M2)4+ 32(��1�(x�y))�(��1�(x�y))� (��2�(x�y))�(��2�(x�y))�((��1�(x�y))2 +M2)5 �: (25)There are 
ontributions for x 6= y in the non-planar part. In other words, wehave 
hanged the non-planar part in a non-lo
al way in order to a
hieve absolute
onvergen
e. This is not allowed in a lo
al quantum �eld theory, whi
h meansthat our model on R4n
 is not renormalisable in the framework of lo
al quantum�eld theories.On the other hand, the result (25) is exa
tly what one should expe
t for aquantum �eld theory on R4� : Sin
e the physi
al information 
annot be lo
alised atindividual points it must now be allowed to modify the produ
t of distributionsnot only at 
oin
iding points but for the whole extended region of volume j det �j 12in whi
h information 
an be 
on
entrated. Unfortunately, this idea is not verywell implemented in the above 
al
ulation. The subtra
tion term is too mu
hlo
alised in the planar part is not enough lo
alised in the non-planar part. In myopinion, the origin of this problem is the wrong 
hoi
e of the measure in the pathintegral whi
h is used to derive the Feynman rules, see se
 5.8 �-expanded �eld theories: general remarksLet us now 
ome to quantum �eld theories based on the Taylor-expanded ?!-produ
t (11) regarded order by order in �. The philosophy here is to 
onsiderthe Taylor expansion ?! up to some �nite order in � only. In this way we obtaina lo
al �eld theory on ordinary Eu
lidian or Minkowski spa
e for whi
h standard14



Feynman graph te
hniques 
an safely be applied. The only novelty is the pres-en
e of external �elds ��� of power-
ounting dimension �2 whi
h 
ouple to the
ommutative �elds via partial derivatives. When restri
ting the produ
t(�1 ?! �2)(x) = �1(x)�2(x)+ i2������1(x) ���2(x)� 18����
Æ���Æ�1(x) ���
�2(x) + : : : (26)to some �nite order, nothing is non
ommutative, the se
ond term on the r.h.s.
an equally well be written as i2������2(x) ���1(x).The most interesting �eld theories are gauge theories11. The prototype isMaxwell theory, the a
tion fun
tional of whi
h, written in terms of the ?!-produ
t, reads�[A℄ = Z d4x�� 14g2F��(x) ?! F ��(x)� ; (27)F�� = ��A� � ��A� � iA� ?! A� + iA� ?! A� (28)= ��A� � ��A� + �����A� ��A� � 124����
Æ������
��A� ���Æ��A� + : : : :Now, (27) is an a
tion fun
tional for 
ommutative boring photons, whi
h is in-variant under the in�nitesimal gauge transformationA� 7! A� + (���� iA� ?! �+ i� ?! A�) (29)= A� + ���+ �����A� ���� 124����
Æ������
��A� ���Æ���+ : : : :But how is this possible, an a
tion fun
tional for photons whi
h transform ina very strange way? The answer was given by Seiberg and Witten [36℄: Thephoton is written in (27) and (29) only in an extremely in
onvenient way. Thereis a 
hange of variablesA� = A0� � 12���A0�(2��A0� � ��A0�) + : : : ;� = �0 � 12���A0����0 + : : : ; (30)whi
h brings (27) and (29) into the more pleasant form�[A0℄ = Z d4x�� 14g2F 0��(x)F 0��(x)� 12g2 ���F 0��(x)F 0��(x)F 0��(x) + 18g2 ���F 0��(x)F 0��(x)F 0��(x) + : : :� ;F 0�� = ��A0� � ��A0� ; �[A0℄ invariant under A0� 7! A0� + ���0 : (31)11To the best of our knowledge, there are no fundamental s
alar �elds in nature|rememberthat the Higgs �eld is a non
ommutative gauge �eld, and that supersymmetry is not found sofar. 15



The last line in (31) is exa
t in �, it looks mu
h more familiar. A
tually Seibergand Witten formulated their result di�erently. They interpreted the transfor-mation (30) leading from (27) to (31) as an equivalen
e between a non
ommu-tative gauge theory and a 
ommutative gauge theory. Now there is a puzzle.Namely, from the non
ommutative geometri
al ba
kground, the non
ommuta-tive �eld theory is given by a spe
tral triple whi
h 
an never be expressed in thelanguage of manifolds. How 
an there be a map to a 
ommutative �eld theory?The solution is simple, but it took me a long time to understand it: The initialformulation (27) was already in the framework of 
ommutative lo
al geometry,be
ause already there the ?! produ
t was restri
ted to some �nite order in �. Thetransformation (30) is merely a 
onvenient 
hange of variables within the same
ommutative framework. The (very diÆ
ult) limit where the order of � goes toin�nity is not dis
ussed in this approa
h.9 Lorentz invarian
e and Seiberg-Witten di�erential equationOne may ask whether the Taylor expansion (11) leading from the non-lo
al ?-produ
t to the lo
al ?!-produ
t up to �nite order in �, applied to a truly non
om-mutative a
tion fun
tional �[Â℄, 
an produ
e the �-expanded a
tion fun
tional inthe Seiberg-Witten transformed form (31) in a single stroke, i.e. without passingthrough (27). This is possible indeed, it has something to do with symmetrytransformations of the non
ommutative theory.There has been a lot of 
onfusion 
on
erning the question of Lorentz invari-an
e of �eld theories on R4� . On
e and for all, symmetries in the non
ommutativeworld are automorphisms of the algebra [3℄. The algebra R4� is determined by �and the question is how � is 
hara
terised. We follow [1℄ and agree that � is 
har-a
terised by the two Lorentz invariants ������ and ����������� when dis
ardingdilatation and by the ratio of these two when in
luding dilatation. The individual
omponents ��� (with respe
t to a given basis) do not have a physi
al meaning.The algebra is R4� , not R4��� .Let us be more expli
it. In�nitesimal �eld transformations are implementedby Ward identity operatorsW =Xi DÆ�̂i[�̂k℄; ÆÆ�̂iE ; (32)where the index i labels the di�erent sorts of �elds, here denoted �̂i. The Wardidentity operator (32) a
ts on (suÆ
iently regular) fun
tionals �[�̂i℄ in a deriva-tional manner:W�[�̂i℄ =Xj DÆ�̂j[�̂k℄; Æ�[�̂i℄Æ�̂j E = lim�!0 1���[�̂i + �Æ�̂i[�̂k℄℄� �[�̂i℄� : (33)We are interested in a set S of symmetry transformations of the a
tion fun
-tional, W I� = 0, I 2 S. This set is required to be 
omplete, [W I ;W I0℄ =16



PnW In, In 2 S. In parti
ular, we are interested in gauge transformation G andLorentz transformation L whi
h satisfy[WL;WL℄ � WL ; [WG;WG℄ � WG ; [WG;WL℄ � WG : (34)The Lorentz transformation has for the �eld Â of Yang-Mills theory on R4� thesymboli
 form WL = DÆLÂ; ÆÆÂE+ DÆL�; ÆÆ�E ; (35)it is a symmetry of the Yang-Mills a
tion fun
tional, and (34) is satis�ed [37℄.It is essential that in (35) the sum of the Â and the �-transformation appears,the individual transformations do not have any meaning. Neither they are sym-metries of the a
tion fun
tional, nor they ful�l (34). But if one really insists ontransforming Â only, then at least this transformation ~W L̂A , whi
h 
annot be asymmetry of the a
tion fun
tional, must satisfy[ ~W L̂A ;WG℄ � WG : (36)The 
ondition (36) guarantees that ~W L̂A�[Â℄ 6= 0, whi
h 
an be regarded as theparti
le Lorentz symmetry breaking, is a gauge-invariant quantity [37℄. Otherwise~W L̂A is 
ompletely unphysi
al. It is then somehow natural to make the ansatzWL = ~W L̂A + ~WL� ;~W L̂A = DÆLÂ� ÆL� dÂd� ; ÆÆÂE ; ~WL� = DÆL�; ÆÆ�E+ DÆL� dÂd� ; ÆÆÂE ; (37)where dÂd� is, for the time being, just a symbol. The 
ondition (36) determinesdÂd� [Â℄, whi
h thus be
omes a 
on
rete (but not unique) fun
tion of Â. Theequation dÂd� = dÂd� [Â℄ looks formally like a di�erential equation|the Seiberg-Witten di�erential equation. Now we 
an de�ne the following Taylor expansionof the a
tion fun
tional �[Â℄:�(n)[A℄ := nXj=0 1j! (�)j�� ~W 1� �j�[Â℄��=0 ; Æ1� := 1 ; A := �Â��=0 : (38)By 
onstru
tion, the a
tion fun
tional �(n)[A℄ des
ribes a 
ommutative Yang-Mills theory (
oupled to the external �eld �) whi
h is invariant under 
ommuta-tive gauge and Lorentz transformations at any 
ut-o� order n in �, see [37℄. Wehave thus obtained (31) up to any desired order in a single stroke.17



10 Quantisation of �-expanded �eld theoriesFrom a physi
al point of view, �-expanded quantum �eld theories are not so inter-esting, be
ause they are lo
al and therefore show all the the problems dis
ussedin se
. 1. They have a very interesting stru
ture, though, be
ause the appear-an
e of a �eld � of power-
ounting dimension �2 makes them power-
ountingnon-renormalisable. It 
ould seem, therefore, that it is not very useful to studysu
h a model as a quantum �eld theory. However, at the same time where �leads to an explosion of the number of divergen
es, it also provides the means toabsorb a 
onsiderable fra
tion of these divergen
es through �eld rede�nitions. A�eld rede�nition is a non-linear generalisation of the usual wave fun
tion renor-malisation, a generalisation whi
h is possible pre
isely be
ause there is a �eldof negative power-
ounting dimension. And there 
ould be symmetries in the�-expanded a
tion whi
h would prevent the appearan
e of other divergen
es.There is thus a ra
e between the number of divergen
es 
reated by � and thenumber of divergen
es absorbable by (unphysi
al) �eld rede�nitions or avoidedby symmetries.The winner is probably the 
reator of divergen
es, but this is a 
onje
tureonly. In this 
ase, although there is at any given order n in � a �nite numberof new intera
tion terms only, the theory looses all predi
tability in the limitn ! 1. There are however signs for hope. First, all super�
ial divergen
es inthe photon self-energy in �-expanded Maxwell theory are �eld rede�nitions, toall order n in � and any loop order [38℄. For the photon self-energy the �eldrede�nitions win the ra
e.A dire
t sear
h for symmetries was not su

essful so far so that the only 
han
eto dete
t them is to perform some loop 
al
ulations. Due to the extremely ri
htensorial stru
ture in presen
e of �, these 
al
ulations are extremely diÆ
ult toperform, even for the one-loop photon self-energy in �-deformed Maxwell theoryto se
ond order in � [39℄. The photon three-point fun
tion whi
h is of at leastthird order in � is already beyond the means.The simplest model to study other Green's fun
tions than the self-energy is �-deformed QED. I have 
omputed in [40℄ all divergent one-loop Green's fun
tionsup to �rst order in �. The result was astonishing. Although not renormalisable atthe 
onsidered order, there was in the massless 
ase only a single divergen
e morethan those absorbable by �eld rede�nitions, where four ex
eeding divergent termswere to expe
t. In the massive 
ase (where the mass term is inserted dire
tly intothe Dira
 a
tion) things be
ome really bad so that this work suggests that fermionmasses should be introdu
ed via a Higgs me
hanism.The results of [40℄ provide a very strong signal that new symmetries in �-expanded �eld theories exist indeed. Sin
e the initial a
tion fun
tional 
omes via(38) from an a
tion fun
tional on R4� , it seems plausible that these symmetriesare already present in the truly non
ommutative �eld theory. For me this isthe justi�
ation to study �-expanded quantum �eld theories: Although being18




ompletely di�erent from quantum �eld theories on R4� , the otherwise unphysi
al�-expanded models may provide valuable information about the symmetries of thereally interesting non
ommutative models. My feeling is that these symmetries
ome through the spe
tral a
tion. The spe
tral a
tion is invariant under allunitarities of the Hilbert spa
e, not only those 
oming from the algebra. Theproblem is to make this idea expli
it.The loop 
al
ulations of [39, 40℄ were performed for the �-expanded a
tionwhi
h 
omes out of (38), with the standard 
ommutative gauge invarian
e (31).As we have shown in [41℄, very similar 
omputations are possible when startingdire
tly from the a
tion fun
tional for the ?!-produ
t, see (27). The only di�er-en
e is that now the gauge symmetry is non-linearly realised so that the wholema
hinery of external �elds and Slavnov-Taylor identities must be used. It is notsuÆ
ient to write down the BRST transformations only. We looked as in [40℄ at�-expanded QED up to �rst order in �, and to our great surprise we found|upto �eld rede�nitions|exa
tly the same result as in [40℄. This seems to indi
atethat the Seiberg-Witten map (30) is an unphysi
al 
hange of variables also onquantum level.This is true to some extent, but there is a subtlety. One 
an performthe 
hange of variables before or after quantisation. Changing the variables�0 = �0[�℄ after quantization, i.e. performing a 
hange of the dummy integrationvariables in the path integral (4), one obtains exa
tly the same Green's fun
tions.This was to expe
t from the general equivalen
e theorem [11℄. The 
hanges in theFeynman rules from �0 to � are 
ompensated by graphs involving the modi�edsour
e term hJ;�0[�℄i. In prin
iple one would also expe
t 
ontributions from �eldrede�nition ghosts, but here the propagator equals 1 so that there is no 
ontri-bution at least for 
ertain regularisation s
hemes. On the other hand, 
hangingthe variables in the a
tion fun
tional before inserting it into the path integral,the out
ome is expe
ted to be di�erent. However, at �rst order in � only, thedi�eren
e to the other method is a �eld rede�nition.11 OutlookTrial-and-error is the best method to start exploring a new world. We have 
ol-le
ted a big amount of empiri
al data on Feynman graph 
omputations of quan-tum �eld theories on non
ommutative R4 . These theories are one-loop renor-malisable and show at higher loop order a new type of infrared-like non-lo
aldivergen
es. Any model one 
an possibly think of has been studied. Everythingis 
overed by the power-
ounting theorem [33℄ (when extended to the massless
ase �a la Lowenstein). This is the most rigorous result so far. On the Taylorexpanded side, �-expanded �eld theories suggest that there are new symmetries.Further going loop 
al
ulations are not possible in future due to the enormous
omplexity of the out
ome. Thus, the trial-and-error epo
h has �nished.Now it is time for a more systemati
 approa
h. As argued in se
. 5, the19



Feyman graph approa
h does not 
orre
tly re
e
t the geometry of R4� . Instead,one has to introdu
e a smooth 
ut-o� in the path integral and to 
ompute itdire
tly with methods of the exa
t renormalisation group approa
h [24, 25℄.A An example of the ?-produ
t in two dimensionsWe 
onsider the following fun
tion on R2f~a;~L(~x) = 2Yi=1 fai;Li(xi) ;fNai;Li(xi) = ( 
os(xi�aiLi ) for ai � (2N+1)�Li2 � xi � ai + (2N+1)�Li20 for jxi � aij > (2N+1)�Li2 (A.1)Clearly fN~a;~L(~x) 2 S(R2) (pie
ewise) for �nite N be
ause for multi-indi
es � =f�ig and � = f�ig one has j(x)�(�x)�fN~a;~L(~x)j � Q2i=1 L��ii �jaij+ (2N+1)�Li2 ��i. Itis now an elementary 
al
ulation to 
ompute the ?-produ
t (10) of two fun
tions(A.1):�fN~a;~L ? fN~b;~L0�(~x) (A.2)= �14 (�i)2� X�;�0=�1 e�i(�x1�a1L1 +�0 x2�b2L02 +��0 �2L1L02 )� X�00;�000=�1�00�000 G�2L1L02� (x1�a1L1 +�000 (2N+1)�2 +�0 �2L1L02 )(x2�b2L02 +�00 (2N+1)�2 +� �2L1L02 )��� �14 i2� X�;�0=�1 ei(�x2�a2L2 +�0 x1�b1L01 +��0 �2L2L01 )� X�00;�000=�1�00�000 G��2L2L01� (x2�a2L2 +�000 (2N+1)�2 +�0 �2L2L01 )(x1�b1L01 +�00 (2N+1)�2 +� �2L2L01 )�� ;where � � �12 = ��21,G[u℄ := 1Xn=1 (iu)nnn! = 
i(u)� 
E � ln(u) + i si(u) ; (A.3)
i(u) = � Z 1u dt 
os tt = 
E + ln(u) + Z u0 dt (
os t� 1)t ; si(u) = Z u0 dt sin tt ;and 
E = 0:577216 : : : . In the limit N !1 one re
overs the ?! produ
t of the
osine fun
tions:�f1~a;~L ?! f1~b;~L0�(~x)= �14 X�;�0=�1 e�i(�x1�a1L1 +�0 x2�b2L02 +��0 �2L1L02 )��14 X�;�0=�1 ei(�x2�a2L2 +�0 x1�b1L01 +��0 �2L2L01 )�= � 
os �x1�a1L1 � 
os �x2�a2L2 �� ?! � 
os �x1�b1L01 � 
os �x2�b2L02 �� : (A.4)20



It is illuminating to plot (A.2) for various values of � and N . For simpli
itywe 
hoose ai = bi = 0 and Li = L0i = L. The result for N 2 f0; 1g is shown inFigure 1 for � = L2 and the 
ut with the plane x1 = x2 for � 2 f0:1L2; L2; 3L2g inFigure 2. A
tually the way one should read Figure 2 is the following. One should
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Figure 1: The fun
tions f 0 ? f 0 (left) and f 1 ? f 1 (right) at � = L2, wherefN � fN(0;0);(L;L). The x1; x2 axes are in units of L. The 
ut with the planex1 = x2 is shown in Figure 2 for various values of �.
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Figure 2: The 
ut x1 = x2 through the fun
tions f 0 ? f 0 (left) and f 1 ? f 1 (right)at � = 0:1L2 (dots), � = L2 (dashes) and � = 3L2 (solid), where fN � fN(0;0);(L;L).The ?-produ
t is smooth and non-lo
al. For � ! 0 the 
ommutative 
ase is wellapproximated.regard � as �xed and what varies is the 
hara
teristi
 length L. For L2 � � thein
uen
e of � 
an be negle
ted, and the ?-produ
t agrees to high pre
ision with theusual 
ommutative produ
t of fun
tions. For L � � the situation is drasti
allydi�erent. The ?-produ
t is distributed over a region of size p�, whatever L is,at the same time the amplitudes are damped. This is impressively shown inFigure 3, where the value of the produ
t at 0 is plotted over log10(L2=�). If thefun
tions are extremely lo
alised, i.e. if � (2N+1)�L2 �2 � �, their produ
t is zeroto a high pre
ision. Thus, � a
ts as a horizon: Os
illations 
ontained in an areasmaller than � are smoothed away. They do not 
arry any physi
al information.See also [18℄. 21
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1N=0 N=1 N=10Figure 3: The value (fN ? fN)(0) over log10(L2� ) for N 2 f0; 1; 10g, where fN �fN(0;0);(L;L). This shows in a striking manner that the ?-produ
t � a
ts as a horizon.Os
illations of 
hara
teristi
 area smaller than � are �ltered out.B The matri
ial basis of R2�The following is 
opied from [17℄, adapted to our notation. It proves that evalu-ation at x 2 R2 is not a state on R2� .The Gaussian f0(x) = 2e� 1� (x21+x22) ; (B.1)with � � �12 = ��21 > 0, is an idempotent,(f0 ? f0)(x) = 4 Z d2y Z d2k(2�)2 e� 1� (2x2+y2+2x�y+x���k+ 14 �2k2)+ik�y= �� Z d2k e� 1� (x2+x���k+i(k�x)�+ 12 �2k2) = f0(x) : (B.2)We 
onsider 
reation and annihilation operatorsa = 1p2(x1 + ix2) ; �a = 1p2(x1 � ix2) ;��a = 1p2(�1 � i�2) ; ���a = 1p2(�1 + i�2) : (B.3)For any f 2 R2� we have(a ? f)(x) = a(x)f(x) + �2 �f��a (x) ; (f ? a)(x) = a(x)f(x)� �2 �f��a (x) ;(�a ? f)(x) = �a(x)f(x)� �2 �f�a (x) ; (f ? �a)(x) = �a(x)f(x) + �2 �f�a (x) : (B.4)This implies �a?m ? f0 = 2m�amf0, f0 ? a?n = 2nanf0 anda ? �a?m ? f0 = � m�(�a?(m�1) ? f0) for m � 10 for m = 022



f0 ? a?n ? �a = � n�(f0 ? a?(n�1)) for n � 10 for n = 0 (B.5)where a?n = a ? a ? � � � ? a (n fa
tors) and similarly for �a?m. Now, de�ningfmn := 1pn!m! �m+n �a?m ? f0 ? a?n (B.6)= 1pn!m! �m+n min(m;n)Xk=0 �mk��nk� k! 2m+n�2k �k �am�k an�kf0 ;(the se
ond line is proved by indu
tion) it follows from (B.5) and (B.2) that(fmn ? fkl)(x) = Ænkfml(x) : (B.7)The multipli
ation rule (B.7) identi�es the ?-produ
t with the ordinary matrixprodu
t: a(x) = 1Xm;n=0 amnfmn(x) ; b(x) = 1Xm;n=0 bmnfmn(x)) (a ? b)(x) = 1Xm;n=0(ab)mnfmn(x) ; (ab)mn = 1Xk=0 amkbkn : (B.8)In order to des
ribe elements of R2� the sequen
es famng must be of rapid de
ay[17℄:1Xm;n=0 amnfmn 2 R2� i� 1Xm;n=0 �(2m+1)2k(2n+1)2kjamnj2� 12 <1 for all k :(B.9)Finally, using (B.2) we 
omputeZ d2x fmn(x) = 1pm!n! �m+n Z d2x ��a?m ? f0 ? f0 ? a?n�(x)= 1pm!n! �m+n Z d2x �f0 ? a?n ? �a?m ? f0�(x)= Æmn Z d2xf0(x) = 2��Æmn : (B.10)Now we return to the question of states. We 
learly have(f �mn ? fmn)(x) = (fnm ? fmn)(x) = fnn(x) ; (B.11)and f11(x) = 2��4x21 + 4x22 � ��e� 1� (x21+x22) < 0 for 4x21 + 4x22 < �. Thus, Æ-distributions 
annot be states on Rd� . On the other hand, (B.11) and (B.10)imply that �n(x) = 12��fnn(x) are states on R2� . The basis fmn was used in [23℄to 
onstru
t a new 
lass of exa
tly solvable quantum �eld theories.23
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