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Abstra
tWe show that the photon self-energy in quantum ele
trodynami
s on non
ommutativeR4 is renormalizable to all orders (both in � and �h) when using the Seiberg-Wittenmap. This is due to the enormous freedom in the Seiberg-Witten map whi
h repre-sents �eld rede�nitions and generates all those gauge invariant terms in the �-deformed
lassi
al a
tion whi
h are ne
essary to 
ompensate the divergen
es 
oming from loopintegrations.
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1 Introdu
tionRe
ently Non
ommutative Yang-Mills (NCYM) theory has attra
ted 
onsiderable attention.Partly this is due to its role in string theory, where NCYM appears as a 
ertain limit inpresen
e of a 
onstant ba
kground �eld B (see [1℄ and referen
es therein). On the other hand,NCYM theory (or better: Yang-Mills theory on non
ommutative R4) is also an example ofgauge theory on a non
ommutative algebra whi
h is interesting on its own [2℄. A
tually thestarting point was a 
ombination of both [3℄.Although renormalizable at the one-loop level [4, 5, 6℄, it be
ame 
lear that non
om-mutative �eld theories su�er from a new type of infrared divergen
es [7, 8℄ whi
h spoiledrenormalization at higher loop order. Possible problems are ring-type divergen
es and 
om-mutants [9℄. Although this analysis proved renormalizability for the Wess-Zumino model and
omplex s
alar �eld theory [9℄, the situation for gauge theory was desperate.An alternative approa
h to NCYM was proposed by Seiberg and Witten [1℄. They arguedfrom an equivalen
e of regularization s
hemes (point-splitting vs. Pauli-Villars) that thereshould exist a map (the so-
alled Seiberg-Witten map) whi
h relates the non
ommutative1gauge �eld Â� and the non
ommutative gauge parameter �̂ to (lo
al) 
ounterparts A� and� living on ordinary spa
e-time. This approa
h was popularized in [10℄ where it was arguedthat this is the only way to obtain a �nite number of degrees of freedom in non-AbelianNCYM.The Seiberg-Witten map leads to a gauge �eld theory with an in�nite number of ver-ti
es and Feynman graphs with unbounded degree of divergen
e, whi
h seemed to rule outa perturbative renormalization. An expli
it quantum �eld theoreti
al investigation of theSeiberg-Witten map was �rst performed in [11℄ for non
ommutative Maxwell theory. Theout
ome at one-loop for the photon self-energy was (to our surprise) gauge invariant andgauge independent. It was not renormalizable. However, the divergen
es were absorbable bygauge invariant extension terms to the 
lassi
al a
tion involving � whi
h we interpreted as
oming from a more general s
alar produ
t.It turns out that our extended a
tion is a
tually a part of the Seiberg-Witten map whenexploiting all its freedom, see also [12, 13℄. This means that a renormalization of the Seiberg-Witten map itself is able to remove the one-loop divergen
es. This extends to a 
omplete proofof all-order renormalizability of the photon self-energy. A generalization to other Green'sfun
tions is not obvious, however. This freedom in the Seiberg-Witten map 
an be regardedas a �eld rede�nition.2 The freedom in the Seiberg-Witten mapWe 
onsider NCYM theory with fermions, regarded as a model on ordinary Minkowski spa
e(with metri
 g��), subje
t to the altered (non-lo
al) multipli
ation law for fun
tions f; g onspa
e-time:(f ? g)(x) = Z d4y d4z Æ4(y � x) Æ4(z � x) exp �i��� ��y� ��z� ��f(y)g(z)� : (1)The real parameter ��� = ���� will be regarded as a 
onstant external �eld of power-
ountingdimension �2.1One should better say non-lo
al instead of non-
ommutative be
ause the ?-produ
t is a non-lo
al produ
tbetween fun
tions on spa
e-time. 1



The Seiberg-Witten map [1℄ expresses the non
ommutative gauge �elds Â�=Â�[A�; �℄, thein�nitesimal gauge parameter �̂=�̂[�;A�; �℄ and the fermions  ̂= ̂[ ;A�; �℄, �̂ = �̂ [ � ;A�; �℄,whi
h are multiplied a

ording to (1), as formal power series of the 
orresponding gauge-equivalent 
ommutative (but non-Abelian) obje
ts A�; �;  ; � to be multiplied in the ordinaryway. The gauge-equivalen
e 
ondition isÆ�̂Â� = Æ�Â� ; Æ�̂ ̂ = Æ� ̂ ; Æ�̂ �̂ = Æ� �̂ ; (2)with initial 
onditionÂ�[A� ; �=0℄ = A� ; �̂[�;A�; �=0℄ = � ;  ̂[ ;A�; �=0℄ =  ; �̂ [ � ;A�; �=0℄ = � : (3)The non
ommutative gauge transformations are de�ned byÆ�̂� = Z d4x �tr�(���̂� i(Â� ? �̂� �̂ ? Â�)) ? Æ�ÆÂ��+ D� �ÆÆ ̂ ? (i�̂ ?  ̂)E+ D(�i �̂ ? �̂) ? �!Æ �Æ �̂ E� (4)and the 
ommutative2 ones byÆ�� = Z d4x �tr�(���� i(A��� �A�)) Æ�ÆA�� + D� �ÆÆ (i� )E+ D(�i � �)�!Æ �Æ � E� : (5)The bra
ket h i means tra
e in 
olour and spinor spa
e.As shown in [12℄ there is a big variety of solutions of (2),(3) 
orrespondinging to �eldrede�nitions. Here we take a sub
lass of the solutions derived in [12℄3. We denote by Â(n)�a solution of (2),(3) up to order n in �. Then, a further solution up to the same order n isobtained by adding any gauge-
ovariant term with exa
tly4 n fa
tors of �,Â(n)� 0 = Â(n)� + A (n)� ;A (n)� =X(i) �(n)i � g�� � � � g��| {z }2n ��� � � � ���| {z }n D� � � �D�| {z }l1 (F��) � � �D� � � �D�| {z }lk (F��)�(i)� ; (6)where Pkj=1 lj = 2n+1�2k. This 
ondition guarantees that Â(n)� 0 has the same power-
ounting dimension5 (=1) as A� when taking � of power-
ounting dimension �2. Ea
h �in (6) stands for a Lorentz index (all but the free lower index � are summation indi
es).D� = �� � i[A�; : ℄ is the 
ovariant derivative and F�� = ��A� � ��A� � i[A�; A�℄ the (
om-mutative) Yang-Mills �eld strength. The sum is over all index stru
tures (i) and �(n)i 2 R is2Although we are �rst of all interested in QED, we present everything as far as possible in a way whi
halso applies to �-deformed Yang-Mills theory.3Similar ideas are used in [13℄ where a general formalism for the 
onstru
tion of the Seiberg-Witten mapis given.4This is important: A (n)� 
ontains exa
tly n fa
tors of � whereas Â(n)� 
ontains 0 � j � n fa
tors of �.5Power-
ounting dimensions dim are de�ned as follows: dim(A�) = dim(Â�) = 1, dim( ) = dim( ̂) =dim( � ) = dim( �̂ ) = 32 , dim(��) = 1, dim(m) = 1, dim� R d4x� = �4, dim(Æ4(x�y)) = 4, dim� R d4p� = 4,dim(Æ4(p�q)) = �4, dim(�) = �2. 2



a free parameter. Inserted into the gauge-equivalen
e (2) there is on the l.h.s. at order n nofurther fa
tor of � 
oming from �̂ or the ?-produ
t possible:Æ�̂Â(n)� 0 = Æ�̂Â(n)� � i[A (n)� ; �℄ � Æ�Â(n)� 0 up to order n : (7)Thus, Â(n)� 0 is a solution of the gauge-equivalen
e 
ondition if Â(n)� is, up to order n. Thee�e
t of A (n)� on the non
ommutative �eld strength F̂�� = ��Â����Â�� i(Â� ? Â�� Â� ? Â�)is up to order n given by F̂ (n)�� 0 = F̂ (n)�� +D�A (n)� �D�A (n)� ; (8)be
ause no fa
tor � from Â� or the ?-produ
t 
an be 
ombined with A (n)� up to order n. Thenon
ommutative Yang-Mills a
tion is�̂ = � 14g2 Z d4x tr(F̂ ��F̂��) : (9)De�ning �̂(n)0 as the result of (9) when repla
ing F̂ (n)�� by F̂ (n)�� 0 and the 
ommutative a
tions�(n)0 and �(n) as the Seiberg-Witten map of �̂(n)0 and �̂(n), we obtain up to order n in ��(n)0 = �(n) + 1g2 Z d4x tr�F ��D�A (n)� � = �(n) + 1g2 Z d4x tr�(D�F ��)A (n)� � : (10)The part �(n)0 � �(n) of the a
tion represents due to (6) and the dimension assignment infootnote 5 a gauge invariant a
tion of power-
ounting dimension 0 with n fa
tors of �. Gaugeinvarian
e means that appli
ation of the operator Æ� de�ned in (5) yields zero. The a
tion�(n) is gauge invariant at any order k � n in �, thus yielding at order n in � terms whi
h arealso present in �(n)0 � �(n). These terms in �(n) 
an be regarded as a shift to �(n)i .Now we pass to quantum �eld theory and 
ompute Feynman graphs. The loop integrationswill produ
e divergent 1PI-Green's fun
tions whi
h under the assumption of an invariantrenormalization s
heme6 are gauge invariant �eld polynomials of power-
ounting dimension0. We hope to remove all of these divergen
es with n fa
tors of � by a �h-rede�nition of �(n)i .The problem is that (10) generates only a subset of all possible gauge invariant a
tions. Forthe photon self-energy in �-deformed QED we are able to show that all divergen
es a
tuallybelong to this subset (Se
tion 5). Before we will address the question of a physi
al meaningof the �(n)i .3 Field rede�nitionsIt is possible to rewrite (10) in the following form:�(n)0 = �(n) + Æ(n)A �(n) up to order n ;Æ(n)A � = Z d4x A a (n)� (x) Æ�ÆAa�(x) ; (11)6If no invariant renormalization s
heme is available (or if one 
hooses a non-invariant s
heme for somereason) one should attempt to restore gauge invarian
e via the quantum a
tion prin
iple and a parameterrede�nition. Gauge anomalies are an obstru
tion to su
h a program.3



where � is any fun
tional depending on Aa�. In (11) we use now the 
omponent formulationindu
ed by A� = Aa�Ta, with [Ta; Tb℄ = if 
ab T
. This suggests to 
onsider A a (n)� as a �eldrede�nition of A�. As su
h we must 
he
k how it 
ommutes with the lo
al Ward identityoperator with respe
t to a variation of the gauge �eld,W �a (y) = ÆÆ�a(y)Æ� = ��y� ÆÆAa�(y) � f 
ab Ab�(y) ÆÆA
�(y) ; (12)where Æ� is de�ned in (5). To the 
ommutator Æ(n)A W �a (y)� � W �a (y)Æ(n)A � there is only a
ontribution if both operators Æ(n)A and W �a (y) hit the same �eld A� in �, hen
e it is suÆ
ientto 
onsider � 7! A
�(x). Then we haveÆ(n)A W �a (y)A
�(x) = �f 
ab A b (n)� (y) Æ(x� y)due to (12),(11) andW �a (y)Æ(n)A A
�(x) = W �a (y)A 
 (n)� (x) = �f 
ab A b (n)� (y) Æ(x� y)be
ause of the 
ovarian
e Æ�A (n)� = i[�; A (n)� ℄, see (6). This means[Æ(n)A ;W �a (y)℄ � 0 ; (13)i.e. all �(n)i in A � must be regarded as parametrizations of �eld rede�nitions.4 Quantum �eld theoryThe basi
 obje
t in quantum �eld theory is the generating fun
tional � of one-parti
le irre-du
ible (1PI) Green's fun
tions (with n fa
tors of �)�[A
`℄(n) = XN�2 1N ! Z d4x1 : : : d4xN Aa1�1 
`(x1) � � �AaN�N 
`(xN) h0jTA�1a1 (x1) : : :A�NaN (xN )j0i(n)1PI(14)in terms of 
lassi
al �elds A
`. Colour indi
es are denoted by ai. The va
uum expe
tationvalue of the time-ordered produ
t of �elds in (14) is the Fourier transform of the N -pointvertex fun
tional in momentum spa
e,h0jTA�1a1 (x1) : : :A�NaN (xN)j0i(n)1PI= Z d4p1(2�)4 : : : d4pN(2�)4 Æ4(p1 + � � �+ pN) e�ip1x1 � � � e�ipNxN ��1:::�N (n)a1:::aN (p1; : : : pN ) (15)with dim���1:::�Na1:::aN (p1; : : : pN)� = 4�N . Due to the n fa
tors of �, the momentum spa
e degreeof divergen
e of ��1:::�N (n)a1:::aN (p1; : : : pN) is ! = 4 + 2n � N . The lo
al Ward identity operator(12) applied to (14),Wa(y)�[A
`℄(n) = ��y� Æ�[A
`℄(n)ÆAa� 
`(y) � f 
ab Ab� 
`(y)Æ�[A
`℄(n)ÆA
� 
`(y) : (16)4



is evaluated in presen
e of an invariant renormalization s
heme toWa(y)�[A
`℄(n) = ����B(y) :Here, B is the multiplier �eld required for gauge-�xing. In a linear gauge7 there are no verti
eswith external B-lines and thus no divergent 1PI Green's fun
tions with external B (further-more, B is independent of �). Therefore we have the lo
al Ward identity Wa(y)�[A
`℄(n) = 0for �[A
`℄(n) being 1PI and divergent. Then, fun
tional derivation of (16) with respe
t toAa1�1 
`(x1) : : : AaN�N 
`(xN), followed by putting the remaining Ab� 
`(z) = 0, gives0 = ��y� h0jTA�a(y)A�1a1 (x1) : : : A�NaN (xN )j0i(n)1PI (17)� NXj=1 f 
aaj Æ(y � xj) h0jTA�j
 (y)A�1a1 (x1) : : :A�j�1aj�1 (xj�1)A�j+1aj+1 (xj+1) : : : A�NaN (xN)j0i(n)1PI :5 The photon self-energy in �-deformed QEDWe re
all that ! = 4 + 2n � N is the power-
ounting degree of divergen
e for the N -pointphoton vertex fun
tionals with n fa
tors of �, independent of the internal stru
ture of theFeynman graphs. Due to translation invarian
e (or momentum 
onservation) we thereforehaveh0jTA�1a1 (x1) : : : A�NaN (xN )j0i(n)1PI (18)=X(i) �0i� g�� � � � g��| {z }2n�N+2 ��� � � � ���| {z }n �� : : : ��| {z }4+2n�N �Æ(x1�x2) � � � Æ(xN�1�xN)��(i)�1:::�NThe sum is over all index stru
tures (i) with appropriate numeri
al fa
tors �i, and thederivatives are with respe
t to any of the 
oordinates x1; : : : ; xN . We insert (18) into (14)and integrate by parts. Assuming an invariant renormalization s
heme (su
h as dimensionalregularization), the lo
al Ward identity (17), with f 
ab = 0, implies that the generatingfun
tional �[A
`℄(n) must be a fun
tion of the 
lassi
al �eld strength F
` �� = ��A
` ����A
` �:�[A
`℄(n) = XN�2 1N ! Z d4x1 : : : d4xN X(i) �i� g�� � � � g��| {z }2n+2 ��� � � � ���| {z }n� �� : : : ��| {z }4+2n�2N �F
` ��(x1) : : : F
` ��(xN )� Æ(x1�x2) � � � Æ(xN�1�xN)�(i): (19)From the Ward identity it follows in parti
ular that N � n + 2.Now we spe
ialize (19) to the photon self-energy, i.e. to the N = 2 part in (19). Allderivatives 
an be assumed a
ting on F
` ��(x1). There are both 2n indi
es on ��� and ��, butwe have ����x1� �x1� = 0. Therefore, there is for n � 1 always one of the terms��F�� or ����F�� = ����F�� � ����F��in the N = 2 part of (19). But this is a

ording to (10) nothing but the stru
ture of anon
ommutative Maxwell a
tion after Seiberg-Witten map (with D� � ��), whi
h thus is7We refer to [11℄ for a natural nonlinear gauge in �-deformed Maxwell theory.5



able to absorb all divergen
es 
oming from loop integrations: The two-point fun
tion in thenon
ommutative Maxwell a
tion �̂0 = � 14g2 Z d4x F̂ �� 0F̂ 0�� (20)is renormalizable at order n in � and any order L in �h due to the gauge-
ovariant terms A (n)�in the Seiberg-Witten map, i.e. by a �h-rede�nition of �(n)i whi
h preserves the form of (20).The argument does not wok for N -point fun
tions with N � 3. For instan
e, it is nowpossible to 
ontra
t all derivatives in (19) with the fa
tors of � as the following 
ontributionto the 3-point fun
tion shows:Z d4x1 d4x2 d4x3 �
Æ � 3Yi=1 ��i�i�x1�i �x2�i ��F
Æ(x1)F ��(x2)F��(x3)� Æ(x1 � x2)Æ(x2 � x3) :The 
omplete renormalization of NCYM theories remains an open problem.5.1 One-loop photon self-energy at se
ond order in �As an example let us look at the lowest orders of non
ommutative Maxwell theory studiedin [11℄. In order �1 there is only one8 gauge 
ovariant (here: invariant) extension to theSeiberg-Witten map: A (1)� = �(1)1 �����F ��whi
h, however, drops out of the Maxwell a
tion, F ���������F �� = ����(��F ��)(��F ��) =0. At order �2 we have, up to total derivatives ��( : ) and Bian
hi identity, four di�erentterms9 in (6):A (2)� =��(2)1 g�
g�Æg��g������
Æ������F�� + �(2)2 g�
g��gÆ�g������
Æ������F��+ �(2)3 g��g
�g��gÆ�����
Æ������F�� + �(2)4 g
�g�Æg��g������
Æ������F��� : (21)These lead to the following terms in the a
tion (10):�(2)0 = �(2) + 1g2 Z d4x A��(g��2� ����)(�(2)1 �222 + �(2)2 ~~22) + �(2)3 ~�� ~��22+ �(2)4 (������23 + (~~���� + ~~����)22 + ���� ~~22)�A� ; (22)where 2 = ����, ~�� = �����, ~~�� = ��� ~��, ~~2 = ~�� ~�� and �2 = ������. The rhs of (22) 
annow be rewritten in the following form:1g2 Z d4x ��F ��(x)A (2)� (x) = 12g2 Z d4x d4y A�(x)A�(y) h0jTA�(x)A�(y)j0i(2)1PI ; withh0jTA�(x)A�(y)j0i(2)1PI = �(g��2� ����)(2�(2)1 �222 + 2�(2)2 ~~22) + 2�(2)3 ~�� ~��22+ 2�(2)4 (������23 + (~~���� + ~~����)22 + ���� ~~22)�xÆ(x� y) :(23)8The free index � 
an not o

ur via �� be
ause this would lead to a vanishing �eld strength. Moreover,one has to take the Bian
hi identity into 
onsideration.9There are no divergent graphs of order 2 in � with more than two external photon lines.6



Comparing (22) with the one-loop 
al
ulation in [11℄ we see that the following renormalizationof �(2)1 ; : : : ; �(2)4 ,�(2)1 7! �(2)1 � g2�h16(4�)2" ; �(2)2 7! �(2)2 + g2�h20(4�)2" ;�(2)3 7! �(2)3 + g2�h60(4�)2" ; �(2)4 7! �(2)4 + g2�h8(4�)2" ; (24)
an
els pre
isely the one-loop divergen
es in the photon self-energy. In other words, (24)provides a formal power series �(2)i [�h℄ su
h that the one-loop photon self-energy Greens'sfun
tion is at order �2 renormalizable. However, (24) represent unphysi
al renormalizationsbe
ause the �'s parametrize �eld rede�nitions, see Se
tion 3. This means that at order 0 in�h the �(2)i may be set to zero.6 Extension to any order in �It remains to prove that the gauge-equivalen
e (2) of the Seiberg-Witten map 
an be extendedto order n+1 in �. This is not 
lear a priori be
ause the gauge transformations Æ�̂ and Æ�applied to A (n)� produ
e very di�erent results at higher order in �.We expand Â(n+1)� into a Taylor series:Â(n+1)� = n+1Xk=0 1k!��1�1 � � � ��k�k� �kÂ(n+1)����1�1 : : : ��k�k ��=0= A� + n+1Xk=1 1k!�����2�2 � � � ��k�k� �k�1���2�2 : : : ��k�k ��Â(n+1)����� ���=0 : (25)We re
all now the Seiberg-Witten di�erential equation10 [1℄�Â����� = �18nÂ�; (F̂�� + ��Â�)o? + 18nÂ�; (F̂�� + ��Â�)o? (26)for a solution Â� of (2), where fX; Y g? := X ? Y + Y ? X is the ?-anti
ommutator. We seethat �Â(n+1)����� requires knowledge of only Â(n)� (i.e. of the Seiberg-Witten map up to order n).Taking the general order-n solution (6), i.e. in
luding A (n)� , we obtain a Seiberg-Witten mapup to order n+1,Â(n+1)� 0 = A� � 14 n+1Xk=1 1k!��1�1 � � � ��k�k� �k�1���2�2 : : : ��k�knÂ(n)�1 0; (F̂ (n)�1�0 + ��1Â(n)� 0)o?��=0+ A (n+1)� ; (27)whi
h implies renormalizability up to order n+1 in �. A

ordingly, the non
ommutativegauge parameter is at order n+1 in � obtained as�̂(n+1) = �� 14 n+1Xk=1 1k!��1�1 � � � ��k�k� �k�1���2�2 : : : ��k�knÂ(n)�1 0; ��1 �̂(n))o?��=0 :10We would like to stress that (26) guarantees dim(Â�) = 1 to all orders of �.7



Thus we have proved by indu
tion that the photon self-energy arising from the non
ommu-tative Maxwell a
tion (20) is (under the assumption of an invariant renormalization s
heme)renormalizable to all orders in � and �h via a general Seiberg-Witten map. Observe thatÂ(n+1)� 0 is a 
ompli
ated nonlinear fun
tion of �(j)i for j � n.7 Remarks on the fermioni
 a
tionWe would like to extend the renormalizability proof for the photon self-energy to Green'sfun
tions in �-deformed QED [14℄ 
ontaining fermions. So far we did not su

eed, neverthelesswe present some ideas whi
h hopefully turn out to be useful. On that level we 
an formulateeverything for Yang-Mills theory with fermions.In analogy to (6) we add to a solution  ̂(n) of the gauge-equivalen
e (2) the most generalgauge-
ovariant term in  with exa
tly n fa
tors of �: ̂(n)0 =  ̂(n) +	(n) ;	(n) =X(i) ~�(n)i �mt ��� � � � ���| {z }n h � P r1l10l11:::l1k1 i � � � h � P rsls0ls1:::lsks i P r0l00l01 :::l0k0 �(i); (28)P rjlj0lj1:::ljk = 
� � � �
�| {z }rj D� : : :D�| {z }lj1 (F��) � � �D� : : : D�| {z }ljkj (F��) ~D� : : : ~D�| {z }lj0 ;wherePsj=0(2kj+Pkjh=0 ljh) = 2n�t�3s andPsj=0 rj = 4n�t�3s. These 
onditions guaranteethat  ̂(n)0 has the same power-
ounting dimension (= 32) as  . All indi
es are summationindi
es. We have introdu
ed the 
ovariant derivative for fermions ~D� = �� � iA� , mis the fermion mass and 
� are the Dira
 gamma matri
es. The quantity h � P rl0l1:::lk i is a(gauge invariant) fun
tion on spa
e-time obtained by taking the tra
e in spinor and 
olourspa
e, without spa
e-time integration.In the same way as in (7),  ̂(n)0 is a solution of the gauge-equivalen
e (2) if  ̂(n) is:Æ�̂ ̂(n)0 = Æ�̂ ̂(n) + i�	(n) = Æ� ̂(n)0 up to order n. (29)The Seiberg-Witten map for the adjoint spinor � =  y
0 is simply obtained by Hermitean
onjugation, using 
�y
0 = 
0
�: A term� �
�1 � � �
�rP 00l01 :::l0k0 ~D�1 : : : ~D�l in 	(n), where � 
ontains all saturated fermions h � P rl0l1:::lk i, is transformed into�� ( ~Dy�1 : : : ~Dy�l)( � ) 
�r � � �
�1P 00l0k0 :::l01 ��in �	(n), where ~Dy� � = �� � + i � A� .Then, the non
ommutative Dira
 a
tion�̂D = Z d4x �h �̂ (i
��� �m) ̂i+ h �̂ 
�Â� ?  ̂i� (30)gives after Seiberg-Witten map the real-valued gauge invariant fermioni
 a
tion�(n)D 0 = �(n)D + Z d4x �
 � �
�(i�� + A�)�m�	(n)� + 
�	(n)�
�(i�� + A�)�m� �� : (31)8



The part �(n)D 0��(n)D is due to (28) a real-valued gauge invariant integrated �eld polynomialof power-
ounting dimension 0 with at least two fermions. Su
h terms will also 
ome fromthe a
tion �(n)D , whi
h leads e�e
tively to a shift of ~�(n)i . However, this generates only asubset of all gauge invariant fermioni
 a
tions [15℄. The hope is that (assuming again aninvariant renormalization s
heme) the (divergent) 1PI Green's fun
tions are pre
isely of theform (31). As for the N -point photon fun
tions with N � 3, the Ward identity gives nofurther information.Assuming it is possible to prove that divergent 1PI Green's fun
tions are of the form(31), let us show that the Seiberg-Witten map (28) for fermions 
an be extended to ordern+1. This goes as in the bosoni
 
ase via Taylor expansion and the di�erential equationimplementing the gauge-equivalen
e:� ̂���� = �18�2Â� ? �� ̂ � ��Â� ?  ̂� + 18�2Â� ? �� ̂ � ��Â� ?  ̂� : (32)Then, ̂(n+1)0 =  � 14 n+1Xk=1 1k!��1�1 � � � ��k�k� �k�1���2�2 : : : ��k�k �2Â(n)�1 0? ��1 ̂(n)0���1Â(n)�1 0?  ̂(n)0���=0+	(n+1)� (33)is the required solution of the gauge-equivalen
e at order n+1 in �. Again,  ̂(n+1)0 is a
ompli
ated nonlinear fun
tion of �(j)i and ~�(j)i for j � n.8 Dis
ussionWe have proved renormalizability of the photon self-energy in non
ommutative QED to allorders in perturbation theory. This is the �rst example of a renormalizable Green's fun
tionin a non
ommutative gauge theory. After the 
lassi�
ation of diseases of non
ommutativeQFTs by Chepelev and Roiban [9℄ there remained not mu
h hope that this 
ould be a
hievedbeyond one-loop.The alternative approa
h via the Seiberg-Witten map [1℄ introdu
es an in�nite numberof non-renormalizable verti
es with unbounded power-
ounting degree of divergen
e into thegame. It is therefore surprising that at least for the photon self-energy su
h bad divergen
es
an be treated. Fortunately the Seiberg-Witten map is a friendly monster whi
h for ea
hproblem in a given order provides a 
ure in the same order (by shifting the mess to the nextorder, et
).In this way we have a
hieved renormalization of a Green's fun
tion in a gauge theorywith an external �eld of negative power-
ounting dimension { a model with in�nitely manyverti
es. The point is that via the Seiberg-Witten map all these verti
es 
an be summed upto an a
tion as simple as (20). There exist 
losed formulae for the Seiberg-Witten map to allorders in �, see [16℄ and referen
es therein. In [16℄ there was also given an abstra
t de�nitionof the freedom in the Seiberg-Witten map whi
h should 
ontain the �eld rede�nitions weused to show renormalizability of the photon self-energy. It should be stressed however thatonly 
on
rete loop 
al
ulations su
h as done in [11℄ 
an determine the parametrization (24)whi
h renormalizes the photon self-energy.Of 
ourse the renormalizability proof should be extended to other Green's fun
tions thanthe photon self-energy. This is an open problem, but it is plausible now that non
ommutative9



QED is renormalizable. Indeed, the photon self-energy 
ontains (at high enough loop order)graphs of any other Green's fun
tion as subdivergen
es. These subdivergen
es assumed tobe treated a

ording to the forest formula, we know that the overall divergen
e of the photonself-energy is renormalizable. The open question is whether the Green's fun
tions of thesesubdivergen
es 
an give rise to 
ounterterms in
ompatible with the non
ommutative a
tionafter �eld reparametrizations.A main goal is of 
ourse to formulate a renormalizable non
ommutative version of thestandard model. In this respe
t we stress that in �-deformed QED there is only one pla
e fora 
oupling 
onstant { namely in front of the photon a
tion. It is therefore not possible to havefermions of di�erent ele
tri
 
harge [17℄. This is not a problem be
ause in non
ommutativegeometry a part of the ele
tri
 
harge of the quarks 
omes from the 
olour se
tor [18℄.One of the basi
 prin
iples of renormalization is the independen
e of the spe
i�
 wayone treats the problems. How 
an we understand then the UV/IR problem [7, 8℄ whi
hplagues the �-undeformed approa
h and whi
h is 
ompletely absent in the Seiberg-Wittenframework? We believe that the UV/IR mixing is not really there, it is a non-perturbativeartefa
t absent in perturbation theory { and thus should be treated by non-perturbativete
hniques as suggested in [9℄. Let us 
onsider the integralI = Z d4k ei~p�k�k2 ; ~p� := ���p� ;whi
h is part of the tadpole graph in non
ommutative Maxwell theory. The standard inte-gration methods agree in the following (�nite!) answer:I = Z d4k ei~p�k�k2 = 4�2~p�~p� : (34)This (1=p2) behaviour is the origin of all infrared problems. On the other hand, expandingthe exponential we produ
e at �rst sight divergen
es of arbitrary degree:I = Z d4k P1n=0 1n!(i~p�k�)nk2 :Ex
hanging the sum and the integration, the integral of any term in the series is s
ale-independent and IR well-behaved { and as su
h zero in all standard renormalization s
hemes:I = 1Xn=0 1n! Z d4k (i~p�k�)nk2 = 0 : (35)The infrared problem disappeared. There is no 
ontradi
tion between (34) and (35) be
ausethe integral is 
learly not absolutely 
onvergent so that ex
hanging sum and integrationis dangerous. Whi
h one of (34) and (35) is 
orre
t? There are good reasons to believethat the �-perturbative result (35) should be preferred { it leads to a renormalizable photonself-energy. In some sense this 
an be regarded as a normal ordering in non
ommutativerenormalization: First the integrals must be performed, then the sums. This eliminates theinfrared singularities.
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