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The Super�eld Formalism Applied to theNonommutative Wess-Zumino Model
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1 IntrodutionThere are no doubts that the onept of spae-time as a di�erentiable manifold annot beextrapolated to extremely short distanes [1℄. Simple heuristi arguments ombining the prin-iples of both general relativity and quantum theory imply that it is impossible to loate apartile with an arbitrarily small unertainty [2℄. This means that standard di�erential geom-etry is ertainly not an adapted method for physis at short distanes. On the other hand, ourstandard desription of fundamental interations is exlusively based upon standard di�erentialgeometry { �bre bundles for the standard model and Riemannian geometry for gravity.If standard di�erential geometry is not appropriate { what else should replae it? A promis-ing andidate is nonommutative geometry pioneered by Alain Connes [3℄, see [4℄ for a reentreview. An exellent book [5℄ on this subjet will soon appear. Nonommutative geometryis the attempt to extend the priniples of quantum mehanis to geometry itself: The use ofoperator algebras, Hilbert spaes, funtional analysis. Within this framework the analogue ofgauge theory has been developed whih redues to Yang-Mills theory if the geometry is om-mutative. The �rst example of suh a theory on a nonommutative spae appeared almostten years ago, when Connes and Rie�el developed lassial two dimensional Yang-Mills theoryon the nonommutative torus [6℄. There is also an interesting lass of \almost ommutative"geometries whih allow to treat Yang-Mills and Higgs �elds on an equal footing and lead to anew understanding of spontaneous symmetry breaking, see e.g. [7℄. The analogue of external�eld quantization on nonommutative spaes was proposed in [8℄.Thus, the strategy of nonommutative geometry is to generalize the mathematial struturesenountered in experimentally on�rmed physis. Another approah to short-distane physisis string theory/ M theory whih tries to guess physis from new �rst priniples. At �rstsight it seems unlikely that nonommutative geometry and string theory ould be related.However, it has been shown that ertain nonommutative geometries arise as limiting asesof string theory. The �rst hint ame from [9℄ where ompati�ations of M theory on thenonommutative torus were introdued, leading to the interpretation that the step from theommutative to the nonommutative torus orresponds to turning on a onstant bakground3-form C. Then, in [10℄ it was shown that this situation is obtained by starting with a type IIasuperstring theory with non-zero Neveu-Shwarz B �eld and taking a saling limit aordingto [11, 12℄. That idea was thoroughly investigated in [13℄. Using the results of [14℄ aboutinstantons on nonommutative R4 , Seiberg and Witten argued that there is an equivalenebetween the Yang-Mills theories on standard R4 and R4n .It should be mentioned that matrix theories were studied long before M theory was proposed,and that these matrix theories did ontain ertain nonommutative features. These models liveon a lattie, and the number of degrees of freedom is redued when the size N of the matrix goesto in�nity [15℄. Putting them on a torus instead of a lattie, twisted boundary onditions [16℄are possible. Then the ation an be rewritten in terms of nonommuting matrix derivatives[�(j); : ℄, with [�(2j);�(2j+1)℄ = �2�i=N , see [17℄.The Seiberg-Witten paper [13℄ inspired numerous attempts to formulate quantum �eld the-ories on nonommutative geometries. Nevertheless, quantum �eld theory on nonommutativespaes is also interesting in its own right. As standard quantum �eld theory is the art to dealwith problems of interations at short distanes, see e.g. the proeedings [18℄, one should expetinteresting features when doing quantum �eld theory on spaes with di�erent short-distane2



struture. Singularities in standard quantum �eld theories are a onsequene of the point-likeinterations. There has been some hope that smearing out the points it is possible to avoidthese ultraviolet divergenes. Example of geometries where points are replaed by some sortof ells are the fuzzy spaes, see e.g. [19, 20℄. Suh fuzzy spaes also arise as limits of branedynamis [21℄.That divergenes are not avoided on R4n was �rst notied by Filk [22℄. He showed that thenonommutative model ontains Feynman graphs whih are idential with their ommutativeounterparts. The R4n is de�ned by the following ommutator of the oordinate operators fq�g:[q�; q�℄ = i��� ; ��� = ���� 2 R :Integrals orresponding to Feynman graphs in nonommutative QFTs di�er from their om-mutative ounterparts by phase fators e i2���p�k� , where p; k are internal or external momenta.The ase p = k is possible, and in this situation the integrals of the ommutative and thenonommutative theory oinide.This raised the question whether the nonommutative QFT is renormalizable. On the one-loop level this was aÆrmed for Yang-Mills theory on R4n [23℄ and the nonommutative 4-torus[24℄ as well as for supersymmetri Yang-Mills theory in (2 + 1) dimensions, with spae beingthe nonommutative 2-torus [25℄. Quantum eletrodynamis on R4n was treated in [26℄ and theBF-Yang-Mills theory in [27℄.These results lead to the hope that Yang-Mills theory on R4n is renormalizable to all ordersin perturbation theory. It was shown however by Minwalla, Van Raamsdonk and Seiberg [28℄that at least for salar theories (�4 on R4n and �3 on R6n) there is a new type of infrared diver-genes whih ruins the perturbative renormalization beyond one loop. This follows immediatelyfrom the work of Filk [22℄, it was nevertheless ompletely unexpeted: The osillatory fatorse i2���p�k� render in four dimensions an otherwise (super�ially) divergent integral onvergent ifboth p; k are internal momenta. If e.g. p is external and k is internal, the integral is onvergentas well, but of ourse only as long as p 6= 0, where the ultraviolet divergene of the ommutativetheory reappears. This manifests as an infrared divergene oming from a ultraviolet-dangerousintegration (UV/IR mixing). It turns out that the power ounting degree of the new super�ialIR divergene of the nonommutative theory oinides with the degree of the super�ial UVdivergene of the ommutative theory [29℄.Inspite of some rumour in the literature that Yang-Mills theory has only logarithmi di-vergenes, it turned out that Yang-Mills on R4n has quadrati IR divergenes for the gluonpropagator and linear IR divergenes for the 3-gluon vertex [31℄ whih prevent the perturbativerenormalization. This result was also derived from the saling limit of string theory [32, 33℄.Graphs made exlusively of nested ghost propagator orretions have only logarithmi diver-genes and are renormalizable at any loop order [30℄. In [31℄ it was also shown that addingfermions in the adjoint representation anels the quadrati and linear IR divergenes at oneloop. This was a hint that supersymmetri Yang Mills ould be renormalizable, whih is alsostrongly supported by the divergene analysis in [29℄.The UV/IR mixing was also observed in nonommutative omplex salar �4 theory [34℄where the interation potential a������ + b������ is only one-loop renormalizable for b = 0or a = b. UV/IR mixing does also our in non-relativisti models [35℄. Anomalies wereinvestigated in [36℄ and the operator produt expansion in [37℄. Disrete symmetries (CPT)were investigated in [38℄. 3



A ompletely �nite model is Chern-Simons theory on R3n [39℄. Examples of models wherethe limit ��� ! 0 is smooth an be found in [40℄. Yang-Mills with fermions on R3n was studiedin [41℄ with respet to the indued Chern-Simons ation. Nonommutative topologial massiveYang-Mills was treated in [42℄. There are also interesting two dimensional nonommutativemodels suh as the nonlinear � model [43℄ and the nonommutative Wess-Zumino-Witten model[44℄.Even at the tree-level a �eld theory on R4n shows unusual features suh as violation ofausality [45℄ and S-matrix unitarity [46℄ if time is nonommutative. Experimental limits on��� are disussed in [47℄. Beside the renormalizability problem, a quadrati IR divergenein the one-loop gluon propagator leads to a on�nement of the model to a region whih sizeis of the order pj��� j. Thus, suh a model annot have the standard model as its low en-ergy limit. The standard model an only be extended to nonommutative spae-time if thequadrati IR divergenes anel, whih is probably the ase of supersymmetri versions. Thismotivates the interest in supersymmetry on nonommutative spaes, apart from the salinglimit of superstring theory.Conerning supersymmetry, in [48℄ a deformation also of the antiommutator of thefermioni superspae oordinates � was onsidered, it was shown however that suh a de-formation is not ompatible with supertranslations and hiral super�elds. This result was alsoderived in [49℄ via the saling limit of string theory. A superspae formulation (at the lassi-al level) of the Wess-Zumino model and super Yang-Mills was given in [50℄. Employing theomponent formulation it was eventually proved in [51℄ that the Wess-Zumino (WZ) model onR4n is renormalizable to all orders in perturbation theory. One-loop renormalizability of N = 2super Yang-Mills was obtained in [52℄.In this paper we extend the work of Filk [22℄ to the super�eld formalism and apply thetehniques to the nonommutative Wess-Zumino model. The paper is organized as follows: Insetion 2, following loser the work of Filk than [48, 49, 50℄, we introdue the notion of a super-operator on nonommutative spae-time. In setion 3 the Wess-Zumino model in the super�eldformalism is introdued at the lassial level, and in setion 4 we postulate a nonommutativeversion of the Gell-Mann Low formula, and apply it to ompute the one loop self-energy on-tributions. To be omplete, we dedue the super�eld Feynman rules in setion 5, and applythem to the one loop vertex orretions. In setion 6 we disuss the renormalizability to allloop orders.2 Super�elds with nonommutative oordinatesFollowing [22, 2℄ we onsider the spae-time oordinates of a at spae as self-adjoint operatorsin a Hilbert spae with the following algebra[q�; q�℄ = i���; [��� ; q�℄ = 0; (1)where ��� is real and antisymmetri. In order to desribe the super�elds onsistently withinthe framework of Filk one de�nes the operatorT (k) = eik�q� ; (2)4



with the properties T+(k) = T (�k); (3)T (k)T (k0) = T (k + k0)e�ik�k0; k � k0 = 12���k�k0�; (4)and formally tr [T (k)℄ = Z d4q eik�q� = Y� Æ(k�)(2�)4: (5)Additionally, we are dealing with lassial hiral and anti-hiral super�elds �(x; �; ��) and��(x; �; ��) in the real representation [53℄, de�ned on an ordinary manifold by�(x; �; ��) = �1(x� i����; �) = e�i������1(x; �); (6)��(x; �; ��) = ��2(x+ i����; ��) = ei����� ��2(x; ��); (7)where �1(x; �) =A(x) + �� �(x) + ����F (x); (8)��2(x; ��) = �A(x) + �� _� � _�(x) + �� _��� _� �F (x): (9)The orresponding ovariant derivatives and further tehnial material on the super�eld for-malism is olleted in appendix A. To a hiral lassial super�eld �1(x1; �1) � �1(1) one de�nesthe Fourier-transform as1 �1(1) = Z dp eipx1 ~�1(p; �1); (10)where the oeÆients of ~�1(p; �1) belong to S (R4). The \inverse" reads~�1(p; �1) = Z dS2 e�ipx2Æ(�12)�1(x2; �2)= Z dx2 e�ipx2�1(x2; �1); (11)where dS2 and Æ(�12) are given in appendix A. Corresponding to Filk [22℄, one assoiates to thelassial hiral super�eld �1(x1; �1) the following superoperator�1(q1; �1) = Z dS2 Z dk T (k)e�ikx2Æ(�12)�1(x2; �2)= Z dx2 Z dk T (k)e�ikx2�1(x2; �1)= Z dk T (k)~�1(k; �1): (12)The trae operation allows to reover the lassial hiral super�eld �1(x1; �1)�1(1) = Z dk eikx1tr ��1(q1; �1)T+(k)� : (13)1We use the notation dx = d4x, dk = d4k(2�)4 5



Following Filk's idea we are now able to onstrut a ?-produt, the so-alled Moyal produt, oftwo lassial super�elds(�1 ? �1)(1) = Z dk eikx1tr ��1(q1; �1)�1(q1; �1)T+(k)� : (14)With the relations (3)-(5) eq.(14) beomes(�1 ? �1)(1) = Z dk1 Z dk2ei(k1+k2)x1e�ik1�k2 ~�1(k1; �1)~�1(k2; �1); (15)and with (11) there follows(�1 ? �1)(1) = Z dk1 Z dk2ei(k1+k2)x1e�ik1�k2� Z dS10 Z dS20 e�ik1x10�ik2x20 Æ(�110)Æ(�120)�1(x10 ; �10)�1(x20 ; �20): (16)Additionally, one has also(�1 ? �1 ? �1)(1) = Z dk eikx1tr ��1(q1; �1)�1(q1; �1)�1(q1; �1)T+(k)� : (17)Repeating the same steps as before, eq.(17) may be rewritten as(�1 ? �1 ? �1)(1) = Z dk1 Z dk2 Z dk3 ei(k1+k2+k3)x1e�iP3i<j ki�kj ~�1(k1; �1)~�1(k2; �1)~�1(k3; �1)= Z dk1 Z dk2 Z dk3 ei(k1+k2+k3)x1e�iP3i<j ki�kj� Z dS10 Z dS20 Z dS30 e�ik1x10�ik2x20�ik3x30�Æ(�110)Æ(�120)Æ(�130)�1(x10 ; �10)�1(x20 ; �20)�1(x30 ; �30): (18)The �?31 is required to desribe the orresponding interations of the WZ-model. With thefuntional derivative for hiral super�eldsÆ�1(1)Æ�1(2) = ÆS(1; 2) = Æ(�12)Æ(x1 � x2) = �14�212Æ(x1 � x2); (19)one heks that the above de�nitions imply alsoÆÆ�1(2) Z dS1 (�1 ? �1 ? �1) (1) = 3(�1 ? �1)(2): (20)Finally, from (15) we get the useful relationZ dS1 (�1 ? �1) (1) = Z dS1�1(1)�1(1): (21)6



3 Super�eld formulation of the nonommutative Wess-Zumino model at the treelevelIn four dimensional Minkowskian spae-time the Wess-Zumino model in terms of super�elds isde�ned at the tree level by the following ation [53℄�(0) =�(0)kin + �(0)m + �(0)I= 116 Z dV ��� + m8 �Z dS �2 + Z d �S ��2�+ g48 �Z dS �?3 + Z d �S ��?3� : (22)Sine � and �� are hiral and anti-hiral super�elds the kineti part of �(0) an be rewritten as�(0)kin = 116 Z dS �D2 ��(x; �; ��)�(x; �; ��) = 116 Z d �S ��(x; �; ��)D2�(x; �; ��): (23)Carrying out the � and �� integration, whih is in fat a di�erentiation, one gets always thelast omponent of a super�eld (produts of super�elds are again super�elds) whih furnishesthe omponent formulation of supersymmetri �eld models. In order to derive the orrespond-ing super�eld propagators one uses the Legendre transformation between the funtional foronneted Green funtions Z and the vertex funtional �(0). Introduing external hiral andanti-hiral soures J and �J we haveZ[J; �J ℄ = �(0)[�; ��℄ + Z dSJ� + Z d �S �J ��; (24)with Æ�(0)Æ� = �J; Æ�(0)Æ �� = � �J; (25)and ÆZÆJ = �; ÆZÆ �J = ��: (26)Solving eq.(25) for � = �[J; �J ℄ and �� = ��[J; �J ℄ one gets the desired super�eld propagatorshT�(1)�(2)i(0) = ÆiÆJ(1)�[J; �J ℄(2)= 4imÆS(1; 2)�+m2 ; (27)
T�(1)��(2)�(0) = ÆiÆJ(1) ��[J; �J ℄(2)=� iD22ÆS(1; 2)�+m2=� i �D21Æ �S(1; 2)�+m2 ; (28)and 
T ��(1)��(2)�(0) = 4imÆ �S(1; 2)� +m2 : (29)Having de�ned the WZ-model at the tree level with its super�eld propagators we are now ableto disuss radiative orretions at the one loop level with the help of the Gell-Mann Low formulain terms of super�elds. 7



1 43 2Figure 1: Self-energy graph4 One loop self-energy orretionsThe one loop alulations for the self-energy are governed by the Gell-Mann Low formula [53℄G(1; :::; n) = hT�(1):::�(n)i = R
T�(1):::�(n)ei�I�(0)hTei�I i(0) ; (30)where we use for �I the \deformed" interation of the form�I = g48 �Z dS � ? � ? � + Z d �S �� ? �� ? ��� : (31)No attempt is made to prove formula (30). In our approah we de�ne the model intuitivelyby (30) with a deformed interation. In performing \modi�ed" Wik ontrations we will seethat our proedure gives a meaningful result whih is in agreement with a reent analysis inomponents [51℄.The main advantage of our super�eld proedure is the fat that one gets a very ompat resultin form of supergraphs. In order to demonstrate the power of the super�eld formulation it issuÆient to disuss one representative. For this reason we alulate the one loop graph withone hiral and one anti-hiral external leg. Up to some numerial fators the orrespondingontribution is given byG(1; �2) � �T�(1)��(2) �Z dS3 �?3(3) + Z d �S3 ��?3(3)� �Z dS4�?3(4) + Z d �S4 ��?3(4)��(0) :(32)By Wik ontrations in the presene of deformed interations we alulate the graph shown in�g.1, whih is one of the four ontributions orresponding to2 (32). We �ndG(1; �2)3�4 � Z dS3 Z 3Yi=1 dki ei(k1+k2+k3)x3e�iPi<j ki�kj Z dx31 Z dx32Z dx33 e�ik1x31�ik2x32�ik3x33� Z d �S4 Z 3Yi=1 dk0i ei(k01+k02+k03)x4e�iPi<j k0i�k0j Z dx41 Z dx42 Z dx43 e�ik01x41�ik02x42�ik03x43� hT�(1)�(3)i(0) �
T�(3)��(4)�(0)�2 
T ��(4)��(2)�(0) : (33)2For further details in the ommutative ase see [53℄.8



The required free super�eld propagators are de�ned in eqs.(27)-(29). A straightforward butlengthy alulation leads to3G(1; �2)3�4 � Z dp1 eip1(x1�x2) 1(p21 �m2)2����(p1); (34)where ���� is the self-energy 1PI-vertex, in the one loop approximation (up to some numerialfators) given by�(1)���(p1)� Z dk 12 [1 + os(2p1 � k)℄ D22(p1 � k)~ÆS(1; 2)(p1 � k)2 �m2 D22(k)~ÆS(1; 2)k2 �m2= Z dk os2 (p1 � k) D22(p1 � k)~ÆS(1; 2)(p1 � k)2 �m2 D22(k)~ÆS(1; 2)k2 �m2 : (35)Using [53℄ D22(p)~ÆS(1; 2) = �D21(p)~Æ �S(1; 2) = eE12p; (36)one gets �nally �(1)���(p1) � eE12p1 Z dk 1(p1 � k)2 �m2 1k2 �m2 os2 (p1 � k) ; (37)where E12 is de�ned by E12 = �1���1 + �2���2 � 2�1���2: (38)The result in the form of eq.(37) shows in a very elegant manner that the total \undeformed" �-dependene is enoded in the exponent E12, whereas the remaining Feynman integral representsthe \omponent" result.From (35) it is seen that the one loop self-energy orretions are just the sum of a usual planarontribution (the '1' term in [:::℄ of (35)) and a non-planar ontribution (the os(.) term in[:::℄). The planar ontribution ontains the expeted logarithmially divergent wave funtionrenormalization [53, 51℄. Finally we must show that the non-planar integralI(p; ~p) = Z dk eik~p�(p� k)2 �m2 + i�� (k2 �m2 + i�) ; (39)leads to a �nite result for non-vanishing ~p� = ���p� . The alulations are given in appendixB. We �nd I(p; ~p) = � 2i(4�)2 Z 10 dxK0�p(m2 � p2x(1�x))(�~p2)� :5 Feynman rules in momentum spae and one loop vertex orretionsIn order to be omplete this setion is devoted to disuss the one loop vertex orretionsdiretly with the help of the Feynman rules in momentum spae. With the onventions of [53℄3We omit the i�-presription. 9
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(b)Figure 2: One loop 3-point graphsone has the following Feynman rules in momentum spae
θ1 θ2p

θ1 θ2p

θ1 θ2p

θ1 θ2p

hT�(1)�(2)i~(0) = 4im~ÆS(1; 2)p2 �m2 + i�; (40)hT ��(1)��(2)i~(0) = 4im~Æ �S(1; 2)p2 �m2 + i�; (41)hT�(1)��(2)i~(0) = iD22(p)~ÆS(1; 2)p2 �m2 + i� = i �D21(p)~Æ �S(1; 2)p2 �m2 + i� ; (42)hT ��(1)�(2)i~(0) = i �D22(p)~Æ �S(1; 2)p2 �m2 + i� = iD21(p)~ÆS(1; 2)p2 �m2 + i� ; (43)
p1, θ1

p2, θ2

p3, θ3

p1, θ1

p2, θ2

p3, θ3

18g(2�)4Æ (p1 + p2 + p3) Æ (�12) Æ (�13) os (p2 � p3) ; (44)
18g(2�)4Æ (p1 + p2 + p3) Æ ���12� Æ ���13� os (p2 � p3) : (45)With the Feynman rules (40)-(45) one easily on�rms the result of eq.(35). Additionally, onean state the non-renormalization theorem for ��� and ���� with only hiral (or anti-hiral)internal lines. A possible self-energy orretion of this type is��� � g2 Z dk 4im~ÆS(1; 2)(p+ k)2 �m2 + i� 4im~ÆS(2; 1)k2 �m2 + i�os2 (p� k) : (46)Due to ~ÆS(1; 2)~ÆS(2; 1) � 116 (�212)2 = 0 one has: ��� = 0. In a similar manner one an showthat also the one loop vertex orretion shown in �g.2a vanishes10



����� g3 Z dk (4im)3 ~ÆS(1; 2)(p1 + k)2 �m2 + i� ~ÆS(2; 3)(p1 + p2 + k)2 �m2 + i� ~ÆS(3; 1)k2 �m2 + i��os (p1 � k) os (p2 � p1 + p2 � k) os (p1 � k + p2 � k) : (47)Using the appendix A we �nd that the produt of the three ~Æ-funtions vanishes. However,there ould exist a non-vanishing one loop orretion if one allows mixed propagators, see �g.2b.Applying the above Feynman rules one gets����� � g3 Z dk 4im~ÆS(1; 2)(p1 + k)2 �m2 + i� iD23(p1 + p2 + k)~ÆS(2; 3)(p1 + p2 + k)2 �m2 + i� iD23(k)~ÆS(3; 1)k2 �m2 + i��14 [os (p1 � p2) + os (p2 � p1 + 2(p1 + p2)� k) + os (p2 � p1 � 2p1 � k)+os (p2 � p1 + 2p2 � k)℄ ; (48)where we have separated the vertex orretion in a planar (the � os (p1 � p2) term, whih doesnot depend on the internal momentum) and a non-planar ontribution. Using (67) we onludethat the integral (48) is �nite, sine it goes asymptotially like � 1k6 . This is required in orderto seure stability of the lassial ation.6 Renormalization at all orders and onlusionUsing the same integration tehniques as in appendix B one an prove that the super�ialintegration enoded in any non-planar 1PI Feynman (sub)graph  produes a Bessel funtionK:(:) depending on the external momenta of . The Bessel funtion K:(:) tends exponentiallyto zero if the external momenta of  beome large. This suÆes to render the integration of agraph 0 ontaining  as a subgraph UV �nite. The only problem ould be an IR singularityof the Bessel funtion. However, sine in the ommutative Wess-Zumino model there areonly logarithmi divergenes (in the 2-point funtion), and beause the only di�erene on thenonommutative spae are phase fators, there an only be a logarithmi IR singularity omingfrom the Bessel funtion. Nested logarithmi singularities are IR-integrable, as it was expliitlydemonstrated in [30℄. In onlusion, a graph in the WZ model whih ontains non-planarsetors leads always to a onvergent integral. In partiular, a non-planar graph in the standardsense of the ommutative world is always onvergent. Divergenes ome only from ompletelyplanar graphs, and they are subtrated e.g. by the BPHZ proedure as in [53℄. We thereforeonlude that the Wess-Zumino model on nonommutative Minkowski spae is renormalizableto all loop orders, a result whih was already obtained in [51℄ and onjetured in [29℄. Notethat the � funtions of the nonommutative and the ommutative theory di�er beause thestandard non-planar graphs beome �nite on the nonommutative spae.In this paper we have demonstrated the strength of the super�eld formalism. Espeially wewould like to emphasize that the super�eld formalism enables us to apply eq.(36), whih lowersthe degree of divergene (both IR and UV) by two. Furthermore is the number of graphs to beomputed onsiderable lower than in the work of [51℄. We believe that this formalism will proveuseful for further investigations, in partiular for super Yang-Mills theories on nonommutativeR4 . 11



A Conventions and useful formulae in superspaeLet us briey summarize some of the onventions and rules onerning supersymmetry andsuperspae (most of the rules are taken from [53℄).Metris, index transport and salar produtsThe metri tensor of Minkowski spae is given by g�� = diag(1;�1;�1;�1) and we use thefollowing spinor metri: ��� = i�2 = � _� _�; (49)��� = �i�2 = � _� _�; (50)����� = Æ�; (51)�� = ����; ���� = �� _��� _�; (52)�� = �����; �� _� = � _� _� �� _�: (53)Pauli matries �0 = �1 00 1� ; �1 = �0 11 0� ; �2 = �0�ii 0 � ; �3 = �1 00�1� ; (54)~� = (�1; �2; �3);�� = (1?2; ~�) = (��)� _�;��� = (1?2;�~�) = (���) _��: (55)Covariant derivativesD� = �� � i(��)� _� �� _���; �D _� = ��� _� + i��(���) _����; (56)fD�; �D _�g = 2i(��)� _���; fD�; D�g = f �D _�; �D _�g = 0: (57)Integration Z dV � = Z d4xD2 �D2� for any super�eld �; (58)Z dS � = Z d4xD2 � for a hiral super�eld � (i.e. �D� = 0); (59)Z d �S �� = Z d4x �D2 �� for an anti-hiral super�eld �� (i.e. D�� = 0): (60)12



Funtional di�erentiation, delta-funtions and representationsÆ�(1)Æ�(2) = ÆV (1; 2) for any super�eld; (61)Æ�1(1)Æ�1(2) = ÆS(1; 2) for a hiral super�eld; (62)Æ ��2(1)Æ ��2(2) = Æ �S(1; 2) for an anti-hiral super�eld; (63)the numbers denoting points in superspae (for instane, (1) is a shorthand-notation for((x�)1; (��)1; (�� _�)1)). The above delta-funtions are in position spae given by:ÆV (1; 2) = 116�212��212Æ4(x1 � x2); Z dV1�(1)ÆV (1; 2) = �(2); (64)ÆS(1; 2) = �14�212Æ4(x1 � x2); Z dS1�(1)ÆS(1; 2) = �(2); (65)Æ �S(1; 2) = �14 ��212Æ4(x1 � x2); Z d �S1 ��(1)Æ �S(1; 2) = ��(2); (66)Note that the �rst equalities of eq.(65) and eq.(66) are only valid in the hiral and anti-hiralrepresentation, respetively. The \Fourier-transforms" of the Æ-funtions in the real represen-tation are ~ÆS(1; 2) = �14�212e�(�1���2��2���1)p; D21(p)~ÆS(1; 2) = e�E12p; (67)~Æ �S(1; 2) = �14 ��212e�(�1���2��2���1)p; �D21(p)~Æ �S(1; 2) = eE12p; (68)where E12 = �1���1 + �2���2 � 2�1���2; (69)�212 = (�1 � �2)2; ��212 = (��1 � ��2)2: (70)Di�erent representations (real and (anti)hiral) of (anti)hiral super�elds are onneted by thefollowing relations: �(x; �; ��) = �1(x� i����; �) = e�i������1(x; �); (71)��(x; �; ��) = ��2(x+ i����; ��) = ei����� ��2(x; ��); (72)1 denoting the hiral and 2 the anti-hiral representation; also, (anti)hiral �elds have a sim-pli�ed �-expansion: �1(x; �) = A(x) + �� �(x) + ����F (x); (73)��2(x; ��) = �A(x) + �� _� � _�(x) + �� _��� _� �F (x); (74)and the ovariant derivatives are given by:(D��)1 = ��� � 2i(����)�����1; ( �D _��)1 = ��� _��1; (75)(D��)2 = ���2; ( �D _��)2 = ���� _� + 2i(���) _�����2: (76)13



B Calulation of the non-planar self-energy graph integralWe are going to omputeI(p; ~p) = lim�!0 Z d4k(2�)4 ei(~p0k0�~~p�~k)((k0 � p0)2 � j~k � ~pj2 �m2 + i�)(k20 � j~kj2 �m2 + i�) :We apply Zimmermann's � trik [54℄:I(p; ~p) = lim�!0 Z d4k(2�)4 ei(~p0k0�~~p�~k)((k0�p0)2 � (j~k�~pj2+m2)(1�i�))(k20 � (j~kj2+m2)(1�i�))= lim�!0 Z d4k(2�)4 Z 10dx ei(~p0k0�~~p�~k)((k20�2p0k0x + p20x) + (j~kj2�2~p�~kx+j~pj2x+m2)(i��1))2= lim�!0 Z d4k(2�)4 Z 10dx Z 10 d� �(�0�i)2� e��(�0�i)((k20�2p0k0x+p20x)+(j~kj2�2~p�~kx+j~pj2x+m2)(i��1))+i(~p0k0�~~p�~k)= lim�!0 Z d4k(2�)4 Z 10dx Z 10 d� �(�0�i)2 ei(~p0p0�~~p�~p)x� e��(�0�i)(k0�p0x� i~p02�(�0�i) )2��(���0+i+��0i)j~k�~px+ i ~~p2�(���0+i+��0i) j2� e��(�0�i)p20x(1�x)��(���0+i+��0i)(j~pj2x(1�x)+m2)� ~p204�(�0�i)� j ~~pj24�(���0+i+��0i) :For �0 < � we perform the Gaussian k integration:I(p; ~p) = lim�!0 1(4�)2 Z 10 dx Z 10 d�� � �0�i�� �0 + i + ��0i�3=2 ei(~p0p0�~~p�~p)x� e��(�0�i)p20x(1�x)��(���0+i+��0i)(j~pj2x(1�x)+m2)� ~p204�(�0�i)� j ~~pj24�(���0+i+��0i)The � integration yields a result independent of �0 < �:I(p; ~p) = lim�!0 2(4�)2 Z 10dx��1�i�1+�2 �3=2 ei(~p0p0�~~p�~p)x�K0�q�p20x(1�x)� (1�i�)(j~pj2x(1�x) +m2)��~p20 � 1+i�1+�2 j~~pj2�� :Now we an put �! 0 and swith to Minkowskian salar produts:I(p; ~p) = � 2i(4�)2 Z 10dxK0�p(m2 � p2x(1�x))(�~p2)� : (77)On the mass shell we have p2 = m2 and ~p2 � 0: If the partile moves for instane in 3-diretionthen ~p2 = ��203m2 �Pi=1;2(�i3j~pj+ �i0pj~pj2 +m2)2.14
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