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2 T. Krajewski & R. Wulkenhaardisentangled into a linear ombination of terms ontaining disjoint or nested diver-genes exlusively. Suppose the (divergent) integrand I(q1; : : : ; qn) orrespondingto a Feynman graph depends on n external parameters (masses and momenta)qi; : : : ; qn. The idea is to writeI(q1; q2; : : : ; qn) = fI(q1; q2; : : : ; qn)� I(q1; 0; : : : ; 0)g+ I(q1; 0; : : : ; 0) :The integrand fI(q1; q2; : : : ; qn)� I(q1; 0; : : : ; 0)g is less divergent, in the optimalase onvergent or without subdivergenes. It is therefore suÆient to onsiderintegrands depending on a single sale q. In the same way as above one an writeI(q) = fI(q) � I 0(q)g + I(q), where I 0(q) is derived from I(q) by nullifying q insome parts of I(q). It was shown in [5℄ that by this proedure (whih is enodedin the Shwinger-Dyson equation) it is always possible to disentangle overlappingdivergenes. Hene one an restrit the operations of the Hopf algebra to termsontaining no overlapping divergenes. The forest formula is trivial in this ase,it simply says that the subdivergenes must be ompensated in asending order.In this paper we present our independent approah to the problem of overlap-ping divergenes. Our goal is to treat overlapping divergenes on the same footingwith disjoint and nested ones so that the operations of the Hopf algebra are di-retly de�ned on any Feynman graph. We show that this aim an be ahieved byendowing Kreimer's parenthesized words (PW) desribing the Feynman graphswith additional information. In our formulation, a PW is a olletion of all max-imal forests of a Feynman graph, where idential regions in various forests arevisualized. We show that one of the antipode axioms reovers the forest formulain its full beauty for any Feynman graph. Following an idea by Dirk Kreimer[2, 4℄ we desribe the preise relation between his and our formulations of theHopf algebra of renormalization. In this way we gain an expliit onstrution ofthose primitive elements of Kreimer's Hopf algebra whih are di�erent from thegraphially primitive elements.Our paper is organized as follows: We introdue in setion 2 our extended PWsand disuss in setion 4 the R-operation of renormalization. The Hopf algebrais identi�ed in setion 5, where longer proofs are delegated to the appendix. Insetion 6 we disuss the relation to the Hopf algebra of Kreimer. In setions 3and 7 we apply our methods to examples of Feynman graphs with overlappingdivergenes.2 Feynman graphs, maximal forests and parenthesized wordsLet � be a Feynman graph. In the way desribed by Kreimer we draw boxesaround super�ially (UV-) divergent setors of �:
�4 52 31 = (((s1)(v2)v4)(p3)v5) (1)



On Kreimer's Hopf algebra struture of Feynman graphs 3(As usual, straight lines stand for fermions and wavy lines for bosons.) A super-�ially divergent setor [6℄ is neessarily a region of � whih ontains loops. Theboxes must be drawn in suh a way that no vertex of � is situated on the borderof the box and no line of � is tangential to the border. Boxes an be deformed.During the deformation, no vertex is allowed to pass the border and at no timea line may be tangent to the border of the box. We onsider boxes whih di�erby a deformation as idential.We shall work in four dimensional spaetime, but generalization is obvious. Ariterion for super�ial divergene of a region on�ned in a box is power ounting.The box under onsideration will ontain nB bosoni and nF fermioni externallegs. Ghosts are regarded as bosons here. In a renormalizable theory there anonly be a super�ial (ultraviolet) divergene in the box if it ontains at least oneloop and if the power ounting degree of divergene dp satis�esdp := 4� nB � 32nF � 0 : (2)Owing to symmetries the atual degree of divergene d of one graph or a sumof graphs an be lower than dp alulated from (2), see ref. [6℄. Examples aregraphs in QED with nB = 3; nF = 0 (whih an be omitted due to Furry'stheorem) and with nB = 4; nF = 0 (whih are super�ially onvergent due togauge symmetry). Always if d < 0 the box must be erased. This does not meanthat there annot be divergenes in the box to erase. But these non-super�ialdivergenes must be ontained in other boxes whih annot be deformed into thebox we erased.Our boxes represent the forest struture of �. A forest is a set of 1PI (one-partile-irreduible, i.e. the graph remains onneted after utting an arbitraryline) divergent subgraphs  � � whih do not overlap. Instead, any two elements(= boxes) of a forest are either disjoint or nested. The forest struture is theolletion of the maximal forests of �, i.e. the forests whih are not ontained inanother forest. There are several maximal forests in general to a Feynman graph.Kreimer de�nes [1℄ a reursive proedure to assign parenthesized words (PW)to the boxes of a maximal forest. The total graph � stands for a ertain integrandI� depending on external and internal momenta. A box is represented by a pairof opening-losing parentheses. Two nested boxes are represented by (( ) ) andtwo disjoint boxes by ( )( ). In an irreduible PW (iPW), the leftmost openingparenthesis mathes its rightmost losing parenthesis. A primitive box ontainsno nested boxes and represents a graph  without subdivergenes. Examples ofprimitive boxes ( ) are:������(3)(The reader is enouraged to verify using (2) that the last three examples ontainno divergent subgraphs.) We assoiate the integrand I de�ned by the vertiesand propagators of  to suh a primitive box and write the PW (I). A non-primitive box ontains nested boxes. It desribes a graph  with subdivergenes



4 T. Krajewski & R. Wulkenhaari, whih are already haraterized by PWs Xi. Examples for graphs with onenested subdivergene (( ) ) are:�	
�� (4)Examples for graphs with two disjoint nested subdivergenes: (( )( ) ) are: Æ � (5)And here are two examples for graphs with a nested subdivergene whih hasitself a nested subsubdivergene ((( ) ) ):� � (6)If we shrink all nested boxes (=divergent subgraphs i) of  to points, thereremains a fration I=[i of the integrand of  de�ned by the verties and propa-gators of =[i. The latter should be regarded as a Feynman graph with holes atthe plaes where the subgraphs i had been before. We agree that for self-energyinsertions i splitting propagators into two, one of the new propagators belongs tothe subgraph i. In this way we keep the number of possible holes in a Feynmangraph �nite. We write the fration I=[i next to the right losing parenthesis andeverything we have shrunk to a point (the Xi) between that fration and the leftopening parenthesis. The resulting PW looks like this: �X1 : : :Xn I=f1[���[ng�.Note that the order of disjoint boxes is irrelevant. For instane, the PW of theexample (1) (onsidered as 1PI) looks as follows:(((s1)(v2)v4)(p3)v5) (7)= 0�0�0��/ 1A0��/ n/ 1A�/ n// 1A0��= 1A�/ n/| 1AA slash through a propagator means amputation and a small irle symbolizesa hole. We see that our building bloks are the Feynman graphs with possibleholes at any vertex and in any propagator.By this proedure we assoiate a PW to eah maximal forest. As disoveredby Kreimer [1℄, the PWs form a Hopf algebra whose antipode axiom reproduesthe forest formula [7℄. This assumes that overlapping divergenes suh as� � (8)



On Kreimer's Hopf algebra struture of Feynman graphs 5have been disentangled into a linear ombination of PWs ontaining disjoint andnested divergenes exlusively, for instane via the Shwinger-Dyson equation, see[1, 5℄. The outome is thus a linear ombination of PWs eah of them desribing amaximal forest, and the forest formula is redued to a rather trivial presription.The goal of this paper is to modify the PWs and the Hopf algebra operationsin suh a way that any 1PI-Feynman graph is desribed by a single PW andthat all Hopf algebra operations are de�ned on suh a PW. Our starting pointis the observation that in the ase of overlapping divergenes there exist severalmaximal forests to a Feynman graph. It is lear that demoray requires toomprise all PWs assoiated to these maximal forests to one bigger objet. Wepropose to build a olumn vetor whose omponents are the PWs of maximalforests. The order of the omponents (or rows as they are long objets) of thisvetor is not relevant, of ourse. As the integrands assoiated to the PWs of eahrow are equal, we assoiate this universal integrand to our olumn vetor.There is one further modi�ation neessary. Later on we are going to identifythe subwords of suh a vetor and de�ne the removal of subwords. Subwordsrepresent subgraphs and the removal means replaing the subgraph by a hole.But subgraphs or subwords an our identially in various maximal forests. Ifwe now ompare the maximal forests of a graph with removed subgraph andthe maximal forests of the original graph, it is easy to see that the subgraph isremoved in all maximal forest it had ourred. (An example is the step from (11)to (9) in the next setion by utting out loop 3.) We must implement this featurein our vetors. We propose to onnet by a tree of lines the losing parentheses ofidential and simultaneously shrinkable boxes. If we pull out a subword of suha vetor and if the subword is onneted over various rows, we simply have toremove all of them.Thus, our PWs are vetors of one-line-PWs representing the maximal forestsof a Feynman graph, where the losing parentheses of simultaneously shrink-able boxes are onneted. We de�ne now the notion of a parenthesized subword(PSW) of a PW. A PSW Y of X is everything between a set of onneted los-ing parentheses and its mathing opening parentheses. Disonneted rows of Xwhih are aidentally between onneted rows are not part of the PSW Y underonsideration.There is an algorithm whih yields all PSW of a PW. Starting with the �rstrow we run from the left through the PW until we meet a losing parenthesis.In general, it will be onneted with other losing parentheses in di�erent rows.These onneted losing parentheses and their mathing opening parentheses de-�ne our �rst PSW. We mark all these onneted losing parentheses. We then goahead and move through the �rst row until we arrive at the next losing paren-thesis. This gives the next PSW and marks the next set of parentheses. Werepeat this proedure until the rightmost losing parenthesis is reahed. Then wepass to the seond row and ontinue to searh for new losing parentheses andrelated PSW, i.e. we ignore all parentheses marked in the previous steps. Thissearh ontinues through all rows and stops at the lower right orner of our PW.In what follows we will freely use the notions parenthesized word (PW), ir-reduible PW (iPW, the leftmost and rightmost parentheses math), primitive



6 T. Krajewski & R. WulkenhaarPW (no nested divergenes, a speial iPW) and parenthesized subword (PSW,a speial iPW). We remark that a possible extension ould be the inlusion ofsuper�ially onvergent 1PI-graphs (d < 0) with subdivergenes. All �nite inte-grands fuse and stand immediately before the rightmost losing parentheses.We will give now some examples for Feynman graphs with overlapping diver-genes whih are represented by parenthesized words of several maximal forests.The PSW of some of these examples are disussed and further evaluated in se-tion 7.3 Examples for Feynman graphs with several maximal forestsIn QED there is the following ontribution to the photon propagator:
�p k1 k2+pk1+p k2 p��� �k1 �k2 ((v1)p2)((v2)p1) (9)We an draw two maximal forests of boxes. We an �rst draw a box around theleft loop whih ontains the vertex orretion with interior momentum k1. Thenwe put this box into the large box whih enirles both loops. Or we an �rstenlose the right loop by a vertex box and then put everything into the samelarge box. Graphially, the two possibilities look like this:

�1 2 = ((v1)p2) or �1 2 = ((v2)p1) : (10)In the �rst ase, the innermost box is the primitive box (v1) the integrand ofwhih is { in the Feynman gauge { given byv�B1A = he� k/1+�k21��2 e� k/1+p/+�(k1+p)2��2 e� 1(k1�k2)2�M2iBA = �� AB1/ /nHere, e is the eletron harge, � is the eletron mass and M an auxiliary photonmass to avoid IR-divergenes. Capital roman letters label Cli�ord indies andgreek letters Lorentz indies. This vertex box is nested in the large box, so wemust write ((v1)p2) as the maximal forest. The integrand p2 is the interior of thelarge box after shrinking the small box (v1) to a hole. What remains is loop 2and the integrand is found to bep�A2B = h k/2+p/+�(k2+p)2��2 e� k/2+�k22��2 iAB = ��/ BA 2 /



On Kreimer's Hopf algebra struture of Feynman graphs 7In the seond ase the loops 1 and 2 hange their role and we obtain the maximalforest ((v2)p1) withv�A2B = he� k/2+p/+�(k2+p)2��2 e� k/2+�k22��2 e� 1(k2�k1)2�M2 iAB ;p�B1A = h k/1+�k21��2 e� k/1+p/+�(k1+p)2��2 iBA :We have found two maximal forests ((v1)p2) and ((v2)p1) in this example. Thesetwo forests form the 2-line vetor ((v1)p2)((v2)p1). However, the large box ours identi-ally in both maximal forests. We annot shrink it in one of them and keep it inthe other. Therefore, the losing parentheses representing the large box in bothrows of the vetor must be onneted, as we have already indiated in (9).Here is a graph with two maximal forests ontaining a nested divergene:
�31 2 (((v3) v13)p2)(((v3) v23)p1) (11)The vertex orretion v3 is nested in both vertex orretions vi3 omprising theommon loop 3 and loop i. The subword (v3) is idential in both maximal forests(((v3)v13)p2) and (((v3)(v23)p1). If we shrink it in one of them it is automati-ally removed in the other one. For the same reasons both maximal forests areonneted at the outermost box.Here is now a more ompliated forest struture:�31 2 ( (v1) (v2) p3)(((v1) v13)p2)(( (v2) v23)p1) (12)We have three possibilities for drawing disjoint boxes: We an take loops 1 and 2and put them into the large box, or we an put loop 1 into the vertex box whihovers loops 1 and 3 and then everything into the large box, or we an exhangethe role of loops 1 and 2.Let us also give an example from �4-theory. There is the following seond-order orretion to the propagator:�1 32 ((x23)y1)((x31)y2)((x12)y3) (13)Here, xij is the vertex orretion involving the lines i; j and yk the tadpolegraph! involving the line k. The three maximal forests are onnetedbeause shrinking one of them to a hole fores the redution of the other two.



8 T. Krajewski & R. Wulkenhaar4 Kreimer's R-operation [1℄To any PW X, Kreimer assoiates a seond, in a ertain sense equivalent opyR[X℄. The philosophy is that R[X℄ is a loal ounterterm, a point-like interation.It is so to say a new vertex, mass or kineti term in the Lagrangian, whih itselfis in�nite but suh that a ertain ombination of ounterterms and divergent 1PIgraphs is �nite. The �nite linear ombination in question is given by the forestformula or { as disovered by Kreimer { by the antipode axiom of a (quasi-) Hopfalgebra to onstrut. For renormalizability it is essential that all ounterterms anbe absorbed by a rede�nition of physial parameters of the theory. In partiularin gauge theories there are potentially more types of ounterterms than physialparameters [6℄. It is important then that ounterterms and divergenes of the sumof all graphs ontributing to a ertain amplitude anel. We avoid a disussionof these subtleties by onsidering salar theories or { with some are { QED.The R-operation depends on the renormalization sheme, whih in prinipleis arbitrary but �xed throughout the investigation. We shall work in the BPHZsheme [8, 9, 7℄ whih is the standard one in onnetion with the forest formula. AiPW X represents one box ontaining a divergent Feynman graph with in generalseveral forests of subdivergenes. The box has nB bosoni and nF fermioniexternal legs. The super�ial degree of divergene d[X℄ of the iPW X is boundedby the power ounting theorem (2), d[X℄ � 4�nB�32nF . In the BPHZ shemethe integrand R[X℄ is the Taylor expansion until order d[X℄ with respet to theexternal momenta of X. We all X =QiXi a tree if eah Xj � X has a ommonmomentum variable with at least one Xi � X, i 6= j. In this ase we de�neR[X℄ to be the Taylor expansion with respet to the external momenta of thesmallest possible iPW ~X ontaining all Xi as subwords. Finally, for X being aprodut of disjoint trees Xt, we de�ne R[QXt℄ =QR[Xt℄. Note that in generalX � R[X℄ is an integrand yielding a �nite integral only if X is a primitive PWwithout subdivergenes.To give an example, onsider the divergent Feynman graph with subdivergene
"p1�p2 p2p1�p2+k1p1�p2+k2k1�k2k1 p1k2�p2k2� �� �� =   #� BC/ n/ !$ADCB/ n/ ! = ((v1)v2) ;(14)v�C1B = he� k/1+�k21��2 e� k/1+(p/1�p/2+k/2)�k/2+�(k1+(p1�p2+k2)�k2)2��2 e� 1(k1�k2)2�M2iCB ;vBD2AC = he� k/2+�k22��2 iBA h p/1�p/2+k/2+�(p1�p2+k)2��2 e� 1(k2�p2)2�M2 iDC :We have written v1 in a form where its external momenta p1�p2+k2 and k2are expliit. The two subwords of ((v1)v2) are learly (v1) and ((v1)v2). Let usompute R[(v1)℄. It has 2 fermioni and 1 bosoni external legs, hene d[(v1)℄ � 0,and atually d[(v1)℄ = 0. In the BPHZ sheme we take the Taylor expansion of



On Kreimer's Hopf algebra struture of Feynman graphs 9(v1) in its external momenta p1�p2+k2 and k2 until order 0. This givesR[(v1)℄ = v�C1B ��p1�p2+k2=k2=0 = he� k/1+�k21��2 e� k/1+�k21��2 e� 1k21�M2iCB= %p1�p2;�k2;Bp1�p2+k2;C/ n= (15)We see that R[(v1)℄ de�nes a loal ounterterm, and the integral R d4k1 f(v1) �R[(v1)℄g is �nite.We an now apply the R-operation to the PWs ((v1)v2) and R[(v1)℄(v2). Inboth ases this means Taylor expansion with respet to the external momentap1; p2 of ((v1)v2) until degree d[((v1)v2)℄ = 0, beause R[(v1)℄ and (v2) have om-mon momenta p1; p2; k2. We obtainR[R[(v1)℄(v2)℄ =%p1�p2;�k2;Bp1�p2+k2;C/ n= �&p1�p2 p2;Ap1;D/ CB n= (16a)= he� k/1+�k21��2 e� k/1+�k21��2 e� 1k21�M2iCB � he� k/2+�k22��2 iBA h k/2+�k22��2 e� 1k22�M2iDC ;R[((v1)v2)℄ ='p1�p2;�p2;Ap1;D/ n= (16b)= he� k/2+�k22��2 e� k/1+�k21��2 e� k/1+�k21��2 e� 1(k1�k2)2�M2 k/2+�k2��2 e� 1k22�M2iDA :Both R[R[(v1)℄(v2)℄ and R[((v1)v2)℄ de�ne loal ounterterms, but both integralsR d4k2d4k1 f((v1)v2)�R[((v1)v2)℄g and R d4k2d4k1 f((v1)v2)�R[R[(v1)℄(v2)℄g arein�nite. To obtain a �nite expression one has to inlude R[(v1)℄(v2) in a waygiven by the forest formula.We must say a few words how equivalene is de�ned quantitatively. Renor-malization shemes depend on some regularization parameter �. In�nities orre-spond to pole terms in �. In terms of �, Kreimer gives the following de�nition ofequivalene: X � Y i� lim�h!0;�!0fX � Y g = 0 : (17)Aordingly, R is a renormalization map i� R[X℄ � X for all PWs X. It isimportant to understand that R[X℄ � X does not imply R[X℄Y � XY . Thereason is that if Y has pole terms in � then in the produt (R[X℄ � X)Y alsoterms of order � in R[X℄ � Y beome essential. It turns out that the full setof properties of a Hopf algebra an only be guaranteed if equivalene works forproduts, in a ertain sense. The preise ondition to the the renormalizationmap R is R�Qi R[Xi℄ Qj Yj� =Qi R[Xi℄ Qj R[Yj℄ : (18)



10 T. Krajewski & R. WulkenhaarWe indiate by X � Y that under the ondition (18) we have X � Y , but thatin general equivalene is not guaranteed.In the BPHZ sheme there is no regularization parameter �, so we annot usethe de�nition (17). Nevertheless, R is de�ned for any Feynman graph, and wesay that X � Y i� Y = X or Y = R[X℄. The ondition (18) makes sense, and wehave R2 = R by onstrution. We remark that super�ially onvergent graphswith subdivergenes (if inluded, see the remark at the end of setion 2) areannihilated by R. This is lear in the BPHZ sheme, beause a Taylor expansionuntil order d < 0 makes no sense. In what follows we work on a general levelwithout speifying the renormalization sheme and its R-operation.5 The Hopf algebraFollowing the work of Kreimer [1℄ we will now equip the PWs with the struture ofa (quasi-) Hopf algebra. This goes in four steps. First, we would like to onsiderthe set A of all PWs (whih inlude from now on its R-equivalents) as a vetorspae. We enlarge formally this set A by all rational linear ombinations of PWs.This makes A to a formal vetor spae over the �eld Q of rational numbers, Qjust for simpliity.The seond step makes A to an algebra by de�ning a produt m. This is anoperation whih assigns to a sum of pairs of elements of A a new one. Atuallyonly Q-equivalene lasses of pairs are essential so that m operates on the tensorprodut, m : A 
 A ! A. Aording to [1℄ we build the ommutative andassoiative formal produtm[X 
 Y ℄ = XY = Y X ; X; Y 2 A ;orresponding to two disjoint divergenes. We further de�ne a formal unit e bym[e
X℄ = m[X 
 e℄ = X 8 X 2 A :The unit e is not onsidered as a PSW. It is onvenient to onsider e as produedby an operation E : Q! A ; E(q) = qe :The third step is to make A to a oalgebra. The operations of a oalgebraare the duals of the algebra operations. Dual means turning the arrows. Forinstane, the dual of the above unit E, the ounit ", will be a formal operationgiven by " : A ! Q ; "[qe℄ := q ; "[X℄ := 0 8X 6= e ; X 2 A :Now omes a physially signi�ant ingredient of our oalgebra, the oprodut �.A produt was the assignment of one element to sums of pairs of other elements.Hene, a oprodut will be the splitting of one element into sums of pairs of otherelements, in symbols � : A ! A
A :



On Kreimer's Hopf algebra struture of Feynman graphs 11The philosophy is that � provides the splitting of a 1PI-graph � into a formalsum of tensor produts of all possible divergent subgraphs i (left fator) by thefration �=i obtained by reduing i to a hole (right fator). The left fatorsare, moreover, treated by the R-operation.Let us formalize this idea. The graph � is represented by a PW X desribingits forest struture. Let fXig be a subset of PSWs of X in the sense of setion 2.We are going to de�ne the fration X=(QiXi). IfQiXi = X we de�ne X=X = e.Otherwise we label the rows ofX. Eah row ofXi is a substring of one determinedrow of X. We give to the Xi-rows the labels of the X-rows they are ontainedin. These labels ould be ambiguous but we �x one hoie for all subwords of X.We delete from X and all Xi all but those rows whose labels our in eah of thehosen PSWs Xi. Let the results be X 0 and X 0i. If there remains no row at allor if X 0i \X 0j 6= ; for some pair fX 0i; X 0jg then we put X=(QiXi) = ;: OtherwiseX=(QXi) is given by removing all X 0i from X 0.Now, the oprodut of a PW X ontaining the PSWs X1; : : :Xn is de�ned by�[e℄ := e
 e ;�[X℄ := e
X +PT n Qi2T R[X 0i℄
X=(Qi2T Xi)o ; (19)where the sum runs over all ordered subsets T = fi1; : : : ; ikg � f1; 2; : : : ; ng,i1 < i2 < � � � < ik. The order of the fators and produts is not important in thisde�nition, but we must avoid taking idential terms several times. In the sequelwe will omit the primes on X 0i whih indiate the trunation to the ommon rows.Our algebra A also ontains elements of the type R[X℄, where X is a PW.Kreimer gives two possible de�nitions for � ÆR,�[R[X℄℄ = �[X℄ ; (20a)�[R[X℄℄ = (id
 R)0 Æ�[X℄ ; (20b)where the prime means that R[e℄ is replaed by e. Kreimer hooses to work with(20a). This hoie violates oassoiativity, but non-oassoiativity is interestingfrom a number theoretial point of view [5℄. We prefer (20b), beause R[X℄is always a loal ounterterm � . The philosophy is that � splits a graph intosubgraphs and remainders. Hene, both of them should be loal ounterterms inthis example, �[�℄ =P � 
 �, and for us the natural de�nition is (20b) or�[R[X℄℄ := e
 R[X℄ +PT n Qi2T R[Xi℄
R[X=(Qi2T Xi)℄0o : (21)Again, the prime means that R[X=X℄ has to be replaed by e instead of R[e℄. Thisan be easily interpreted in terms of PSWs. The PSWs Xi of R[X℄ are identialwith the PSWs of X, exept for the total PW R[X℄. The fration R[X℄=(QiXi)obtained by removing the PSWs Xi in R[X℄ learly oinides with R[X=QiXi℄,exept for R[X℄=R[X℄ = e.There are of ourse some onsisteny onditions to ful�ll before we an allA a oalgebra. One of these onditions to � is oassoiativity, whih is derived



12 T. Krajewski & R. Wulkenhaarfrom assoiativity by turning the arrows: If we split one element into a sum ofpairs, it must be the same to split the left or the right fator further. In symbols,oassoiativity means(id
�) Æ�[X℄ = (�
 id) Æ�[X℄ ; 8 X 2 A : (22)We give the proof in proposition 1 in the appendix. For the hoie (20a), oas-soiativity was only satis�ed under the additional ondition (18), but also with(20b) we need (18) to get a true Hopf algebra, see below.The `ounit' " is only a left ounit and beomes a true ounit under theondition (18). Reall that an element of A is a formal linear ombination ofproduts X =QiXi Qj R[Yj℄, where Xi; Yj are iPWs. We have�[X℄ =Qi R[Xi℄ Qj R[Yj℄
 e+ e
Qi Xi Qj R[Yj℄ +PZ 
 Z 0 ; X 6= e ;where Z;Z 0 stand for terms whih do not ontain the unit e and whih areannihilated by ". Hene, the ounit axioms read("
 id) Æ�[X℄ =Qi Xi Qj R[Yj℄ = X ; (23a)(id
 ") Æ�[X℄ =Qi R[Xi℄ Qj R[Yj℄ � R[X℄ � X : (23b)In the last line we need (18) to obtain equivalene with X. Moreover, the `an-tipode' S de�ned below turns out to require (18) to be a true antipode.So far we have equipped A with the strutures of an algebra and a oalgebra.Both merge to a bialgebra if � is an algebra homomorphism,� Æm[X 
 Y ℄ = (m
m) Æ (id
 � 
 id)[�[X℄
�[Y ℄℄ ; 8 X; Y 2 A : (24)Here, � [X 
 Y ℄ := Y 
 X denotes the ip operation. It is evident that (24) isful�lled, beause the subwords of XY are the subwords Xi of X and Yi of Ytogether.The last step extends the bialgebra to a Hopf algebra. On a Hopf algebrathere exists the additional struture of an antipode S : A! A, whih is the dualof the inverse in an algebra. Our algebra does not have an inverse (exept fore�1 = e), nevertheless it has (under the ondition (18)) an antipode, whih willprovide the link to the forest formula:S[e℄ = e ; (25a)S[XY ℄ = S[Y ℄S[X℄ ; 8X; Y 2 A ; (25b)S[X℄ = �X �m Æ (id
 S) Æ P2 Æ�[X℄ ; 8 iPW X 2 A ; (25)S[R[X℄℄ = �R[X +m Æ (S 
 id) Æ P2 Æ�[X℄℄ ; 8 iPW X 2 A ; (25d)where P2 = (id � E Æ ") 
 (id � E Æ "). The antipode is by (25) reursivelyde�ned, beause in P2Æ�[X℄ only smaller words thanX survive, and for primitivewords (x) we simply have S[(x)℄ = �(x) and S[R[(x)℄℄ = �R[(x)℄. We show in



On Kreimer's Hopf algebra struture of Feynman graphs 13proposition 2 that of the four axioms on S to hek, only one is ful�lled in generalrenormalization shemes, the other three require (18):m Æ (S 
 id) Æ�[X℄ � E Æ "[X℄ ; (26a)m Æ (id
 S) Æ�[X℄ � E Æ "[X℄ ; (26b)m Æ (S 
 id) Æ�[R[X℄℄ � E Æ "[R[X℄℄ � m Æ (id
 S) Æ�[R[X℄℄ : (26)Formula (26a) relies deeply on the fat that for X being an iPW, the equationm Æ (S 
 id) Æ�[X℄ = (id� R)hX +PT nmh Qi2T(�R[ �Xi℄)
X=(Qi2TXi)ioi= (id� R)[ �X℄ ; (27a)R[ �Xi℄ := �S[R[Xi℄℄ ;reprodues Bogoliubov's reurrene formula of renormalization [10℄. Here, Xi 6=X, i = 1; : : : ; n, are the proper PSWs of X. Denoting by Xij 6= Xi, j = 1; : : : ni,the proper PSW of Xi, we an writeR[ �Xi℄ � �S[R[Xi℄℄ = R[Xi +m Æ (S 
 id) Æ P2 Æ�[Xi℄℄= RhXi +PTi nmh Qj2TiS[R[Xij℄℄
Xi=(Qj2TiXij)ioi : (27b)Thus, �Xi has the same struture as �X, and we obtain indeed a reurrene for-mula. The integrand �X assoiated to an integrand X is pre-�nite, whih meansthat all subdivergenes are ompensated. The remaining super�ial divergeneis ompensated by id�R.To identify (27) with Bogoliubov's reurrene formula it is important thatthe oprodut produes all ombinations of disjoint subdivergenes, whih areenoded in the set of maximal forests. This means that in desribing a Feynmangraph � with subdivergenes by a parenthesized word X, we must somehowinlude in X all maximal forests of �. That is why we have written the maximalforests as lines of X. The maximal forests are de�ned by the relative position ofthe subdivergenes. Eah time we meet an overlap of subdivergenes we have abranhing of forests. Having de�ned the forests we must say how to detet thedisjoint subdivergenes. Forests ontain by de�nition no overlapping divergenes,so the only problem is to avoid nested divergenes. This was ahieved by ourfatorization proedure X=(Qi2T Xi), whih yields zero if the Xi interset. Byvariation of T (whih must be an ordered set to avoid the multipliities) we getall produts of disjoint subdivergenes. It is important that if a subdivergeneours in two or more forests, we must ount it only one. That is why we haveintrodued the brakets onneting idential regions in various maximal forests.In onlusion, our modi�ed de�nition of a parenthesized word that keepstrak of di�erent maximal forests and onnets simultaneously shrinkable boxesis the orret language for Bogoliubov's reurrene formula [10℄. This formulahas an expliit solution, Zimmermann's forest formula [7℄. Both are reproduedby oprodut and antipode of a (quasi-) Hopf algebra via m Æ (S 
 id) Æ�. Weremark that the ruial formula (26a) is atually a stronger equivalene '. Dueto the forest formula (27), the di�erene between left and right hand sides is �nitein any renormalization sheme.



14 T. Krajewski & R. Wulkenhaar6 The primitivator P and the relation to the Hopf algebra of KreimerHaving worked out a Hopf algebra of Feynman graphs where overlapping diver-genes are treated on the same footing as disjoint and nested ones, we must alsosay what the preise relation is to Kreimer's formulation [1℄ where overlappingdivergenes are resolved before building the Hopf algebra. Our presentation isinspired by an idea of Dirk Kreimer. A detailed disussion of overlapping diver-genes based on set-theoretial reasoning was given in [4℄, some remarks an alsobe found in the appendix of [2℄.The onnetion to Kreimer's Hopf algebra is ahieved by introdution of a\primitivator" P whih maps overlapping divergenes to primitive elements. LetX be an iPW with proper PSWs Xi 6= X, i = 1; : : : ; n, and T � f1; : : : ; ng.Let us write the exterior parentheses of iPWs expliitly, i.e. (X) instead of Xand (Xi) instead of Xi and (P[X=Qi2T Xi℄) instead of P[X=Qi2T Xi℄. With thisonvention we de�neP[(X)℄ := (X)�PT � Qi2T(Xi) P�X= Qi2T Xi�� : (28)We are going to prove that P[(X)℄ is primitive in the following sense:�[P[(X)℄℄ = e
 P[(X)℄ +R[P[(X)℄℄
 e : (29)If (X) is primitive it ontains no PSWs. Hene we have T = ; andP[(X)℄ = (X). For (X) and (Y ) being primitive we ompute P[((Y )X)℄ =((Y )X) � ((Y )X) = 0. By indution it is easy to show that P[Y ℄ = 0 forany non-primitive one-line iPW Y . To prove (29) by indution we assume thatall (P�X=Qi2T Xi�) are primitive in the sense (29). Hene the only PSWsof �Qi2T (Xi) P�X=Qi2T Xi�� are the (Xi) and their subwords (Xki), withki 2 T i � f1; : : : nig. We ompute�[P[(X)℄℄ = e
 (X) +R[(X)℄
 e+PT Qi2T R[(Xi)℄
 (X= Qi2T Xi)�PT ne
 � Qi2T(Xi) P�X=Qi2T Xi��+Rh� Qi2T(Xi) P�X=Qi2T Xi��i
 e+ Qi2T R[(Xi)℄
 �P�X= Qi2T Xi��o (30)� PT1;T2;T3;Sm2T2 Tm� Qi2T3R[(Xi)℄ Qm2T2n Qkm2TmR[(Xkm)℄o

 � Ql2T1(Xl) Qm2T2(Xm= Qkm2TmXkm) P�X= Qj2T1�T2�T3Xj���:In the last (splitted) line we have T1 � T2 6= ; beause that ontribution hasbeen written expliitly in the line before. Comparison of (A.6) with (A.4) in theappendix shows that the last (splitted) line of (30) equals� PT;T 0 n Qi2TR[(Xi)℄
 � Qj2T 0 ��X= Qi2TXi	j� P��X= Qi2TXi	=�X= Qi2TXi	j��o ;



On Kreimer's Hopf algebra struture of Feynman graphs 15where �X=Qi2TXi	j , j 2 T 0, are the PSWs of (X=Qi2TXi). Using the de�ni-tion (28) for (X) and (X=Qi2TXi) we on�rm (29).This means that we may replae the overlapping divergene (X) by the linearombination P[(X)℄+PT �Qi2T (Xi)P�X=Qi2T Xi��. If (X) is an overlappingdivergene whih ontains no overlapping subdivergenes, allXi are one-line PWs(or onneted idential rows of one-line PWs ~Xi ; in that ase we replae Xi by~Xi) . Sine the P[(X)℄ form additional primitive (i.e. one-line) elements of theHopf algebra, we have written the multi-line overlapping divergene (X) as alinear ombination of one-line PWs. In other words, our Hopf algebra is isomor-phi to a Hopf algebra of one-line PWs, and this is preisely Kreimer's originalHopf algebra. The primitive elements of Kreimer's Hopf algebra are the graphi-ally primitive elements and from eah overlapping divergene a omputational-primitive element. Our approah provides an expliit onstrution of the latter.The same an be ahieved, for instane, by Shwinger-Dyson tehniques [1, 5℄ orset-theoretial onsiderations [4℄.The advantage of Kreimer's Hopf algebra of one-line PWs is that it an bereformulated as a Hopf algebra of rooted trees [2℄. A subalgebra thereof turns outto be the dual of the di�eomorphism group of a manifold. It is now interestingto ask [2℄ for the (nonommutative) manifold whose di�eomorphism group isthe dual of the Hopf algebra of renormalization. We feel that answering thisquestion is indispensable for a true understanding of renormalization and of theshort-distane struture of spaetime.7 Two examples for the oprodut and the forest formulaWe ompute here the oproduts and forest formulas for two striking examplesof setion 3. By PSW we shall always mean proper PSW, we write the trivialPWs expliitly. The proper PSWs ofX = ((v1)p2)((v2)p1) �1 2 (9)are obviously X1 = (v1) ; X2 = (v2) : (9s)Let us ompute X=X1. The only row of X1 an only be related to the upper rowof X so that X 0 = ((v1)p2). To obtain X=X1 we must remove X1 from X 0, theresult is X=X1 = (p2). Aordingly,X=X1 = (p2) ; X=X2 = (p1) ; X=(X1X2) = 0 : (9r)The last equation holds beause X1; X2 have no ommon row label. Therefore,the oprodut reads�[X℄ = e
 ((v1)p2)((v2)p1) +R�((v1)p2)((v2)p1) �
 e +R[(v1)℄
 (p2) +R[(v2)℄
 (p1) : (9�)



16 T. Krajewski & R. WulkenhaarLet us now apply the operator m Æ (S
 id). To avoid unneessary alulation weuse the general result (27a),m Æ (S 
 id) Æ�[X℄ = (id� R)[X +m Æ (S 
 id) Æ P2 Æ�[X℄℄ :The projetion P2 removes all terms ontaining the unit e so that in our ase wehave P2 Æ�[X℄℄ = R[(v1)℄
 (p2) +R[(v2)℄
 (p1). This givesm Æ (S 
 id) Æ�[X℄= (id�R) �((v1)p2)((v2)p1) + S[R[(v1)℄℄(p2) + S[R[(v2)℄℄(p1)�= (id�R) �((v1)p2)((v2)p1) � R[(v1)℄(p2)� R[(v2)℄(p1)� : (9f)The primitivator of X readso1 := P[X℄ = ((v1)p2)((v2)p1) � ((v1)p2)� ((v2)p1) : (9p)It is easy to verify �[o1℄ = R[o1℄
 e+ e
 o1.Let us do the same steps for example (11):X = (((v3) v13)p2)(((v3) v23)p1) ; �31 2 (11)X1 = (v3)(v3) ; X2 = ((v3)v13) ; X3 = ((v3)v23) ; (11s)X=X1 = ((v13)p2)((v23)p1) ; X=X2 = (p2) ; X=X3 = (p1) ; (11r)X=(X1X2) = X=(X1X3) = X=(X2X3) = X=(X1X2X3) = 0 ;�[X℄ = e
 (((v3) v13)p2)(((v3) v23)p1) +R �(((v3) v13)p2)(((v3) v23)p1) �
 e+R[(v3)℄
 ((v13)p2)((v23)p1)+R[((v3)v13)℄
 (p2) +R[((v3)v23)℄
 (p1) ; (11�)�in the third term, (v3)(v3) an be ondensed to (v3)�m Æ (S 
 id)
�[X℄= (id� R)�(((v3) v13)p2)(((v3) v23)p1) + S[R[(v3)℄℄ ((v13)p2)((v23)p1)+ S�R�((v3)v13)��(p2) + S�R�((v3)v23)��(p1)�= (id� R)�(((v3) v13)p2)(((v3) v23)p1) �R[(v3)℄ ((v13)p2)((v23)p1)� nR[((v3)v13)℄ +R�m Æ (S 
 id) Æ P2�[((v3)v13)℄�o(p2)� nR[((v3)v23)℄ +R�m Æ (S 
 id) Æ P2�[((v3)v23)℄�o(p1)�



On Kreimer's Hopf algebra struture of Feynman graphs 17= (id� R)�(((v3) v13)p2)(((v3) v23)p1) �R[(v3)℄ (v13)p2)(v23)p1)�R[((v3)v13)℄(p2) +R�R[(v3)℄(v13)�(p2)�R[((v3)v23)℄(p1) +R�R[(v3)℄(v23)�(p1)� ; (11f)o2 := P[X℄ = (((v3) v13)p2)(((v3) v23)p1) � ((v3)o1)� (((v3)v13)p2)� (((v3)v23)p1) :(11p)The primitive element o1 omputed in (9p) enters the deomposition of X intoone-line PWs.Example (12) is similar to (11) and is left as an exerise to the reader. Example(13) is the obvious generalization of (9) to three maximal forests.AknowledgmentsWe are grateful to Dirk Kreimer for explaining us the way he treats overlappingdivergenes and for disovering the link between our Hopf algebras. We would liketo thank Bruno Iohum, Ctirad Klim�ik, Serge Lazzarini and Thomas Sh�ukerfor disussions.Appendix: Veri�ation of the Hopf algebra propertiesProposition 1 The oprodut � is oassoiative, (�
 id) Æ� = (id
�) Æ�.Proof. Let X be an iPW whih is not R[X 0℄. Let Xi 6= X, i = 1; : : : ; n, be theproper PSW of X. Let T be the set of all ordered subsets of f1; 2; : : : ; ng. Wewrite the ontribution of the trivial PSW X of X expliitly:�[X℄ = e
X +R[X℄
 e+PT n Qi2T R[Xi℄
X=(Qi2T Xi)o :This gives(id
�) Æ�[X℄ (A.1)= e
 ne
X +R[X℄
 e +PT n Qi2T R[Xi℄
X=(Qi2T Xi)oo+R[X℄
 e
 e+PT n Qi2T R[Xi℄
 e
X=(Qi2T Xi)o+PT n Qi2T R[Xi℄
 R[X=(Qi2T Xi)℄
 eo+PT nQi2TR[Xi℄
PT 0n Qj2T 0R��X=(Qi2T Xi)	j�
 �X=(Qi2TXi)	=� Qj2T 0 �X=(Qi2TXi)	j�oo;where �X=(Qi2T Xi)	j are the proper PSW of X=(Qi2T Xi), j = 1; : : : ; n0 < n;and T 0 is the set of all ordered subsets of f1; : : : ; n0g. The following terms an berearranged:e
 e
X+ �e
R[X℄
 e+R[X℄
 e
 e +PT n Qi2T R[Xi℄
R[X=(Qi2T Xi)℄o
 e	= (�
 id)(e
X +R[X℄
 e) (A.2)



18 T. Krajewski & R. Wulkenhaarso that there remainPT nQi2TR[Xi℄
 e
X=(Qi2TXi)o + e
PT nQi2TR[Xi℄
X=(Qi2TXi)o and (A.3)PT;T 0nQi2TR[Xi℄
n Qj2T 0R��X=(Qi2T Xi)	j�
 �X=(Qi2TXi)	=� Qj2T 0 �X=(Qi2TXi)	j�oo:(A.4)We investigate �X=(Qi2T Xi)	j. Either this is a PSW of X or not. If not theremust exist a PSW Xm of X and some PSWs Xk with k 2 Tm � T suh that�X=(Qi2T Xi)	j = Xm=(Qk2Tm Xk). This means that T 0 = T1 � T2 (both T1; T2an be empty but not the sum) andQj2T 0R��X=(Qi2T Xi)	j� = Ql2T1R[Xl℄ Qm2T2R[Xm=( Qkm2TmXkm)℄ :Let us assume that T2 ontains at least two elements m1; m2 and perform thefatorization�X=(Qi2TXi)	=��Xm1=( Qk12Tm1Xk1)	�Xm2=( Qk22Tm2Xk2)	� : (A.5)Reall that Tm1�T and Tm2�T and assume that Xn 2 Tm1 \ Tm2 . The fration(A.5) will only be non-zero if Xm1=(Qk12Tm1Xk1) and Xm2=(Qk22Tm2Xk2) ourtogether and disjoint in at least one row of X=(Qi2T Xi). These rows orrespondto those rows of X eah of whih ontain all Xi, i2T , too. But eah Xi ourspreisely one in any row, so does the Xn in question, hene it will either our inTm1 or in Tm2 , but never in both. Therefore, we have a diret sum deompositionT = T3 �Lm2T2 Tm and (A.4) takes the form(A.4) = PfT1;T2;T3;Sm2T2Tmgn Qi2T3R[Xi℄ Qm2T2f Qkm2TmR[Xkm ℄ g 

 Ql2T1R[Xl℄ Qm2T2R�Xm=( Qkm2TmXkm)�
X=( Qm2T2Xm Ql2T1Xl Qi2T3Xi)o (A.6)=PT n� PT3�T Qi2T3R[Xi℄
 PT1�T=T3 Ql2T1R[Xl℄	�� � Qm2T2=T=(T1�T3)PTmn Qkm2TmR[Xkm ℄
R[Xm=( Qkm2TmXkm)℄o	
X=(Qj2TXj)o:Note that T1; T2; T3 an be empty, in that ase the missing produt over R[Xj℄has to be replaed by e. If T2 is empty then the sum over T1 = T=T3 has tobe omitted. Observe that neither T1 � T2 nor T3 � T2 an be empty, but thesetwo terms T2 = ; and either T1 = ; or T3 = ; are preisely those of (A.3). Alltogether an be rewritten as(A.3) + (A.4) =PT n Qj2T �e
R[Xj℄ +R[Xj℄
 e ++PT j n Qkj2T jR[Xkj ℄
R[Xj=( Qkj2T jXkj )℄o	
X=(Qj2TXj)o=(�
 id)�PT � Qj2T R[Xj℄
X=(Qj2TXj)	� ; (A.7)



On Kreimer's Hopf algebra struture of Feynman graphs 19and we onlude(A.2) + (A.3) + (A.4) = (�
 id) Æ�[X℄ = (id
�) Æ�[X℄ : (A.8)To �nish the proof of oassoiativity of � we must write down(id
�) Æ�[R[X℄℄ = (id
�) Æ (id
 R0) Æ�[X℄= (id
 id
 R0) Æ (id
�) Æ�[X℄= (id
 id
 R0) Æ (�
 id) Æ�[X℄= (�
 id) Æ�[R[X℄℄ ;(id
�) Æ�[XY ℄ = m̂�f(id
�) Æ�[X℄g 
 f(id
�) Æ�[Y ℄g�= m̂�f(�
 id) Æ�[X℄g 
 f(�
 id) Æ�[Y ℄g�= (�
 id) Æ�[XY ℄ :We have de�ned m̂[fX 0
X 00
X 000g 
 fY 0
Y 00
Y 000g℄ := X 0Y 0 
X 00Y 00 
X 000Y 000as well as R0[e℄ = e and R0[X℄ = R[X℄ for X 6= e.Proposition 2 The `antipode' S ful�lls mÆ(S
id)Æ� � EÆ" � mÆ(id
S)Æ�,and on PWs X not ontaining R we even have mÆ(S
 id)Æ�[X℄ � 0 = EÆ"[X℄.Proof. The ase X = e is trivial. Let X 6= e be an iPW, whih is not R[X 0℄:m Æ (S 
 id) Æ�[X℄ = m Æ (S 
 id)[e
X +R[X℄
 e + P2�[X℄℄= X + S[R[X℄℄ +m Æ (S 
 id) Æ P2�[X℄= X � R�X +m Æ (S 
 id) Æ P2�[X℄�+m Æ (S 
 id) Æ P2�[X℄= (id�R)�X +m Æ (S 
 id) Æ P2�[X℄�� 0 = E Æ "[X℄ ;m Æ (id
 S) Æ�[X℄ = m Æ (id
 S)[e
X +R[X℄
 e + P2�[X℄℄= S[X℄ +R[X℄ +m Æ (id
 S) Æ P2�[X℄= �(X +m Æ (id
 S) Æ P2�[X℄) +R[X℄ +m Æ (id
 S) Æ P2�[X℄= �(id� R)[X℄ � 0 = E Æ "[X℄ :As we have hosen (20b), we must also ompute (X is again an iPW)m Æ (S 
 id) Æ�[R[X℄℄ = m Æ (S 
 id)[e
 R[X℄ +R[X℄
 e+ P2�[R[X℄℄℄= R[X℄ + S[R[X℄℄ +m Æ (S 
 id) Æ P2�[R[X℄℄= R[X℄�R�X +m Æ (S 
 id) Æ P2�[X℄�+m Æ (S 
 id) Æ P2�[R[X℄℄= �m Æ (id
R)�R Æm��(S 
 id) Æ P2�[X℄�� 0 = E Æ "[R[X℄℄ :We need ondition (18) in the form R Æm = R ÆmÆ (id
R) to have equivalene.The remaining ase is more ompliated:m Æ (id
 S) Æ�[R[X℄℄ = S[R[X℄℄ +R[X℄ +m Æ (id
 S) Æ P2�[R[X℄℄= �R�X +m Æ (S 
 id) Æ P2�[X℄�+R[X℄ +m Æ (id
 S) Æ P2�[R[X℄℄= m Æ (id
 S) Æ P2�[R[X℄℄�R�m Æ (S 
 id) Æ P2�[X℄� : (A.9)



20 T. Krajewski & R. WulkenhaarWe transform the �rst term, using the de�nition of S ating on R[ : ℄:m Æ (id
 S) Æ P2�[R[X℄℄ (A.10)= �m[P2�[R[X℄℄℄�m Æ (id
 fR Æm Æ (S 
 id) Æ P2�g) Æ P2�[X℄= �R Æm�m Æ (id
 R)�Æ�P2�[X℄ + (id
 fm Æ (S 
 id) Æ P2�g) Æ P2�[X℄��Rhm[P2�[X℄℄ +m Æ (id
m) Æ (id
 S 
 id) Æ (id
 P2�) Æ P2�[X℄i :Now observe that due to oassoiativity of � we have(id
 P2�) Æ P2�[X℄ = P3 Æ (id
�) Æ�[X℄ = P3 Æ (�
 id) Æ�[X℄= (P2 
 id) Æ (�
 id) Æ P2�[X℄ ;with P3 = (id�E Æ ")
 (id�E Æ ")
 (id�E Æ "). Note that � is multipliative,not (P2�). Using also assoiativity of m we an write�R�m Æ (id
m) Æ (id
 S 
 id) Æ (id
 P2�) Æ P2�[X℄�= �R�m Æ (m
 id) Æ (id
 S 
 id) Æ (P2 
 id) Æ (�
 id) Æ P2�[X℄� :We have omputed (�
 id) ÆP2�[X℄ in (A.7). By inspetion of that formula we�nd that (P2 
 id) Æ (�
 id) Æ P2�[X℄ equals (�
 id) Æ P2�[X℄� (A.3), whihgives�R�m Æ (id
m) Æ (id
 S 
 id) Æ (id
 P2�) Æ P2�[X℄�= �RhPT mh Qj2T �m Æ (id
 S) Æ�[R[Xj℄℄	
X= Qj2TXjii+RhPT mhQj2TS[[R[Xj℄℄℄
X=Qj2TXjii +RhPT mhQj2T[R[Xj℄℄
X=Qj2TXjii :The last term anels �R[m[P2�[X℄℄℄ in (A.10) and the middle term anels�R[mÆ (S
 id)ÆP2�[X℄℄ in (A.9). We end up with the same problem as before,to alulatemÆ(id
S)Æ�[R[Xi℄℄, however, these Xi are smaller than the originalX. This leads to an iteration whih stops if Xi is primitive, and for primitive Xiwe have m Æ (id
 S) Æ�[R[Xi℄℄ = S[R[Xi℄℄ +R[Xi℄ = 0 :The onlusion is that it is ondition (18) required in (A.10) whih separates usfrom zero: m Æ (id
 S) Æ�[R[X℄℄ � 0 = E Æ "[R[X℄℄ for all iPW X.It remains to apply m Æ (id
 S) Æ� and m Æ (S 
 id) Æ� to produts X =QiXiQj R[Yj℄. Here we have the multipliativity of � (24) and S (25b) atdisposal, so we learly getm Æ (id
 S) Æ�[X℄ � 0 = E Æ "[X℄ � m Æ (S 
 id) Æ�[X℄ : (A.11)One ase however is speial. For X = QXi, where none of the Xi is R[X 0i℄, wehave m Æ (S 
 id) Æ�[Qi Xi℄ =Qi �(id� R)�Xi +m Æ (S 
 id) Æ P2�[Xi℄�	� 0 = E Æ "[Qi Xi℄ : (A.12)



On Kreimer's Hopf algebra struture of Feynman graphs 21The reason is that (id � R)�Xi + m Æ (S 
 id) Æ P2�[Xi℄� is onvergent as itreprodues the forest formula, see (27). Now, multipliation of (id � R)�Xi +m Æ (S 
 id) Æ P2�[Xi℄� by a onvergent term is equivalent to zero. It is evenstrongly equivalent (') to zero whih means that the integral is �nite. On theother hand, mÆ (id
S)Æ�[QiXi℄ =Qi �(R� id)[Xi℄	 is a produt of divergentterms, so we need (18) in this ase to obtain equivalene to zero. The fat thatm Æ (S 
 id) Æ � gives the forest formula is essential for (A.12) holding in anyrenormalization sheme.Referenes[1℄ D. Kreimer, On the Hopf algebra struture of perturbative quantum �eld theories, Adv.Theor. Math. Phys. 2 (1998), and q-alg/9707029.[2℄ A. Connes and D. Kreimer, Hopf algebras, renormalization and nonommutative geometry,hep-th/9808042, to appear in Commun. Math. Phys.[3℄ A. Connes and H. Mosovii, Hopf algebras, yli ohomology and the transverse indextheorem, math.DG/9806109.[4℄ D. Kreimer, On overlapping divergenes, hep-th/9810022.[5℄ D. Kreimer, Renormalization and Knot Theory, J. Knot Th. Ram. 6 (1997) 479{581, andq-alg/9607022.[6℄ C. Itzykson and J. B. Zuber, Quantum Field Theory, MGraw-Hill (1980).[7℄ W. Zimmermann, Convergene of Bogoliubov's method of renormalization in momentumspae, Commun. Math. Phys. 15 (1969) 208{234.[8℄ N. N. Bogoliubov and O. S. Parasiuk, On the multipliation of the ausal funtion in thequantum theory of �elds, Ata Math. 97 (1957) 227{266.[9℄ K. Hepp, Proof of the Bogoliubov-Parasiuk theorem on renormalization, Commun. Math.Phys. 2 (1966) 301{326.[10℄ N. N. Bogoliubov and D. V. Shirkov, Introdution to the Theory of Quantized Fields,J. Wiley (1980).


