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I Introdution.In the nonommutative approah to the standard model of elementary partiles10, spae-time appears as the produt (in the sense of �bre bundles) of a ontinuous manifold by adisrete spae. In preedent papers, we have studied the metri aspet of several lasses ofdisrete spaes17, and the metri of the ontinuum has been approahed from a Lie-algebraiapproah34. Here, within the framework of nonommutative geometry, we investigate howthe distane in the ontinuum evolves when the spae-time of eulidean general relativity istensorised by an internal spae. We �nd that in many ases the relevant piture is the two-sheets model8;9. Indeed, under preise onditions, the metri aspet of "ontinuum � disrete"spaes redues to the simple piture of two opies of the manifold. It was known11;5 that thedistane on eah opy is the geodesi distane while the distane between the opies { thedistane on the �bre { is a onstant. But this does not give a omplete desription of thegeometry, in partiular the distane between di�erent points on di�erent opies. In this paperwe show that this distane oinides with the geodesi distane within a (4+1)-dimensionalmanifold whose �fth omponent omes from the internal part of the geometry. This omponentis a onstant in the simpliest ases and beomes a funtion of the manifold when the metriutuates. Restriting ourselves to salar utuations of the metri, whih orrespond to theHiggs setor in the standard model, it appears that the Higgs �eld desribes the internal partof the metri in terms of a disrete Kaluza-Klein model.The aim of this paper is to investigate the metri aspet of the standard model geometry.This goal is only partially ahieved beause we fous on salar utuations and we mentiononly very briey mathematial aspets suh as the Gromov distane. For a omprehensiveapproah of these questions, the reader is invited to onsult ref.30. Other works on distanein nonommutative geometry mainly onern latties1;2;14;28 and �nite spaes. A larger bibli-ography an be found in ref.17. Naturally, using a Kaluza-Klein piture in nonommutativegeometry is not a new idea and one an refer to refs.24;12 for instane as well as the textbook25.Partiularly, that the distane between the sheets depends on the manifold has been shown inrefs.4;5. Last but not least, for a omprehensive approah of the subjet, the most reent andomplete referene is the book16.The paper is written for a 4-dimensional manifold but generalisation to higher dimensionshould be straightforward. The next two setions introdue lassial notions of distane innonommutative geometry and a simple proof that, on a manifold, this distane oinides withthe geodesi distane. Setion IV extends known results of the two-sheets model { distaneon eah opy, distane between the opies { to the produt of any two spaes (not neessarilya manifold � a disrete spae). In setion V we show that, under onditions on the internalpart of the Dira operator, a large number of examples atually redue to a two points �brespae. In the simplest ase the internal spae is orthogonal to the ontinuum in the sense ofPythagorean theorem (in �nite spaes, the Pythagorean theorem has already been mentionedby ref.13). Setion VI studies the salar utuations (terminology is preised there) of thismetri. The last part presents examples, among them the standard model, and preises thelink between the Higgs �eld and the metri.
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II The distane formula.Let A be a unital C�-algebra represented over a omplex Hilbert spae H equipped with asalar produt h:; :i de�ning the norm k k2H := jh ;  ij for  2 H. The C�-norm of A is theoperator norm in H kakA := sup 2H k�(a)( )kHk kHwhere � is the representation. The so alled Dira operator D is a selfadjoint operator inH, possibly unbounded. When the spetral dimension is even8, the hirality � is a hermiteanoperator whih antiommutes withD and ommutes with �(A). The set (A;H; D; �; �) is alleda spetral triple. The terminology is justi�ed beause � is usually infered in the notationH, andone given (A;H; D), � { if it exists { is uniquely determined by the axioms of nonommutativegeometry10. Sine the algebra appears through its representation, we an, without loss ofgenerality, replae A by A=ker(�) and assume that � is faithful. To improve the readability weomit the symbol � unless neessary.We denote by P(A) the set of pure states of A. The distane d between two of its elements!1; !2 is d(!1; !2) := supa2A f j!1(a)� !2(a)j = k[D; a℄k � 1g ;where k:k is the operator norm in H (we do not write k[D; a℄kA beause [D; a℄ may not be therepresentation of an element of A). This supremum is reahed17 by a positive element suhthat k[D; �(a)℄k = 1: d(!1; !2) = supa2A+ f j!1(a)� !2(a)j = k[D; a℄k = 1g : (1)This formula is invariant under several transformations, inluding unitary transformationand projetion. First, a unitary element u of A de�nes both an automorphism of the algebra�u(a) := uau� and a unitary equivalent triple (A;H; uDu�; � Æ�u) : Obviously distanes are nothanged under suh a transformation beause k[D; a℄k = k[uDu�; �u(a)℄k. More interesting isthe ation of a projetion e 2 A (e2 = e� = e) through the endomorphism of A�e(a) := eae;whih de�nes the restrited spetral triple(Ae := �e(A); He := eH := ran e; De := eDe��He ; �e := ���He)whose orresponding distane is denoted by de. �e being not injetive, for a pure state ! 2 P(A)the linear form ! Æ �e is not neessarily a state of A (for instane if e is in the kernel of !).However it is a pure state of the subalgebra Ae. Conversely, any pure state !e of Ae is made apure state of A by writing !e Æ �e. In other words, P(Ae) = P(A) Æ �e � P(A).Lemma 1. If a projetion e is suh that [D; e℄ = 0, the distane between two pure states !1; !2of Ae is invariant by projetion: de(!1; !2) = d(!1 Æ �e; !2 Æ �e).Proof. For ae 2 Ae, k[De; �e(ae)℄k = k[�(e)D�(e); �(ae)℄k = k[D; �(ae)℄k thereforede(!1; !2) = supae2Ae fj(!1 � !2)(ae)j = k[D; �(ae)℄k � 1g ;� supa2A fj(!1 Æ �e � !2 Æ �e)(a)j = k[D; �(a)℄k � 1g = d(!1 Æ �e; !2 Æ �e):2



This upper bound is reahed by �e(a) where a 2 A reahes the supremum for the distane d,namely k[D; �(a)℄k = 1 and d(!1 Æ �e; !2 Æ �e) = !1 Æ �e(a)� !2 Æ �e(a). �III Distane in a manifold.The spetral triple of a Riemannian spin manifoldM of dimension 4 with a metri g isA = C1(M); H = L2(M; S); D = i��� = i=� ; (2)where L2(M; S) is the set of square integrable spinors onM. The Riemannian gamma matries� = �� = e�aa are obtained via the vierbein �eld e�a from the Eulidean gamma matriesa of the assoiated Cli�ord algebra. Using Æabe�ae�b = g�� and ab + ba = 2ÆabI one has�� + �� = 2g��I. The spetral dimension is the dimension of the manifold, so there isa hirality 5 = 0123 made of the Eulidean a's. The salar produt of H is h ; �i :=RM � (x)�(x) dx and an element f 2 A is represented over H by the pointwise multipliation,�(f) := fI, so that kfkA = sup 2H�RM( �f � )(x)(f )(x)dxRM � (x) (x)dx � 12 = supx2Mjf(x)j :By Gelfand transform, P(A) ' M. The isomorphism x 2 M $ !x 2 P(A) is de�ned by!x(f) := f(x): The nonommutative distane (1)d(x; y) = supf2C1(M) f jf(x)� f(y)j = k[i=�; fI℄k � 1g ;oinides with the geodesi distane L(x; y) between points x; y ofM. This is a lassial result8but the proof introdues ideas and notations important for further presentation so that we shallgive it in detail (this version of the proof omes from ref.22).The supremum is reahed on A+, so f is real. For  2 H, [i=�; fI℄ = i(=�f) , sok[i=�; fI℄k2 = k(i=�f)�i=�fk = k���f���fk = kg����f��fIk= supq2M fg��(q)��f(q)��f(q)g :The gradient �!O in the usual sense is the exterior derivative d (not to be onfused with thedistane) whih maps 0-forms (i.e. smooth funtions over M) onto 1-forms:�!Of := (��f)dx� 2 T �M :By de�nition27 g de�nes an inner produt (thus, a norm) in eah otangent spae T �qM in suha manner that �!Of(q)2T �qM = g��(q)��f(q)��f(q) :Omitting the index Tq�M, one writesk[i=�; fI℄k= supq2M �!Of(q) :Now, let  : t 2 [0; 1℄!M be the minimal geodesi between x and y and let _ denote the totalderivative with respet to t. For any f 2 C1 (M)f(x)� f(y) = Z 10 _f((t)) dt = Z 10 ��f(p) _�(t)dt3



where p := (t). The metri de�nes an isomorphism TpM' T �pM suh that��f(p) _�(t) = g��(p) ��f(p) _�(t) = h�!Of(p); _�(t)dx�i ;thus, by Cauhy-Shwarz, j��f(p) _�(t)j � �!Of(p) k _�(t)dx�k. Assuming that f reahes thesupremum, one has �!Of � 1, sod(x; y) = jf(x)� f(y)j � Z 10 k _�(t)dx�k dt = L(x; y) :This upper bound is reahed by the funtionL : q 7! L(q; y): (3)Indeed, L(x)� L(y) = L(x; y) and supq2M�!OL(q) � 1 : (4)To prove (4), take q; q0 2 M with oordinates q�; q0� in a given hart suh that q0 omes fromq by the in�nitesimal transformation �(�), � << 1, where � is the ow generated by the vetor�eld g��(��L)�� with initial ondition �(0) = q. Then, writing dq� := q0� � q�,q� + dq� = q0� = ��(�) = ��(0) + � d��dt (0) +O(�2) = q� + � g��(q)��L(q) +O(�2) ;whih means that dq� = � g��(q)��L(q) +O(�2) : (5)As L(q0; y) is the shortest length from q0 to y, L(q0; y) � L(q0; q) + L(q; y), and one hasL(q + dq) � L(q0; q) + L(q) : (6)Using (5),L(q0; q) :=qg��(q)dq�dq� =q�2g��(q)g��(q)��L(q) g��(q)��L(q) = �qg����L(q) ��L(q) :Inserting into the r.h.s. of (6) whose l.h.s. is developed with respet to � yieldsL(q)+��L(q) dq� = L(q)+ � g��(q)��L(q)��L(q)+O(�2) � �qg����L(q) ��L(q)+L(q)+O(�2);whih is true for all q, hene (4) and �nally d(x; y) = L(x; y).IV Tensor produt of spetral triples.The tensor produt of an even spetral triple TI = (AI;HI ; DI ; �I) with hirality �I by thespetral triple TE = (AE;HE; DE; �E) is the spetral triple TI 
 TE := (A0;H0; D0) de�ned byA0 := AI 
AE; H0 := HI 
HE; D0 := DI 
 IE + �I 
DE ;4



where the representation of A0 is �0 := �I 
 �E. The notation TI 
TE is a matter of onventionfor spetral triples do not form a vetor spae. The produt of spetral triples is ommutativein the sense that when TE is even with hirality �E, then TE 
 TI := (A;H; D) is well de�nedby permutation of fators,A := AE 
AI ; H := HE 
HI ; D := DE 
 II + �E 
DI ; (7)� = �E 
 �I , and is equivalent to TI 
 TE up to the unitary operatorU := (II + �I2 
 IE + II � �I2 
 �E) :For physis it is interesting to take for this tensor produt the produt of the ontinuumby the disrete, namely to study the geometry of the four-dimensional spae-time of Eulideangeneral relativity together with an internal disrete spae. In the standard model, the internalspae desribes the eletroweak and strong interations and is de�ned by a spetral triple TIin whih the algebra AI is hosen suh that its unitarities are related to the gauge group ofinterations while HI is the spae of fermions. Both AI and HI are �nite dimensional, so TIis a �nite spetral triple21 and TE is the usual spetral triple (2) of a manifold. The spetraldimension of a �nite spetral triple is 0 and dim(TE) = dim(M) = 4: both TE and TI are eventherefore both TE 
 TI and TI 
 TE are de�ned.In this setion, we give general results that do not require neither TE to be the spetraltriple of a manifold nor TI to be �nite. To �x notations we simply assume that TE is even sothat we work with TE
TI . To study the metri of a nonommutative spae, the �rst goal is tomake expliit the set of pure states of the assoiated algebra. For !E and !I being pure statesof AE and AI , the pair (!E; !I) is a state of A whih ats as !E 
 !I (that I maps to 1 isobvious, the positivity an be seen in ref.26 for instane) but this is not neessarily a pure state.Moreover there an be pure states of A that annot be written as tensor produts. However,as soon as one of the algebras is abelian, one obtains19 that P(AE 
 AI) ' P(AE) � P(AI)and any pure state ! of A writes ! = !E 
 !I.In the two sheets-model A = C1 (M) 
 C 2 , therefore any pure state is !x 
 !i where !i,i = 1; 2, is a pure state of C 2 and labels the sheets. It is known8 that d(!x
 !i; !y 
 !i) is thegeodesi distane L(x; y) while d(!x 
 !i; !x 
 !j) is a onstant. This extends to any produtof spetral triples. One �xed a pure state !E, d(!E
!I ; !E
!0I) depends only on the spetraltriple TI and, similarly, d(!E 
 !I; !0E 
 !I) depends only on TE. This is true even when noneof the algebra is ommutative: the distane is then de�ned between states that may be notpure.Theorem 2. Let dE, dI, d be the distane in TE, TI, TE 
 TI respetively. For !E, !0E inP(AE) and !I, !0I in P(AI), d (!E 
 !I ; !E 
 !0I) = dI (!I ; !0I) ;d (!E 
 !I ; !0E 
 !I) = dE (!E; !0E) :Proof. Let fj denote the elements of AE and mi those of AI. A generi element of A isa = f i 
mi ; where the summation index i runs over a �nite subset of N . De�nition (7) yields[D; a℄ = [DE; f i℄
mi + f i�E 
 [DI ; mi℄ :5



Multiplying on left and right by the unitary operator �E 
 II allows to write[DE; f i℄
mi + f i�E 
 [DI ; mi℄ = �[DE; f i℄
mi + f i�E 
 [DI ; mi℄ ;where we use that �E = ��E ommutes with f i and antiommutes with DE. For u; v in a normedspae, 2 kuk � ku+ vk+ ku� vk, thus[DE; f i℄
mi � k[D; a℄k ; (8)and kf i�E 
 [DI ; mi℄k � k[D; a℄k : One an fatorise the left-hand side of this last equation by�E 
 II in order to have f i 
 [DI ; mi℄ � k[D; a℄k : (9)For any !E 2 P(AE) and a 2 A+, let us de�ne aE 2 AI byaE := !E(f i)mi:aE is selfadjoint. Indeed, positivity of a, i.e. a = (f p�
mp�)(f q
mq) = 12(f pq
mpq+f pq�
mpq�)where f pq := f p�f q and mpq = m�pmq, yieldsaE = 12(!E(f pq)mpq + !E(f pq�)mpq�) = a�E:Thus i[DI ; aE℄ = i (!E 
 II) �f i 
 [DI ; mI ℄�in B(HI) is normal. One knows19 that for any normal element a of a C�-algebra, kak =sup�2S j�(a)j, where S is the set of states. Thus, with SI the set of states of B(HI),k[DI ; aE℄k= sup�I2SIj�I([DI ; aE℄)j;� sup(~!E ;�I)2P(AE)�SIj(~!E 
 �I)(f i 
 [DI ; mi℄)j;� sup(�E ;�I)2SE�SIj(�E 
 �I) �f i 
 [DI ; mi℄�j = f i 
 [DI ; mi℄ ;where we use that if i 
 [DI ; mi℄ 2 B(H) is also normal. Together with (9),k[DI ; aE℄k � k[D; a℄k :Sine (!E 
 !I)(a)� (!E 
 !0I)(a) = !I(aE)� !0I(aE),d(!E 
 !I ; !E 
 !0I) � dI(!I ; !0I):This upper bound is reahed by IE 
 aI where aI 2 AI reahes the supremum for TI alone,namely dI(!I ; !0I) := j(!I � !0I)(aI)j and 1 = k[DI ; �I(aI)℄k.The proof for d(!E 
 !I ; !0E 
 !I) is similar, using (8) instead of (9). �
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V Metri in the ontinuum � disrete.The key points of Theorem 2 are equations (8) and (9). The �rst one allows to forget aboutthe internal part of the ommutator and makes sense for states of A de�ned by di�erent purestates on AE but the same pure state on AI. When TE is the spetral triple of a manifold andTI a �nite spetral triple, the nonommutative spae desribed by TE � TI is a �bre bundleover the manifold with a disrete �bre. This an also be seen as the union of several opiesof the manifold, indexed by the element of the �bre. Theorem 2 simply says that eah of theopies is endowed with the metri of the base. Note that the disussion about the Gromovdistane between manifolds with distint metris in ref.8 may not be transposed here beausesuh manifolds are not desribed by a tensor produt of spetral triples.In ontrast, (9) does not take into aount the external part of the ommutator and issuÆient to determine the distane between states de�ned by the same pure state on AI (i.e.points on the same �bre within the piture of a ontinuum � disrete spae). Of ourse themixed ase d (!E 
 !I; !E 0 
 !I 0) { the distane between di�erent points on di�erent opiesof the manifold { requires to take into aount both the internal and the external part of theommutator. This makes the omputation more diÆult. However, for ontinuum � disretespaes, some of these distanes have a nie interpretation in terms of a disrete Kaluza-Kleinmodel: although the internal spae is disrete, the distane appears as the geodesi distanein a "virtual" (4+1)-dimensional manifold ("virtual" means that the points between the sheetsare not part of the geometry, the embedding into a higher dimensional ontinuum spae is apratial intermediate).Let us �rst give a semi-general result whih does not require TE to be the spetral triple ofa manifold (TE is just supposed to be even to �x notations) but whih assumesAI :=Mk Ak ;where k runs over a �nite subset of N and the Ak's are von Neumann algebras { i.e. theiruniversal representation f�u;Hug is a von Neumann algebra { on C . Note that a pure state ofa diret sum of algebras is a pure state of one of the algebras, that isP(AI) =[k P(Ak):The reason why we restrit to von Neumann algebras is that to any pure states ! of Akorresponds a projetion � 2 Ak suh that��(a) := �a� = !(a)�: (10)This result omes from the proof of proposition 2.16 of ref.33 in whih is assumed, by hypothesis,that the universal enveloping von Neumann algebra ~Ak equals �u(Ak). Stritly speaking thisproof is written for omplex algebras. However in the standard model, we shall expliitly exhibitsuh a projetion for the real internal algebra so that, in the following, we deal with algebraover K where K = C or R. Typially, in physial examples, the Ak are matrix algebras and � isa density matrix. When pure states of di�erent omponents Ak are involved and DI ommuteswith the diret sum of the orresponding projetors, one obtains as an immediate onsequeneof Lemma 1 that AI redues to K 2 . 7



Proposition 3. For !k 2 P(Ak), let � be the orresponding projetion in Ak. De�ne similarly�0 for k0 6= k and let p := �� �0. If [DI ; p℄ = 0 then, for any !E; !0E 2 P(AE),d (!E 
 !k; !0E 
 !k0) = de (!E 
 !1; !0E 
 !2)where !1; !2 are the pure states of K 2 and de is the distane assoiated to Te := TE 
 Tr withAr := K 2 ; Hr := pHI ; Dr := pDIp��Hr :Proof. The projetion e := IE
 p 2 A de�nes the restrited triple Te := (Ae;He; De) in whihAe := �e(A) = AE 
 �p (AI) :Sine � and �0 orrespond to di�erent omponents of AI they are orthogonal, therefore�p(AI) = �� (Ak)� ��0 (Ak0) = !k(Ak)�� !k0(Ak0)�0by (10). !k; !k0 being surjetive on K , !k(Ak)� and !k0(Ak0)�0 are isomorphi to K . HeneAe = AE 
 K 2 :The state !i 2 P(K 2) extrats the ith omponent of a pair of elements of K . In detail, foraI 2 AI, �p(aI) = !k(aI)� � !k0(aI)�0 ; (11)so that !1 Æ �p(aI) = !k(aI): Sine e ats like the identity on AE,(!E 
 !1) Æ �e = !E 
 (!1 Æ �p) = !E 
 !k;and (!0E 
 !2) Æ �e = !0E 
 !k0. By hypothesis [D; e℄ = �E 
 [DI ; p℄ = 0 so Lemma 1 yieldsd (!E 
 !k; !0E 
 !k0) = de (!E 
 !1; !0E 
 !2) :Hr and Dr are given by Lemma 1. �To expliitly ompute de, we now fous on the ase of a ontinuum � disrete spae andwe take for TE the spetral triple of a manifold (2). To simplify the notations, the pure state!x
!k is denoted by xk. The main result of this setion is that the internal spae is orthogonalto the manifold, in the sense of Pythagorean theorem, as soon as the Dira operator ommuteswith the sum of the density matries.Theorem 4. Let !k; !k0 2 P(Ak);P(Ak0), k 6= k0. Let �; �0 be the assoiated projetions andp := �� �0. If [DI ; p℄ = 0, then for any points x; y in Md(xk; yk0)2 = d(xk; yk)2 + d(yk; yk0)2:Proof. The proof onsists of three steps. First the problem is redued to a two-sheets model.Then the distane is shown to be the geodesi distane within a (4+1)-dimensional Riemannianmanifold whih, third, satis�es Pythagorean theorem.1) With notations of Proposition 3,d(xk; yk0) = de(x1; y2): (12)8



Let us be more expliit on Hr; �r and Dr.Hr := pHI = Hk �Hk0; (13)where Hk := �HI and Hk0 := �0HI . Following (11), one lets ar = !k(aI)� � !k0(aI)�0 denote ageneri element of Ar. Clearly �r(�) = Ik so�r(ar) = !k(aI)Ik� !k0(aI)Ik0: (14)Dr is the restrition to Hr of the projetion of DI on Hr, namelyDr := � V MM�W � (15)where M is a linear appliation from Hk to Hk0, and V , W are endomorphisms of Hk, Hk0respetively. M is supposed to be non zero for the ontrary makes Dr ommuting with �r, thatis all states of A de�ned by !k are at in�nite distane from any states de�ned by !k0.Equations (13, 14, 15) assoiated to (11) fully determine the triple Tr, and thus Te. Omitting� and �0 appearing in (11), a generi element of Ae writesa = f i 
 !k(mi) � f i 
 !k0(mi) = f � g;where mi 2 AI and f i; f := f i!k(mi); g := f i!k0(mi) 2 C1 (M). In aordane with (1), weassume that f � g is positive, i.e. f and g are real funtions. x1 and y2 at asx1(a) = f(x); y2(a) = g(y):a is represented by fIE
 Ik � gIE 
 Ik0and the Dira operator De = i=� 
 II + 5 
Dr is suh that[De; a℄ =  i=�f 
 Ik (g � f)5 
M(f � g)5 
M� i=� 
 Ik0 ! : (16)2) Let us show that de oinides with the geodesi distane on the ompat manifoldM0 := [0; 1℄�M ;with oordinates x0a = (t; x�), equipped with the metrifgab(x0)g := �kMk2 00 g��(x)� ;and made a spin manifold by adding to the previous -matriest = kMk 5:Thanks to setion III, it is enough to show that de oinides with the distane L0 of the tripleA0 = C1(M0); H0 = L2(M0; S); D0 = ia�a = it�t + i=� :9



To proeed, let A00 be the subset of A0+ onsisting of all funtions�(t; x) := (1� t)f(x) + tg(x);where f and g are any real funtions on M. Thenk[D0; �℄k2 = ka�a�k2 = sup(t;x)2M0 �gab(t; x) �a�(t; x) �b�(t; x)	� supx2M( j(f � g)(x)j2 kMk2 + supt2[0;1℄P (t; x)) ;where P (t; x) := t2 �!O (f � g)(x)2 + 2tg��(x) ��(f � g)(x) ��g(x) + �!Og(x)2is a parabola in t of positive leading oeÆient, i.e. whih reahes its maximum for t = 0 or 1.Note that P (0; x) = �!Og(x)2 ; P (1; x) = �!Of(x)2and, thanks to (16),�IE 
 Ik 00 0� [De; a℄�IE 
 Ik 00 5 
 Ik0�2 = � i=�f 
 Ik (g � f)IE 
M0 0 �2= supx2M ��!Of(x)2 + jf(x)� g(x)j2 kMk2� � k[De; a℄k2 :Similarly, one has supx2M ��!Og(x)2 + jf(x)� g(x)j2 kMk2� � k[De; a℄k2, henek[D0; �℄k � k[De; a℄k :Consequently, sine x1(a)� y2(a) = �(0; x)� �(1; y),de(x1; y2) � sup�2A00 fj�(0; x)� �(1; y)j = k[D0; �℄ � 1kg � L0 ((0; x); (1; y)) : (17)Proving the onverse inequality alls for more preisions on the geometry of M0. Beausefgab(x0)g is blok diagonal and does not depend on t, the oeÆients of the Levi-Civita on-nexion are �tt� = �t�t = 12gtt��gtt ; ��tt = �12g����gtt ;��t� = ���t = �ttt = �t�� = 0 ;where gtt = (gtt)�1 = kMk�2 : The geodesi equations readd2td� 2 + gtt(��gtt) dtd� dx�d� = 0 ; (18)d2x�d� 2 � 12g��(��gtt) dtd� dtd� + ����dx�d� dx�d� = 0 ; (19)and, beause gtt does not depend on x�, redue todtd� = onstant := gttK and d2x�d� 2 + ����dx�d� dx�d� = 0 ; (20)10



where K is a real onstant. In other terms, the projetion to M of a geodesi G 0 of M0 is ageodesi G of M, and the projetion of G 0 to the submanifold [0; 1℄� G is a straight line (i.e.a geodesi of the submanifold). Let fxa(�)g be a geodesi in M0 parametrised by its lengthelement d� . Note that, using (20),1 = d� 2d� 2 = g�� dx�d� dx�d� + gttK2: (21)Let ds be the line element of M. Assuming that gttK2 6= 1 (this will be disussed later),d� 2 = ds21� gttK2 ; dt = dtd� d� = gttKdsp1� gttK2 : (22)For q in M, let G 0q be the minimum geodesi of M0 between (0; q) and (1; y), and Gq itsprojetion on M. Let us de�ne f0 2 C1 (M) byf0(q) =p1� gttK2L(q) =p1� gttK2 ZGq ds;where L has been de�ned in (3). Take a0 = (f0; g0) 2 Ae, where g0 = f0 �K. Thenx1(a0)� y2(a0) = f0(x)� g0(y) = f0(x) +K: (23)But the seond equation (22) gives1 = ZG0x dt = gttKp1� gttK2 ZGx ds;inserted in (23) as K1,x1(a0)� y2(a0) =p1� gttK2 ZGx ds+ gttK2p1� gttK2 ZGx ds = 1p1� gttK2 ZGx ds:Using the �rst equation (22) one obtainsx1(a0)� y2(a0) = ZG0x d� = L0 ((0; x); (1; y)) : (24)Moreover, =�f0 = =�g0 and ��f0 =p1� gttK2��L, so (16) yieldsk[De; a0℄k2 = supq2M�g��(q)��f0(q)��f0(q) + gttK2	= supq2M�(1� gttK2) �!OL(q)2 + gttK2� :Realling (4), this gives k[De; a0℄k � 1 so, with (24),de(x1; y2) � L0((0; x); (1; y)):Together with (17) and (12), d(xk; yk0) = L0((0; x); (1; y)) : (25)11



This result holds as long as gttK2 6= 1. If this is not true, then U := dx�d� �� 2 TM is zero for(21) indiates that g(U; U) = 0 and M is Riemannian. In other words, x�(�) is a onstant.This annot be the equation of G 0x unless x = y. As a onlusion, (25) holds as soon as x 6= y.When x = y, (12) gives d(yk; yk0) = de(y1; y2). With dr denoting the distane assoiatedto the triple Tr alone, Proposition (2) yields de(y1; y2) = dr(!1; !2); whih is nothing but thedistane of the simplest two-points spae and equals8 1kMk . Thusd(yk; yk0) = 1kMk : (26)The projetion Gy of the geodesi G 0x = G 0y is, by (19), a geodesi between y and y, that is tosay a point. G 0y redues to a straight line in the hyperplane. Thus d� 2 = gttdt2 andL0 ((0; y); (1; y)) = pgtt ZG0y dt = pgtt = 1kMk :Consequently d(yk; yk0) = L0 ((0; y); (1; y)) and (25) holds even if x = y.3) The last step is to show that (25) satis�es Pythagorean equality. gtt being a onstant,equation (22) indiates that d� and ds are equal up to a onstant fator. In this way, onemay parametrise a geodesi of M0 by ds rather than d� and obtains, thanks to the geodesiequations, dt = gttK 0dswhere K 0 is a real onstant. Thend� 2 = gttdt2 + ds2 = ds2(1 + gttK 02):Thus L0 ((0; x); (1; y)) =q1 + gttK 02 ZG0x ds =q1 + gttK 02L(x; y)=qL(x; y)2 + gttK 02L(x; y)2: (27)On one side, Theorem 2 gives L(x; y) = d(xk; yk). On the other side,gttK 02L(x; y)2 = gtt�ZG0x gttK 0ds�2 = gtt �ZG0x dt�2 = gtt = 1kMk2 = d2(yk; yk0)by (26). Together with (25) and (27),d(xk; yk0)2 = d(xk; yk)2 + d2(yk; yk0) : �VI Flutuations of the metri.For a omplete presentation of the material of this setion and a justi�ation of the termi-nology, see refs.8;10. To a triple (A;H; D), the axiom of reality adds an operator J , alled thereal struture, suh that [JaJ�1; b℄ = 0 for any a; b 2 A. This allows to de�ne a right ationof A over H whih makes sense beause of the nonommutativity of the algebra. To de�ne a12



notion of unitarily equivalent spetral triples preserving the operator J , a unitary element u ofA is implemented by the operator U := uJuJ�1 rather than the operator u. Then the ationof u de�nes the gauge transformed triple (A;H; DA) whereDA := UDU� = D + A+ JAJ�1 (28)with A := u[D; u�1℄ :The selfadjoint operator A governs the failure of invariane ofD under a gauge transformation8.Under a gauge transformation, A transforms like a usual vetor potential. Sine in eletrody-namis the vetor potential is a 1-form, one de�nes the spae 
1 of 1-form of the nonommu-tative spae (A;H; D) as the set of elementsai[D; bi℄where ai; bi 2 A. Note that we use the simplifying notation 
1 rather than 
1D, more ommonin the literature, beause we only deal with 0-forms and 1-forms (
nD di�ers from 
n for n � 2).Sine A is selfadjoint, the set of vetor potentials is simply the subset of selfadjoint elements of
1. For any vetor potential A, DA de�ned by (28) is alled the ovariant Dira operator.The distane is not invariant under a gauge transformation and the metri is said to u-tuate. To study suh utuations, one has to replae D by DA everywhere in the preedingsetions. A well known result makes this replaement less studious than it seems.Lemma 5. [a; J!J�1℄ = 0; 8! 2 
1; a 2 A.Proof. [J�1aJ; [D; bi℄℄ = 0 (�rst order axiom) and [a; JaiJ�1℄ = 0 (axiom of reality) yield[a; J!J�1℄ = [a; Jai[D; bi℄J�1℄= aJaiJ�1J [D; bi℄J�1 � Jai[D; bi℄J�1a= Jai[D; bi℄J�1a� Jai[D; bi℄J�1a = 0 : �As an immediate onsequene, [DA; a℄ = [D + A; a℄ : (29)Let us now work out the 1-forms of a tensor produt triple TE 
 TI . In refs.20;32 it is shownthat 
1 = 
1E 
 
0I + �E
0E 
 
1I ;where 
0E = AE is the set of 0-forms of AE, and similar de�nitions for the other terms. WhenTE is the spetral triple of a manifold,
1E 3 f j[i=�; gjIE℄ = if j(���gj) = i�f� ;where f j; gj; f� := f j��gj 2 C1 (M). A 1-form of the total spetral triple is
1 3 i�f i� 
 ai + 5hj 
mjwhere ai 2 AI, hj 2 C1 (M), mj 2 
1I . A vetor potential isA = i� 
 A� + 5 
H (30)13



with A� := f i�ai an AI-valued skew-adjoint vetor �eld (over M) and H := hjmj an 
1I -valuedselfadjoint salar �eld. For a matrix algebra (or a diret sum of matrix algebras), the skew-adjoint elements form the Lie algebra of the Lie group of unitarities. This Lie group representsthe gauge group of the theory, thus A� is a gauge potential. In ref.10 a formula is given forthe utuations of the metris due to A�. Here, we fous on the utuations oming from thesalar �eld H only, and we assume that A� = 0. Then (29) beomes[DA; a℄ = [D + 5 
H; a℄: (31)From now on, we write DA := D + 5 
 H. For simpliity, d still denotes the distaneassoiated to the triple (A;H; DA). Remembering de�nition (7), a salar utuation substitutesDH := DI +Hfor DI . The main di�erene is that the internal Dira operator DH now depends on x so thateah point x of the manifold de�nes an internal tripleT xI := (AI;HI ; DH(x)) :This interpretation of salar utuations perfetly �ts to the adaptation of Theorem 2.Theorem 2'. Let L be the geodesi distane in M and dx the distane of the spetral triple T xIalone. For x; y 2 M and !k; !k0 2 P(AI),d(xk; xk0) = dx(!k; !k0);d(xk; yk) =L(x; y):Proof. The adaptation of the proof of Theorem 2 is straightforward. Notations are similarexept that !E is now !x so that aE is replaed by ax. With H = hjmj,[DH(x); ax℄ = [DI + !x(hj)mj; !x(f i)mi℄= !x(f i)[DI ; mi℄ + !x(hj)!x(f i)[mj; mi℄= (!x 
 II) �f i 
 [DI ; mi℄ + hjf i 
 [mj; mi℄� (32)= (!x 
 II) �f i 
 [DH ; mi℄� :Then, i[DH(x); ax℄ being normal,k[DH(x); ax℄k= sup�I2SIj�I ([DH(x); ax℄)j= sup�I2SIj(!x 
 �I) �f i 
 [DH ; mi℄�j� sup~!E
�I2P(AE)
SIj(~!E 
 !I) �f i 
 [DH ; mi℄�j� f i 
 [DH ; mi℄ :Equation (9) being replaed by kf i 
 [DH ; mi℄k � k[DA; a℄k, one obtainsk[DH(x); ax℄k � k[DA; a℄k :14



The rest of the proof is then similar as in Theorem 2. �Note that in (32) we use that !x is a harater, i.e. that AE is Abelian.Applied to the two sheets-model, Theorem 2 simply says that the distane between thesheets is enoded by a salar �eld, as it has already been shown in ref.4 (see also ref.5 for aM2(C )� C model). Theorem 4 is modi�ed in a more serious way for the utuation introduesan x-dependene for the oeÆients of the Kaluza-Klein metri.Theorem 4'. Let !k; !k0 2 P(Ak);P(Ak0), k 6= k0. Let �; �0 be the assoiated projetions andp := �� �0. If [DH ; p℄ = 0 for any points of M, then for any points x; y 2 M,d(xk; yk0) = L0((0; x); (1; y))where L0 is the geodesi distane of the spin manifoldM0 := [0; 1℄�M equipped with the metri�kM(x)k2 00 g��(x)�in whih g�� is the metri of M and M is the restrition to the representation of Ak0 of theprojetion of DH on the representation of Ak.Proof. Unless otherwise made preise, notations are similar to Theorem 4. The �rst part of theproof is hardly modi�ed. Let  r 
 �r 2 H. Realling (31) and the de�nition (30) of H,[DA; a℄ r 
 �r = 5 r 
 [DI ; p℄�r + 5hj r 
 [mj; p℄�r 2 H:Evaluated at x 2 M, the above expression yields[DA; a℄ r(x)
 �r = 5 r(x)
 [DI +H(x); p℄�r = 0by hypothesis, whih means that [DA; a℄ is the zero endomorphism of H so that Lemma 3applies and d(xk; yk0) = de(x1; y2):The only di�erene with Theorem 4 is that Dr now depends on x. For instane when AI is�nite dimensional then M is a matrix whose entries are salar �elds on M.Now gtt(x) := kM(x)k2 depends on x but is still independent with respet to t. The geodesiequations (18, 19) no longer redue to (20) butdd� (gtt dtd� ) = ( dd� gtt) dtd� + gtt dd� ( dtd� )= (��gtt) dtd� dx�d� + gtt d2td� 2= gtt�gtt(��gtt) dtd� dx�d� + d2td� 2� = 0by (18). Thus gtt dtd� = K is a onstant. This is almost the �rst equation (20), exept thatdtd� = Kgtt(x) (33)15



now depends on x. a0 = (f0; g0) is de�ned byf0(q) := ZGqp1�K2gttds ; g0 := f0 �K ; (34)where G 0q is the minimal geodesis from (0; q) to the �xed point (1; y) and Gq its projetion toM (note that Gq is no longer a geodesi of M). Assuming thatK2gtt(p) 6= 1 (35)for any p 2 Gq allows to write d� = dsp1�K2gtt and then1 = ZG0q dt = ZG0q dtd� d� = ZGq Kgttp1�K2gttds : (36)If (35) does not hold, we all G the set of points p of Gq for whih 1�K2gtt(p) = 0. G0 is theorresponding subset of G 0q. For any p0 2 G 0q, (33) yieldsdtd� d� = K�1d� ;and (36) is replaed by 1 = ZGq=G Kgttp1�K2gttds+ ZG0 K�1d� :Inserted as K1 in x1(a0)� y2(a0) = f0(x) +K, this givesx1(a0)� y2(a0) = ZGxp1�K2gttds+ ZGx=G K2gttp1�K2gtt(x)ds+ ZG0 d�= ZGp1�K2gttds+ ZGx=G dsp1�K2gtt(x) + ZG0 d�= ZG0x=G0 d� + ZG0 d� = L0 ((0; x); (1; y)) :The funtion f0(q) is in the viinity of q by de�nition (34) onstant on a odimension 1 hy-persurfae through q. Choosing an adapted referene frame with fx1; x2; x3g being the oor-dinates in the hypersurfae and x0 the normal oordinate, one has ds(q) = pg00(q)dx0 and��f0(q) = Æ0��0f0(q), giving ��f0(q) = Æ0�p1�K2gtt(q)pg00(q) ;g��(q)��f0(q)��f0(q) = g00(1� gttK2)g00 = 1� gttK2 ;whih leads to k[De; a0℄k = 1. Hene the result. �Few omments about this theorem. First, sine all the oeÆients of the metri depend onx, there is no way that the geodesi distane satis�es Pythagorean theorem. Seond, a metriis non-degenerate by de�nition, and we impliitly assume that M(x) never anels. This wasassumed in Theorem 4 to make the distane �nite. Here the point is more subtle for the �eldM16



may be zero for some points x. Let ker(M) �M be the set of suh points. For any q 2 ker(M),d ((0; q); (1; q)) = +1 by Proposition 2'. Moreover,d ((0; q); (1; q))� d ((0; q); (0; x)) + d ((0; x); (1; y)) + d ((1; y); (1; q))� L(p; x) + d ((0; x); (1; y)) + L(y; q) ;so d ((0; x); (1; y)) = +1 for any x; y 2 M, whih ontradits Theorem 4' if x = y =2 ker(M).One solution is to assume that any point (t; q) with q 2 ker(M) is at in�nite distane from anyother point, and de�neM0 as [0; 1℄�M= ker(M). If any path between x and y rosses ker(M),this operation splits M0 into disonneted parts. A better solution is to take into aount thenon-salar part A� of the utuationa. This goes beyond the aim of this paper and the readershould refer to ref.10.VII The standard model and other examples.We shall investigate the metri of spaes whose internal part is one of those desribed inref.17. We also give some indiations on the distane in the standard model.Commutative spaes.We all ommutative spae a spetral triple whose internal algebra is C k , k 2 N . Anyk-tuple of omplex numbers a = (a1; :::; ak) is represented by a diagonal matrix. For two purestates !u; !v (u; v 2 [1; k℄), �u � �v is the matrix with null oeÆients exept 1 on the uth andvth elements of the diagonal. Within the graphial framework of ref.17, one shows that theinternal distane only depends on points that are on some path between u and v. In otherterms dI(u; v) = ~dI(u; v)where ~dI denotes the distane omputed with the Dira operator ~DI = �DI� in whih� := Mi2P[Q�i;with P the set of points that are not onneted to u nor v, and Q the set of points that areonneted to u or - this is an exlusive "or"- v by one and only one path. Note that, for anyinternal 1-form, � ai [DI ; bi℄� = ai[ ~D; bi℄so that the~notation is oherent with the salar utuation. At any point x of the manifolddx(!u; !v) = ~dx(!u; !v)therefore, to apply Theorem 2, it is enough to hek that [ ~DH ; �℄ = 0. One veri�es thatwhenever a omponent of the internal Dira operator is zero, the orresponding omponent ofany internal 1-form is also zero, so that [ ~DH ; �I ℄ = 0 as soon as [ ~DI ; �I ℄ = 0.aIn physial models, M(x) is the representation of the Higgs �eld in the unbroken phase. Then,at M = 0 the Higgs potential reahes its loal maximum. Negleting the gauge potential A�, theFaddeev-Popov determinant of the t'Hooft gauge-�xing ondition is zero at the maximum of the Higgspotential. This leads to a Gribov problem and questions a quantum treatment of M(x) without gauge�eld. (observation by Helmuth H�u�el) 17



This means that the only path between u and v is the link u � v itself. The simplestase, k = 2, endows the two-sheets model with a ylindrial metri. The other examples ofommutative spaes given in ref.17 do not �t the required ondition and our next examples willbe nonommutative.Two-points spae.Let AI =Mn(C ) � C be represented over C n+1 by�m 00 � (37)where m 2Mn(C ) and  2 C . Possible hirality K and Dira operator � areK = �In 00 �1� ; � = � 0 MM� 0 � ;where M 2 C n . But there is no operator J to utuate the metri. A solution is to make (37)ating over HI =Mn+1(C ) and de�neD := � +  �; �I := K +  K; J :=  �for any  2 HI : Sine J�J�1 = J� � = (� �)� =  �, one has D = � + J�J�1 .Moreover, for any a 2 AI , [J�J�1; a℄ = a � � a � = 0, so [DI ; a℄ = [�; a℄ : Note thatthis result omes diretly from Lemma 5 as soon as one knows that � is a 1-form21. Sine theoperator norm over C n is equal to the operator norm over Mn(C ),k[D; a℄k = k[�; a℄kand the distane is in fat the same as the one omputed with the spetral triple (AI; C n+1 ;�).Note that this point is assumed in ref.31.Let �1 be the density matrix assoiated to a pure state !1 of Mn (C ) and �0 the one orre-sponding to the pure state !0 of C . Then�1 � �0 = ��1 00 1�so that [DI ; �1 � �0℄ = 0 is equivalent to �1M = M: In other terms, M is olinear to therange of �1. An happy oinidene makes that this is preisely the ondition under whihthe internal distane dI(!1; !0) = 1kMk is �nite17. Theorem 4 is true for any Dira operator {dI(!0; !1) = +1 makes d(x0; y1) = +1 for any x; y in M { sod(x0; y1) =sL(x; y)2 + 1kMk2when M is in the range of �1, is in�nite otherwise.
18



The standard model.The spetral triple of the standard model (see refs.8;10;7 and ref.3;6 for a physial expetationof the Higgs mass) is the tensor produt of the usual spetral triple of a manifold TE by aninternal triple in whih AI = H � C �M3(C )(H is the real algebra of quaternions) is represented overHI = C 90 = HP �HA = HPL �HPR �HAL �HAR :The basis of HPL = C 24 onsists of the left-handed fermions�ud�L ; �s�L ; � tb�L ; ��ee �L ; ���� �L ; ���� �L ;and the basis ofHPR = C 21 is labelled by the right-handed fermions uR; dr; R; sR; tR; bR and eR; �R; �R(the model assumes massless neutrinos). The olour index for the quarks has been omitted.HAR and HAL orrespond to the antipartiles. (a 2 H ; b 2 C ;  2M3(C )) is represented by�I(a; b; ) := �P (a; b)� �A(b; ) := �PL (a)� �PR(b)� �AL (b; )� �AR(b; )where, writing B := � b 00 �b� 2 H and N = 3 for the number of fermion generations,�PL (a) := a
 IN 
 I3 � a
 IN ; �PR(b) := B 
 IN 
 I3 � �b
 IN ;�AL (b; ) := I2
 IN 
  � �bI2
 IN ; �AR(b; ) := I2
 IN 
  � �bIn :One de�nes a real struture JI = � 0 I15NI15N 0 � Æ�where � denotes the omplex onjugation, and an internal Dira operatorDI := �DP 00 �DP � = �DP 00 0� + JI �DP 00 0�J�1Iwhose diagonal bloks are 15N � 15N matriesDP := � 0 MM� 0 � ;with M a 8N � 7N matrixM := �(e11 
Mu + e22 
Md)
 I3 00 e2 
Me� : (38)Here, feijg and feig denote the anonial basis ofM2 (C ) and C 2 respetively. Mu, Md, Me arethe mass matriesMu = 0�mu 0 00 m 00 0 mt1A ; Md = CKM 0�md 0 00 ms 00 0 mb1A ; Me = 0�me 0 00 m� 00 0 m�1A19



whose oeÆients are the masses of the elementary fermions, pondered by the unitary Cabibbo-Kobayashi-Maskawa matrix. The hirality, last element of the spetral triple, is�I = (�I8N)� I7N � (�I8N)� I7N :The presene of the onjugate representation �b in �I requires to view C as a real algebra.Therefore, the pure state !0 of C is no longer the identity but an R-linear funtion with valuein R whih maps 1 to 1. In other words, !0 is the real part: !0(b) = Re(b). As a quaternionialgebra, H has a single pure state and this remains true for H seen as a real algebra.Lemma 6. The single pure state !1 of H is !1(a) = 12Tr(IH a).Proof. The representation of H over the four-dimensional real vetor spae with basis f1; i; j; kgsuh that i2 = j2 = k2 = �1, ij = �ji = k, jk = �kj = i and ki = �ik = j, isa = � + �i+ j + Ækwhere �; �; ; Æ 2 R: Sine �a := � � �i � j � Æk, a�a 2 R+ so any R-linear form is positive.Therefore a state is any R-linear form that maps IH = 1 to 1. Let ! be suh a state. Bylinearity, !(a) = � + �!(i) + !(j) + Æ!(k);so ! is uniquely determined by its values on i; j; k. Let !!(i) be the linear form de�ned by!!(i)(i) = !(i), !!(i)(1) = !!(i)(j) = !!(i)(k) = 0. De�ne similarly !!(1); !!(j); !!(k). Then! = !!(1) + !!(i) + !!(j) + !!(k)= �(!!(1) + !�!(i) + !�!(j) + !�!(k)) + (1� �)(!!(1) + !�0!(i) + !�0!(j) + !�0!(k)); (39)where �; � 2 R=f1g and �0 := 1���1�� . Both fators of the right hand side of (39) map 1 to 1, sothey are states and ! is not pure unless !(i) = !(j) = !(k) = 0. Hene the only pure state ofH is !1 := !!(1):The quaternion a an also be represented over C 2 by � � ���� ��� where � := � + i�. ThenTr(a) := 2Re(�) = 2� = 2!1(a); that is !1(a) = Tr(12IH a). �With regard to P(M3(C )), we shall only need the following well-known lemma:Lemma 7. Let !; !0 2 P(AI): Then ! = !0 if and only if ker(!) = ker(!0).Proof. Pure states are linear form, so if they have the same kernel they are proportional. Sinethey oinide on the identity, they are equal. �Nonommutative geometry gives an interpretation of the Higgs �eld as a 1-form of theinternal spae. By salar utuation, 1-forms losely interfere with the metri. Thus the Higgs�eld has an interpretation in term of an internal metri. The onlusive result of this paper isa preision of this link between Higgs and metri when the gauge �eld A� is negleted.Proposition 8. The �nite part of the geometry of the standard model with salar utuationsof the metri onsists of a two-sheets model labelled by the single states of C and H . Eah of20



the sheets is a opy of the Riemannian four-dimensional spae-time endowed with its metri.The �fth omponent of the metri, orresponding to the disrete dimension, isgtt(x) = �j1 + h1(x)j2 + jh2(x)j2�m2twhere �h1h2� is the Higgs doublet and mt the mass of the quark top.Proof. �I stands for �I(a; b; ) and � := �DP 00 0� so that DI = � + J�J�1. Sine � is a1-form21, Lemma 5 yields [JI�J�1I ; �I℄ = 0, so that we an take DH = � + H. By expliitalulation18, H = 0BB� 0 �PL (h)M 0 0M��PL (h�) 0 0 00 0 0 00 0 0 0 1CCAwhere h is a quaternion-valued salar �eld. ThusDH = 0BB� 0 �M 0 0M��� 0 0 00 0 0 00 0 0 0 1CCA ; (40)where � := (h+ IH )
 I4N = �1 + h1 h2��h2 1 + �h1� 
 I4N;with h1 and h2 being two omplex salar �elds.By (1), the metri of the standard model is idential to the metri assoiated to the triple(As; H; D), where As = C1 (M)s 
AIs is the subalgebra of selfadjoint elements of A, withAIs = C s � H s �M3(C )s = R � R �M3(C )s :The representation �s assoiated to this triple oinides with the restrition of � to As. Con-erning the quaternion, �s substitutes�� 00 �� to � � ����� ��� :In other words, to eah representation of H there orresponds the diret sum of twie thefundamental representation of R = H s . Now !1 seen as a pure state of H s is nothing but theidentity. The assoiated projetion �1 2 H s is nothing but the real number 1 whih obviouslysatis�es (10). The same is true for !0 seen as a pure state of R = C s . Hene�s(�0 � �1) = 0BBBB�I15N 00 0BB�06N I2N 06N IN1CCA
1CCCCAommutes with DH de�ned in (40). Proposition 4' applies to the distane between pure statesof A de�ned by !0 and !1. Here�s(ran �1) = HPL and �s(ran �0) = HPR �HAlep ;21



where HAlep = C 3N is the subset of HA generated by the anti-leptons. Thus the extra metriomponent is gtt(x) = k�(x)Mk2 :Note that, as desired, �M is a 2�H � ��C + ��C � matrix, where �H = 4N is the degeneray ofthe representation of H s in �PL , and �C = 3N , ��C = 4N are de�ned as well. Using the expliitform (38),k�(x)Mk2 =max� k(�(x)
 I3)(e11 
Mu + e22 
Md)k2 ; k(�(x)
 I3)(e2 
Me)k2 	= �j1 + h1(x)j2 + jh2(x)j2�max�mt2; m� 2	= �j1 + h1(x)j2 + jh2(x)j2�mt2:The other distanes, involving the pure states of M3(C ), are not �nite. Indeed,k[DH ; �I(a; b; )℄k = h� 0 �MM��� 0 � ; �P (a; b)idoes not put any onstraint on , thus for !2 2 P (M3(C )) and ! 2 P(AI),dI(!2; !) � sup2M3(C )j!2()� !()j:For ! = !0,  = �I3 with �!1 makes the distane dI(!2; !0) in�nite. ThendI(!2; !0) = d(x2; x0) � d(x2; y0) + d(y0; x0) � d(x2; y0) + L(x; y)by Theorem 4', so that d(x2; y0) = +1. The same is true for ! = !1. The same is also truewhen ! 2 P(M3(C )) beause, by Lemma 7, there exists 0 2 ker(!2), 0 =2 ker(!) whih makesdI(!2; !) in�nite. �VIII Conlusion.Nonommutative geometry intrinsially links the Higgs �eld with the metri struture ofspae-time. We have not onsidered the gauge �eld A� so it is not lear whether or not theinterpretation of the Higgs as an extra metri omponent has a diret physial meaning. It isimportant to study the inuene of the gauge utuation and, partiularly, how it probablymakes the metri of the strong interation part �nite.Sine H has only one pure state, the problem of the distane between states de�ned bydistint pure states of the same omponent of the internal algebra is not questioned here.One may be tempted to onsider states � of H that are not pure. But asking �(�q) = ��(q)- whih is part of the de�nition of a real state15 and does not ome as a onsequene likein the omplex ase- preisely means that � = !1. To extend the �eld of investigation, onean onsider states that do not preserve the onjugation { then the supremum is no longerreahed by a positive element{ but this ontradits the spirit of density matries in quantummehanis. More interesting is probably to take into aount omplexi�ed states, that is reallinear funtions with value in C .The redution of AI to K 2 (Proposition 3) is made possible by the orthogonality of theprojetions. When the two internal pure states are no longer orthogonal, there is no reason why22



the relevant piture should remain the two-sheets model. The same is true for two orthogonalstates whose sum of the projetions does not ommute with the Dira operator. In this sense,if these ases do not support a simple "lassial" piture (suh as being the geodesi distane ofa disrete Kaluza-Klein manifold), they reet a purely nonommutative aspet of spae-time.Note that the result { before utuation { onerning states de�ned by the same pure stateof one of the algebras (Theorem 2), as well as the redution from AI to K 2 , do not assumethat AE is Abelian. It is only later, to establish the orthogonality between the internal and theexternal spaes, that TE is taken as the spetral triple of a manifold. It would be interestingto larify the importane, or the unimportane, of the ommutativity regarding Pythagoreantheorem.Aknowledgements.The authors are grateful to T. Krajewski who introdued several ideas in the original om-putation of the two-sheets model, and to B. Iohum whose help has been essential to generaliseand simplify the proofs. Thanks to D. Perrot for mathematial advie.
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