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Abstract

We compute the one-loop [-functions describing the renormalisation of the
coupling constant A\ and the frequency parameter 2 for the real four-
dimensional duality-covariant noncommutative ¢*-model, which is renormal-
isable to all orders. The contribution from the one-loop four-point function
is reduced by the one-loop wavefunction renormalisation, but the g)-function
remains non-negative. Both 3\ and (o vanish at the one-loop level for the
duality-invariant model characterised by €2 = 1. Moreover, [Bq also vanishes
in the limit Q — 0, which defines the standard noncommutative ¢*-quantum
field theory. Thus, the limit {2 — 0 exists at least at the one-loop level.
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1 Introduction

For many years, the renormalisation of quantum field theories on noncommutative R*
has been an open problem [1]. Recently, we have proven in [2] that the real duality-
covariant ¢*-model on noncommutative R* is renormalisable to all orders. The duality
transformation exchanges positions and momenta [3],

¢(p) « /| det 0] ¢(z) , P B = 2007 ) wa” (1)
where ¢(pa) = [ d*x "D Wantip(z,). The subscript a refers to the cyclic order in the
x-product. The duality-covariant noncommutative ¢*-action is given by
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Under the transformation (1) one has
: 2g[g o A 1
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In the special case Q2 = 1 the action S[¢; o, A, 1] is invariant under the duality (1).
Moreover, S|[¢; 1o, A, 1] can be written as a standard matrix model which is closely related
to an exactly solvable model [4].

Knowing that the action (2) gives rise to a renormalisable quantum field theory [2], it
is interesting to compute the () and (g functions which describe the renormalisation of
the coupling constant A and of the oscillator frequency €2. Whereas we have proven the
renormalisability in the Wilson-Polchinski approach [5, 6] adapted to non-local matrix
models [7], we compute the one-loop () and g functions by standard Feynman graph
calculations. Of course, these are Feynman graphs parametrised by matrix indices instead
of momenta. We rely heavily on the power-counting behaviour proven in [2], which allows
us to ignore in the g-functions all non-planar graphs and the detailed index dependence
of the planar two- and four-point graphs. Thus, only the lowest-order (discrete) Taylor
expansion of the planar two- and four-point graphs can contribute to the [-functions.
This means that we cannot refer to the usual symmetry factors of commutative ¢*-theory
so that we have to carefully recompute the graphs.

We obtain interesting consequences for the limiting cases {2 = 1 and 2 = 0 as discussed
in Section 5.

2 Definition of the model

The noncommutative R* is defined as the algebra Rj which as a vector space is given by
the space S(R*) of (complex-valued) Schwartz class functions of rapid decay, equipped



with the multiplication rule

(@) = [ e [ dlyalas bR bas (@

(0-k)" = 0"k, ky =k, O =—0".

We place ourselves into a coordinate system in which the only non-vanishing components
0, are b1y = =0y = 034 = —049 = 0. We use an adapted base

b (%) = fint (21,22) from2(2®,2Y), m =", N2, n=", € N? (5)

where the base f,1,1 (2!, z%) € R2 is given in [8]. This base satisfies
(bmn * bkr) () = Opgbrmu(x) | /d4x by () = 4726076 e - (6)

According to [2], the duality-covariant ¢*-action (2) expands as follows in the matrix base
(5):

S[¢a Ho, /\7 Q] = 47T202 Z len;klgbanskl + %gbmngbnkgbklgblm) 3 (7)

m,n,k,lEN2

where ¢(x) = meeNg GOmnbmn(x) and

G (u0+ (14+02) (m +nt+m?4n +2))5n1k15m1115n2,€25m2l2
2
0

— (1 QZ) ((\/(n +1)(m1—|—1) 5n1+1,k15m1+1,ll +vVnlml 5n1—1,k15m1—1,ll)5n2k25m212

+ (\/(n2+1)(m2+1) 5n2+1,k25m2+1,l2 + V n2m2 6n2—1,k25m2—1,l2>5n1k15m1l1) .

(8)

The quantum field theory is defined by the partition function
Z[J] = / ( 11 d%b) exp (= S[¢] = 47°6> Y bmndum) - (9)

a,beN2 m,neN2

For the free theory defined by A = 0 in (7), the solution of (9) is given by
1
_ 22
21J]|,_, = Z[0] exp (47r 0 ; ) ijmnAmn;k,Jk,> , (10)
m,n,k,le

where the propagator A is defined as the inverse of the kinetic matrix G:

Z Gmn;klAlk;sr = Z Anm;lkal;rs = 5m7"5n5 . (1]-)

k,leN2 €N2



We have derived the propagator in [2]:
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Here, B(a,b) is the Beta-function and o F} (“éb ‘z) the hypergeometric function.
As usual we solve the interacting theory perturbatively:

Z[J] = Z[0] exp ( [;]D exp <47T202 Z %JmnAmn;likl> ,

m,n,k,l€N2
Izl -

84
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m,n,k,lEN2

It is convenient to pass to the generating functional of connected Green’s functions,
WIJ] =InZ[J]:

W] = In Z[0] + Waee[J] + In (1 + el (e (V] % ) - 1>ewﬁeem) |
Wfree[J] = 477-2‘92 Z %JmnAmn;likl . (14)

m,n,k,l€N2

In order to obtain the expansion in A one has to expand In(1+x) as a power series in z and
exp(—V') as a power series in V. By Legendre transformation we pass to the generating
functional of one-particle irreducible (1PI) Green’s functions:

D[¢] = An%0" > ¢, Jum — W], (15)
m,neN2

where J has to be replaced by the inverse solution of

oot = L W]
T AT202 0

(16)



3 Renormalisation group equation
The computation of the expansion coefficients

. _ 1 0T
mini;..;myNnyN * N' EM

(17)

miny ° a¢mNnN

of the effective action involves possibly divergent sums over undetermined loop indices.
Therefore, we have to introduce a cut-off A/ for all loop indices. According to [2], the
expansion coefficients (17) can be decomposed into a relevant/marginal and an irrelevant
piece. As a result of the renormalisation proof, the relevant /marginal parts have—after a
rescaling of the field amplitude—the same form as the initial action (2), (7) and (8), now
parametrised by the “physical” mass, coupling constant and oscillator frequency:

rel/marg[ ¢c£] [¢c€; Nphys» /\phy87 Qphys} . (18)

In the renormalisation process, the physical quantities pghys, Aphys and Qpnys are kept
constant with respect to the cut-off N. This is achieved by starting from a carefully

adjusted initial action S[Z[N]¢, uo[N], AN, Q[./\/]] , which gives rise to the bare effective

action T'[¢%; uo[N], AN, Q[N], N]. Expressing the bare parameters jig, , { as a function
of the physical quantities and the cut-off, the expansion coefficients of the renormalised
effective action

FR[¢CZS Hphys )‘physa Q]{JhyS] =T [Z[M¢O€7 ILLO['/\/-J7 A[Ma Q[M,N]

(19)

Hphys 7)‘phyS’Qphys =const

are finite and convergent in the limit N' — oo. In other words,

i A (ZV N oA AV, AT, ) = 0 (20)

This implies the renormalisation group equation

0 0
hrn <N6N + N")/ + Moﬁan B} + B)\ + ﬁQa_Q) MINT ;.. mNnN[,uov )\ Q M - 0 (21)

where
1 0

ﬁuo == u—g./\/‘w (,U?) [/vbphyS7 /\phyS7 Qphys7'A[]> ) (22)

0
ﬁ)\ = NW (A[Mphysa )\physa Qphysa M) ) (23)
BQ - N (Q Mphyb7 phys» Qphys:M) ) (24)
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Y= NW(IHZ ,Uphysa phys> QphysaM) . (25)



4 One-loop computations

Defining (AJ)mn = 2, jenz DmnpgJpg We write (parts of) the generating functional of
connected Green’s functions up to second order in \:

1
WJ] = Z[0] + 476 > 5 Jmn Bkt Ja

m,n,k,l€N2

_(47r292)% Z {(Aj)m,(AJ)lk(AJ)kn(AJ)nm

m,n,k,lEN2

(Anm;kn<AJ)ml(AJ)lk + Abngie (AT )y (AT ) i
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1
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1
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2
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+ Apnsr Amtts (AT )ik (AT ) nm + Dbenesr Dtrests (AT )it (AT ) um,

+ Apnsr Dnmits (AT )i (AT )ik + Dpinssr Atits (AT )1k (AT ) e,
+ Apmisr Atkits (AT )i (AT ) + Anm;srAkn;ts(AJ)mI(AJ)lk>

X (AT)pu(AT )t

+ 5 permutations of i, s, rus wt

+ 1PI-contributions with < 2 J’s + 1PR-contributions } +O(N) . (26)

In second order in A\ we get a huge number of terms so that we display only the 1PI
contribution with four J’s.
For the classical field (16) we get ¢5, = > cre Anmipgdpg + O(A) so that

Jpg = Z Gapirs ii +O(N) . (27)

r,sEN2

The remaining part not displayed in (27) removes the 1PR-contributions when passing to



['[¢]. We thus obtain

[p™] =T[0]
1

+ 477202 Z §{Gmn;kl + 202 ( ml Z Apn ;kp + 5lm Z Am}a pl) (28&)

m,n,k,l€N2 peN2 peEN2

A ¢
+ WAM kn T O()‘z)} k§ (28b)

+ 477202 Z %{5nk51r55t5um (28C)

mn,klrstueN2

A

( Z (4Amp;qupl;tq5kn5ur + 4Akp;qupn;tq5m15ur
2
pach + 4Apl;rqup;qu5nk55t + 4Apn;rqup;qu§ml53t) (28d)

+ Z (4Aml;p8Akn;tp5ur + 4Akn;p5Aml;tp5ur + 4Amp;t5Apl;ru5nk

2(41)(47262)

pert + 4Apl;tsAmp;ru5nk + 4Akp;tSApn;ru5ml + 4Apn;tsAkp;ru5ml
+ 4Aml;rpAkn;pu53t + 4Akn;rpAml;pu53t) (286)
+ Z (4Apl;qump;tq5nk5ur + 4Apn;qukp;tq5ml5ur
p,qEN?
+ 4Akp;rqun;qu5mldst + 4Amp;rqul;qu6nk55t) (28f)

+ 4Aml;tsAkn;ru + 4Akn;tSAml;TU) + O(/\Q)} ffmgﬁ% ﬁiqﬁgﬁ (28g)
+0(\?) .

Here, (28a) contains the contribution to the planar two-point function and (28b) the
contribution to the non-planar two-point function. Next, (28¢c) and (28d) contribute to
the planar four-point function, whereas (28e), (28f) and (28g) constitute three different
types of non-planar four-point functions.

Introducing the cut-off p’,¢* < N in the internal sums over p,q € N2, we split the
effective action according to [2] as follows into a relevant /marginal and an irrelevant piece
(I'[0] can be ignored):

F[¢O€] = Frel/marg [¢O€] + Firrel [(bd] (29)
N
1 A
1—‘rel/marg [¢d] = 47T292 Z 9 {Gmn skl + ( 262) 5ml5kn (2 Z Ag p ; 8
m,n,k,l€N2 pl,p2=0 v

)) +003) otk ot

3i7s 07, 0
Pl p2=0 0p=’'p=0 0 p<’p=0
A A N
cart Y Gl gt 2 (Bga )+ OO eethetior
m,n,k,leN? ' T pl,p?=0 Ortiet 0

(30)



To the marginal four-point function and the relevant two-point function there contribute
only the projections to planar graphs with vanishing external indices. The marginal two-
point function is given by the next-to-leading term in the discrete Taylor expansion around
vanishing external indices.

In a regime where A[N/] is so small that the perturbative expansion is valid in (30), the
irrelevant part 'y can be completely ignored. Comparing (30) with the initial action
according to (2),(7) and (8), we have Frel/marg[Zgbd] =5 [gzﬁd; Kphys > Aphys Qphys] with

=1 A - A O(\%), 31
1927r20 7% L 3i5%253>+ (A%) (31)
7p_
A N
2 _ 2 A B
pt,p*=0
— - 2
96772‘9 Z éﬁzaizé A8§2;§28>+O<)\ ))’ (32)
A W ,
Nogs = A(1= =55 3 (Bgpr.0)
pl,p2=0
A N
— — 2
4820 (Agg;;ggg Aggg;]g;gﬂ@(k )), (33)
p-,p =0
N
A1—02)
0 S:Q<1 A Anoa —A @V). 2
P " 192720022 122:0( s s = Dot ste) + O (34)
p,pe=

Solving (32), (33) and (34) for the bare quantities, we obtain to one-loop order

Ng [Nphysa Aphyss $2phys; M

2 phyb 2 :
= :U/phys<1 202 AOP pl o
12720 ,uphys

0p2’p20
pl,p?=0

Aphys N
+ (1t ; )X (B = A ) O] (35)

Q/Lphyb Pl p2=0 0p27p20 0p27p20
A[/Lphysa >\phy87 Qphysa M
=\ <1+ Aphys ﬁ[: (A 1.1 )2+ )\phys S (A 1,1 A1 )
phys 1271’292 Lo 852;§2 8 487r2¢9 = (1)22722 (1) 822?52 8
b ,pe= pl,p=
+O(M)) (36)
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Inserting (12) into (36) we can now compute the §y-function (23) up to one-loop order,
omitting the index phys on p? and Q for simplicity:

N F ( %—*(P +p? )
(1+)2(1 + “L + l(pl+p?))

pl,p?=0

1
3, ML——(p +p2+1)

P1<1—Q)2 2F1<

+ 20 20
(L+Q) (347450 4p2)) G+ +3 (0" +2) G+ +5 01 +0%))

3+ 500 +1(p 42 +1)

(1 i——(p P 1) | (1 )2> o (1 ”—%e—l(p +9%) | (1 Q)2>
201 2+§5+ (p +p 41y (1) 201 2+§5+ (p +p) (1+2)2 o0 )>}
- phys
2(14+Q)2(3 + 40 1 L(pi4p?))  2(149Q)2(1 + 40 + L(pl+p?))

(38)

Symmetrising the numerator in the second line p! %(p1+p2) and using the expansions

2F1(1 “p ‘) iz Z<a+b;ai(;+b_2)+0(p‘2),
B (70T ]) = 0 (39)

which are valid for large p, we obtain up to irrelevant contributions vanishing in the limit

N — oo

N 2
S 1 1 (1 Q h s) (]'—'_Q h s)
By = phy N— 1+ phy _ phy
AT 48 AN 122:0 (14+922,16)? (1 +p1+p2)2{ 2(1492,.) 2 }
+OXye) + ONT
A2 (1-02, )
phys phys 1
= Ton (e, + OO Bye) FONT) (40)
Similarly, one obtains
o )\physthys (1 Q?)hys) 2 —1
ﬁﬂ - 967'('2 (1+Qphys) O(Aphys) + O(N ) ? (4]‘)
A hys (8+9M2h s)QQh S
6 . = phy 4,/\[1H 92 + phy phy
K 48729ﬂphy5(1+9phys)< 2) (1—|—Qphys) )
+ O( phys) + O<N ) ’ (42)



Aorrs e )
e 92?2 (1+52y )3+0(A§hys)+(9(/\/ . (13)

phys

5 Discussion

We have computed the one-loop (- and 7-functions in real four-dimensional duality-
covariant noncommutative ¢*-theory. Remarkably, this model has a one-loop contribution
to the wavefunction renormalisation which compensates partly the contribution from the
planar one-loop four-point function to the g\-function. The one-loop (\-function is non-
negative and vanishes in the distinguished case € = 1 of the duality-invariant model, see
(3). At Q =1 also the fo-function vanishes. This is of course expected (to all orders), be-

— ] ] — 6m1l16k1n16m2l26k2n2
cause for 2 = 1 the propagator (12) is diagonal, A:; nl kil }9:1 = BT T )

so that the Feynman graphs never generate terms with |m* — I'| = |n’ — k| = 1 in (8).

The similarity of the duality-invariant theory with the exactly solvable models dis-
cussed in [4] suggests that also the f)-function vanishes to all orders for Q@ = 1. The
crucial differences between our model with 2 = 1 and [4] is that we are using real fields,
for which it is not so clear that the construction of [4] can be applied. But the planar
graphs of a real and a complex ¢*-model are very similar so that we expect identical
Bx-functions (possibly up to a global factor) for the complex and the real model. Since a
main feature of [4] was the independence on the dimension of the space, the model with
2 = 1 and matrix cut-off N should be (more or less) equivalent to a two-dimensional
model, which has a mass renormalisation only [8]. Therefore, we conjecture a vanishing
Bx-function in four-dimensional duality-invariant noncommutative ¢*-theory to all orders.

The most surprising result is that the one-loop [q-function also vanishes for 2 — 0.
We cannot directly set 2 = 0, because the hypergeometric functions in (38) become
singular and the expansions (39) are not valid. Moreover, the power-counting theorems of
2], which we used to project to the relevant /marginal part of the effective action (30), also
require ) > 0. However, in the same way as in the renormalisation of two-dimensional
noncommutative ¢*-theory [8], it is possible to switch off  very weakly with the cut-off
N, e.g. with

0= e—(ln(1+1n(1+/\/)))2 . (44)

The decay (44) for large N over-compensates the growth of any polynomial in In N, which
according to [2] is the bound for the graphs contributing to a renormalisation of 2. On
the other hand, (44) does not modify the expansions (39). Thus, in the limit N' — oo,
we have constructed the usual noncommutative ¢*-theory given by 2 = 0 in (2) at the
one-loop level. It would be very interesting to know whether this construction of the
noncommutative ¢-theory as the limit of a sequence (44) of duality-covariant ¢*-models
can be extended to higher loop order.

We also notice that the one-loop (- and (o-functions are independent of the noncom-
mutativity scale #. There is, however a contribution to the one-loop mass renormalisation
via the dimensionless quantity 2, .6, see (42).
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