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AbstratFor our own eduation, we reonstrut the Hopf algebra of Connes andMosovii obtained by the ation of vetor �elds on a rossed produtof funtions by di�eomorphisms. We extend the realization of that Hopfalgebra in terms of rooted trees as given by Connes and Kreimer fromdimension one to arbitrary dimension of the manifold. In priniple thereis no modi�ation, but in higher dimension one has to be areful with theorder of uts. The order problem leads us to speulate that in quantum�eld theory the sum of Feynman graphs whih orresponds to an elementof the Connes{Mosovii Hopf algebra ould have a larger symmetry thanthe individual graphs.1991 MSC: 16W30 Coalgebras, bialgebras, Hopf algebras57R25 Vetor �elds, frame �elds57R50 Di�eomorphisms81T15 Perturbative methods of renormalization1 IntrodutionReently two useful Hopf algebras were disovered { by Alain Connes and HenriMosovii in nonommutative geometry [1℄ and by Dirk Kreimer in quantum �eldtheory [2℄. Connes and Kreimer showed that both Hopf algebras are intimatelyrelated [3℄, via the language of rooted trees. Reently it was pointed out [4℄ thatthe same algebra of rooted trees appears in numerial analysis. We refer to [5℄for a review of all these ideas.For a physiist, the Hopf algebra HK of Kreimer [2℄ is not diÆult to under-stand. The idea is to look at the divergene struture of Feynman graphs. Thereis a natural splitting of a Feynman graph  with non-overlapping subdivergenesinto two, given by a produt of seleted subdivergenes 1 � � � n and the graph n (1 � � � n) left over from  by shrinking all i, i = 1; : : : ; n, to a point. Thisis a standard operation in renormalization theory. Summing over all possibilitiesgives a oprodut operation on the algebra of polynomials in Feynman graphs.The unique antipode reprodues preisely the ombinatoris of renormalization,i.e. it produes the loal ounterterms to make the integral orresponding to thedivergent Feynman graph �nite.The aim of this note is to review in some detail the onstrution of the Hopfalgebra found by Connes and Mosovii, in order to ease its aess for physiistsinterested in the Hopf algebra HK of renormalization. The onstrution requires1



only some basi knowledge of lassial di�erential geometry, whih an be foundin many books on this topi, for instane in [6℄. More preisely, one needs thevertial and horizontal vetor �elds Y andX on the frame bundle over an orientedmanifold and their transformation behavior under di�eomorphisms, as well assome familiarity with the push-forward and pull-bak operations. These requisitesare derived in setion 2. New is the appliation of these vetor �elds to therossed produt, see setion 3, whih de�nes the oprodut of X;Y and leads toan additional operator Æ on the rossed produt. The operators X;Y; Æ generate aLie algebra. Its enveloping algebra H is a bialgebra with the oprodut obtainedbefore, and there exists an antipode making it to a Hopf algebra, see setion 4.The �nal setion is devoted to the transformation of the ommutative Hopfsubalgebra HCM of H into the language of rooted trees so that we an ompareit with HK . We generalize the rooted trees given in [3℄ from dimension 1 toarbitrary dimension of the manifold. This generalization is quite obvious, butit has several onsequenes whih are not visible in dimension 1. An elementof HCM is a sum of deorated planar rooted trees. The root is deorated bythree spaetime indies neessary to desribe parallel transport whereas the otherverties are deorated by a single spaetime index. This is loser to quantum�eld theory, where the deoration is given by primitive Feynman graphs withoutsubdivergenes. Interestingly, elements of HCM are invariant under permutationsof the deorations, whereas the individual trees representing Feynman graphsare not. This raises the question whether the sum of Feynman graphs whihorresponds to an element of HCM has a meaning in QFT.
2 The geometry of the frame bundleIn this setion we are going to derive in some detail the following well-knownresults on the prinipal �bre bundle F+ of oriented frames on an n-dimensionalmanifold M :Proposition 1 Let fx�g�=1:::;n be the oordinates of x 2 M within a loal hartof M and fy�i g�;i=1;:::n be the oordinates of n linearly independent vetors of thetangent spae TxM with respet to the basis ��. On F+ there exist the followinggeometrial objets, written in terms of the loal oordinates (x�; y�i ) of p 2 F+:(1) an R n-valued (soldering) 1-form � with �i = (y�1)i�dx� ;(2) a gl(n)-valued (onnetion) 1-form ! with !ij = (y�1)i�(dy�j + ���� y�j dx�),where ���� depends only on x� ;(3) n2 vertial vetor �elds Y ij = y�j �i� ;(4) n horizontal (with respet to !) vetor �elds Xi = y�i (�� � ����y�j �j�) :A loal di�eomorphism  of M has a lift ~ : (x�; y�i ) 7! ( (x)�; �� (x)�y�i )to the frame bundle and indues the following transformations of the previousgeometrial objets:
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(1) ( ~ ��)jp = �jp :(2) ( ~ �!)jp = (y�1)i�(dy�j + ~���� y�j dx�) is again a onnetion form, with~����jx = ((� (x))�1)� �Æ�j (x) �� (x)Æ�� (x)� + ((� (x))�1)� ���� (x) ;(3) ( ~ �Y ji )jp = Y ji jp ;(4) ( ~ �1� Xi)jp = y�i (�� � ~����y�j �j�) is horizontal to ~ �! :The reader familiar with these notations an pass immediately to setion 3 onpage 8.
2.1 Frame bundleLet M be an n-dimensional smooth and oriented manifold. We are going toonsider the frame bundle F+ overM de�ned as follows. Let TxM be the tangentspae at a given point x 2M . It is an n-dimensional vetor spae ontaining thetangent vetors at x of urves in M through x. A base in TxM is given by then tangent vetors �� := ��x� of the oordinate lines in M . If x has (in a givenhart of its neighbourhood) the oordinates fx�g � (x1; : : : ; xn), we ompute thetangent vetor to a urve C(t) = fx�(t)g:d�(C(t))dt ���t=0 = dx�dt ���t=0 ��x�����x ; (2.1)where � :M ! R (or C ) is an arbitrary funtion on M . Aording to Einstein'ssum onvention summation over pairs of idential upper and lower indies isself-understood.An arbitrary vetor Yj 2 TxM an be deomposed with respet to that basis,Yj = y�j ��. A frame at x is now a set of n linearly independent vetors Yj 2 TxM ,j = 1; : : : ; n, parameterized by their oordinates y�j , where both � and j run from1 to n. Linear independene is equivalent to det y 6= 0, and oriented frames havethe same sign of det y.The (oriented) frame bundle F+ is now given by the base spae M with theset of smooth (positively oriented) frames attahed to eah point x 2M . A pointin F+ is thus (loally) given by the olletion(x; fYjg) = (x�; y�j )�;j=1;:::;n ; det y > 0 ;where x� are the oordinates of x and the y�j 2 Gl+(n) parameterize an orientedframe fYjgj=1;:::;n at x. Here, Gl+(n) is the group of n�n matries with positivedeterminant.In the overlap of two harts U1; U2, a point x 2 U1 \ U2 � M will haveoordinates x� in U1 and x� 0 in U2. The tangent vetor Yi at a urve in U1 \ U2through x is givenin U1 by Yi = df(x�(t))dt ���t=0 = dx�(t)dt ���t=0 ��f ;in U2 by Yi = df(x� 0(x�(t)))dt ���t=0 = dx�(t)dt ���t=0 �x� 0�x� �0�f ;3



where f is an arbitrary funtion on F+. Hene, the oordinates (x�; y�j ) 2 U1 �Gl+(n) and (x� 0; y�j 0) 2 U2�Gl+(n) label the same point in F+ i� x�; x� 0 are theoordinates in U1; U2 of x 2 U1 \ U2 and y�j 0 = (�x� 0=�x�)y�j .There is a natural ation of Gl+(n) on a frame fYjg at x: The matrix gij 2Gl+(n) maps the vetor Yi 2 TxM into the new vetor Yigij =: Y 0j 2 TxM , or {in oordinates { y�i into y�i gij . This Gl+(n)-ation extends naturally to the framebundle, making F+ to a Gl+(n)-prinipal �bre bundle:g : (x�; y�i ) 7! (x�; y�i gij) : (2.2)The above ation an be regarded as generated by a vetor �eld aordingto the following onstrution. Let gl(n) be the Lie algebra of Gl+(n). Theexponential mapping assigns to A 2 gl(n) a urve exp(tA) in Gl+(n), whih by(2.2) indues a �eld of urves through every point of F+. This �eld of urvesprovides us with a �eld of tangent vetorsdf(x�; y�i [exp(tA)℄ijdt ���t=0 = �f�(y�k Ækj ) d(y�i [exp(tA)℄ij)dt ���t=0 = Aijy�i ��y�j f ;where f is a funtion on F+. Hene, eah suh vetor �eld assoiated to A 2 gl(n)is generated by the following (vertial) vetor �elds
Y ji = y�i ��y�j � y�i �j� : (2.3)

The vetor �eld A# = AijY ji assoiated to A 2 gl(n) is alled the fundamentalvetor �eld orresponding to A.A somewhat triky onstrution provides us with an R n-valued 1-form � onF+, sometimes alled soldering form or anonial 1-form. A point p = (x; fy�j g) 2F+ assigns to a vetor ~V 2 TxM a vetor �p( ~V ) 2 R n by deomposing ~V withrespet to the basis Yj = y�j ��. Thus, [�p( ~V )℄jYj = ~V . Now, the R n-valued1-form � is de�ned by�(V )jp = �p(��V ) ; V 2 TpF+ : (2.4)By jp we denote the value of a di�erential form or a vetor �eld at the pointp 2 F+. In (2.4), �� is the di�erential of the vertial projetion �(x; fy�j g) = xwhih projets the vetor V = V ��� + V �j �j� 2 TpF+ into the vetor ��V =V ��� 2 T�(p)M . In this notation we have ��V = V �(y�1)j�Yj , using the obviousde�nition y�i (y�1)i� = Æ�� . This gives [�p(��V )℄j = V �(y�1)j� . On the other hand,deomposing �i = �i�dx� + �ik� dy�k and using the de�nitiondy�i (�j�) = Æji Æ�� ; dx�(��) = Æ�� ; dy�i (��) = 0 ; dx�(�j�) = 0of the pairing between ovetors and vetors, we have �j(V ) = �j�V � + �ji� V �i ,giving �j = (y�1)j� dx� : (2.5)
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The de�nition (2.4), although involving loal oordinates in the onstrution,is independent of the hoie of harts. Indeed, if p 2 F+ has the oordinates(x�; y�j ) and (x� 0; y�j 0) in two harts U1 � Gl+(n) and U2 � Gl+(n) of F+, withy�j 0 = (�x� 0=�x�)y�j , then ��V = V ��� 2 T�(p)U1 and ��V = V � 0��0 2 T�(p)U2,with V � 0 = (�x� 0=�x�)V �. This means that V �(y�1)j� = V � 0(y�1)j�0 2 R give thesame value for [�p(��V )℄j.2.2 ConnetionA onnetion is the splitting of the tangent spae TpF+ at p 2 F+ into a diretsum of a vertial spae VpF+ (generated by Y ij = y�j �i�) and a horizontal spaeHpF+ suh that HpgF+ = Rg�HpF+. In the last equation, pg 2 F+ is the pointobtained by the ation (2.2) of g 2 Gl+(n) and Rg� is the indued push-forwardof a vetor in TpF+ to a vetor in TpgF+. If V 2 TpF+ is the tangent vetorof a urve p(t) in F+ through p, then the push-forward Rg�V is the tangentvetor of the urve p(t)g through pg. Expliitly, let f be a funtion on F+ andV = V �j �j� + V ��� 2 TpF+ be tangent to the urve C = (x�(t); y�j (t)) at p, i.e.V f = (df(p)=dt) = ((dx�=dt)�� + (dy�j =dt)�j�)f : (2.6)Then, the push-forward is given by
(Rg�V )f = df(p(t) g)dt = dx�(t)dt ��f + d(y�j (t) gji )dt �f�ŷ�i ; ŷ�i := y�kgki : (2.7)

Thus, we obtain Rg�V = V �j gji �i� + V ��� ; �i� := �=�ŷ�i : (2.8)In pratie the onnetion is most onveniently haraterized by the onne-tion form !, a gl(n)-valued di�erential 1-form with the following properties: For agiven matrix A 2 gl(n) let A# = AijY ji be the orresponding fundamental vetor�eld. Then ! is de�ned by!(A#) = A ; !jpg(Rg�V ) = g�1�!jp(V )�g ; (2.9)for V 2 TpF+ and g 2 Gl+(n). At the point p = (x�; y�i ), the omponents !ij ofthe onnetion form will have the deomposition!ij =W ikj�dy�k +W ij�dx� ;for ertain funtions W . From (2.3) we get immediatelyAij � !ij(A#) =W ikj�y�l Alk ;whih gives W ikj� = Ækj (y�1)i�. This suggests the following ansatz!ij = (y�1)i�(dy�j + ����y�j dx�) ; (2.10)
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where ���� is a so far undetermined funtion of x and y. Using (2.8) we writedown !ij jpg(Rg�V ) = (g�1)ik(y�1)k�(dŷ�j + ����jpg y�kgkj dx�)(V �mgml �l� + V ���)= (g�1)ik(y�1)k�V �mgmj + (g�1)ik(y�1)k�����jpg V �y�kgkj :On the other hand,[g�1(!jp(V ))g℄ij = (g�1)ik(y�1)k�V �mgmj + (g�1)ik(y�1)k�����jp V �y�kgkj :Thus, the ondition (2.9) tells us that ����jp = ����jpg, whih means that ����depends only on the base point x.Now, the horizontal vetor �elds Xi assoiated to the onnetion are de�nedas the kernel of ! and the dual of �,!ij(Xk) = 0 ; �j(Xi) = Æji : (2.11)These equations are easy to solve:Xi = y�i (�� � ����y�j �j�) : (2.12)The torsion form � on F+ is an R n-valued di�erential 2-form de�ned as theovariant derivative of �, �i = d�i + !ij ^ �j : (2.13)Using (2.5) and (2.10) we ompute�i = �(y�1)i�(y�1)j� dy�j ^ dx� + (y�1)i�(dy�j + ����y�j dx�) ^ (y�1)j�dx�= (y�1)i�����dx� ^ dx� :The torsion vanishes i� the onnetion oeÆients are symmetri, ���� = ���� .2.3 Di�eomorphismsLet  be a loal (orientation preserving) di�eomorphism of M . By push-forwardit maps a frame fYjg at x 2 M into the frame f �Yjg at  (x) 2 M . If Y is thetangent vetor at x of a urve C = fx�(t)g through x, then  �Y is the tangentvetor at  (x) of the urve  (C) = f (x(t))�g. We evaluate both vetors on afuntion � on M :
Y � = ddt�(x�(t))���t=0 = ��(x�)�x� dx�(t)dt ���t=0 = (dx�(t)=dt)jt=0 ��� ;( �Y )� = ddt�( (x(t))�)���t=0 = ��(~x�)�~x� � (x)��x� dx�(t)dt ���t=0= �� (x)� (dx�(t)=dt)jt=0 f��� ;with ~x� =  (x)� and f�� = �=�~x�. Reall that �� and f�� are the bases ofvetor �elds in TxM and T (x)M , respetively. Hene, if y�j are the oordinatesof Yj 2 TxM , then  �Yj 2 T (x)M has the oordinates �� (x)� y�j , with respet6



to these bases. To summarize, the ation ~ on F+ of a di�eomorphism  of Mis given by ~ : (fx�g; fy�i g) 7! (f~x� :=  (x)�g; f~y�i := �� (x)� y�i g) : (2.14)Note that the (right) ation (2.2) of Gl+(n) on F+ and the (left) ation (2.14)on F+ of a di�eomorphism of M ommute with eah other.We onsider now the e�et of a di�eomorphism  of M on the horizontalvetor �elds Xi. We use the followingLemma 2 The pull-bak ~ �! of the onnetion form via the ation (2.14) of theindued di�eomorphism ~ of F+ is again a onnetion form.Proof. We start from (2.6) and ompute
( ~ �V )f = ddtf�~x�(x�(t)); ~y�i (y�j (t); x�(t))�= �f�~x� � (x)��x� dx�dt + �f�~y�i ��2 (x)��x��x� y�i dx�dt + �� (x)�dy�idt �= �� (x)�V �f��f + (���� (x)�y�i V � + �� (x)�V �i )f�i�f ; (2.15)where f�i� = ��~y�i . For V = A# we have V � = 0 and V �i = Ajiy�j , see (2.3). Thismeans ( ~ �A#)j ~ (p) = Aji�� (x)�y�j f�i� = Ajify�j f�i� = A#j ~ (p) : (2.16)The fundamental vetor �eld A# is invariant under di�eomorphisms. This gives( ~ �!)(A#)jp = !( ~ �A#)j ~ (p) = !(A#)j ~ (p) = A :The seond identity to prove is( ~ �!)jpg(Rg�V )jpg = g�1�( ~ �!)(V )jp�g) !j ~ (pg)( �((Rg�V )jpg)j ~ (pg)) = g�1�!j ~ (p)( ~ �V )j ~ (p)�g :Aording to (2.7) we replae V �i by V �j gji and y�i by y�j gji and insert this into(2.15):~ �(Rg�V )j ~ (pg) = �� (x)�V �f�� + (���� (x)�y�j V � + �� (x)�V �j )gjif�i� ;where f�i� = �=�fy�i and fy�i = �� (x)�y�j gji . We must now evaluate
!ab j ~ (pg) = (g�1)a(y�1)((� (x))�1)Æ�dfyÆb + �Æ�� j (x) �� (x)�y�dgdb dfx��on the above vetor:!ab j ~ (pg)( ~ �(Rg�V )j ~ (pg))= (g�1)an(y�1)((� (x))�1)Æ�(���� (x)Æy�dV � + �� (x)ÆV �d )+ �Æ�� j (x) �� (x)�y�d �� (x)�V ��ogdb : (2.17)7



Taking g = e (identity matrix), it is obvious that the term in braes f g equals!d( ~ �V )j ~ (p), whih �nishes the proof of the Lemma.We an now rewrite the term in braes in (2.17) in a slightly di�erent way:!d( ~ �V )j ~ (p) = ( ~ �!d)(V )jp= (y�1)V d + (y�1)((� (x))�1)Æ����� (x)Æ + �Æ�� j (x) �� (x)��� (x)��y�dV �= (y�1)(dyd + ~���jx y�ddx�)(V �k �k� + V ���) ;where ~��� are the onnetion oeÆients of the onnetion ~ �!. This providesus with the following transformation law for the onnetion oeÆients:~���jx = ((� (x))�1)Æ �Æ�� j (x) �� (x)��� (x)� +((� (x))�1)Æ ���� (x)Æ : (2.18)Now there is an immediate question to ask: Whih are the horizontal vetor�elds ~Xi to the new onnetion form ~ �!? We have0 = ( ~ �!)jp( ~Xijp) = !j ~ (p)( ~ � ~Xi)j (p) ;whih tells us ~Xijp = ~ �1� (Xij ~ (p)) = y�i (�� � ~����jx y�j �j�) : (2.19)The ation (2.14) preserves the R n-valued 1-form � given in (2.4) and (2.5).Indeed, for V = V ��� + V �i �i� 2 TpF+ we ompute using (2.15)( ~ ��j)jp(V ) = �j ~ (p)( ~ �V )= (~y�1)j�d~x���� (x)�V �f�� + (���� (x)�y�i V � + �� (x)�V �i )f�i��= (~y�1)j��� (x)�V � = (y�1)j�V � � �j jp(V ) :3 Crossed produtThe properties listed in Proposition 1 and derived throughout setion 2 are thebasis for the onstrution of the Hopf algebra of Connes and Mosovii [1℄. Theidea is to apply the vertial and horizontal vetor �elds Y ji and Xi to a rossedprodut A de�ned below and to derive their oprodut fromXi(ab) = �(Xi) (a
 b) ; Y ji (ab) = �(Y ji ) (a
 b) ; a; b 2 A : (3.1)We refer to [7℄ for an introdution to Hopf algebras and related topis.Let � be the pseudogroup of loal (orientation preserving) di�eomorphisms ofM . We onsider the rossed produt of the algebra C1 (F+) of smooth funtionswith ompat support on the frame bundle F+ by the ation of �,A = C1 (F+)>/� : (3.2)As a set, A an be regarded as the tensor produt of C1 (F+) with �. It isgenerated by the monomialsfU� ; f 2 C1 (Dom( ~ )) ;  2 � ; (3.3)8



where ~ is the di�eomorphism of F+ indued by  2 � aording to (2.14). Asan algebra, the multipliation rule in A is de�ned byf1U� 1 f2U� 2 := f1(f2 Æ ~ 1)U� 2 1 : (3.4)In this formula, the funtion f1(f2 Æ ~ 1) 2 C1 (D 1; 2), with D 1; 2 := Dom( ~ 1)\~ �11 (Dom( ~ 2)) � F+, maps p 2 D 1; 2 into f1(p) f2( ~ 1(p)) 2 R (or C ). The staron U� refers to the ontravariant multipliation rule U� 1U� 2 = U� 2 1 . Assoia-tivity of A follows { for appropriate support of the funtions { from(f1(f2 Æ  1))(f3 Æ ( 2 1)) = f1((f2(f3 Æ  2)) Æ  1) :We onsider now the ation of the vertial and horizontal vetor �elds Y ji andXi desribed in setion 2 on the algebra A. That ation is simply de�ned as theation of the vetor �elds on the funtions,Y ji (fU� ) = Y ji (f)U� ; Xi(fU� ) = Xi(f)U� : (3.5)The interesting e�ets we are looking for are obtained by appliation of thesevetor �elds to the produt (3.4). For any vetor �eld V on F+ we omputeV (f1U� 1 f2U� 2)jp = V (f1(f2 Æ ~ 1))U� 2 1jp= fV (f1)jp (f2 Æ ~ 1)jp + f1jp V (f2 Æ ~ 1)jpgU� 2 1= V (f1)U� 1jp f2U� 2 + f1jp (( ~ 1�V )f2)j ~ 1(p)U� 2 1= V (f1)U� 1jp f2U� 2 + f1jp U� 1U� �11 (( ~ 1�V )f2)j ~ 1(p)U� 2 1= V (f1)U� 1jp f2U� 2 + f1U� 1 (( ~ 1�V )f2)j ~ �11 Æ ~ 1(p)U� 2= V (f1U� 1)jp f2U� 2 + f1U� 1 ( ~ 1�(V j ~ �11 (p)))f2U� 2jp : (3.6)In the third line we have used the de�nition of the push-forward. In the �fthline we have ommuted U� �11 with the funtion ( ~ 1�V )f2, evaluated at ~ 1(p).Aording to (3.4), after taking U� �11 to the right we must evaluate the funtion( ~ 1�V )f2 at ~ �11 ( ~ 1(p)) = p. This means that the original �eld V to push forwardmust be taken at ~ �11 (p).Taking for V the vertial vetor �elds Y ji and realling their invariane underdi�eomorphisms (2.16), we obtain immediatelyY ji (ab) = Y ji (a) b+ a Y ji (b) ; a; b 2 A : (3.7)The behavior of the horizontal vetor �elds Xi is very di�erent, beause theydo not ommute with the di�eomorphisms. Eq. (2.19) tells us that if Xi ishorizontal to !, then X( 1)i := ~ 1�(Xij ~ �11 (p)) is horizontal to ( ~ �11 )�!. We denotethe onnetion oeÆients of ( ~ �11 )�! by �̂���. We observe from (2.12) and (2.3)that(X( 1)i �Xi)jp = (����jx � �̂���jx)y�i y�j �j� = (����jx � �̂���jx)y�i y�j (y�1)k�Y jk jp=: ̂kjij( 1)p Y jk jp : (3.8)9



This gives from (3.6) for the horizontal �elds XiXi(f1U� 1 f2U� 2)jp = Xi(f1U� 1)jp f2U� 2jp + f1U� 1 jp X( 1)i (f2U� 2)jp= Xi(f1U� 1)jp f2U� 2jp + f1U� 1 jp Xi(f2U� 2)jp+f1U� 1jp ̂kijj( 1)p Y jk (f2U� 2)jp= Xi(f1U� 1)jp f2U� 2jp + f1U� 1 jp Xi(f2U� 2)jp+f1jp̂kijj( 1)~ 1(p)U� 1 Y jk (f2U� 2)jp : (3.9)Our goal is to express ̂kij j( 1)~ 1(p) in terms of some funtion evaluated at p. From(2.5) and (2.10) we onlude!kj jp � (( ~ �1)�!kj )jp = ̂kjij( )p �ijp : (3.10)We take this identity at ~ (p) and apply ~ �, whih gives( ~ �!kj )jp � !kj jp = ̂kjij( )~ (p) ( ~ ��i)jp = ̂kjij( )~ (p) �ijp ; (3.11)using the invariane of �i under di�eomorphisms in the last step. Replaing in(3.11)  by  �1 and omparing with (3.10) we get̂kjij( )~ (p) = �̂kjij( �1)p =: kjij( )p = (~����jx � ����jx)y�j y�i (y�1)k� ; (3.12)where ~���� and ���� are the onnetion oeÆients of the onnetions ~ �! and !,respetively. Sine ~���� is de�ned by the di�eomorphism  , we de�ne an operatorÆkji on A by Ækji(fU� )jp = kjij( )p fU� jp (3.13)and get from (3.9) and (3.12)Xi(ab) = Xi(a) b+ aXi(b) + Ækji(a)Y jk (b) ; a; b 2 A : (3.14)Next, we omputeÆkji(f1U� 1 f2U� 2)jp = Ækji(f1(f2 Æ ~ 1)U� 2 1)jp = kjij( 2 1)p f1jp f2j ~ 1(p)U� 2 1 : (3.15)Starting with (3.11) and (3.12) we omputekjij( 2 1)p �ijp = ( ~ 2 ~ 1)�(!kj j( ~ 2 ~ 1)(p))� !kj jp= ~ �1� ~ �2(!kj j( ~ 2 ~ 1)(p))� !kj j ~ 1(p)�+ � ~ �1(!kj j ~ 1(p))� !kj jp�=  �1�kjij( 2)~ 1(p)�ij ~ 1(p)�+ kjij( 1)p �ijp= �kjij( 1)p + kjij( 2)~ 1(p)��ijp :We used again the invariane of �i under di�eomorphisms in the last line. Weinsert this result into (3.15) and getÆkji(f1U� 1 f2U� 2)jp = kjij( 1)p f1jp f2j ~ 1(p)U� 2 1 + f1jp kjij( 2)~ 1(p) f2j ~ 1(p)U� 2 1= kjij( 1)p f1jpU� 1 f2jpU� 2 + f1jpU� 1 kjij( 2)p f2jpU� 2 ;10



whih means Ækji(ab) = Ækji(a) b+ a Ækji(b) : (3.16)The equations (3.7), (3.14) and (3.16) endow the operators Xi; Y jk and Ækjiwith the struture of a oalgebra, with the oprodut (3.1) given by�(Y jk ) = Y kj 
 1 + 1
 Y jk ;�(Xi) = Xi 
 1 + 1
Xi + Ækji 
 Y jk ; (3.17)�(Ækji) = Ækji 
 1 + 1
 Ækji ;�(1) = 1
 1 ;with 1 being the identity on A. It is easy to hek that � is oassoiative on thelinear spae R (1; Xi ; Y jk ; Ækji),(�
 id) Æ� = (id
�) Æ� : (3.18)
4 From Lie algebra to Hopf algebraVetor �elds form a Lie algebra, so it is natural to investigate whether Xi; Y jk ; Ækjigenerate a Lie algebra. We ompute the mutual ommutators, starting with Y ij :[Y ij ; Y kl ℄(fU� ) = (y�j �i�y�l �k� � y�l �k�y�j �i�)fU� = (ÆilY kj � Ækj Y il )(fU� ) ; (4.1)[Y kj ; Xi℄(fU� ) = (y�j �k�(y�i �� � ����y�i y�l �l�)� (y�i �� � ����y�i y�l �l�)y�j �k�)fU� = ÆkiXj(fU� ) ; (4.2)[Y ij ; Æklm℄(fU� ) = (y�j �i�(~���������)y�l y�m(y�1)k� � (~���������)y�l y�m(y�1)k�y�j �i�)fU� = (ÆilÆkjm + ÆimÆklj � Ækj Æilm)(fU� ) : (4.3)So far we have onsidered the most general onnetion on M , even with tor-sion. But now, the ommutator of horizontal vetor �elds[Xi; Xj℄ = RklijY lk +�kijXk ; (4.4)Rklij = (y�1)k�y�l y�i y�j (������ � ������ + �������� � ��������) ;�kij = (y�1)k�y�i y�j (���� � ����) ;leads to urvature R and torsion �, i.e. not to struture `onstants'. Torsion anbe avoided by the hoie of the onnetion, but we would be fored to inludeRklijY lk and its repeated ommutators with Xm in the list of generators of theLie algebra we are looking for. To avoid these terms we follow [1℄ and restritourselves to a at manifold. Loally this is always possible, and globally it isahieved via the Morita equivalene. For a loally �nite over of the manifoldM by harts U�, let N = `U� be the disjoint union of the harts. Moreover,let �0 be the pseudogroup of loal di�eomorphisms of N . Without giving theproof we reall from [1℄ that the two algebras A = C1 (F+(M))>/� and A0 =C1 (F+(N))>/�0 are Morita equivalent. There is a anonial onnetion on N ,11



the at onnetion given by ��� = 0. This means that given M we pass to Nand the orresponding rossed produt A0 and derive there the oprodut andLie algebra struture of vetor �elds on F+(N) for the at onnetion.Thus, the horizontal vetor �elds take the simple form Xi = y�i ��, and theynow ommute with eah other:[Xi; Xj℄(fU� ) = 0 : (4.5)Due to (2.18), (3.12) and (3.13), the ation of Ækji on A simpli�es in the ase of aat manifold toÆkji(fU� ) = ((� (x))�1)�� ���� (x)� y�j y�i (y�1)k� fU� : (4.6)The (repeated) ommutator with Xl leads to new operators on A,Ækji;l1:::ln(fU� ) := [Xln ; : : : ; [Xl1 ; Ækji℄ : : :℄(fU� ) (4.7)= ��n : : : ��1�((� (x))�1)�� ���� (x)��y�j y�i (y�1)k� y�1l1 � � � y�nln fU� :It is lear that all these operators Æ ommute with eah other,[Ækji;l1:::ln; Æba;d1:::dn℄(fU� ) = 0 : (4.8)We see that the linear spae generated by Xi; Y kj ; Ækji;l1:::ln forms a Lie algebra,and we let H be the orresponding enveloping algebra. This is the algebra ofpolynomials in the generators of the Lie algebra, with the ommutation relationsinherited from the Lie algebra. Thus a (Poinar�e-Birkho�-Witt) basis in H isgiven by Xi1 � � �Xi�Y k1j1 � � � Y k�j� Æa1b11 � � � ÆabÆd1e1f1;h1 � � � ÆdÆeÆfÆ ;hÆ � � � ;with i1 � i2 � : : : � in and so on for the other indies. We extend the oprodut(3.17) reursively to H by the de�nition�(h1h2) = �(h1)�(h2) :=Xh11h12 
 h21h22 ; �(hi) =X h1i 
 h2i ; (4.9)for h1; h2 2 H. The oprodut is automatially oassoiative (3.18) and byonstrution (4.9) ompatible with the multipliation in H.For notational onveniene we abbreviate ÆA = Ækji with A = 1; : : : ; n2(n+1)=2,due to symmetry in i; j. Moreover, we introdue a string a = a1a2 : : : ak for therepeated ommutators with Xa1; : : : ; Xak and denote its length by jaj = k. Next,let Hn be the ommutative algebra of polynomials in the variables 1 and ÆAa , with0 � jaj � n. Let H0n be the ideal of polynomials vanishing at 0. We obtain amore expliit formula of the oprodut inLemma 3 �ÆAa = ÆAa 
 1+1
 ÆAa +RAa ; RAa 2 H0n�1
H0n�1 for jaj = n :
12



Proof. The Lemma holds for n = 0 with RA = 0. Assuming it holds for jaj = nwe ompute for b := ai (appending the index i to the string a), jbj = n+ 1,�(ÆAb ) = �([Xi; ÆAa ℄) = [�(Xi);�(ÆAa )℄= [Xi 
 1 + 1
Xi + Ækji 
 Y jk ; ÆAa 
 1 + 1
 ÆAa +RAa ℄= ÆAb 
 1 + 1
 ÆAb +RAb ; withRAai := [Xi 
 1 + 1
Xi + Ækji 
 Y jk ; RAa ℄ + Ækji 
 [Y jk ; ÆAa ℄ : (4.10)For n = 1 we get RAi = Ækji 
 [Y jk ; ÆA℄ 2 H00 
H00. The Lemma follows from thefat that the ommutator with Y jk preserves H0m whereas the ommutator withXi sends elements of H0m to elements of H0m+1.For example, we obtain from (4.3) immediately�(Ækji;l) = Ækji;l 
 1 + 1
 Ækji;l + Æajl 
 Ækai + Æail 
 Ækja � Ækal 
 Æaji : (4.11)The ounit � on H is de�ned by"(1) = 1 ; "(h) = 0 8h 6= 1 : (4.12)The ounit axiom("
 id) Æ�(h) = (id
 ") Æ�(h) = h 8h 2 His lear for h = Xi; Y kj ; ÆA. For ÆAa it follows from Lemma 3, using "(h0) = 0 forh0 2 H0n.Therefore, H is a bialgebra (algebra+oalgebra+ompatibility), and our nexttask is to show the existene of an antipode S on H, making H to a Hopf algebra.The antipode has to satisfy the axiomsS(h1h2) = S(h2)S(h1) ;m Æ (S 
 id) Æ�(h) = "(h) ; (4.13)m Æ (id
 S) Æ�(h) = "(h) ;for h; h1; h2 2 H, and where m denotes the multipliation. Applying (4.13) to1; Y jk ; Ækji; Xi 2 H, in that order, we getS(1) = 1 ;S(Y jk ) = �Y jk ;S(Ækji) = �Ækji ; (4.14)S(Xi) = �Xi + ÆkjiY jk ;The antipode on ÆAa is obtained from (4.13) by reursion in jaj, with the task toprove that the tree possible de�nitions oinide. First, employing the Sweedler
13



notation �(Ra) = Ra(1)
Ra(2) (and omitting the summation sign), we have with(4.10)S(ÆAai) = �ÆAai �m Æ (S 
 id) Æ�(RAai)= �ÆAai � S([Xi; RAa(1)℄)RAa(2) � S(RAa(1)) [Xi; RAa(2)℄� S(ÆkjiRAa(1)) [Y jk ; RAa(2)℄� S(Ækji)[Y jk ; ÆAa ℄= �ÆAai � [Xi � ÆkjiY jk ; S(RAa(1))℄RAa(2) � S(RAa(1)) [Xi; RAa(2)℄+ ÆkjiS(RAa(1)) [Y jk ; RAa(2)℄ + Ækji[Y jk ; ÆAa ℄= �ÆAai + [�Xi + ÆkjiY jk ; S(RAa(1))RAa(2)℄ + Ækji[Y jk ; ÆAa ℄= [S(ÆAa );�Xi + ÆkjiY jk ℄ = [S(ÆAa ); S(Xi)℄ : (4.15)In the same way one heks �ÆAai �m Æ (id 
 S) Æ�(RAai) = [S(ÆAa ); S(Xi)℄. Forexample, one easily obtainsS(Ækji;l) = �Ækji;l + ÆajlÆkai + ÆailÆkja � ÆkalÆaji : (4.16)This �nishes our review of the onstrution of the Connes{Mosovii Hopfalgebra [1℄. In their work, the yli ohomology of this Hopf algebra serves asan organizing priniple for the omputation of the oyles in the loal indexformula [8℄. We hope to be more spei� on that point in the future.
5 Expliit solution: rooted treesFollowing an idea by Connes and Kreimer [3℄ we will now desribe the ommuta-tive Hopf algebraHn of polynomials in ÆAa , jaj � n, by graphial tools, generalizedfrom the one-dimensional ase in [3℄ to arbitrary dimension of the manifoldM . Inthis way we obtain a Hopf algebra of rooted trees, whih is intimately related toa Hopf algebra struture in perturbative quantum �eld theories as disovered byKreimer [2℄. The antipode of Kreimer's Hopf algebra ahieves the renormalizationof divergent Feynman graphs, see [2, 9℄.We label the generator Ækji by an indexed dot,Ækji = � kji : (5.1)The goal is to derive the symbol for Ækji;l. This goes via the oprodut (4.11),whih tells us after omparison with (4.10)� abl 
 [Y ba ; � kji℄ = � ajl 
 � kai + � ail 
 � kja � � kbl 
 � bji : (5.2)The ommutator with Y piks up one index of � kji and moves it to the �rstupper or lower plae in � abl , overwriting the index there. The vaant positionin � kji is �lled with the remaining summation index of � abl . If the indexpiked up was a lower (upper) one, we ount the resulting tensor produt positive(negative). This leads us to think of the rhs of (5.2) as being produed by a utof a symbol

Ækji;l = � kji� l �! � kji|� l = � kai� ajl + � kja� ail � � aij� kal :14



We all the uppermost index whih is di�erent from the lower index the root.The graph above the ut onneted with the root is alled the trunk and goesto the rhs of the tensor produt. A graph below the ut is alled a ut branhand goes to the lhs of the tensor produt. We de�ne the ation of a ut as themovement of one index of the vertex above the ut to the �rst position of the newroot of the ut branh. The remaining position to omplete the root of the utbranh is �lled with a summation index and the same summation index is putinto the vaant position of the trunk. In the ase of utting immediately belowthe root, we have to sum over the three possibilities of piking up indies of theroot, adding a minus sign if we pik up the unique upper index. We thus get thefollowing graphial interpretation of (4.11):
� � kji� l ! = " � kji� l # + " � kji� l # + � kji|� l : (5.3)

On the rhs, [Æ℄ stands for Æ 
 1 (utting above the entire tree) and [Æ℄ for 1
 Æ(utting below the entire tree).The next step is to ompute �(Ækji;lm) by ommuting �(Xm) with (5.3). Theterm [Ækji;l℄ has a non-vanishing ommutator only with Xm
1. It yields Ækji;lm
1,and this trivial behavior ontinues to higher degrees. Next, Xm 
 1 ommuteswith [Æ℄, whereas"Xm 
 1; � kji|� l # =
� kji|� l� m = Æajl;m 
 Ækai + Æail;m 
 Ækja � Ækal;m 
 Æaji : (5.4)

Our previous de�nition of a ut extends without modi�ation to that ase. Theterm 1
Xm ommuted with [Ækji;l℄ gives [Ækji;lm℄, whereas"1
Xm; � kji|� l # = � kji�� AA|� l � m = Æajl 
 Ækai;m + Æail 
 Ækja;m � Ækal 
 Æaji;m : (5.5)
The ut on the tree in the middle only sees the indies k; j; i { but not m { bythe de�nition of a ut as a�eting only the indies of the unique vertex abovethe ut. With this rule we get easily the orresponding expression in terms of Æ'son the rhs. The ommutator of Æbm 
 Y b with [Ækji;l℄ moves the indies k; j; i; lto their orret position in Æbm, and this is preisely obtained as the sum of twodi�erent uts:"Æbm 
 Y b ; � kji� l # =

� kji|� l� m + � kji�� AA|� l � m ; (5.6)
� kji�� AA|� l � m = Æajm 
 Ækai;l + Æaim 
 Ækja;l � Ækam 
 Æaji;l ; � kji|� l� m = Æalm 
 Ækji;a :

There remains one �nal ommutator to ompute, that of Æbm
Y b with the graphin (5.3) already ut. For eah of the tree terms orresponding to the previous15



ut, we have to move eah of the tree indies of its root down to Æbm. This givesthe following symboli expression of these nine tensor produts:"Æbm 
 Y b ; � kji|� l # = � kji�� AA||� l � m = ÆajlÆbam 
 Ækbi + ÆajlÆbim 
 Ækab � ÆajlÆkbm 
 Æbai+ ÆailÆbjm 
 Ækba + ÆailÆbam 
 Ækjb � ÆailÆkbm 
 Æbja� ÆkalÆbjm 
 Æabi � ÆkalÆbim 
 Æajb + ÆkalÆabm 
 Æbji : (5.7)Note that the order of the uts in this graph is important, we �rst have to utthe vertex l away and then the vertex m.Our onstrution leads us to de�ne
Ækji;lm = � kji� l� m + � kji�� AA� l � m : (5.8)

De�nition 4 Let ÆAa = Pjaj!k=1 tjajk be reursively represented by a sum of jaj! on-neted rooted trees, eah of them having jaj+1 verties. We de�ne
ÆAai � [Xi; ÆAa ℄ = jaj!Xk=1 jaj+1Xj=1 tjajkj =: jaij!X̀=1 tjaij` ; (5.9)

where the rooted tree tjajkj is obtained by attahing the new vertex i to the right ofthe jth vertex of tjajk .
Proposition 5 The oprodut of ÆAa = Pjaj!k=1 tjajk is given by

�(ÆAa ) = ÆAa 
 1 + 1
 ÆAa + jaj!Xk=1XC P C(tjajk )
RC(tjajk ) ; (5.10)
where for eah tjajk the sum is over all admissible uts C of tjajk (i.e. those non-empty multiple uts for whih on eah path from the bottom to the root thereis at most one individual ut). In eq. (5.10), RC(tjajk ) is the trunk and P C(tjajk )the produt of ut branhes obtained by utting tjajk via the multiple ut C. Ifimmediately below a vertex there are several uts on outgoing edges, the order ofthe uts is from left to right.Proof. Commuting �(Xi) with �(ÆAa ) to get �(ÆAai), the term ÆAa 
 1 developsinto ÆAai 
 1. Next, Xi 
 1 attahes suessively a vertex i to eah vertex of theut branhes P C(tjajk ), and 1
Xi does the same for the trunk RC(tjajk ) of eah treetjajk onstituting ÆAa . Finally Æ 
 Y attahes a ut-away vertex everywhere on thetrunk, not on the ut branh. This exludes multiple uts on paths from bottomto top. The result learly reprodues our presription of the oprodut of ÆAai, see(5.9). 16



We make one important observation. Although the operators Æ are invariantunder permutation of the indies after the omma, for instane Ækji;lm = Ækji;ml, see(4.7), this symmetry is lost on the level of individual trees, see for instane (5.4).However, these terms ombined with the `diagonal' terms of (5.6) are symmetriin l and m.We reall that in Kreimer's Hopf algebra of renormalization [2, 9℄ a rootedtree represents the divergene struture of a Feynman graph. A divergent se-tor in suh a graph is represented by a vertex. The root represents the overall(super�ial) divergene. The onstrution rule for the tree is { in absene ofoverlapping subdivergenes { to put subdivergenes i of a divergene  intodown-going branhes of . Disjoint divergenes are only indiretly onneted viathe divergene whih ontains them as subdivergenes. Overlapping divergeneshave to be resolved in terms of disjoint and nested ones and give a sum of trees,see [10, 11℄.The n-dimensional ase treated here is loser to quantum �eld theory thandimension 1 beause we obtain deorated trees { the deoration here being givenby spaetime indies (three for the root) whereas in QFT it is a label for divergentFeynman graphs without subdivergenes. In this sense, a (not super-) renormal-izable QFT has something to do with di�eomorphisms on an in�nite dimensionalmanifold. Our observation leads us to speulate that the sum of Feynman graphsaording to the olletion of rooted trees to Æ's has more symmetry than the in-dividual Feynman graphs. This should be heked in QFT alulations. Anotherinterpretation would be the observation� kji� l� m + � kji�� AA� l � m�
� kji� m� l � � kji�� AA� m � l = 0 ; (5.11)

whih ould possibly be regarded as a relation between Feynman graphs similarto those derived in [12℄1.Proposition 6 The antipode S of ÆAa = Pjaj!k=1 tjajk is given by
S(ÆAa ) = �ÆAa � jaj!Xk=1XCa (�1)jCaj P Ca(tjajk )RCa(tjajk ) ; (5.12)

where the sum is over the set of all non-empty multiple uts Ca of tjajk (multipleuts on paths from bottom to the root are allowed) onsisting of jCaj individualuts. The order of uts is from top to bottom and from left to right.Proof. We apply the antipode axiom m Æ (S 
 id) Æ� = 0, see (4.13), to (5.10),giving with S(1) = 1 the reursion
S(ÆAa ) = �ÆAa � jaj!Xk=1XC � jCjYj=1S(tjaj;Ck;j )�RC(tjajk ) ; P C(tjajk ) = jCjYj=1 tjaj;Ck;j ;1Dirk Kreimer on�rmed to me that (5.11) is satis�ed in QFT for the leading divergenes,as it an be derived from se. V.C in [13℄. For non-leading singularities there will be (probablysystemati) modi�ations. 17



where jCj is the number of individual uts in C. For eah fC; jg we haveS(tjaj;Ck;j ) = �tjaj;Ck;j �XCj S(P Cj(tjaj;Ck;j ))RCj(tjaj;Ck;j ) ; (5.13)
where the sum is over the set of admissible uts Cj of tjaj;Ck;j . In the �rst level,the produt QjCjj=1(�tjaj;Ck;j ) gives preisely (�1)jCj P C(tjajk )RC(tjajk ) in (5.12). In thenext level, eah Cj in (5.13) leads to a double ut on a path from some bottomvertex in tjaj;Ck;j to the root of tjajk , and all double uts on paths from bottom toroot of tjajk are obtained (preisely one) in this way. The seond ut is below the�rst one so that the order of uts is from top to bottom (and from left to rightanyway). By reursion one gets all possible uts Ca of tjajk ontributing with thesign (�1)jCaj to the antipode.For Ækji;lm, the presription (5.12) leads to the following antipode:

S(Ækji;lm) = � � kji� l� m � � kji�� AA� l � m �! �Ækji;lm
+ � kji|� l� m �! +ÆalmÆkji;a
+ � kji|� l� m �! +Æajl;mÆkai + Æail;mÆkja � Ækal;mÆaji
� � kji||� l� m �! �ÆbjmÆablÆkai � ÆblmÆajbÆkai + ÆabmÆbjlÆkai�ÆbimÆablÆkja � ÆblmÆaibÆkja + ÆabmÆbilÆkja+ÆbamÆkblÆaji + ÆblmÆkabÆaji � ÆkbmÆbalÆaji+ � kji�� AA� l| � m �! +ÆajlÆkai;m + ÆailÆkja;m � ÆkalÆaji;m
+ � kji�� AA� l|� m �! +ÆajmÆkai;l + ÆaimÆkja;l � ÆkamÆaji;l
� � kji�� AA� l||� m �! �ÆajlÆbamÆkbi � ÆajlÆbimÆkab + ÆajlÆkbmÆbai�ÆailÆbjmÆkba � ÆailÆbamÆkjb + ÆailÆkbmÆbja+ÆkalÆbjmÆabi + ÆkalÆbimÆajb � ÆkalÆabmÆbjiOne heks, using (4.16) and (5.4){(5.7), the antipode axioms (4.13).
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