published in: J. Geom. Phys. 20 (1996) 107-141.
© 1996 Elsevier Science B.V.

On a Certain Construction of Graded Lie
Algebras with Derivation

R. Matthes, G. Rudolph and R. Wulkenhaar*
Institut fur Theoretische Physik
Universitat Leipzig
Augustusplatz 10/11, D-04109 Leipzig, Germany

Abstract

Using a unital associative x—algebra 2 over C and a certain class of
Hermitian finite projective modules together with a graded involutive dif-
ferential algebra, both associated with 1, we develop a procedure for con-
structing graded Lie algebras with derivation. Taking, in particular, the
canonical differential algebra of Connes’ theory, related to the simplest
two—point K-cycle, we obtain a class of graded Lie algebras with deriva-
tion, which as one special case contains the graded Lie algebra used in the
Mainz—Marseille approach to model building. Finally, we outline a new
derivation of the standard model.

1 Introduction

During the last decade there has been an increasing interest in methods related
to non—commutative differential geometric structures. One of the main streams
in this field was initiated and mainly developed by A. Connes ([6], [5]). Starting
from the observation that the “classical” Dirac K—cycle of a Riemannian manifold
X contains all information about this manifold, he invented the abstract notion
of a K-cycle over an — in general — non—commutative algebra. This gives the
possibility to discuss geometric structures, which — in general — do not possess an
underlying “classical” manifold. Connes realized that already slight modifications
of the “classical” K—cycle, namely such that the algebra remains commutative,
give rise to interesting physical applications. The simplest relevant example of
this type [6] is the K-—cycle over the algebra C°(X) ® (C @ C) leading to a
unification of gauge and Higgs bosons. If one takes the tensor product of this
algebra with the vector space of fermions, one can derive a version of the classical
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Lagrangian of the Salam—-Weinberg model of electroweak interactions with the
bosonic sector described in terms of a unified non—commutative gauge field, see
[6], [5], [7]. The above algebra is the simplest example of the class of algebras
C*(X)® (MyCa® M,C), which we call two-point algebras. For the derivation of
the full (classical) standard model, Connes and Lott [7] proposed to use a K—cycle
over the algebra CF(X) ® (C @ H), where H denotes the field of quaternions
and CP(X) the algebra of real smooth functions on X. A detailed presentation
of this construction can be found in a series of papers by Kastler ([17], [18], [19],
[20]). For an overview over the mathematical background we refer to [26] and for
a physicist’s review to [9].

There is another approach to model building, proposed by Coquereaux and
Scheck and further developed by their groups in Mainz and Marseille, see [12],
[11], [8], [10], [13], which at first sight seems to be completely different from that
of Connes and Lott. These authors postulate ad hoc a certain graded matrix Lie
algebra and consider a generalized connection with values in this algebra. The
connection is built both from differential one forms and zero forms, represent-
ing the classical gauge fields of the electroweak interaction and the scalar Higgs
fields respectively. Adding by hand the gauge bosons of the strong interaction
and choosing appropriate fermionic representations, one can derive the classical
Lagrangian of the standard model in this way.

The fact that the bosonic sector in this type of models is unified, has non-
trivial phenomenological consequences. In particular, in most versions one ob-
tains a prediction of the Higgs mass at tree level. However, there are — from
the phenomenological point of view — certain subtle differences between the two
above—mentioned approaches. This is mainly related to the fact that within the
construction of Connes and Lott one gets additional relations between boson and
fermion masses. For a detailed discussion of this aspect we refer to [22].

In this paper we present a rigorous mathematical link between these two
approaches. Using results from our previous paper [21] we will prove that given
the simplest two—point K—cycle together with the differential algebra (2}, , which
is obtained from the universal differential algebra (associated with the algebra of
the K—cycle) by factorizing with respect to a canonically given ideal, and taking a
finite projective module over the algebra, we are able to construct in a canonical
way a graded Lie algebra. Since every finite projective module carries a canonical
connection, this graded Lie algebra is naturally endowed with a derivation. If one
chooses the module appropriately, then one arrives at the graded Lie algebra used
by the Mainz—Marseille group for the derivation of the standard model. This
way all structures, ad hoc postulated within this approach, find their natural
explanation within the context of Connes’ theory.

As a matter of fact, the construction of graded Lie algebras with derivation
proposed in this paper is not limited to the case, when a K—cycle together with
the canonically associated differential algebra €2}, is given. All we need — in the
most general context — is a unital associative algebra 2 over C (fulfilling a certain
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technical condition) and a certain graded differential algebra A} , associated with
20 in a sense defined below. Then taking an arbitrary finite projective module
over 2, we can construct a graded Lie algebra with derivation — a fact, which
at least from a purely mathematical point of view seems to be of some interest
in itself. For physical applications as discussed above one is rather interested
in the case, when 2 and A} are endowed additionally with an involution and
the module carries a Hermitian structure. It will be interesting to apply our
general construction to situations more complicated than that of the simplest
two—point K—cycle. In particular, a similar analysis for the N—point case would
be interesting, because this case seems to be relevant for the construction of grand
unified theories, see [2], [3] and [4].

The paper is organized as follows: In subsection 2.1 we present the con-
struction of graded Lie algebras in the general context — as indicated above. In
subsection 2.2 we discuss the notion of connections on finite projective modules
and show how the canonical connection gives rise to a graded derivation in the
graded Lie algebra constructed before. Next, in subsection 2.3 we give a matrix
formulation of these structures. In subsection 3.1 we review results [21] on the dif-
ferential algebra A% associated canonically with the simplest two—point K—cycle.
In subsection 3.2 we consider the graded Lie algebra H for this case and distin-
guish a certain graded Lie subalgebra Hy of H relevant for model building. In
subsection 3.3 we change the standard matrix representation of the structures dis-
cussed before. In section 4 we show that the mathematical structures used in the
Mainz—Marseille approach are naturally obtained from the framework developed
in this paper. More precisely, in subsection 4.1 we derive a slightly generalized
version of the graded Lie algebra arising in the Mainz—Marseille approach. In sub-
section 4.2 we define a projection of the graded Lie algebra of subsection 3.2 to
that of subsection 4.1, and we discuss the structure of the projected geometrical
objects. Then, in subsection 4.3, we specialize to the original Mainz—Marseille
model as described in [12] and [11]. Finally, in section 5 we outline how the
standard model can be derived in our scheme.

2 The General Scheme

2.1 Finite Projective Modules with Hermitian Structure
and Graded Lie Algebras

Let 2 be a unital associative x—algebra over C, so that a*a =0 iff a = 0. More-
over, let (A}, e, x,d) be a graded involutive differential algebra associated with
2. That means Ay = @, , A%, AY = A. The dot e denotes the multiplication
Ak o Ay € AL d the graded differential d : A% — AL™ | and * is an involution
compatible with d,

d(\*) = (=1)*(d\)*, Ae Ak . (1)



Since A = AY, we have a natural A-bimodule structure on A} . When multiplying
elements of 2 with elements of A}, we omit the dot for simplicity.

We recall [26] that every finite projective right module £ over 2 has the
structure £ = e2A? , where p is a natural number and e € Endg(2?) , with e? = €.
Here, A is treated as C? ® 2. Elements ¢ € ? are of the form ( =) ¢, ® aq,
finite sum, where ¢, € CP and a, € . We shall often write ( = ¢ ® a, with a
linear extension to finite sums being understood.

Definition 1 A Hermitian finite projective right A-module is a pair (€, (, )e),
where (1, )e : € x E = A is a sesquilinear, Hermitian, non—degenerate, positive
map.

We define a Hermitian structure on 2A” by
(c®a,é@a)yw = (¢,¢) e a’a, (2)

where (1, ) c» denotes a scalar product on CP . The involution of endomorphisms
of A? is defined by (x*¢, Oar = (¢, xO)aw , for x € Endg (2A?) . We assume that e is
an orthogonal (Hermitian) projector, e = e* . Restricting the Hermitian structure
given by (2) to £ = eAP | we get a Hermitian structure on £ .

Let us denote the tensor product of the right module £ with the bimodule A%
over the algebra 2 by £F = £ @y A§, £° := € and £&* := P, E". On £ we
have the natural structure of a right Aj—module inherited from the multiplication
in Ay :

EF X AL D (E@a A, \) = (EQuN) e X:=E®y (Ao )) € EFF (3)

foré € £, X € Ak, X € Ay . We extend the Hermitian structure on € to mappings
(, )& EF x €= AFH by

(é- ®Ql A ) g®9l S‘)EJ = )\* o (gag)f L 5‘ . (4)
Lemma 2
(i) (ala)y = a'(&9p'a, forseEl, Ee&l, aae,
(i) (&) = (§0, forceer, feél,
() (£ = 0 VEeE iffE=0, (€t
() (& = 0VEeE iffE=0, el -

Let H* = Homgy(&, £F) be the set of homomorphisms of the right 2-module
£ to the right A-module &% and H := Dren, HF . Using the right Aj-module
structure on £* | see (3), we get a natural associative multiplication e on H . We
define o : HF x H! — H* by

(0®0)(§) == (ide ®a @) o (0 @ idy, )0 0(£) , (5)
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for o€ H*, 0 € H', £ € £. The Hermitian mappings ( , )?0 and ( )gk induce
an involution on H* :

(€, 07(€)" == (0(), 8%, V&€&, oM. (6)

Due to Lemma 2, this involution is well-defined. Moreover, one can show that
(0e0)"=0"®0", 0,0€M. (7)

Thus, H is an associative, N—graded, unital, involutive algebra over C.
We define

[0,0]y =000~ (-1)"5e0, oeH", 5eH . (8)

Lemma 3 With respect to the above bracket, H is a graded Lie algebra, i.e. we
have for 0,0 € H*, 6 € H', 6 € H™ and 2,2 € C

@) lody=—-(=1"[2,d,
(@) [zo+2'd, 0y = =0, dly + 2, g ) (9)
(222) (_1)km[Qa [0, 0]4]y + (_1)lk[§a [0, 0]gly + (_1)ml[§a [0, 0]4ly =0 O

Finally, we endow £* naturally with the structure of a left graded H-module,
putting
oo = (ide @u ®)o (0 @ idyy )(E), (10)

for p € H* and & € £'. By construction, we have
(cep)el=0e(00&), 0,0€M, (€&, (11)

Thus, £* is a natural representation space of the graded Lie algebra .

2.2 Connections and Graded Derivations

Now we recall the notion of a connection on &£ associated with the differential
calculus (A%, e, *,d), see [7].

Definition 4 i) A connection on & is given by a C-linear map V : € — &L,
so that V(€a) = (V&) a+ E@gq da, forE € £, a e .
it) A connection is compatible (with the Hermitian structure) iff

(&, VL +(VE, " =d(&,&)e, for §,E€E.

Definition 5 (c¢f. [7]) The gauge group U(E) is the group of unitary automor-
phisms of €, U(E) = { v € Endy(E) : wu* = v*v = ide }, and gauge
transformations of the connection V are given by uVu*.



We extend V uniquely to linear maps V : £* — £"! by
V(ERgN) = (VE) @A+ E@gdN, £€E&, Ne Ay, (12)

satisfying V(£ e \) = (V&) e A+ (—1)"C @ d)\, £ € £, X € A}. The curvature of
the connection V,
0= Ve, (13)

is an element of H2.

Lemma 6 There exists a canonical compatible connection Vy on € given by

Vo(c®a) =e(c® ly) g da , (14)
with c @ a € € C AP and 1y denoting the unit element of 2. a
Lemma 7 Any compatible connection V on &€ has the form

V=V+p, with p=—p"cH . (15)
Proof: See [26]. O

The existence of the canonical connection V, on £ ensures that we have a
canonical graded derivation D : HF — HF+L

(Do)(€) := V(e(€)) — (—1)*0 e (V) , (16)
where £ € £, 0 € H*. One easily shows that
(Do)(€a) = ((DPo)(§))a,
D(oeg) = (Do)eo+(-1)*0eDg,
Dlo,0ly = [Do,0ly+ (- 1)k[Q7D@]g ’ (17)

(Do)* = (-1)"D(o"),

for o € H*, 6 € H' and @ € A. Note, however, that D is — in general — not a
differential of 7, because we get from (16)

D’o=fhep—pely, 0EH, (18)

where 6y := V; is the curvature of the canonical connection V. From (16) one
also finds
0=60+Dp+pep, (19)

and Definition 5 gives the following formulae for gauge transformations:

uVu* = Vy+uDu* 4+ upu®
Yu(p) = uDu’+upu”, (20)

*

Yu(0) = ubu® .



2.3 Matrix Representation

Now we choose the canonical basis {€;}i=1,. , in CP, together with the canonical
scalar product. This enables us to embed all structures discussed in the previous
two subsections into the tensor product Aj ® M,C. Observe that {e; ® Ly }i—1. 5
is the canonical basis of the free right 2-module A = C? ® 2 and

p
6(6i X ]]_g[) = Z8j X €ji - (21)
j=1

Thus, the projector e is represented by the Hermitian p x p-matrix (ej;) , ej; € .
Therefore, elements

p p
fE€§=C®a=Z6i®Cia€5, szgiciequa (22)
i=1

i=1
are naturally identified with columns

a1
£ = : , e =ca e, (23)

ap

Observe that e = £ means Z?Zl eija; = a; . The Hermitian structure on & takes
the form

(&8s =) ajai, {E€E. (24)
=1

Forfzf@m)\ng,with§~:Zf:16i®aiGgand)\eA’Qﬂ,Weget

E=E@uA=) (5:® la) @u ;) . (25)

i=1
Therefore, elements £ € £F are naturally identified with columns

&
E=| : , G=a) e Ay (26)
&p
Again, e£ = £ means 25:1 ei;&; = & . The right Aj—module structure of £ is
given by
SR
EF XAy D (6 M) > Eor= : € et (27)

EpoA



The canonical compatible connection Vj on £*, see (14) and (12), takes the form

p p

Vol = (Vo) e A+E@adA = Y (g;® 1a) ®aejid(a;)) = D (2@ Lat) Qauesid(§y) -
ij=1 ij=1
(28)
Thus, V) & € EF! can be represented by
d&
d¢,
Due to (23) and (26), 0 € H* can be represented by a matrix
ou ... 015 --- Qip
0= Qi1 --- Qij --- Oip ) Qz’jEAgl- (30)
Op1 - Opj --- Opp

We have epe = p or, in matrix representation, Zf,j,m,n:l €im Omn€nj = 0ij - More-
over, the action of p on & € £' and the product e in the algebra H are represented
by matrix multiplication:

(00&)i =37 109 (31)
(0®0)ij =D 0_1 0in ® 0nj » (32)

and the involution (6) is given by
()i = (25)" - (33)

We observe that H can be treated as an involutive subalgebra of Ay ® M,C.
Using (28) and the above calculus one gets the curvature

p

(60)ij = Z eird(ex) ® d(em)em; » (34)

k,l,m=1

where, in particular, one has to use Y77 _, eimd(emn)en; = 0. Using (16), (28)

and (31) one calculates

(Do) (€) = 227 e (i@ 1) @aeijd(0jnan) — (=1)F 327, (6i@1a) @agijeind(an)
= 2t jnm=1 (Ei®La)®a{ei;d(0jn) nman} -



Thus, Dp can be represented by the following matrix

d(o1) ... d(owp)
Do=ed(p)e=e : : e . (35)

d(op) - d(opp)

For later purposes it is convenient to represent also £* and Aj as subspaces
of Ay ® M,C. This goes as follows: First, £* is embedded as a vector subspace,
putting

je(6) = (¢l 1€), (36)
N—_— —

p

which means building the p X p-block matrix jg (§) from the p X 1-column & € £*.
To preserve the right Aj-module structure of £*, we embed Ay as a subalgebra,
putting
A )
iA(A) = , AEANy . (37)
) A

Under this embedding the right module structure and the left action of 4 on £*
are transported as follows:

je(EoN) = je(§)eia(N), €&, Ne Ay, (38)
je(oo&) = oeje(§), £€€&, o€H. (39)

3 Application to the Simplest two—point K-
cycle and its Associated Differential Algebra
A

3.1 The Differential Algebra A%

The construction presented above can be, in particular, applied to the special
case of a K—cycle and its canonically associated differential algebra €}, , see [6],
[7]. For the rest of the paper we restrict ourselves to this situation. We consider
the simplest two—point K—cycle, whose differential algebra {2}, was analysed in
[21]. To keep this paper selfcontained, we review some results obtained there.
Let X be a compact even dimensional Riemannian spin manifold, dim (X)) =:
N . We denote by L*(X,S) the Hilbert space of square integrable sections of the
spinor bundle over X, by C the Clifford bundle over X , and by C* the set of
those sections of C', whose values at each point © € X belong to the subspace
spanned by products of less than or equal k£ elements of 7> X of the same parity.



We consider the even K—cycle (A, h, D,T"), see [6], [5], [7]. The Hilbert space h
is
h:=L*X,S)®F, (40)

where F is a finite dimensional Hilbert space, which in physical applications
carries fermionic degrees of freedom. We assume that there exists a selfadjoint
grading operator I acting on h, I'? = id,,,

I=+4""1®l, T €End(F), (41)

N—-1.N

N+L = Y a2 AN N and r denoting the grading operators on

with

.....

selfadjoint sections of C''. We have the decomposition

| | -
This gives the decomposition h = h, & h_, with hy := L*(X,S) ® F. . Thus,
elements ¢ € h naturally decompose as ¢ = er , where 1, € hy and

N+1
(T ®idp, 0
_ € h_. Then, I' can be represented by I' = ( 0 _ANH @ id
The algebra A of the K—cycle is
A=C®X) (CapC)=C®X)C*X) . (43)

We consider the following involutive representation = of A on A :

T((f, )W, 0) = ((f ®idp,) (), (f @ idr ) (¥)) , (44)

for f,f € C*(X) and ¢ € hy, ¢ € h_. This implies that I' commutes with
7(A) . In the above representation we get

= fa= (IO S ) afec ey @

The selfadjoint generalized Dirac operator D of the K-—cycle is
D:=D"®id; +y"" oM, (46)

where D is the classical Dirac operator on L*(X,S) and M is an endomor-
phism of F'. One demands DI' + I'D = 0, which implies TM = —MTI'. The
selfadjointness of D implies M = M*. Thus, we have a natural decomposition

M=M, OdM_,

1. - 0 0 1. - 0 M
M+::M§(ldp+r):<M* 0) , M::Mé(ldﬁ_r):<0 ) > ,
(47)
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where M € Hom(F_, F;). We define

o _ ( idp O o (0 O
M+_< 0 0>’M—_<0idp_ !

Mt 0 0 0
w = aemy = (0w = e = (0 )

0 0
Myt = muvem) = () (48)
M0
t
M2 = MMy M) = ( 8 ]‘042 )  where

MT = (MM*)", M} := M(M*M)", M} := M*(MM*)", M} := (M*M)" .

There exists an involutive representation 7 of the universal differential algebra
Q" over A on h, giving the algebra [7]

Q) = @), 7(Q)=7(A), (49)

P

0

(=)* Y m@Q)[Dw(ag)] - [Dym(ay)], ape A}, k>1.

«

~—

m(QF) =

We restrict ourselves to the case Fy 2 F_ = F and demand additionally M? ¢
Cidpgr . In this case one can show, see [21], that

@ Ck72t ®C Mf ; @ Ck72t717N+1 ®C Mé

() = | 0 I , (50)
@ Cka2t71,YN+1 ® C M§ ; @ Ck—2t ® C Mi
t=0 t=0

where m + 1 is the number of linear independent elements Mit We denote
L"=C"/C"2 forn >2,and put L’ =CY, L' = C* and L" = {0} for n < 0.
We have L™ = {0} for n > N . There is a graded algebra A% associated with
7(£2*) defined as follows:

Ny = DAk,
k=0

koo oo m(QF) /7 (QF2) for k>2,
Ay = opem(@)= { 7 (QF) for k=01, (51)
with multiplication
A ALY D (LX) = A e X i= oy (17) € ARH (52)
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where 7 € w(QF), 7 € w(Q), so that ox(1) = X, y(¥) = A. One can show [21]
that

@ k2t ® C M1t ; @ Lk—2t—1,YN+1 ®C M§

b= | 50 I : (53)
@ka%fl,yNJrl ® C M§ : @ LE—2t Q C Mi
t=0 t=0

Elements \ € A’jl are of the form

Z allc—2t ® M{t ; ZaIQc—Zt—l,YN-H ® M;

A= | & 2 , ay € L™ . (54)
Z a§—2t—17N+1 ® M§ ; Zai—% ® Mi
t=0 t=0

Thus, we see that A is completely characterized by the sequence of elements
a’f’zt, ag’%’l , a’g”t*l , afj’%, where ¢ = 0,...,m. Denoting by ¢ the classical
vector space isomorphism ¢ : LF = C*/C*F2 — A*(X), where A*(X) is the set of
complex—valued k—forms on X , and denoting the transport by the isomorphism
v of the exterior product A in A*(X) = @1, A¥(X) by the same symbol, we get:
If of , Gy € L™ are the characterizing elements of A € A%, A € AL, then the

characterizing elements ;' of \ e \e Aﬁ” are

k+l-2t __ t
1 - Zr:[]

k+1—2t—1
2

(O[]f_Qr A dl172(t7r) + (_l)lflag—Qr—l A dl372(t77')+1 ) :

S p(af AT 4 ()T A G (55)
§+l—2t—1 — Zi:o(ai_% A C~Y§;2(tfr)—1 + (_l)la§72(t7r)fl A dll_Qr )7
g = T
where t =0,...,m.

We have an involution on A% given by \* := oy (7*), with o4 (7) = A. Explic-
itly, for elements A € A¥ represented as in (54) we find

3 (o @ (~1) @k @ 0
)\* — t;LO t=0 m
S (D a1y @ M 3 (o) @
t=0 t=0
(56)
We define
poi= —i"tteMe Ay, i, A, == peX—(=1)frej,
da = lodoa), d* = HYNFdyNT (57)

D\ = prgpo((d—df)®@ids)(N),
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for € L*¥, X € AX, where d is the exterior differential on A*(X) and pry
denotes the projection from A% @ A%~! onto A%™ . One easily proves that D is
a graded differential on A¥ . Moreover, one shows that

d:=D+1i,.], (58)

is a graded differential on A%, too, which can be characterized as follows: If ay
are the characterizing elements of A\ € A¥ | then the characterizing elements By

of d)\ € AZ“ are

{c—2t+1 — dallc—Qt + (_l)k i (a§—2t+1 + k—2t+1) ,
5—21& — da§—2t—1 + (—l)ki( k—2t O‘Z 2t) 7 (59)
§72t — da§72t71 + (_1)k i (O‘Z 2t Oé]f 2t) 7
ﬁ!f_ZH—l — daic—%_'_ (—l)kl( l; 2t+1 _|_al2c 2t+1) 7

where ¢ = 0,...,m. Relation (1) is fulfilled for the differential algebra
(A, o, %, (j) .

In [21] we have shown that A% coincides with the differential algebra Q7, of
Connes and Lott associated with the even K-cycle (A, h, D,T"). The result (53)
for Q% can also be obtained from a different procedure presented in [16].

3.2 A certain Lie Subalgebra of H

For the case under consideration, the graded Lie algebra H can be treated as a
subalgebra of A% ® M,C . Thus, it should be possible to define a generalized trace
on H provided that we have a trace on A% . This is the case, indeed.

Proposition 8 Any linear mapping T : A% — L*, which vanishes on graded
commutators and which intertwines the differentials, i.e.

T(hed—(—1) Xe)) = 0, Me Ak, ey, (60)
Tod = doT, (61)

has in the representation (54) the form

Zak 2t®M1t ; Zak 2t— 17N+1®Mt .
(| % )=Lor(ab)+ Y Lol -k ),
Zak 2t—1 NH@M;; Zak 2t®Mi =0

(62)
where Ly : L*—L*, t=—1,0,...,m, are elements of Endg(L*) commuting with
the exterior differential,

dofl;,=L;od, t=-1,0,...,m . (63)
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Proof: See appendix A. O

Due to (60) we can regard the mapping 7" as a generalized trace. We restrict
ourselves to the simplest case

L,=0, L;,=idg-, for t=0,...m

and denote this special trace by T} :

Zallc—Qt@Mf; Zak 2t—1 N+1®M§ .

TA( tﬁo ) Z k=2t k Zt) .
Zalg—Zt—l,yN—l—l ® M:)'f : Z ag—Zt ® Mi =0
t=0 =

(64)

Now we extend the generalized trace T to the graded Lie algebra H . Since
H C Ay @M,C, we get a generalized trace Ty on H as the tensor product of the
generalized trace T) on A% and the usual trace on M,C. For p € H represented
by the matrix (30) we define this linear map T3 : H — L* as

p

Tu(o) ==Y Taloi) - (65)

i=1
Lemma 9 For all p € H* and 9 € H' we have Ty ([o,0],) = 0.
Proof: Using formulae (32), (8), (65) and (60) we obtain

Tu([0,0]g) = 327 ;21 T (0ij ® 05i — (1) 050 @ 05) =0 . O
Putting [ =0, o0+ up, 0 =u*, for u € U(£), in Lemma 9, we get
Ty (wou™) =Ty (o) - (66)

Thus, T ( . ) is invariant under unitary automorphisms of the module. We define
Ho::@/ng, He={oeH" : Tu(0)=0}. (67)

Due to Lemma 9, H, is a graded Lie subalgebra of H .
We denote by Vj and Vj the canonical compatible connections on £, which
are defined according to (14) using the differential d respectively D on A% :
Vo(c®a) = e(c®1y)®uda, (68)
Volc®a) = e(lc®1y)®@4Da,

where ¢ € CP and a € A. Moreover, we denote by D and D the derivations on
H associated to Vy and V) respectively, see (16):

D)) = Valo)— (~1oe (V). (69)
(Do)(€) = Vo(0€) — (—1)F0e (Vo§),
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for o € H*. We introduce a special element p € H' by
ple®a) =e(c® 1) @4 fua, (70)

where ji was defined in (57). This gives the following matrix form

p

p=e(lpxp @ ft)e , or j; = Z eirOrfler; - (71)
k=1

Lemma 10 For the graded Lie algebra H associated to the differential algebra
A% we have 3
Do=Do+ [, 0y, 0€H. (72)

Proof: Let Y% ¢, ®aq; € £, with a; = Z? Leija; € A, and o € H* defined by
(X ei®ai) =370 _1(55 ® ejn) @A Oniti
Evhere Oni = D5 me1 EnjQimemi € M. Using (16), (12), (14), (58) and (70) we
nd
(DQ)(Zf 16 @ a;) = Vo(e(Xo, € ® a))) — (—1)* oo (V(3o7, &i ® ay))
=20 i1 1 (Vole; @ €jn)) @ oniai + (55 ® €jn) ® 4 d(0niai)
— (=1)¥(e; ® ejn) ®.4 00 @ d(a;)}
= p,]n 165 ® €jn) @4 d(oni)a;
= (DQ)( t1ei®ai) + 300,155 @ en) ®a (1 oni — (—1)* 0ni @ )a;
= (Do)(X1_ & ® @) + ([, o) (XF_, & © ay) - O

Lemma 11 D is a graded derivation of H .
Proof: For any ¢ € Hf we have with (72), Lemma 9, (65) and (35)
Ty (Do) = Ty (Do + [, olg) = T (Do) = 327 iy Ta (€D (0jn)ens) -

We compute the last term using the Leibniz rule for D, the property that e is a
projector and, finally, equation (60):
Z?,j,n 1 Ta (eijD(0jn)eni)
= Zzn 1 T (D(0in)eni) — f,j 1 Tx (D(eij)0ji)
= Zz]n 1 T (D(0in)enjeji) — Z;),] 1 Tx (D(eij)0ji)
= Zz]n 1 Ta (eﬂD(Qin)enj) - Zz] 1 Tx (D(eij)0)i)
This implies Z” L\ Ia (D(ej5)04:) = 0 and Ty (Do) = >_F_, Ta (D(gs)) - Finally,
formula (61) gives T (Dg) d{> 7 Ta (0i)} = 0. O
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3.3 Changing the Standard Matrix Representation

In this subsection we analyse the matrix structures discussed in subsection 2.3
for the case of the differential algebra presented in subsections 3.1 and 3.2. For
this purpose we use the fact that A% can be treated as a subspace of L* ®
End (F) ® MyC. Of course, elements of the tensor product A% ® M,C, which
in subsection 3.2 were treated as p X p—matrices with L* ® End (F)) ® MyC—
valued entries, can be treated as 2 x 2-matrices with L* ® End (¥) @ M,C-
valued entries. This natural mapping can be realized as an inner automorphism
of L* ® End (F) @ My, C. It turns out that after applying this automorphism
combined with another natural mapping, see subsection 4.2, we find that the
image of H, coincides with a graded Lie subalgebra of the special graded linear
Lie algebra A*(X) ® spl(p,p). This is the appropriate formulation for deriving
the mathematical structure of the Mainz—Marseille approach, as will be shown in
subsection 4.3.
Let W = (Wij)ij=1,.., € M,C and w = (wap) a,5=12 € M2C. We denote

wWiy wWie ... wWy,
wew = | U e iy (73)
prl prg . prp
and define - .
(w0 W) = ( o e ) | (74)

We extend this mapping naturally to the algebra L* ® End(F) @ MoC® M, C and
denote it by the same letter, the restriction to the subspace A% ® M,C will also
be denoted by i; . It is easy to convince oneself that the mapping (74) can be also
realized as an inner automorphism of the algebra My,C . This goes as follows:

(W) :=IWJI' | W,JeMy,C, Jij=0dj2 1+ 0122 (75)

for i,5 = 1,...,2p. Moreover, it is easy to show that this operation consists in
applying the permutation (1,2,3,4,...,2p—1,2p) — (1,3,...,2p—1,2,4,...2p)
to both rows and columns.

Note that due to (54) after applying the operation (75) to elements of A% ®
M, C the grading operator 7! occurs exactly in every component of the two
off-diagonal blocks. The next step consists in removing vV ! from these blocks
and applying the classical isomorphism ¢ : L¥ — A¥(X). For this purpose we
define the following vector space isomorphism i, from i;(A% ® M,C) onto its
image:

mop—2t t . k—2t—1_N+1 t
thoal ® My ; t:0a2 Y ® M, (76)

m m
k—2t—1, N+1 t k—2t ¢
E %3 YT My E % ® M,
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m m
k—2t t k—2t—1 t
Y abtgm S ab g My
t=0 t=0
m m
k—2t—1 ]\{t . k—2t ]\{t
Zt:0a3 ® 3 Zt:0a4 ® 4

where oy € L"®M,C and a} := 1(af) € A"(X)®M,C. The composition of these
two mappings gives the embedding i : A% ® M,C — A*(X) ® End (F') ® M,,C,

i:igoil y (77)

often we will treat i as an isomorphism onto its image.
Now it is easy to characterize elements

m m
doai oM 5 Y artleM
t=0 t=0
Al e A'(X)®M,C,  (78)
m m
doai e My Y al e M
t=0 t=0

of H, £ and A%, see (30), (36) and (37), transported by i. First, observe that
e € H® and, therefore, we have

. _ e ®idp 0 2k 0 _
1(@)_e_< 0 e4®idp> , e,=¢€,=¢e, € ' (X)®M,C, ¢g=1,4.
(79)

Since for elements p € H we have ege = o, we get for elements i(p) € i(H) , given
in the representation (78),

al =ejaje; , aj, =ejajye; , a; =ejaze; , a; =ejaye, . (80)
Defining ig : ¥ — i(A¥ ® M,,C) and i, : A% — i(A%, ® M,C) by putting
ig = i0je, in:i=iojs, (81)

we can represent elements of £* and A% as elements of A*(X)®End (F) ® M,,C.
For elements of ig(E¥) we get from the representation (78):

a, € N"(X)® Ey , (i)=1forq=1,2, (i) =2for ¢=3,4, where (82)
11 ... 1 0 0...0 0 0...0
00 ... 0 1 1...1 0 0...0
E(i):e(i)<® T ®C TN ®..00 T )
00 ... 0 0 0...0 1 1...1
Analogously, for elements of iy (A¥) we have
a" € AMX)®@Lpy, g=1,...,4. (83)
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Let us denote the spaces transported via i by bold symbols:

H:=i(H), H' =iH"), Ho:=iHo), HE=1(HE), UE) =iU(E)),
E:=ig(&), E":=1(E"), Al =ia(A%), A=ir(A). (84)

We define the multiplication in i(A% ®M,C) as the transport of the multiplication
e in A% ® M,,C and denote it by the same symbol e :

i(x) ei(x) :==ilxex), (85)

for x € A% @ M,,C, x € Ay ® M,C. Denoting i(x) = x and i(x) = X, which we
represent as in (78), and using (55) we get:

ii< a8 zm:zt:(a’f—%/\ag‘?(t—s)—w

= 0
_ (_1 -1 al2c 25— 1/\~é 2(t— 5)+1)®M{5 (_1)

XX = m t m ¢
SO (b aal 03k aal
t=0 s:% ) t=0 s=0 o )
(~1)'ay Y Aay @My | (<))l ey Y e
(86)
In particular, we have
ic(oe&) =i(0) i), €M, €&, (87)
Next we transport the remaining structures via i :
[i(0),i(0)]y = e aly) (88)
(i(e)* = i(e"), (89)
V(ie(§) = i(VE), (90)
Di(o) = i(Do), (91)

where 0,0 € H and £ € £*. Using (72) we find for Do, o € H,
Do = ed(ge+[p,0l,, p:=i(y)=eme, (92)
o . ~ _ 0 _7: ]].pxp ® Mg
m = il @ f) = ( —i Ly ® M3 0 !

where d is the classical exterior differential acting componentwise on g. For the
involution (89) we get in the representation (78)

Zak 2t®Mf Zak 2t— 1®M5
Zak 2t1®M§ Zak 2t®Mi

18
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m

> (@) @ M D DT E ) @

m
— t=0
m

t=0
Z(_l)kfl(aécf%fl)*@Mg ; Z( k— 2t) ®Mt

t=0 =0
Next, we observe that we can also transport the generalized trace defined in (65):
Ty ((0) = T (0)) , 0€M . (94)

For elements @ € H* represented as in (78) we get

= (tr(af™) — tr (af™)) . (95)

Thus, elements o € H, are characterized by
tr(a}) =tr(a}), foralln. (96)
With the general form V =V + p of a connection on £ one finds

V =V+p, p:=ilp), where (97)
Vo€ = igoVyois'(€) =e(d¢é +[m,¢],), E€&".

Next, using (34), one easily calculates
0y :=i(6y) = e(d(e) + [m,e])(d(e) + [m,e])e . (98)
Finally, we study the influence of unitary transformations of the module

Estm & =vE, Hoor o =vov', A5 A= X=X,
v € UAP) ;= { v € Endg (A?), v"v=vv =id }. (99)

It is easy to show that all formulae in this subsection remain form invariant if we
put

e :=vev', d:=d, m :=vmv'+vd(v*), p' =vuv'+e'vd(v)e' . (100)

Observe that after such a unitary module transformation the matrices g and m
gain — in general — entries in the two diagonal blocks, and the two off-diagonal
blocks have no longer the simple form (92).
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4 Derivation of the Mathematical Structures
Used in the Mainz—Marseille Approach

4.1 The Graded Lie Algebra Used in the Mainz—Marseille
Approach

The basic concept used in the Mainz—Marseille approach is that of a graded Lie
matrix algebra with values in differential forms. For the sake of completeness, we

shortly recall the most important notions in a slightly generalized form.

Defining the grading operator I'y := ( H%Xp 10 > € M,,C, we introduce
w24

a Zg—grading structure in My, C and denote for M € M,,C
1 1
MQ = i(M + FQMFQ) s M1 = E(M - FOMFO) . (101)

We denote the degree of a matrix M by OM and define 0My = 0 and OM; = 1.
Defining the graded commutator

1

[M,N], := > (M;N; — (-1)™ N N; My ), M,N € My, C, (102)
i,j=0

we get the structure of a graded Lie algebra on My, C, called pl(p, p) . There is a

non-simple graded Lie subalgebra spl(p, p) C My, C of graded-tracefree matrices
[24] defined by

spl(p,p) :={ M € My,C : tr(l'yM)=0}. (103)
In spl(p, p) there exists a differential dy; given by
0 u

dyM = [m,M], , m=z ( 0 ) & spl(p,p) | (104)

where u is an arbitrary element of U(p) and z € C. We choose, however, from
the very beginning u = 1,4, and z = —i. The reason for this choice will become
clear below.

Now one defines the Z,—graded algebra A*(X) ® My,C as the Z,-graded
tensor product of the Zy—graded algebras A*(X) and M,,C. This means: The
total degree of b = @M € A*(X) ® My,C is 0b = (0 + 0M) (mod 2), where
00 is the ordinary differential form degree modulo 2. Defining the product ® in
A*(X) ® My, C by

(BOIM)O (r@N):=(-1)?*M(BAvr)® (MN), (105)
we get the natural graded Lie algebra structure on A*(X) ® My,C :
[bl, bg]g = []1 ® [32 — (—1)(%1 002 [32 O) []1 . (106)
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Moreover, A*(X) ® M,,C is a graded involutive differential algebra with differ-
ential and involution given by
2BOM) = (df) &M+ (—1)% 3@ (dyM) (107)
(BoM) = (—1)P"Mg oM (108)

where d is the exterior differential on A*(X) and (5 A v)* = v* A §*. One easily
calculates

b =db+ [m, b, , (109)
where we identified 1 ® m = m. One finds ([by, by],)* = —(—1)2°19°2 [b}, b}], and
(0b)* = (—=1)%0b* for m = —m* . In terms of 2 x 2-block matrices one has

< azl a%z >* _ < (allﬂ)*k (_l)kz (a§3)* > (110)
az’ ay' (_1)k2 (a5”)" (ag*)” ’

where aj € A"(X) ® M,C. One easily shows that A*(X) ® spl(p,p) is a graded
Lie subalgebra of A*(X) ® My, C. Moreover, the graded differential o defined in
(107) respects the Lie subalgebra A*(X) ® spl(p,p) .

Using the projection operator

e:<%1 24) , (111)

with e; and e, fulfilling (79), we define a graded Lie subalgebra of A*(X) ®
spl(p,p) :

D ={beAN(X)Qspl(p,p) : b=crebe }. (112)
We stress that we do not demand that e; and e4 are globally diagonalizable on
X. This means that the defining equation b = ¢ b e cannot be globally solved on
X. We also underline that — in general — we do not have a differential on $),.
What remains is a derivation © = ¢d( . )e on .. Explicitly, one has

Db = ed(b)e + [eme,b], , beH, . (113)

4.2 A Projection

Now, recalling the representation (78) for i(A% @ M,,C) , we can define a surjective
mapping

p (A% ® M,C) — A*(X) ® My, C (114)
Z allc—Zt ® Mf Z al2c—2t—1 ® Mé Z allc—Qt Z al2c—2t—1
t=0 t=0 t=0 t=0

p —

Z alg—Qt—l ® M§ Z a{z—Qt ® Mi Z al3c—2t—1 Z a{z—Qt
=0 =0 =0 =0
Observe that e = p(e) = diag (e; , e4), see (79) and (111).
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Proposition 12
Z) p(HO) = yje .
i) (p(e)" =p(e), ocHy.
iii)  For k-+l<2m+1 we have p([o, 8l,) = [p(@), p(2)],, e € Hg, 0 € Hy.
i)  For k<2m we have p(Dg) =D (p(0)) , o€ H:.

Proof: i) From the property (96) of elements of H, we obtain immediately
tr(loop(e) =0, 0€Ho. (115)

This together with ere = v for any v = p(0) € p(Ho), see (80), means p(Hy) =
e

it) follows immediately from (110) and (93).

i1i) Using (105) and (86) one can show for k +1 < 2m + 1

p(xex)=p(x)On(x), x€ilAzoMC), xeci(Ay®@M,C). (116)

For £+ 1 > 2m + 1 certain terms in x ® x disappear, because the summation in
(86) only runs from ¢ = 0 to t = m. These terms will in general not vanish in
the product ® of the projected terms. Then, since for g € H{ the total degree
of p(g) € A*(X) ® My, C equals k, we find with (8), (106), (85) and (88)

p([,8l,) =[p(0),p(d)],, ocHE, peM), E+1<2m+1. (117)

Here, on the Lh.s., [, ], is the graded commutator in #,, while on the r.h.s.,
[, ]g is the graded commutator in §, .

iv) Since p(p) = eme, see (104) and (92), for the choice made for v and z , we
obtain iv) for k < 2m from (91), (92) and (113). The restriction to k < 2m is due
to the same reasons as in iii), because in Do there appears a graded commutator.
(]

The mapping p is not injective, because we have poi(A¥®@M,C) C poi(A%™?®
M, C) for k < 2m — 1. However, we observe that p|i(Azj4®Mp o) is injective for each
fixed k and that p restricted to H° is an isomorphism of algebras. Since M M* ¢
Cidp, we have m > 1. Thus, the product of elements of H' by elements of H°
or H' is transported via p isomorphically. The same is true for the transport of
the derivation (113) of elements of H° and H'. We stress that applying p, one
looses! the N—grading structure of A . This is inevitable, because on . there is
only a Z,—grading structure.

Next, we discuss the transport of the gauge group of the module &£, see
Definition 5, and the structure of the transported connection form. We have

'In some physical models, see section 5, the matrix M contains fermionic mass parameters,
which are removed by applying p

22



End (£) = H° and, therefore, from (78), (80), (93) and Definition 5 we find

u 0
w=pe) == (5 o ) (118)
U =eu e, u=e u ey, WLUj=uju;=e;, Wu;=u,us=ey |,

where uy,uy € A°(X) @ M, C.
The transported connection form is a skew-adjoint element of p(#') and has
according to Lemma 7, (78), (80), (93) and (114) the structure

r r * * *
w::p(p):<r; I‘i) , T|=-T|, Ty=—Ty, T4=-T, (119)

ry =erie; ¢ AI(X) X Mp(]j , I'p=eryeq AO(X) X Mp(]j ,
r; = eyrze; € A%(X) ® M,C, ry=e4rseq € AMX)® M,C .

For physical reasons, see section 5, it is interesting to restrict the connection form
w to p(#y) . This means, see (96),

tr(ry) = tr(ry) . (120)

Thus, w is a skew—adjoint element of §), . Using (19), (98), and iv) of Proposition
12 one gets for the transported curvature

fi=poi(f) =e(0e)(de)e+Dw+ (1/2)[w,w], . (121)

Observe that the curvature — in general — does not take values in p(#,) , because
from (98) we get

T3(00) = tr(e;(de,)” + e, — ey(des)” —ey) .

The transport of the gauge transformed connection form, see (20), is due to
Proposition 12 given by

Yu(w) = uDu* + uwu* | (122)
and in the representation (119) it takes the form

_ / uld(u’{)el + 1111'11,11< ‘ up (I‘2 — ie1e4)uz + ie1e4\
\114(1‘3 — 2.6461)111c + ie4e1 ‘ u4d(uZ)e4 + 1141'4112 } '

Yu(w) (123)

Since v, (w) must also be an element of p(#) , the group of gauge transformations
has to be restricted to

Up:={ued: tr(udu]) = tr(uuduj) }. (124)
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Putting u=¢—t+... € 4, with t = —t* € p(H"), we obtain the infinitesimal
version of gauge transformations:

Nw) =w+Dt+ [w, t,, (125)

where we have used D¢ = 0 and t = ete. The condition v,(w) € p(Hg) gives
dt € p(#}) . Neglecting global gauge transformations, we integrate dt € p(H.p)
and obtain for the generator of infinitesimal gauge transformations

te p(Hy) - (126)

Now we give a local description of the gauge groups 4 and . Since the
algebra under consideration is commutative, there corresponds a classical (in
general nontrivial) vector bundle E over two copies of X to the Hermitian module
& . We choose a covering {O;} of X, so that E is trivializable over this covering.
Then, we can locally — on every J; — diagonalize e; and e,, using pointwise
unitary matrices p(v) € p(U(A?)), see (99). Since e, and e, are idempotent, we
find a unitary module transformation (100), which transforms them locally into
the following standard form:

e; =diag(1,...,1,0,...,0), e, =diag(1,...,1,0,...,0). (127)

—_——
p1 p—p1 ba p—p4
Inserting (127) into (118) we see that the matrices u; and uy can be locally
characterized as follows:

u; € Oﬁo(oi) X U(pl) , Wy € C’ﬁ’f((’)l) & U(p4) , (128)

where C(0O;) denotes the algebra of real smooth functions on O; and a repre-
sentation of U(p;) in p X p-matrices containing p — p; zero-rows and —columns
is used (analogously for U(ps)). This means that the gauge group U is locally
isomorphic to

U =CR(0;) @ (U(p1) x U(pa)) - (129)
There is a natural homeomorphism of U(n) onto SU(n) x U(1) :
det u 0
e < 0 1(n1)x(n1)> ’ (130)

where u € U(n), uy € SU(n), detu € U(1). Extending (130) to O; and us-
ing tr (upduy*) = 0, for uy € CP(0;) ® SU(n), we obtain from the condition
tr (u;du}) = tr (ugdu}) , characterizing elements of iy, see (124),

det u; d(detu;) ' = det uy d(detuy) ' . (131)

Integrating this result, we obtain detu; = const detu,. Since u; and u, are
unitary, the integration constant must be a phase factor, which corresponds to a
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global U(1)-symmetry of the gauge field theory?. Here, we are interested only in
local gauge groups, so that we put the integration constant equal to one. This
shows that we have locally

= CR(0;) ® (SU(p1) x SU(ps) x U(1)) - (132)

Of course, the collection {8ls} can be used to reconstruct the gauge group 4y — or
in the bundle terminology — the group of vertical automorphisms of the principal
bundle associated with E (the group of local gauge transformations).

In particular, for p, = 1 the group of local gauge transformations is locally
given by Uy = C(0;) ® (SU(p;) x U(1)) and for p; = 1 by ) = CX(0;) ®
(SU(ps) x U(1)). For py = 0 the group of local gauge transformations is

U=CR(0)Up) , (133)
and the group of special local gauge transformations l; is reduced to
Uy = C(0;) @ SU(py) (134)

Analogous results can be obtained in the case p; = 0.

Finally, we comment on the local representation of the connection form w,
see (119). Using the above described local diagonalization procedure for the
projection operators e; and e4, one finds local representatives Ay, B and
@) of ri, ry and ry = —rj respectively, with Ay = —AE‘Z.), By = —BE‘Z.) and
tr(Ag)) = tr(Bg)). The fields Ay and B constitute the local representative
of a classical gauge connection, that means a classical differential 1-form on O;
with values in the Lie-algebra of (SU(p1) x SU(ps) x U(1) ). The field ®; is a
vector—space—valued function on O; and can be physically interpreted as a matter
field — as done in the next subsection. The fact that two different classical objects
are unified in one non—commutative connection form is, of course, due to the fact
that we started with a non—commutative differential calculus.

4.3 The Case of the Standard Model

Here we will show that the mathematical structures underlying an approach to the
derivation of the standard model, proposed by Coquereaux et al. ([12], [11], [8],
[10]), can be obtained as a special case of the structures derived in the previous
subsection. Partly our notations and sign conventions differ from the original
ones, due to the fact that we started essentially with the conventions of Connes.
We put N = 4 for the dimension of the manifold X and assume that X is
topologically trivial, for many physical applications it has the topology of R*.
In that case all local considerations of the previous subsection concerning the

2For the standard model this global symmetry is given by a constant phase transformation
only of the right-handed fermions and the Higgs field and not of the left—-handed fermions
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group of local gauge transformations and the non—commutative connection form
w become global.

The starting point in the Mainz—Marseille approach is the differential algebra
A*(X) ® MyC, or rather [12] M,C ® A*(X), giving in general a different sign
in (105). This means that we put p = 2 in formulae of the previous subsection.
Putting for ¢, see (111), ¢ = diag(1,1,1,0), we get a graded Lie subalgebra of
A*(X)®spl(2,2), see (112), which we denote by A*(X)® spl(2,1) . We note that
this graded Lie algebra was denoted in [11] by A*(X) ® SU(2|1).

The authors of [11] formally define a connection putting

V=ed+w, (135)

where 0 is the natural differential on A*(X) ® M4C, see (109). For the gauge
potential w they postulate the form

« | Az Axn —i®y 0
| —-i®, —i®y B 0
0 0 0 0

Ayj=-A; e N'(X), B=-BeA'(X), Au+An=B, & cA(X).

e A"(X) ®spl(2,1), (136)

A certain module, on which this connection can act, was defined in [14]. But a
deeper explanation for the choice of the connection form w was not given. The
curvature of this connection is [11]

f=V2=r¢(0e)(0e)e +Dw + (1/2)[w,w], , (137)

where © is given by (113), and the bosonic action is S, = [, < f,f >¢, with
<, >o denoting an appropriate product.

It was unclear in this approach what the group of gauge transformations is.
Instead of this, only infinitesimal gauge transformations were defined, see [11],

Yw) =w+Dt+[w,t],, t=—-t€A(X)®spl(2,1). (138)

The authors of [11] notice that for the standard model only those t make sense,
which have the form

T, T, 0 0

_ Toy Ty 0 0 = 0 B

t=1 "0 0 1, 0| Ta=-TnedX), tuo)=0. (139
0 0 0 O

A deeper explanation why one should restrict t to the form (139) was not given.
For an extended theory including differential forms of higher degree there were
discussed more general “superbosonic” gauge transformations [11].
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Finally, we notice that there exists a formulation of the Mainz—Marseille model
in terms of 3 x 3—matrices ([15], [23]), for a parallel treatment of both formulations
see [13]. However, in this formulation a field strength was used, which cannot be
interpreted as the curvature of a connection, because the term ¢(0¢)(d¢)e occurring
in the curvature of a connection on a finite projective module was neglected.

Now we show that all structures occurring here find their natural explanation
within the framework developed in the previous subsection. For this purpose we
put p=p; =2, py =1, see (127).

1. We define the module for the Mainz—Marseille approach as p(€), which is
a right module over the algebra p(\A) . Next, m occurring in formula (109) takes

the form
s 0 I]_QXQ
m = 2( Lo 0 ) : (140)
see also (104). Thus, from (97) and (109) one finds
p(Vog) =eor, r=p() <€), (141)

and — using (87) and (119) — one gets

p(VE) =p(Vo€ +pé) =etr+wOor, (142)
with w € A*(X)®spl(2,1) . Moreover, w given by (119) fulfils additionally (120).
Changing the notationsry = A, ry = B, ry = —i®, r3 = —i®* , we obtain exactly

the form of the gauge potential postulated in the Mainz—Marseille approach, see
(136),

w = (_f@* _gl’> tr(A) = tr(B), (143)

e [ A A 5 e ( B O [ ® 0
A= A_<A21 A22>’B_ B‘(o 0>’¢_<<1>2 0)'

We note that the transported connection V, = pVp~t: p(€) — p(E') fulfils
Vo(ra) = (VprJa+ro(a), rep(f), aep(A), (144)

which is exactly the transport of the defining equation of a connection, see Def-
inition 4. Finally, observe that formula (121) for the curvature adapted to the
case under consideration gives exactly (137).

2. We define the group of gauge transformations in the Mainz—Marseille
model as the group Uy of special unitary automorphisms of the module p(€) with
identity p(e) = e, see (124). From (132) we find in the case under consideration

U =CRX)® (SU@2) xU1)), (145)
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which is just the group of local gauge transformations of the Salam—-Weinberg
model. Writing down local gauge transformations, see (122), or rather infinitesi-
mal gauge transformations, see (125) and (126), we get exactly (139) postulated
in the Mainz—Marseille approach:

(= <T01 ;}4) (1) =t (Ty) | (146)

gk Tll T12 0
T = T1_<T21 T22>€A(X)®M2(D,

T4 = —TZ = < 1—83 8 > € AO(X) ®e4(M2(D)e4 y
see (78), (80), (93) and (96). Thus, t coincides with (139) of the Mainz—Marseille
approach. This justifies the choice of infinitesimal gauge transformations in the
model of Coquereaux and Scheck. But extended “superbosonic” gauge trans-
formations t € A*(X) ® spl(2,1), which were suggested in [11], are within this
context not allowed. We stress that — in contrary to classical differential geome-
try — the Lie algebra of the structure group SU(2) x U(1) does not coincide with
the Lie algebra spl(2,1), where the gauge potential takes its values.

5 Model Building

In this section we outline the derivation of the standard model based on the
simplest two—point K—cycle. For a detailed presentation of this approach we
refer to [27].

The K-cycle (A, h, D) reviewed in subsection 3.1, together with the finite
projective module £ = eA?, e = diag(1,0,1,1) ® idr , was used by Connes in [6],
[5] and by Connes and Lott in [7] to obtain a unification of the Salam—Weinberg
model — the theory of electroweak interactions of leptons. Using this K-cycle
together with the module £ and the canonical prescription for the physical Hilbert
space [7], H =& ®4h, it is impossible to derive the full standard model. That is
why Connes and Lott proposed a different K—cycle, namely (As ® By, hs, D),
where

hy = L*(X,9®(F-®F,),

F = (CPa(C*eC))eChr

F, = (Co(CeC))eC, (147)
A, = CX(X)® (CoH),

B, = CX(X)® (CoMsC) .

Here, N = 3 is the number of generations of fermions and H is the real algebra of
quaternions. All tensor products occurring in (147) are over R, which means in
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particular that the algebras A, and B; are real algebras. The differential operator
D has the same structure as the operator D in (46) for an appropriate choice of
F1 and M. In this approach one uses a free module, namely £ = A, ® B,. A
detailed exposition of these ideas was presented by Kastler in [18] and [19], see
[17] for an earlier version.

It is worthwile to notice that in this approach one obtains certain constraints
between the masses of the fermions and the masses of the W—, Z—, and Higgs—
bosons. Moreover, one gets a prediction of the Weinberg angle on tree level. In
the “grand unification case” [20] Kastler and Schiicker obtained

(g3/g2)* =1, sin*Oy =3/8, my/mw =2, my/my ~3.14, (148)

where go and g3 are the coupling constants of the electroweak and strong in-
teractions, #y is the Weinberg angle, m;, my and mpyg are the masses of the
top—quark, the W—boson and the Higgs—boson.

Another way of obtaining the standard model by non—commutative geometry
is the Mainz—Marseille approach ([12], [11]), which is based upon the mathe-
matical structures discussed in the previous section. In a first step one writes
down the bosonic action of the electroweak sector using the spl(2,1)-gauge con-
nection discussed in subsection 4.3, see [12] and [11]. The bosonic action of the
chromodynamics sector is added in the same form as in classical gauge field the-
ory. To write down the fermionic sector, one uses the theory of representations
of the graded Lie algebra spl(2,1) in a finite dimensional vector space [y, ],
see [25] and [11], where y means hypercharge and I isospin. One builds the
Hilbert space L?(X,S) ® [y,I], leptons live in L*(X,S) ® [1,3] and quarks in
L*(X, 9 ek ieCs.

We note that there do not exist representations of the full graded Lie algebra
A*(X) ® spl(2,1) in these Hilbert spaces. To define a fermionic action one has
to define a covariant derivative. For this purpose the connection form w has to
be considered as an element of (C' & C°) ® spl(2,1), acting with the first (Clif-
ford) part on L?(X,S) and with the spl(2,1)-part on [y, I]. The fermion masses
are obtained from free relative normalization constants of sl(2,C) & gl(1,C)—
subrepresentations. In contrast to the model of Connes, Lott and Kastler, the
fermion masses are not related to the masses of the intermediate vector and
Higgs—bosons. Using reducible indecomposable representations of spl(2,1) one
describes family mixing [11].

It turns out that the combination of these ideas with the scheme developed
in this paper leads to a new derivation of the standard model. This derivation
starts with the K-—cycle of subsection 3.1 over the simplest two—point algebra
A defined in (43), where the vector space F', which plays an auxiliary role, is
taken to be F = F @ F, F = C®. The first term C3 stands for the three
generations of leptons and the other one for the three generations of quarks.
With this K-cycle we associate two finite projective modules: We take for the
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electroweak interaction part the module £ = eA?, e = diag (1,0,1,1) ® idg, see
also subsection 4.3, and for the chromodynamics part the module £, = e, A%, e, =
diag (1,0,1,0,1,0) ® idr . As already mentioned above, the module e.A? can not
be used to describe the full electroweak sector if one follows the Connes-Lott
prescription. The essential idea, which in our approach makes it possible to
build the full electroweak sector out of eA?, is to consider the graded algebra
H = Homu(€,€ @4 AY) as a graded Lie algebra. For a (graded) Lie algebra
there exist representations, which cannot be obtained from representations of a
(graded) algebra. The representation describing the electroweak interactions of
quarks is of that type.

Using (30) and (54) one obtains in the case of the above module eA? for
elements o € HE the matrix representation

%( k— 2t_|_a§ 2t) ® Mt 0 ‘ O{Ii_Qt ® Mf k 2t—1 5 ® Mt
o 0 0 0 0
0= tz:; k72t ® Mt 0 (O/g 2t—Oé§ 2t) ® M{f alg 2t— 175 ® Mg ’
k2t15®Mt 0 Oék 2t15®Mt k2t®Mt
(149)

where ot € L™, f=0,+,—,3,4,5,6,7. We choose M = diag (—m;, —m,) , where
m; and m, are real diagonal 3 x 3-matrices with non—negative entries. The index [
stands for lepton and ¢ for quark. Therefore, we have p € L*@M,CRM3;CRM,C .
In (149) we considered p as a 4 x 4-matrix with L* @ M3C ® MyC-valued entries.
Of course, p can also be treated as a 2 x 2—diagonal matrix with L*@ M, CoM;C-
valued entries, where the lepton part is in the upper left block and the quark
part in the lower right block, see also the beginning of subsection 3.3 for a similar
reordering procedure. Next, we define an isomorphism i : Hy — i(H,) , which for
the leptons is similar to the ly=1,1= 5]7 epresentatlon in the Mainz—Marseille

model and for the quarks to the [y = 3,1 = 3]-representation:
. ii(01) 0 )
1{p):= . , 150
(e) ( 0 ig(0g) ® L3x3 (150)
. %( k— 27‘+ ]g 27‘)®171“ ak727‘®1r Z 2r—1 5®61r
:Z k 2T®1r %(O[IS_QT k 27“)®1r k 2r—1 5®61r ’ (151)
r=0 lg 27" 175®6711§ l; 2r— 175®6711§ alg 2r®1£
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—_ _ k—2r—1_5 k—2r—1_5
Ga§™ —a§™)| gy | T T | T
®q] ®B\/3d) | ®y/2dbxy
_ _ k—2r—1_5 k—2r—1_5
o @q (—ga5™ réalg )| % 5 T s - v
() i ®q; ®B\/54d5 | ®/35dsXY (152)
iy(0g) = 152
= —04159727"71’)/5 012727171’75 _%a§_2r ; )
®ﬁ’1\/§7qg ®ﬁ’1\/§7qg ®qy
k 2r—1 5 al;72rfl,y5 lak_%
—1 1 r 0 3 —01 r
®(x7)” \f a | @0 /34 ®X T diX
where 1] = (mm;)", I} = —my(m;m,;)" , I} = —mj(mm;)" , ] = (m;m,)",
q; = (m mgIn ) qp = mq(mqu)’", qs = —mZ(mqu)", qy = (mqmq) .

In the above formulae ¢ and  are invertible diagonal 3 x 3-matrices which,
therefore, commute with m;, m;, mg, m7. For the invertible 3 X 3—matrices v and
x we have to demand (x7) 'mimyxy = x 'm}m,x , which is achieved by taking
xvx ! diagonal. The matrix y need not to be unitary.

There are essential differences comparing with the representations used in the
Mainz—Marseille model: We do not need reducible indecomposable representa-
tions to describe family mixing, because the mass matrices m; and m, acting on
the generation space C? are an intrinsic part of the algebra A and, therefore,
of the graded Lie algebra #, . The existence of the (compared with the Mainz—
Marseille scheme additional) C3~factor leads to the effect that in our model there
occur arbitrary 3 x 3-matrices 3,7, €, x in the representation, which correspond to
the free relative normalization constants of sl(2, C) @ gl(1, C)-subrepresentations
occurring in the theory of representations of super Lie algebras [25] and in the
Mainz—Marseille model. Hence, our model contains a priory a big number of
free parameters, namely the free relative normalization matrices (3,7, €, x as in
the Mainz—Marseille scheme and the parameters of the mass matrix M as in the
Connes—Lott scheme. However, there is a subtle interplay between these param-
eters. They occur only in such combinations that, effectively, we end up with one
parameter more than in the model of Connes, Lott and Kastler [27].

In order to construct the fermionic action we must take instead of the above
defined canonical Hilbert space H the Hilbert space

O=1*X,S)e(Lile (i ileC))eC.

The last C3-factor is a representation space of End (ﬁ’), labelling the fermion
generations. Although there do not exist representations of the full graded Lie
algebra H, in H (just as in the Mainz-Marseille model), one can easily define
a canonical action of elements of Hf, k = 0,1,2, on elements of H using the
representations (151) and (152). Then, the natural fermionic action is

Sp = (1/2) < U, (D +i(ip+ip))¥ >4 +he., Ve H, (153)
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where p denotes the connection form, h.c. the Hermitian conjugate of the pre-
ceding term, < , >, the canonical scalar product on H and p was given in (71).
After a Wick rotation to Minkowski space and imposing the usual chirality condi-
tion for the fermions we get precisely the fermionic action of the standard model,
where the fermionic mass matrices are’ [27]

N[

me=4(e —e g my=b 2 my L w=EySH) ()

(154)
with e = (e, pu, 7)', v = (u,c,t)’', d = (d,s,b)". The occurrence of the -
factor in elements of H, leads to the minus signs in the formulae for m, and
m!, and the plus sign for m, . In the model of Connes, Lott and Kastler these
r®~factors are harmful, because they give a wrong sign in some terms of the
fermionic Lagrangian. In our model a different sign due to the y°factors is
highly desired, because in (154) this leads in the simplest case (3,7, €, x & L3y
to a mass hierarchy in the sense that the top—quark is much heavier than the
bottom—quark and the leptons.

In our construction of the standard model one immediately obtains the correct
hypercharges of the fermions — for the same reasons as in the Mainz—Marseille
model: The U(1)-subgroup of y acts on both the right-handed and the left—
handed fermions (see (118) with detu; = detuy), while the U(1)-subgroup
of Kastler’s electroweak gauge group SU(2) x U(1) acts only on the right—
handed fermions. Therefore, in Kastler’s version one must include the alge-
bra By and impose a generalized Poincaré duality condition ([18], [20]), which
yields a constraint between the three U(1)-subgroups of the local gauge group
UA; @ By) = CR(X)® (SU((2) x U(1) x SU(3) x U(1) x U(1)) giving the local
gauge group C¥(X) ® (SU(2) x U(1)y x SU(3)) of the standard model.

To construct the bosonic electroweak action we first transport* the curvature
6 by i. In a next step we associate to i(f) in a unique way a bounded operator
6 on the Hilbert space H . This step is completely analogous to the Connes-Lott
prescription and uses the Dixmier trace giving a canonical projection procedure.
This projection has for our model the same consequences as in the model of
Connes, Lott and Kastler: If there was only one generation of fermions then
the Higgs potential would vanish — but manifestly we have three generations.

~

Finally, using again the canonical scalar product <, >,y on B (H) induced by

the Dixmier trace, one defines the bosonic action as Sy =< 6,6 > i) - After
a Wick rotation and certain reparameterizations this action coincides® with the

3The matrix m}; is not diagonal, it can be written as m/, = m4V , where mq is diagonal and
V' denotes the Kobayashi-Maskawa matrix

“There is a subtle point in transporting 6y ¢ Ho

SThere occurs additionally a cosmological constant in the Lagrangian due to the term 6y of
the curvature (19), which is typical for models with nontrivial projective modules
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classical bosonic electroweak action, with the relations [27]

my = %\/é tr((lel® + le[=2)fmy[* + {2(18* + [6]72) + (X * + [xv[72) Hmg[?)

mi = 2 eG4 St mg = may / cos b (155)

where |m[? ;== mm*, |m| % := (mm*)"!, |m[* := (mm* — (1/3)tr (mm*)133)?,
for a 3 x3-matrix m. Thus, the fermion masses and the masses of the W, Z— and
Higgs—bosons depend on both the parameters of the mass matrix M , as in the
model of Connes, Lott and Kastler, and on the free relative normalization matri-
ces similar to the Mainz—Marseille model. Therefore, we get relations between bo-
son and fermion masses as in the model of Connes, Lott and Kastler, whereas we

recall that such relations cannot be obtained within the Mainz—Marseille scheme.
From (154) and (155) one obtains

V2my < my < \/gmw, my < 2.43my . (156)

Moreover, one has (g3/g2)? = 1 and sin® Oy = 3/8 as in (148). However, we stress
that the relations (148) and (156) are on classical (tree) level, they rather do not
survive the renormalization procedure. But there seems to be only a weak scale
dependence [1]. The construction of the chromodynamics part is, in principle,
identical with the classical theory, because elements of the graded Lie algebra H,
associated to the module &, are su(3)-valued differential forms.

In conclusion, the K—cycle (A, h, D) of Connes and Lott can be equally well
used for a derivation of the standard model as the K—cycle (As ® B, hs, Ds) .
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A Proof of Proposition 8

Since the matrices M; are fixed, any linear mapping 7" : A% — L* has the form

m m

k—2t t. k—2t—1, N+1 t
Z o] T M ; Z (o7 v ® M,
t=0 t=0

g

Zalgfﬂfl/y]\hkl ® M3t ; ZO‘Z?% ® Mi t=0 ¢=1
t=0 t=0
(157)
where L] are arbitrary elements of Endg(L*) and ¢t = =0, = =1.
(0 ay AN e MY v [0 0 l
1. Let)\_<0 0 e ANy, A= 0 & e M e Ay,
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then we get from (55) for 0 < r,t,t+r <m
TAed— (=1 Ne)) = (—1)'L2,, (a2 Aal?) . (158)

According to (60), the r.h.s. of formula (158) must be zero for all a5~ and
&' which can be fulfilled only for L2 =0 for all t =0,...,m. Analogously,
one obtains £} =0 forall t =0,...,m.
2. For both A and A being block-diagonal, we find A @ A\ — (—=1)"X e A = 0, so
that we get no additig)tneltl condition in this case.

—2¢—1, N+1 t .
3.Let)\:<8 @2 70 ®M2>€Ak,)\:<dgzr172+1®M§ 8)6
Al then we get from (55) for 0 < rt,t+r+1<m

T(Aed—(=1)FXe)) (159)
1) L (e T A G = (D)L (@5 T AT

_l)l_l(ﬁi-w-;-l + L§+r+1)(al2c_2t_l A &Q_QT_I) .

According to (60), the r.h.s. of formula (159) must be zero for all a5~ and
dé‘”‘l , which can be fulfilled only for £} = —L} for all t = 1,...,m. However,
for ¢t = 0 there is no condition between £§ and L, so that we end up with (62),
where so far £; are arbitrary elements of End¢(L*) . Inserting this result into (61)
and using (59) we get immediately condition (63). 0
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