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Perturbative Analysis of the Seiberg-Witten Map
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1 Nonommutative Yang-Mills Theory and the Seiberg-Witten MapThe Seiberg-Witten map was �rst disovered in the ontext of string theory, where it emergedfrom a 2D-�-model regularized in di�erent ways [1℄. It was argued by Seiberg and Wittenthat the ordinary gauge theory should be gauge-equivalent to a nonommutative Yang-Mills(NCYM) �eld theory, whih, in a ertain limit, ats as an e�etive theory of open strings.Furthermore, they showed that the Seiberg-Witten map ould be interpreted as an in�nitesimalshift in the nonommutative parameter �, and thus as an expansion of the nonommutativegauge �eld in �.Whereas in open string theory the (nonommutative) gauge �elds are taken to transform in aertain matrix representation of a U(N) gauge group, the aim of a seond approah to the subjet[2, 3℄ was to realize a general, non-Abelian gauge group, preferably SU(N). Using ovariantoordinates the NCYM theory emerges as the gauge theory of a ertain nonommutative algebra[2℄. However, in this senario, due to the hoie of a general, non-Abelian gauge group, oneis fored to onsider enveloping algebra-valued �elds, whih leads to in�nitely many degreesof freedom [3℄. The solution to this problem was shown to be the Seiberg-Witten map, whihin this ontext appears as an expansion of the nonommutative gauge �eld in both � and thegenerators of the gauge group. Appliation of the Seiberg-Witten map yields a theory with�nitely many degrees of freedom. However, sine the Seiberg-Witten map is in�nitely non-linear, the resulting theory has in�nitely many interations at arbitrary high orders in thegauge �eld. Furthermore, sine the nonommutative parameter �, whih has dimension �2,appears as a oupling onstant, the model is non-renormalizable in the traditional sense. Inthe following we will refer to this model as the �-expanded NCYM.The aim of this paper is to study the quantization of the �-expanded NCYM. We hoose toonsider the ase of an Abelian, i.e. U(1), gauge group: nonommutative Maxwell theory.The question of quantization of apparently non-renormalizable theories has been addressedin the literature, see e.g. [4℄ and itations therein. As a starting point, one ould speulate ifa power-ounting non-renormalizable theory involving in�nitely many interations at arbitraryorder in the �eld, as it is the ase in the �-expanded NCYM theory, ould indeed be renormal-izable in the sense that all divergent graphs may be absorbed in the lassial ation. However,we �nd that this is not the ase for the �-expanded NCYM. The self-energy produes termswhih annot be renormalized, thus foring us to add extra, gauge invariant, terms quadratiin � to the lassial ation of NCYM theory, yielding an extended NCYM theory. We regardthis extention as the lowest order of an in�nite deformation series of the salar produt. Fur-thermore, a onsequene of the extended lassial ation is that propagation of light is altered.One may speulate whether this ould lead to observable e�ets in e.g. osmology.One may objet that an expansion in � is not adequate for the following two reasons. First ofall, taking all orders of � into aount, it was shown, in the ontext of string theory, that � servesas a regulator for non-planar graphs [5℄ rendering otherwise UV-divergent graphs �nite. Theresulting radiative orretion, however, is divergent for � ! 0, thus suggesting that the e�etiveation is not analytial in � [6℄. Seondly, one ould argue that renormalizability ditates oneto take all orders of � into aount. Whereas e.g. the nonommutative �4-theory expanded ton'th order in � is obviously (perturbatively in the oupling onstant) non-renormalizable, thetheory is two-loop renormalizable [7℄ when all orders of � are taken into aount. However, ifone insists on treating a general gauge group, the expansion in � is the only known method1



of obtaining a quantizable ation. In fat one may ask the question of how a nonommutative(gauge) theories should be orretly quantized.The paper is organized as follows. In setion 2 we give the lassial ation expanded to �rstorder in �. The gauge �xing is performed in setion 3, where we argue that two fundamentallydi�erent ways of introduing ghosts to the theory, via a linear and a non-linear gauge, may beapplied. In setion 4 we give the relevant Feynman rules and alulate the self-energy to seondorder in �. The extended NCYM theory is given in setion 5, and in setion 6 we present oursummary and disussion.2 �-expanded NCYMWe onsider the oordinates of a (at) Minkowski spae as self-adjoint operators on a Hilbertspae with the following algebra [x�; x� ℄ = i���; (1)where ��� is real and antisymmetri. A �eld theory in this ontext is equivalent to a �eldtheory on a usual (ommutative) at manifold with the produt substituted by the non-loal?-produt1 (f ? g)(x) = Z d4k(2�)4 Z d4p(2�)4 e�i(k�+p�)x�e� i2 ���k�p� ~f(k)~g(p); (2)where f and g are funtions on the manifold. A U(1) gauge �eld Â� = Â�� (Hermitian) givesrise to the nonommutative Yang-Mills ation2�̂l = �14 Z d4x F̂�� ? F̂ �� = �14 Z d4x F̂��F̂ �� ; (3)with F̂�� = ��Â� � ��Â� � iÂ� ? Â� + iÂ� ? Â�: (4)The ation (3) is invariant under the nonommutative gauge transformationÆ̂�̂Â� = ���̂� iÂ� ? �̂+ i�̂ ? Â� � D̂��̂; (5)with in�nitesimal �̂ = �̂�. It was shown by Seiberg and Witten [1℄ that an expansion in � leadsto a map between the nonommutative gauge �eld Â� and the ommutative gauge �eld A� aswell as their respetive gauge parameters �̂ and �, known as the Seiberg-Witten map:Â� (A) = A� � 12���A� (��A� + F��) +O(�2); (6)�̂ (�;A) = �� 12���A����+O(�2); (7)where the Abelian �eld strength is given byF�� = ��A� � ��A�: (8)1We use the following Fourier onventions: f(x) = R d4p(2�)4 e�ip�x� ~f(p); ~f(p) = R d4xeip�x�f(x).2There ould be a oupling onstant added, however, in the absene of �-independent interations thisoupling onstant is not renormalized and may be absorbed in a reparametrization.2



Insertion of (6) into (3) leads to the ation�l = Z d4x��14F��F �� + 18���F��F��F �� � 12���F��F��F ���+O(�2); (9)whih is invariant under the usual Abelian gauge transformationsÆ�A� = ���: (10)The ation (9) has in its full form, involving all orders of �, in�nitely many interations atin�nitely high order in the gauge �eld. Furthermore, sine � has dimension �2, the theory ispower-ounting non-renormalizable in the traditional sense.3 Gauge FixingIn order to quantize a gauge theory within the BRST-sheme, the gauge-symmetry is replaedby the nilpotent BRST-symmetry [8, 9℄. However, above we have two gauge symmetries: Æ̂�̂and Æ� orresponding to the ations (3) and (9), respetively. Thus, there appear to be atleast two fundamentally di�erent ways of introduing ghosts into the theory, before and afterperforming the Seiberg-Witten map.Let us �rst onsider the gauge-transformation (10) as the \fundamental" one and introdueghosts into the ation (9). We write sA� = ��; s = 0; (11)where s is the BRST-operator and  the anti-ommuting Faddeev-Popov ghost �eld. Withinthe quantization proedure a BRST-invariant gauge-�xing may be introdued in the followingmanner �(i)gf = Z d4x hs (���A�) + �2B2i ; (12)with s� = B; sB = 0: (13)Here � is the anti-ghost �eld and B the Nakanishi-Lautrup (multiplier) �eld. The total ationis now �(i)tot = �l + �(i)gf : (14)In the following we will refer to this hoie of gauge-�xing as the linear gauge.Let us now onsider the seond option of introduing ghosts in the theory. We treat thegauge transformation (5) as the soure of ghosts and thereby adding a gauge-�xing term to theation (3). We write ŝÂ� = D̂�̂; ŝ̂ = î ? ̂; (15)where ŝ is the BRST-operator emerging from the gauge-symmetry (5) and ̂ the orrespondingghost �eld. The gauge-�xing term reads�̂gf = Z d4x hŝ��̂ ? ��Â�� + �2 B̂ ? B̂i ; (16)3



with ŝ�̂ = B̂; ŝB̂ = 0: (17)Here �̂ and B̂ are the anti-ghost and multiplier �eld. The total ation is now�̂tot = �̂l + �̂gf : (18)In order to apply the Seiberg-Witten map to (18) we need the Seiberg-Witten map of the ghostand multiplier �eld. These are easily found by substituting � with  and �̂ with ̂ in (7). Notiethat only the gauge �eld and the ghost have an expansion in �:̂ () = � 12���A���+O(�2); (19)�̂ = �; (20)B̂ = B; (21)where , � and B are the ordinary ghost, anti-ghost and multiplier �eld, respetively. Inserting(6) and (19){(21) into (18) one �nds, to �rst order in �, the ation�(ii) = �l + �(ii)gf ; (22)with �(ii)gf = Z d4xhB��A� � �����������������A� � 12�����A���� 12��BA� (��A� + F��)�i; (23)whih is invariant under the BRST-transformations (11) and (13). Notie that (22) representsa nonlinear gauge. In the following we will refer to this hoie of gauge-�xing as the nonlineargauge.Both gauge-�xed ations (14) and (22) are invariant under Abelian BRST-transformationsand satisfy the Slavnov-Taylor identity S ��(i;ii)� = 0; (24)where the Slavnov-Taylor operator is given, for any funtional F , byS (F) = Z d4x��� ÆFÆA� +BÆFÆ� � : (25)4 Photon Self-EnergyIn order to hek the one-loop UV and IR behaviour of the ations (14) and (22), one needsthe orresponding Feynman rules. For the various propagators of the models only the bilinearpart of the full ations is relevant. However, this is independent of � and thus the propagatorsare idential in both ases
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~GAB� (p) = �ip�(p2 + i�) ; (27)~G�(p) = �1(p2 + i�) ; (28)with p + q = 0. The ation (9) represents free Maxwell theory in the limit � ! 0 . To �rstorder in � the photon vertex reads:
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~V �A�(p; q; r) = �i��� �12q2r�g�� + p�r�q�� ;
~V ��AAB(p; q; r) =��� ��12g��g��(pr) + 12g��g��(qr)� g��q�r� � g��p�r�� ; (31)with p+ q + r = 0.As usual, for eah independent loop momentum ki we have the integration operator ~i R d4ki(2�)4and momentum onservation for the external momenta pi leading to a fator (2�)4Æ(�pi).Eah losed ghost line ontributes a fator �1.Before doing expliit one loop analysis we want to stress that the Ward identity (24) impliesthat the radiative orretions to the photon propagator must be transversalp����(p) = 0: (32)5
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(c)Figure 1: Self-energy graphsFurthermore, (32) implies that the radiative orretions up to �rst order in � must vanish (thereare no �-independent interations)���(p) = 0; (order �). (33)The radiative orretions up to seond order in � are restrited in form by���(p) = �g��p2 � p�p���(i)(p) + ~p�~p��(ii)(p)+ �~~p�p� + ~~p�p� + g�� ~p2 + p2��������(iii)(p) (order �2): (34)where ~p� = ���p� and ~~p� = ������p�. In (34) we used that ~p is orthogonal to p and ~~p and thatp and ~~p are independent. Notie that due to the negative dimension of �, (34) indiates thepresene of (divergent) Feynman graphs with 6 powers of p in ���(p). Sine the bilinear partof the ation (3) is the ordinary one of Maxwell theory, suh a term will be non-renormalizable.In the following we will expliitly perform the one loop analysis of the photon self-energy.Sine all verties are linear in � the �rst ontribution is proportional to �2. In the linear gaugethe only ontributing graph is shown in �g. 1.a. In the nonlinear gauge we have interatingghost and multiplier �elds and thus �nd ontributions from all three graphs shown in �g. 1.In fat we should also onsider the tadpole graph emerging from the Seiberg-Witten map toseond order in � via a 4-legged photon interation. However, the tadpole graph is identiallyzero, beause there is no mass in the theory. Using the above Feynman rules one alulates thefollowing expression for the photon self-energy with an internal photon line�(a);��(p) = ~2i Z d4k(2�)4 ~V ���AAA(p;�k+;�k�) ~V ���AAA(�p; k�; k+) ~GAA�� (�k+) ~GAA�� (k�); (35)where k+ = p2 + k, k� = p2 � k. The relevant integrals are evaluated in the Appendix. We �nd�(a);��(p) = ~(4�)2"�� 18(p2)2�2 �g��p2 � p�p��+ 110 ~p2p2 �g��p2 � p�p��+ 130(p2)2~p�~p�+14(p2)2 �~~p�p� + ~~p�p� + g�� ~p2 + p2������� � +O(1): (36)Notie that (36) satis�es the transversality ondition (34). For the graph (b) the integral reads�(b);��(p) = �~i Z d4k(2�)4 ~V �A�(p;�k+;�k�) ~V �A�(�p; k�; k+) ~G�(�k+) ~G�(k�): (37)6



We �nd �(b);��(p) = � ~60(4�)2"�14(p2)2~p2g�� + p2~p2p�p� + 12(p2)2~p�~p��+O(1): (38)For the graph () we write�();��(p) = ~i Z d4k(2�)4 ~V ��AAB(p;�k+;�k�) ~V ��AAB(�p; k�; k+) ~GAB� (�k+) ~GAB� (k�); (39)and �nd �();��(p) = ~60(4�)2"�14(p2)2~p2g�� + p2~p2p�p� + 12(p2)2~p�~p�� +O(1): (40)One sees that the above divergent ontributions from the ghost graph (b) and the multiplier-photon graph () anel identially. This means that the hoie of linear or non-linear gaugeleaves the renormalization invariant. Furthermore, we would like to stress that the radiativeorretion (36) is independent of �, whih shows that our result is gauge-independent. Thereason for this is that the vertex (29) is transversal, p� ~V ���AAA(p; q; r) = 0.5 Higher Derivative AtionIn the previous setion we have shown that the radiative orretions to the photon self-energyprodue divergent terms involving two orders of � and six orders of p. These terms annotbe absorbed into ounterterms to the initial ation (9), whih thus is perturbatively non-renormalizable. We interpret this problem as a hint to extend the lassial ation.The extension to (9) must be invariant under Lorentz transformations and the Abeliangauge transformations (10). There are many possibilities to write down the same terms. Ageneralization to non-Abelian models suggests however to use the �eld strengths F�� and ~F�� :=� �� F�� as well as their derivatives using the operators �� and ~�� := � �� �� as building bloks.Thus we have the following tensors of dimension 2 at disposal:F�� ; ~F 0�� := �� ~��F�� ; ~F 00�� := ~����F�� ;~F���� := ���� ~F�� ; ~F 0���� := �� ~��F�� ; ~F 00���� := ~����F�� ;~F������ := �������F�� : (41)The abelian ase is degenerate; we have ~F 0�� = ~F 00�� and ~F 0���� = ~F 00����.The most general gauge and Lorentz invariant extension to (3) of dimension 4 with two �'sis3;4�ext = Z d4x� 14g21 ~F 0�� ~F 0�� + 14g22 ~F���� ~F ���� + 14g23 ~F 0���� ~F 0���� � sign(������)4g24 ~F������ ~F ������� :(42)3Observe that R d4x ~F���� ~F 0���� = R d4x ~F���� ~F 00���� = R d4x ~F 0���� ~F 00���� = 0.4We may add that all terms involving tensorial ombinations linear in � are either identially zero or zeroafter integration (topologial terms). 7



The signs are hosen suh that the highest time derivatives are positive, i.e. that the ation isbounded from below. This requires for the seond termH ij2 = �i0�j0 +Xk 6=0(�k0�k0Æij � �ki�kj) � 0 ; i; j 6= 0 :For example, the ase where the only non-vanishing ommutators are [x0; x3℄ = i�1 and[x1; x2℄ = i�2, requires j�1j � j�2j.We remark that the ation (42) is bilinear in the gauge �eld. Therefore the photon prop-agator is hanged, thus hanging the whole sheme of quantization. The treatment of higherderivative ations have been investigated in the literature, see e.g [10℄ and referenes therein.Here we hoose to view � as a onstant external �eld, thus onsider the photon propagatoras unhanged and the ation (42) as new verties of type AA��. In this sense (36) representsthe proper one-loop radiative orretion to the oupling onstants in (42).The result of our one-loop alulation was the independene from the gauge parameter.This implies that we an have the speial solution of a single oupling onstant. From (36) weonlude the redution to the following extended ation:�redext = 14g2(") Z d4x� 215 ~F 0�� ~F 0�� + ~F���� ~F ���� + 15 ~F 0���� ~F 0���� � 14 ~F������ ~F ������� : (43)with g2(") = g20(1 + g20~4(4�)2" +O(g40~2)) : (44)The highest time derivatives in (43) are H ij(�30Ai)(�30Aj) withH ij = 1760�i0�j0 +Xk 6=0 110�k0�k0Æij + 14� Xl>k 6=0 �kl�klÆij �Xk 6=0 �ki�kj� > 0 ; (45)i.e. for any � the redued extended ation is bounded from below. The result (44) tells us thatthe extended ation is not asymptotially free.Applying the Seiberg-Witten map in the opposite sense, the ation (43) should arise fromsome nonommutative ation �̂ext. Gauge invariane leads immediately to the solution�̂ext = 14g2 Z � 215��1 ~̂F 0�� ~̂F 0�� + (1��1)�2 ~̂F 00�� ~̂F 00�� + (1��1)(1��2) ~̂F 0�� ~̂F 00���+ 15��3 ~̂F 0���� ~̂F 0���� + (1��3) ~̂F 00���� ~̂F 00����� + ~̂F���� ~̂F ���� � 14 ~̂F������ ~̂F ������+ 1 ~̂F���� ~̂F 0���� + 2 ~̂F���� ~̂F 00���� + 3 ~̂F 0���� ~̂F 00����� ; (46)for 0 � �i � 1, where~̂F�� := � �� F̂�� ; ~̂D� := � �� D̂� ;~̂F 0�� := D̂� ~̂D�F̂�� ; ~̂F 00�� := ~̂D�D̂�F̂�� ;~̂F���� := D̂�D̂� ~̂F�� ; ~̂F 0���� := D̂� ~̂D�F̂�� ; ~̂F 00���� := ~̂D�D̂�F̂�� ;8



~̂F������ := ���D̂�D̂�F̂�� :Note that the ation (46) leads, after applying the Seiberg-Witten map, to an ation ontain-ing in�nitely many additional terms with �nitely many free oeÆients. The fat that therenormalization of the self-energy radiative orretion puts restritions on the relative weightsof possible ounterterms for the Green's funtion with three external legs provides us with astrong test of the model. We will address this question in a forthoming paper [11℄.6 ConlusionWe have analyzed the �-expanded nonommutative U(1) Yang-Mills theory as a perturbativequantum �eld theory. As expeted from the power-ounting behaviour the Yang-Mills ationR F̂��F̂ �� is not renormalizable in this setting. We singled out the unique extended ation forwhih the one-loop photon propagator is renormalizable.Lorentz and gauge invariane allow for four di�erent extension terms with arbitrary oeÆ-ients (oupling onstants). Our one-loop alulations redue this freedom to a single ouplingonstant, due to two not antiipated fats: the independene from the gauge parameter andfrom linear versus non-linear gauge.We are thus led to ask whether there is a meaning in the relative weights of the extensionterms. We reall in this respet the remarkable agreement of all three relative signs, whihensures that the ation is bounded from below also for large momenta jp0j � j�j� 12 . It wouldbe interesting to investigate whether �-expanded nonommutative QED leads to the sameweights.It is obvious that the extension we derived is only valid to lowest order in �. The newverties lead to non-renormalizable divergenes whih give rise to more and more extensionterms. Hene the ation makes sense only as the lowest-order parts of an e�etive theory.There are two ways a fator � an arise in the �-expansion of the nonommutative Yang-Millsation: in the form �pA via the Seiberg-Witten map and in the form �p2 via the deformationprodut and possibly higher-order Seiberg-Witten terms. This leads to a �eld strengh of stru-ture X�;Æ �x�Æ(pA)(�pA)�(�p2)Æ + y�Æ(�p2)A2(�pA)�(�p2)Æ�; (47)with the very important restrition xÆ0 = 0 for all Æ. A Feynman graph with E externalA-lines and L loops has then the struture pE�E�2(�p2)2L+�, where � is the total numberof deformations Æ in the verties of the graph. It follows that, in priniple, divergenes inoeÆients to fators �p2 from integrated higher loop graphs an be absorbed by terms with ahigher � in the tree ation.But this mehanism does not work for E = 2 and L = 0; in this ase the tree ationhas � � 0. In other words, there is no hane that the photon propagator orretions arerenormalizable. This is why we are fored to add to the tree ation something with � = 2 inorder to ompensate the L = 1 divergenes. It is also lear that for ompensating higher andhigher loop graphs we need additional terms with arbitrarily large � in the tree ation. Insome sense this makes the tree ation more symmetri with respet to the power of �p2.We would like to suggest the following interpretation of the extra terms to the Yang-Millstree ation. There is a remarkable strutural asymmetry between the produt of �elds in9



NCYM (whih ontains arbitrarily many fators �p2 in the ?-produt) and the trae where the?-produt is redued to the ordinary produt. The extra terms we found restore the symmetryin deforming the trae as well. Di�erentiations in the salar produt are not unfamiliar, forinstane, the Sobolev norm of f 2 Hs is given bykfk2Hs � hf; fiHs = Z dx �jf(x)j2 + X�; 1�j�j�s a�j��x f(x)j2� ; (48)where � is a multi-index.In this ontext, we have derived in this paper the neessity to replae the L2 salar produthF̂ ; F̂ iL2 for the �eld strength by the H1 salar produt hF̂ ; F̂ iH1. Sine the oordinate x hasa dimension in physis, the derivatives must be aompanied by a dimensionful parameter �. Ofourse, this salar produt must be gauge invariant, therefore we must take ovariant derivativesin the Sobolev norm instead of partial derivatives. The dependene of the salar produt onthe gauge �eld is very natural in the framework of nonommuatative geometry, where ationsare built out of the ovariant Dira operator [12℄. Moreover, the boundedness of the ationfrom below gives ertain restritions on the pre-fators a� of the di�erent ombinations of ���and D̂�. We would like to stress that in the ommutative limit � ! 0 the H1 salar produtredues to the standard L2 salar produt.Hene, the big quest is to �nd the true H1 salar produt (the prefators a� in (48)) whihmakes the �-expanded Yang-Mills ation renormalizable. In this paper we have sueeded toderive the �rst orretion to the L2 salar produt { our result (46). We may speulate whetherthe relative weights we omputed an serve as a hint in whih diretion to searh for a losedform of the renormalizable H1 salar produt.We may also speulate whether this renormalizable H1 salar produt also solves theUV/IR-mixing problem of the �-unexpanded Yang-Mills ation on nonommutative R4 . Wereall that the �-expansion is free of infrared divergenes but UV non-renormalizable whereasthe unexpanded version is IR non-renormalizable [13℄5. This an be interpreted as a hint toextend the Yang-Mills ation also in the �-unexpanded setting, and one ould speulate ifthe solution is to substitute the ordinary salar produt with the H1 salar produt whih isrenormalizable via �-expansion. Thus our result ould be valuable also for the �-undeformedframework. We would like to remark that the H1 salar produt leads to a �-dependend photonpropagator and ould make ontat with a di�erent approah [15℄ to the nonommutative R4 .Finally let us mention that the extended ation leads to a modi�ed wave equation for thephoton already on tree-level. Sine the modi�ation is of the order j�j2jpj4, and if we assumej�j1=2 to be of the order of the Plank length, there an be observable onsequenes only forextremely high-energeti (osmologial) phenomena.7 AknowledgementThe authors would �rst of all like to thank Julius Wess for giving us the initial idea as wellas for enlightening disussions. Also we thank Martin Ertl for his help. The very involvedalulations found in this paper were performed using his fantasti MathematiaTM pakage\Index". Furthermore, we would like to thank Harald Grosse, Karl Landsteiner, Stefan Shramland Raymond Stora for fruitful disussions.5We refer to [14℄ for the power-ounting behaviour of �eld theories on nonommuative RD .10



A IntegralsWe use Zimmermann's �-trik [16℄ and replae 1k2+i� = 1k20�~k2+i� by 1k20�~k2+i�~k2 . Then,P (k; p) = lim�!0 1((p02 �k0)2 � ( ~p2�~k)2 + i�( ~p2�~k)2)((p02 +k0)2 � ( ~p2+~k)2 + i�( ~p2+~k)2)= lim�!0Z 10 dx (�0�i)2f(�0�i)(k20 + (1�2x)k0p0 + 14p20)� (�0�i)(1�i�)(~k2 + (1�2x)~k~p+ 14~p 2)g2 :(49)For �0 < � we have Re(f: : : g) > 0 in the denominator of (49). We use analyti regularization[17℄ to write (�0�i)2f::: g2 ! �2"(�0�i)2+"f::: g2+" and rewrite P (k; p) in terms of the Shwinger parameter �:P (k; p)! lim�!0; �0<� �2"(�0�i)2+"�(2 + ") Z 10 dx Z 10 d� �1+"� e�(�0�i)�(k20+k0q0�~k~q+ 14p20)�(���0+i+i��0)�(~k2+ 14 ~p 2)��� q0=(1�2x)p0~q=(1�2x)(1�i�)~p : (50)Fators k� in the numerator an now be obtained by di�erentiation with respet to q. For " > 0the various integrations an be performed and yieldlim�!0 Z d4k(2�)4 1((p2 � k)2 + i�)((p2 + k)2 + i�) (51)= i(4�)2�1" + ln��2p2 ��+ i(4�)2��1 + (+ ln 4+ (32))� +O(") ;lim�!0 Z d4k(2�)4 k�k�((p2 � k)2 + i�)((p2 + k)2 + i�) (52)= i12(4�)2�1" + ln��2p2 ��(p�p� � g��p2)+ i(4�)2�g��p2( 112 � 112(+ ln 4+ (52))) + p�p�(2336 � 14(+ ln 4+ (32)))�+O(") ;lim�!0 Z d4k(2�)4 k�k�k�k�((p2 � k)2 + i�)((p2 + k)2 + i�) (53)= i240(4�)2�1" + ln��2p2 ���(p2)2T 0���� � p2T 2���� + 3T 4�����+ i(4�)2�(p2)2T 0����(p)(� 1240 + 1240(+ ln 4+ (72))) + p2T 2����(p)(� 771200 + 148(+ ln 4+ (52)))+ T 4����(p)( 4811200 � 316(+ ln 4+ (32)))�+O(") ;
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lim�!0 Z d4k(2�)4 k�k�k�k�k�k�((p2 � k)2 + i�)((p2 + k)2 + i�) (54)= i6720(4�)2�1"+ ln��2p2 ����(p2)3 T 0������(p) + (p2)2 T 2������(p)� 3p2 T 4������(p) + 15T 6������(p)�+ i(4�)2�(p2)3 T 0������(p)( 16720 � 16720(+ ln 4+ (92)))+ (p2)2 T 2������(p)( 2501705600 � 1960(+ ln 4+ (72))) + p2 T 4������(p)(� 334978400 + 164(+ ln4+ (72)))+ T 6������(p)( 759747040 � 564(+ ln 4+ (72)))�+O(") :Here we have introdued the totally symmetri momentum tensorsT 0����(p) := 12!2!2! X�2S(����) g�(�)�(�) g�(�)�(�) ;T 2����(p) := 12!2! X�2S(����) g�(�)�(�) p�(�)p�(�) ;T 4����(p) := p�p�p�p� ;T 0������(p) := 12!2!2!3! X�2S(������) g�(�)�(�) g�(�)�(�) g�(�)�(�) ;T 2������(p) := 12!2!2!2! X�2S(������) g�(�)�(�) g�(�)�(�) p�(�)p�(�) ;T 4������(p) := 12!4! X�2S(������) g�(�)�(�) p�(�)p�(�)p�(�)p�(�) ;T 6������(p) := p�p�p�p�p�p� ;where S(�1 : : : �n) is the set of permutations of the indies �1 : : : �n. Let us �nally mentionthat the divergent parts of the above integrals (52)-(54) are transversal.Referenes[1℄ N. Seiberg and E. Witten, \String theory and nonommutative geometry," JHEP9909 (1999)032 [hep-th/9908142℄.[2℄ J. Madore, S. Shraml, P. Shupp and J. Wess, \Gauge theory on nonommutative spaes," Eur.Phys. J. C16 (2000) 161 [hep-th/0001203℄.[3℄ B. Juro, S. Shraml, P. Shupp and J. Wess, \Enveloping algebra valued gauge transformationsfor non-Abelian gauge groups on non-ommutative spaes," Eur. Phys. J. C17 (2000) 521 [hep-th/0006246℄.[4℄ J. Gomis and S. Weinberg, \Are Nonrenormalizable Gauge Theories Renormalizable?," Nul.Phys. B469 (1996) 473 [hep-th/9510087℄.[5℄ T. Filk, \Divergenies in a �eld theory on quantum spae," Phys. Lett. B376 (1996) 53.12
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