
published in: J. Geom. Phys. 20 (1996) 107{141.c
 1996 Elsevier Science B.V.
On a Certain Construction of Graded LieAlgebras with DerivationR. Matthes, G. Rudolph and R. Wulkenhaar�Institut f�ur Theoretische PhysikUniversit�at LeipzigAugustusplatz 10/11, D{04109 Leipzig, GermanyAbstractUsing a unital associative �{algebra A over C and a certain class ofHermitian �nite projective modules together with a graded involutive dif-ferential algebra, both associated with A ; we develop a procedure for con-structing graded Lie algebras with derivation. Taking, in particular, thecanonical di�erential algebra of Connes' theory, related to the simplesttwo{point K{cycle, we obtain a class of graded Lie algebras with deriva-tion, which as one special case contains the graded Lie algebra used in theMainz{Marseille approach to model building. Finally, we outline a newderivation of the standard model.1 IntroductionDuring the last decade there has been an increasing interest in methods relatedto non{commutative di�erential geometric structures. One of the main streamsin this �eld was initiated and mainly developed by A. Connes ([6], [5]). Startingfrom the observation that the \classical" Dirac K{cycle of a Riemannian manifoldX contains all information about this manifold, he invented the abstract notionof a K{cycle over an { in general { non{commutative algebra. This gives thepossibility to discuss geometric structures, which { in general { do not possess anunderlying \classical" manifold. Connes realized that already slight modi�cationsof the \classical" K{cycle, namely such that the algebra remains commutative,give rise to interesting physical applications. The simplest relevant example ofthis type [6] is the K{cycle over the algebra C1(X) 
 (C � C) leading to auni�cation of gauge and Higgs bosons. If one takes the tensor product of thisalgebra with the vector space of fermions, one can derive a version of the classical�supported by the Deutsche Forschungsgemeinschaft1



Lagrangian of the Salam{Weinberg model of electroweak interactions with thebosonic sector described in terms of a uni�ed non{commutative gauge �eld, see[6], [5], [7]. The above algebra is the simplest example of the class of algebrasC1(X)
 (MkC�MlC) ; which we call two{point algebras. For the derivation ofthe full (classical) standard model, Connes and Lott [7] proposed to use a K{cycleover the algebra C1R (X) 
 (C � H) ; where H denotes the �eld of quaternionsand C1R (X) the algebra of real smooth functions on X: A detailed presentationof this construction can be found in a series of papers by Kastler ([17], [18], [19],[20]). For an overview over the mathematical background we refer to [26] and fora physicist's review to [9].There is another approach to model building, proposed by Coquereaux andScheck and further developed by their groups in Mainz and Marseille, see [12],[11], [8], [10], [13], which at �rst sight seems to be completely di�erent from thatof Connes and Lott. These authors postulate ad hoc a certain graded matrix Liealgebra and consider a generalized connection with values in this algebra. Theconnection is built both from di�erential one forms and zero forms, represent-ing the classical gauge �elds of the electroweak interaction and the scalar Higgs�elds respectively. Adding by hand the gauge bosons of the strong interactionand choosing appropriate fermionic representations, one can derive the classicalLagrangian of the standard model in this way.The fact that the bosonic sector in this type of models is uni�ed, has non-trivial phenomenological consequences. In particular, in most versions one ob-tains a prediction of the Higgs mass at tree level. However, there are { fromthe phenomenological point of view { certain subtle di�erences between the twoabove{mentioned approaches. This is mainly related to the fact that within theconstruction of Connes and Lott one gets additional relations between boson andfermion masses. For a detailed discussion of this aspect we refer to [22].In this paper we present a rigorous mathematical link between these twoapproaches. Using results from our previous paper [21] we will prove that giventhe simplest two{point K{cycle together with the di�erential algebra 
�D ; whichis obtained from the universal di�erential algebra (associated with the algebra ofthe K{cycle) by factorizing with respect to a canonically given ideal, and taking a�nite projective module over the algebra, we are able to construct in a canonicalway a graded Lie algebra. Since every �nite projective module carries a canonicalconnection, this graded Lie algebra is naturally endowed with a derivation. If onechooses the module appropriately, then one arrives at the graded Lie algebra usedby the Mainz{Marseille group for the derivation of the standard model. Thisway all structures, ad hoc postulated within this approach, �nd their naturalexplanation within the context of Connes' theory.As a matter of fact, the construction of graded Lie algebras with derivationproposed in this paper is not limited to the case, when a K{cycle together withthe canonically associated di�erential algebra 
�D is given. All we need { in themost general context { is a unital associative algebra A over C (ful�lling a certain2



technical condition) and a certain graded di�erential algebra ��A ; associated withA in a sense de�ned below. Then taking an arbitrary �nite projective moduleover A, we can construct a graded Lie algebra with derivation { a fact, whichat least from a purely mathematical point of view seems to be of some interestin itself. For physical applications as discussed above one is rather interestedin the case, when A and ��A are endowed additionally with an involution andthe module carries a Hermitian structure. It will be interesting to apply ourgeneral construction to situations more complicated than that of the simplesttwo{point K{cycle. In particular, a similar analysis for the N{point case wouldbe interesting, because this case seems to be relevant for the construction of granduni�ed theories, see [2], [3] and [4].The paper is organized as follows: In subsection 2.1 we present the con-struction of graded Lie algebras in the general context { as indicated above. Insubsection 2.2 we discuss the notion of connections on �nite projective modulesand show how the canonical connection gives rise to a graded derivation in thegraded Lie algebra constructed before. Next, in subsection 2.3 we give a matrixformulation of these structures. In subsection 3.1 we review results [21] on the dif-ferential algebra ��A associated canonically with the simplest two{point K{cycle.In subsection 3.2 we consider the graded Lie algebra H for this case and distin-guish a certain graded Lie subalgebra H0 of H relevant for model building. Insubsection 3.3 we change the standard matrix representation of the structures dis-cussed before. In section 4 we show that the mathematical structures used in theMainz{Marseille approach are naturally obtained from the framework developedin this paper. More precisely, in subsection 4.1 we derive a slightly generalizedversion of the graded Lie algebra arising in the Mainz{Marseille approach. In sub-section 4.2 we de�ne a projection of the graded Lie algebra of subsection 3.2 tothat of subsection 4.1, and we discuss the structure of the projected geometricalobjects. Then, in subsection 4.3, we specialize to the original Mainz{Marseillemodel as described in [12] and [11]. Finally, in section 5 we outline how thestandard model can be derived in our scheme.2 The General Scheme2.1 Finite Projective Modules with Hermitian Structureand Graded Lie AlgebrasLet A be a unital associative �{algebra over C ; so that a�a = 0 i� a = 0 : More-over, let (��A; �; �; d) be a graded involutive di�erential algebra associated withA : That means ��A =L1k=0 �kA ; �0A � A : The dot � denotes the multiplication�kA � �lA � �k+lA ; d the graded di�erential d : �kA ! �k+1A ; and � is an involutioncompatible with d ; d(��) = (�1)k(d�)� ; � 2 �kA : (1)3



Since A � �0A ; we have a natural A{bimodule structure on ��A :When multiplyingelements of A with elements of ��A ; we omit the dot for simplicity.We recall [26] that every �nite projective right module E over A has thestructure E = eAp ; where p is a natural number and e 2 EndA(Ap) ; with e2 = e :Here, Ap is treated as Cp
A : Elements � 2 Ap are of the form � =P� c�
 a� ;�nite sum, where c� 2 Cp and a� 2 A : We shall often write � = c 
 a ; with alinear extension to �nite sums being understood.De�nition 1 A Hermitian �nite projective right A{module is a pair (E ; ( ; )E) ;where ( ; )E : E � E ! A is a sesquilinear, Hermitian, non{degenerate, positivemap.We de�ne a Hermitian structure on Ap by(c
 a ; ~c
 ~a)Ap := (c; ~c)Cp a�~a ; (2)where ( ; )Cp denotes a scalar product on Cp : The involution of endomorphismsof Ap is de�ned by (���; ~�)Ap = (�; �~�)Ap ; for � 2 EndA(Ap) :We assume that e isan orthogonal (Hermitian) projector, e = e� : Restricting the Hermitian structuregiven by (2) to E = eAp ; we get a Hermitian structure on E :Let us denote the tensor product of the right module E with the bimodule �kAover the algebra A by Ek = E 
A �kA ; E0 := E and E� := Lk2N0 Ek : On E� wehave the natural structure of a right ��A{module inherited from the multiplicationin ��A : Ek � �lA 3 (� 
A � ; ~�) 7! (� 
A �) � ~� := � 
A (� � ~�) 2 Ek+l ; (3)for � 2 E ; � 2 �kA ; ~� 2 �lA :We extend the Hermitian structure on E to mappings( ; )k;lE : Ek � E l ! �k+lA by(� 
A � ; ~� 
A ~�)k;lE := �� � (�; ~�)E � ~� : (4)Lemma 2(i) (�a; ~�~a)k;lE = a�(�; ~�)k;lE ~a ; for � 2 Ek ; ~� 2 E l ; a; ~a 2 A ;(ii) ( (�; ~�)k;lE )� = (~�; �)l;kE ; for � 2 Ek ; ~� 2 E l ;(iii) (�; ~�)k;0E = 0 8~� 2 E i� � = 0 ; � 2 Ek ;(iv) (�; ~�)0;lE = 0 8� 2 E i� ~� = 0 ; ~� 2 E l : 2Let Hk � HomA(E ; Ek) be the set of homomorphisms of the right A{moduleE to the right A{module Ek and H := Lk2N0Hk : Using the right ��A{modulestructure on E� ; see (3), we get a natural associative multiplication � on H : Wede�ne � : Hk �Hl ! Hk+l by(% � ~%)(�) := ( idE 
A � ) � ( % 
A id�lA ) � ~%(�) ; (5)4



for % 2 Hk ; ~% 2 Hl ; � 2 E : The Hermitian mappings ( ; )k;0E and ( ; )0;kE inducean involution on Hk :(�; %�(~�))0;kE := (%(�); ~�)k;0E ; 8�; ~� 2 E ; % 2 Hk : (6)Due to Lemma 2, this involution is well{de�ned. Moreover, one can show that(% � ~%)� = ~%� � %� ; %; ~% 2 H : (7)Thus, H is an associative, N{graded, unital, involutive algebra over C :We de�ne [ % ; ~% ]g := % � ~%� (�1)kl~% � % ; % 2 Hk ; ~% 2 Hl : (8)Lemma 3 With respect to the above bracket, H is a graded Lie algebra, i.e. wehave for %; %0 2 Hk ; ~% 2 Hl ; ~~% 2 Hm and z; z0 2 C(i) [%; ~%]g = �(�1)kl[~%; %]g ;(ii) [z% + z0%0; ~%]g = z[%; ~%]g + z0[%0; ~%]g ; (9)(iii) (�1)km[%; [~%; ~~%]g]g + (�1)lk[~%; [~~%; %]g]g + (�1)ml[~~%; [%; ~%]g]g = 0 : 2Finally, we endow E� naturally with the structure of a left graded H{module,putting % � � = ( idE 
A � ) � ( % 
A id�lA )(�) ; (10)for % 2 Hk and � 2 E l : By construction, we have(% � ~%) � � = % � (~% � �) ; %; ~% 2 H ; � 2 E� : (11)Thus, E� is a natural representation space of the graded Lie algebra H.2.2 Connections and Graded DerivationsNow we recall the notion of a connection on E associated with the di�erentialcalculus (��A; �; �; d) ; see [7].De�nition 4 i) A connection on E is given by a C{linear map r : E ! E1 ;so that r(�a) = (r�)a+ � 
A da ; for � 2 E ; a 2 A :ii) A connection is compatible (with the Hermitian structure) i�(�;r~�)0;1E + (r�; ~�)1;0E = d(�; ~�)E ; for �; ~� 2 E :De�nition 5 (cf. [7]) The gauge group U(E) is the group of unitary automor-phisms of E ; U(E) := f u 2 EndA(E) : uu� = u�u = idE g ; and gaugetransformations of the connection r are given by uru� :5



We extend r uniquely to linear maps r : En ! En+1 byr(� 
A �) := (r�) � �+ � 
A d� ; � 2 E ; � 2 �nA ; (12)satisfying r(� � �) = (r�) � �+ (�1)n� � d� ; � 2 En ; � 2 ��A : The curvature ofthe connection r ; � := r2jE ; (13)is an element of H2 :Lemma 6 There exists a canonical compatible connection r0 on E given byr0(c
 a) := e(c
 1A)
A da ; (14)with c
 a 2 E � Ap and 1A denoting the unit element of A : 2Lemma 7 Any compatible connection r on E has the formr = r0 + � ; with � = ��� 2 H1 : (15)Proof: See [26]. 2The existence of the canonical connection r0 on E ensures that we have acanonical graded derivation D : Hk !Hk+1 ;(D%)(�) := r0(%(�))� (�1)k% � (r0 �) ; (16)where � 2 E ; % 2 Hk : One easily shows that(D%)(�a) = ((D%)(�))a ;D(% � ~%) = (D%) � ~% + (�1)k % � D~% ;D[%; ~%]g = [D%; ~%]g + (�1)k[%;D~%]g ; (17)(D%)� = (�1)kD(%�) ;for % 2 Hk ; ~% 2 Hl and a 2 A : Note, however, that D is { in general { not adi�erential of H ; because we get from (16)D2% � �0 � %� % � �0 ; % 2 H ; (18)where �0 := r20 is the curvature of the canonical connection r0 : From (16) onealso �nds � = �0 +D� + � � � ; (19)and De�nition 5 gives the following formulae for gauge transformations:uru� = r0 + uDu� + u�u� ;
u(�) = uDu� + u�u� ; (20)
u(�) = u�u� :6



2.3 Matrix RepresentationNow we choose the canonical basis f"igi=1;:::;p in Cp ; together with the canonicalscalar product. This enables us to embed all structures discussed in the previoustwo subsections into the tensor product ��A
MpC : Observe that f"i
1Agi=1;:::;pis the canonical basis of the free right A{module Ap �= Cp 
 A ande("i 
 1A) = pXj=1 "j 
 eji : (21)Thus, the projector e is represented by the Hermitian p�p{matrix (eji) ; eji 2 A :Therefore, elements� � e� = c
 a = pXi=1 "i 
 cia 2 E ; c = pXi=1 "ici 2 Cp ; (22)are naturally identi�ed with columns� = 0B@ a1...ap 1CA ; ai = cia 2 A : (23)Observe that e� = � meansPpj=1 eijaj = ai : The Hermitian structure on E takesthe form (�; ~�)E := pXi=1 a�i ~ai ; �; ~� 2 E : (24)For � = ~� 
A � 2 Ek ; with ~� =Ppi=1 "i 
 ai 2 E and � 2 �kA ; we get� = ~� 
A � = pXi=1 ("i 
 1A)
A ai� : (25)Therefore, elements � 2 Ek are naturally identi�ed with columns� = 0B@ �1...�p 1CA ; �i = ai� 2 �kA : (26)Again, e� = � means Ppj=1 eij�j = �i : The right ��A{module structure of E� isgiven by Ek � �lA 3 (�; �) 7! � � � = 0B@ �1 � �...�p � � 1CA 2 Ek+l : (27)7



The canonical compatible connection r0 on E� ; see (14) and (12), takes the formr0� = (r0 ~�)��+~�
Ad� = pXi;j=1("j
1A)
Aejid(ai�) � pXi;j=1("j
1A)
Aejid(�i) :(28)Thus, r0 � 2 Ek+1 can be represented byr0 � = e0B@ d�1...d�p 1CA : (29)Due to (23) and (26), % 2 Hk can be represented by a matrix
% = 0BBBBB@ %11 : : : %1j : : : %1p... . . . ... . . . ...%i1 : : : %ij : : : %ip... . . . ... . . . ...%p1 : : : %pj : : : %pp

1CCCCCA ; %ij 2 �kA : (30)
We have e%e = % or, in matrix representation, Ppi;j;m;n=1 eim%mnenj = %ij : More-over, the action of % on � 2 E l and the product � in the algebra H are representedby matrix multiplication: (% � �)i =Ppj=1 %ij � �j ; (31)(% � ~%)ij =Ppn=1 %in � ~%nj ; (32)and the involution (6) is given by(%�)ij = (%ji)� : (33)We observe that H can be treated as an involutive subalgebra of ��A 
MpC :Using (28) and the above calculus one gets the curvature(�0)ij = pXk;l;m=1 eikd(ekl) � d(elm)emj ; (34)where, in particular, one has to use Ppm;n=1 eimd(emn)enj = 0 : Using (16), (28)and (31) one calculates(D%)(�) = Ppi;j;n=1("i
1A)
Aeijd(%jnan)� (�1)kPpi;j;n=1("i
1A)
A%ijejnd(an)= Ppi;j;n;m=1("i
1A)
Afeijd(%jn)enmamg :8



Thus, D% can be represented by the following matrixD% = e d(%) e � e0B@ d(%11) : : : d(%1p)... . . . ...d(%p1) : : : d(%pp) 1CA e : (35)For later purposes it is convenient to represent also E� and ��A as subspacesof ��A 
MpC : This goes as follows: First, E� is embedded as a vector subspace,putting jE(�) := � � � : : : � �| {z }p ; (36)which means building the p�p{block matrix jE(�) from the p�1{column � 2 E� :To preserve the right ��A{module structure of E� ; we embed ��A as a subalgebra,putting j�(�) := 0B@ � O.. .O � 1CA ; � 2 ��A : (37)Under this embedding the right module structure and the left action of H on E�are transported as follows:jE(� � �) = jE(�) � j�(�) ; � 2 E� ; � 2 ��A ; (38)jE(% � �) = % � jE(�) ; � 2 E� ; % 2 H : (39)3 Application to the Simplest two{point K{cycle and its Associated Di�erential Algebra��A3.1 The Di�erential Algebra ��AThe construction presented above can be, in particular, applied to the specialcase of a K{cycle and its canonically associated di�erential algebra 
�D ; see [6],[7]. For the rest of the paper we restrict ourselves to this situation. We considerthe simplest two{point K{cycle, whose di�erential algebra 
�D was analysed in[21]. To keep this paper selfcontained, we review some results obtained there.Let X be a compact even dimensional Riemannian spin manifold, dim (X) =:N : We denote by L2(X;S) the Hilbert space of square integrable sections of thespinor bundle over X, by C the Cli�ord bundle over X ; and by Ck the set ofthose sections of C ; whose values at each point x 2 X belong to the subspacespanned by products of less than or equal k elements of T �xX of the same parity.9



We consider the even K{cycle (A; h;D;�) ; see [6], [5], [7]. The Hilbert space his h := L2(X;S)
 ~F ; (40)where ~F is a �nite dimensional Hilbert space, which in physical applicationscarries fermionic degrees of freedom. We assume that there exists a selfadjointgrading operator � acting on h ; �2 = idh ;� = 
N+1 
 ~� ; ~� 2 End ( ~F ) ; (41)with 
N+1 := iN2 
1
2 � � �
N�1
N and ~� denoting the grading operators onL2(X;S) and ~F respectively. The f
�g�=1;:::;N are chosen as local orthonormalselfadjoint sections of C1 : We have the decomposition~F � 12(id ~F + ~�) ~F � 12(id ~F � ~�) ~F � F+ � F� : (42)This gives the decomposition h � h+ � h� ; with h� := L2(X;S) 
 F� : Thus,elements  2 h naturally decompose as  = �  + � � ; where  + 2 h+ and � 2 h� : Then, � can be represented by � = � 
N+1 
 idF+ 00 �
N+1 
 idF� � :The algebra A of the K{cycle isA := C1(X)
 (C�C) �= C1(X)� C1(X) : (43)We consider the following involutive representation � of A on h :�((f; ~f))( ; ~ ) := ((f 
 idF+)( ); ( ~f 
 idF�)( ~ )) ; (44)for f; ~f 2 C1(X) and  2 h+ ; ~ 2 h� : This implies that � commutes with�(A) : In the above representation we get�(A) = f a = � f 
 idF+ 00 ~f 
 idF� � ; f; ~f 2 C0 �= C1(X) g : (45)The selfadjoint generalized Dirac operator D of the K{cycle isD := Dc` 
 id ~F + 
N+1 
M ; (46)where Dc` is the classical Dirac operator on L2(X;S) and M is an endomor-phism of ~F : One demands D� + �D = 0 ; which implies ~�M = �M~� : Theselfadjointness of D implies M = M� : Thus, we have a natural decompositionM =M+ �M� ;M+ :=M12(id ~F + ~�) = � 0 0M� 0 � ; M� :=M12(id ~F � ~�) = � 0 M0 0 � ;(47)10



where M 2 Hom(F�; F+) : We de�neM0+ = � idF+ 00 0 � ; M0� = � 0 00 idF� � ;M2t+ = (M�M+)t = � M t1 00 0 � ; M2t� = (M+M�)t = � 0 00 M t4 � ;M2t+1+ = M+(M�M+)t = � 0 0M t3 0 � ; (48)M2t+1� = M�(M+M�)t = � 0 M t20 0 � ; whereM r1 := (MM�)r ; M r2 :=M(M�M)r ; M r3 :=M�(MM�)r ; M r4 := (M�M)r :There exists an involutive representation � of the universal di�erential algebra
� over A on h ; giving the algebra [7]�(
�) = 1Mk=0 �(
k) ; �(
0) = �(A) ; (49)�(
k) = f (�i)kX� �(a0�)[D; �(a1�)] � � � [D; �(ak�)] ; ai� 2 A g ; k � 1 :We restrict ourselves to the case F+ �= F� � F and demand additionally M2 =2C idF�F : In this case one can show, see [21], that�(
k) = 26664 mMt=0 Ck�2t 
CM t1 ; mMt=0 Ck�2t�1
N+1 
CM t2mMt=0 Ck�2t�1
N+1 
CM t3 ; mMt=0 Ck�2t 
CM t4 37775 ; (50)where m + 1 is the number of linear independent elements M2t+ : We denoteLn � Cn=Cn�2 ; for n � 2 ; and put L0 � C0 ; L1 � C1 and Ln = f0g for n < 0 :We have Ln = f0g for n > N : There is a graded algebra ��A associated with�(
�) de�ned as follows:��A = 1Mk=0 �kA ;�kA � �k � �(
k) := � �(
k) = �(
k�2) for k � 2 ;�(
k) for k = 0; 1 ; (51)with multiplication�kA � �lA 3 (�; ~�) 7! � � ~� := �k+l(� ~�) 2 �k+lA ; (52)11



where � 2 �(
k) ; ~� 2 �(
l) ; so that �k(�) = � ; �l(~� ) = ~� : One can show [21]that�kA �= 26664 mMt=0 Lk�2t 
CM t1 ; mMt=0 Lk�2t�1
N+1 
CM t2mMt=0 Lk�2t�1
N+1 
CM t3 ; mMt=0 Lk�2t 
CM t4 37775 : (53)Elements � 2 �kA are of the form� = 0BBB@ mXt=0 �k�2t1 
M t1 ; mXt=0 �k�2t�12 
N+1 
M t2mXt=0 �k�2t�13 
N+1 
M t3 ; mXt=0 �k�2t4 
M t4 1CCCA ; �nq 2 Ln : (54)Thus, we see that � is completely characterized by the sequence of elements�k�2t1 ; �k�2t�12 ; �k�2t�13 ; �k�2t4 ; where t = 0; : : : ; m : Denoting by � the classicalvector space isomorphism � : Lk � Ck=Ck�2 ! �k(X) ; where �k(X) is the set ofcomplex{valued k{forms on X ; and denoting the transport by the isomorphism� of the exterior product ^ in ��(X) =LNk=0�k(X) by the same symbol, we get:If �nq ; ~�nq 2 Ln are the characterizing elements of � 2 �kA ; ~� 2 �lA ; then thecharacterizing elements �nq of � � ~� 2 �k+lA are�k+l�2t1 = Ptr=0(�k�2r1 ^ ~�l�2(t�r)1 + (�1)l�1�k�2r�12 ^ ~�l�2(t�r)+13 ) ;�k+l�2t�12 = Ptr=0(�k�2r1 ^ ~�l�2(t�r)�12 + (�1)l�k�2(t�r)�12 ^ ~�l�2r4 ) ; (55)�k+l�2t�13 = Ptr=0(�k�2r4 ^ ~�l�2(t�r)�13 + (�1)l�k�2(t�r)�13 ^ ~�l�2r1 ) ;�k+l�2t4 = Ptr=0(�k�2r4 ^ ~�l�2(t�r)4 + (�1)l�1�k�2r�13 ^ ~�l�2(t�r)+12 ) ;where t = 0; : : : ; m :We have an involution on ��A given by �� := �k(� �) ; with �k(�) = � : Explic-itly, for elements � 2 �kA represented as in (54) we �nd�� = 0BBB@ mXt=0 (�k�2t1 )� 
M t1 ; mXt=0 (�1)k�1(�k�2t�13 )�
N+1 
M t2mXt=0 (�1)k�1(�k�2t�12 )�
N+1 
M t3 ; mXt=0 (�k�2t4 )� 
M t4 1CCCA :(56)We de�ne�̂ := �i
N+1 
M 2 �1A ; [�̂; �]g := �̂ � �� (�1)k� � �̂ ;d� := ��1 � d � �(�) ; d� := 
N+1d
N+1 ;D� := prk+1 � ( (d� d�)
 id ~F )(�) ; (57)12



for � 2 Lk ; � 2 �kA ; where d is the exterior di�erential on ��(X) and prk+1denotes the projection from �k+1A ��k�1A onto �k+1A : One easily proves that D isa graded di�erential on ��A : Moreover, one shows thatd̂ := D+ [�̂ ; : ]g (58)is a graded di�erential on ��A ; too, which can be characterized as follows: If �nqare the characterizing elements of � 2 �kA ; then the characterizing elements �nqof d̂� 2 �k+1A are:�k�2t+11 = d�k�2t1 + (�1)k i (�k�2t+12 + �k�2t+13 ) ;�k�2t2 = d�k�2t�12 + (�1)k i (�k�2t1 � �k�2t4 ) ; (59)�k�2t3 = d�k�2t�13 + (�1)k i (�k�2t4 � �k�2t1 ) ;�k�2t+14 = d�k�2t4 + (�1)k i (�k�2t+13 + �k�2t+12 ) ;where t = 0; : : : ; m : Relation (1) is ful�lled for the di�erential algebra(��A; �; �; d̂) :In [21] we have shown that ��A coincides with the di�erential algebra 
�D ofConnes and Lott associated with the even K{cycle (A; h;D;�) : The result (53)for 
�D can also be obtained from a di�erent procedure presented in [16].3.2 A certain Lie Subalgebra of HFor the case under consideration, the graded Lie algebra H can be treated as asubalgebra of ��A
MpC : Thus, it should be possible to de�ne a generalized traceon H provided that we have a trace on ��A : This is the case, indeed.Proposition 8 Any linear mapping T : ��A ! L� ; which vanishes on gradedcommutators and which intertwines the di�erentials, i.e.T (� � ~�� (�1)kl~� � �) = 0 ; � 2 �kA ; ~� 2 �lA ; (60)T � d̂ = d � T ; (61)has in the representation (54) the formT�0BBB@ mXt=0 �k�2t1 
M t1 ; mXt=0 �k�2t�12 
N+1
M t2mXt=0 �k�2t�13 
N+1
M t3 ; mXt=0 �k�2t4 
M t41CCCA�=L�1(�k1)+ mXt=0 Lt(�k�2t1 ��k�2t4 ) ;(62)where Lt : L�!L� ; t=�1; 0; : : : ; m ; are elements of EndC(L�) commuting withthe exterior di�erential,d � Lt = Lt � d ; t = �1; 0; : : : ; m : (63)13



Proof: See appendix A. 2Due to (60) we can regard the mapping T as a generalized trace. We restrictourselves to the simplest caseL�1 = 0 ; Lt = idL� ; for t = 0; : : :m ;and denote this special trace by T� :T��0BBB@ mXt=0 �k�2t1 
M t1 ; mXt=0 �k�2t�12 
N+1 
M t2mXt=0 �k�2t�13 
N+1 
M t3 ; mXt=0 �k�2t4 
M t4 1CCCA� := mXt=0 (�k�2t1 � �k�2t4 ) :(64)Now we extend the generalized trace T� to the graded Lie algebra H : SinceH � ��A
MpC ; we get a generalized trace TH on H as the tensor product of thegeneralized trace T� on ��A and the usual trace on MpC : For % 2 H representedby the matrix (30) we de�ne this linear map TH : H ! L� asTH(%) := pXi=1 T�(%ii) : (65)Lemma 9 For all % 2 Hk and ~% 2 Hl we have TH ( [%; ~%]g ) = 0 :Proof: Using formulae (32), (8), (65) and (60) we obtainTH ([%; ~%]g ) =Ppi;j=1 T� (%ij � ~%ji � (�1)kl~%ji � %ij) = 0 : 2Putting l = 0 ; % 7! u% ; ~% = u� ; for u 2 U(E) ; in Lemma 9, we getTH (u%u�) = TH (%) : (66)Thus, TH ( : ) is invariant under unitary automorphisms of the module. We de�neH0 := 1Mk=0 Hk0 ; Hk0 := f % 2 Hk : TH (%) = 0 g : (67)Due to Lemma 9, H0 is a graded Lie subalgebra of H :We denote by r0 and ~r0 the canonical compatible connections on E ; whichare de�ned according to (14) using the di�erential d̂ respectively D on ��A :r0(c
 a) := e(c
 1A)
A d̂a ; (68)~r0(c
 a) := e(c
 1A)
A Da ;where c 2 Cp and a 2 A : Moreover, we denote by D and ~D the derivations onH associated to r0 and ~r0 respectively, see (16):(D%)(�) = r0(%�)� (�1)k% � (r0 �) ; (69)( ~D%)(�) = ~r0(%�)� (�1)k% � ( ~r0 �) ;14



for % 2 Hk : We introduce a special element � 2 H1 by�(c
 a) := e(c
 1A)
A �̂a ; (70)where �̂ was de�ned in (57). This gives the following matrix form� = e(1p�p 
 �̂)e ; or �ij = pXk;l=1 eik�kl�̂elj : (71)Lemma 10 For the graded Lie algebra H associated to the di�erential algebra��A we have D% = ~D%+ [�; %]g ; % 2 H : (72)Proof: LetPpi=1 "i
 ai 2 E ; with ai =Ppj=1 eijaj 2 A ; and % 2 Hk de�ned by%(Ppi=1 "i 
 ai) =Ppi;j;n=1("j 
 ejn)
A %niai ;where %ni = Ppj;m=1 enj%jmemi 2 �kA : Using (16), (12), (14), (58) and (70) we�nd(D%)(Ppi=1 "i 
 ai) = r0(%(Ppi=1 "i 
 ai))� (�1)k% � (r0(Ppi=1 "i 
 ai))=Ppi;j;n=1f(r0("j 
 ejn)) � %niai + ("j 
 ejn)
A d̂(%niai)� (�1)k("j 
 ejn)
A %ni � d̂(ai)g=Ppi;j;n=1("j 
 ejn)
A d̂(%ni)ai= ( ~D%)(Ppi=1 "i 
 ai) +Ppi;j;n=1("j 
 ejn)
A (�̂ � %ni � (�1)k%ni � �̂)ai= ( ~D%)(Ppi=1 "i 
 ai) + ([�; %]g)(Ppi=1 "i 
 ai) : 2Lemma 11 D is a graded derivation of H0 :Proof: For any % 2 Hk0 we have with (72), Lemma 9, (65) and (35)TH (D%) = TH ( ~D% + [�; %]g ) = TH ( ~D%) =Ppi;j;n=1 T� (eijD(%jn)eni) :We compute the last term using the Leibniz rule for D ; the property that e is aprojector and, �nally, equation (60):Ppi;j;n=1 T� (eijD(%jn)eni)=Ppi;n=1 T� (D(%in)eni)�Ppi;j=1 T� (D(eij)%ji)=Ppi;j;n=1 T� (D(%in)enjeji)�Ppi;j=1 T� (D(eij)%ji)=Ppi;j;n=1 T� (ejiD(%in)enj)�Ppi;j=1 T� (D(eij)%ji)This impliesPpi;j=1 T� (D(eij)%ji) = 0 and TH (D%) =Ppi=1 T� (D(%ii)) : Finally,formula (61) gives TH (D%) = dfPpi=1 T� (%ii)g = 0 : 2
15



3.3 Changing the Standard Matrix RepresentationIn this subsection we analyse the matrix structures discussed in subsection 2.3for the case of the di�erential algebra presented in subsections 3.1 and 3.2. Forthis purpose we use the fact that ��A can be treated as a subspace of L� 
End (F ) 
 M2C : Of course, elements of the tensor product ��A 
 MpC ; whichin subsection 3.2 were treated as p � p{matrices with L� 
 End (F ) 
 M2C{valued entries, can be treated as 2 � 2{matrices with L� 
 End (F ) 
 MpC{valued entries. This natural mapping can be realized as an inner automorphismof L� 
 End (F ) 
 M2pC : It turns out that after applying this automorphismcombined with another natural mapping, see subsection 4.2, we �nd that theimage of H0 coincides with a graded Lie subalgebra of the special graded linearLie algebra ��(X) 
 spl(p; p) : This is the appropriate formulation for derivingthe mathematical structure of the Mainz{Marseille approach, as will be shown insubsection 4.3.Let W = (Wij)i;j=1;:::;p 2 MpC and w = (wAB)A;B=1;2 2 M2C : We denotew 
W = 0BBB@ wW11 wW12 : : : wW1pwW21 wW22 : : : wW2p... ... . . . ...wWp1 wWp2 : : : wWpp
1CCCA (73)and de�ne i1(w 
W ) = � Ww11 Ww12Ww21 Ww22 � : (74)We extend this mapping naturally to the algebra L�
End(F )
M2C
MpC anddenote it by the same letter, the restriction to the subspace ��A 
MpC will alsobe denoted by i1 : It is easy to convince oneself that the mapping (74) can be alsorealized as an inner automorphism of the algebra M2pC : This goes as follows:i1(W) := JWJ�1 ; W;J 2 M2pC ; Jij = �j;2i�1 + �j+2p;2i ; (75)for i; j = 1; : : : ; 2p : Moreover, it is easy to show that this operation consists inapplying the permutation (1; 2; 3; 4; : : : ; 2p�1; 2p) 7! (1; 3; : : : ; 2p�1; 2; 4; : : :2p)to both rows and columns.Note that due to (54) after applying the operation (75) to elements of ��A 
MpC the grading operator 
N+1 occurs exactly in every component of the twoo�{diagonal blocks. The next step consists in removing 
N+1 from these blocksand applying the classical isomorphism � : Lk ! �k(X) : For this purpose wede�ne the following vector space isomorphism i2 from i1(��A 
 MpC) onto itsimage:i20@ Xmt=0�k�2t1 
M t1 ; Xmt=0�k�2t�12 
N+1 
M t2Xmt=0�k�2t�13 
N+1 
M t3 ; Xmt=0�k�2t4 
M t4 1A (76)16



:= 0@ Xmt=0ak�2t1 
M t1 ; Xmt=0ak�2t�12 
M t2Xmt=0ak�2t�13 
M t3 ; Xmt=0ak�2t4 
M t4 1A ;where �nq 2 Ln
MpC and anq := �(�nq ) 2 �n(X)
MpC : The composition of thesetwo mappings gives the embedding i : ��A 
MpC! ��(X)
 End (F )
M2pC ;i = i2 � i1 ; (77)often we will treat i as an isomorphism onto its image.Now it is easy to characterize elements0BBBBB@ mXt=0 ak�2t1 
M t1 ; mXt=0 ak�2t�12 
M t2mXt=0 ak�2t�13 
M t3 ; mXt=0 ak�2t4 
M t4
1CCCCCA ; anq 2 �n(X)
MpC ; (78)of H ; E� and ��A ; see (30), (36) and (37), transported by i : First, observe thate 2 H0 and, therefore, we havei(e) � e = � e1 
 idF 00 e4 
 idF � ; eq = e2q = e�q 2 �0(X)
MpC ; q = 1; 4 :(79)Since for elements % 2 H we have e%e = % ; we get for elements i(%) 2 i(H) ; givenin the representation (78),an1 = e1an1e1 ; an2 = e1an2e4 ; an3 = e4an3e1 ; an4 = e4an4e4 : (80)De�ning iE : Ek ! i(�kA 
MpC) and i� : �kA ! i(�kA 
MpC) by puttingiE := i � jE ; i� := i � j� ; (81)we can represent elements of E� and ��A as elements of ��(X)
End (F )
M2pC :For elements of iE(Ek) we get from the representation (78):anq 2 �n(X)
 E(i) ; (i) = 1 for q = 1; 2 ; (i) = 2 for q = 3; 4 ; where (82)E(i) = e(i)�C0BBB@1 1 : : : 10 0 : : : 0... ... . . . ...0 0 : : : 01CCCA�C0BBB@0 0 : : : 01 1 : : : 1... ... . . . ...0 0 : : : 01CCCA� : : :�C0BBB@0 0 : : : 00 0 : : : 0... ... . . . ...1 1 : : : 11CCCA�:Analogously, for elements of i�(�kA) we haveanq 2 �n(X)
 1p�p ; q = 1; : : : ; 4 : (83)17



Let us denote the spaces transported via i by bold symbols:H := i(H) ; Hk := i(Hk) ; H0 := i(H0) ; Hk0 := i(Hk0) ; U(E) := i(U(E)) ;E := iE(E) ; Ek := iE(Ek) ; �kA := i�(�kA) ; A := i�(A) : (84)We de�ne the multiplication in i(��A
MpC) as the transport of the multiplication� in ��A 
MpC and denote it by the same symbol � :i(�) � i(~�) := i(� � ~�) ; (85)for � 2 �kA
MpC ; ~� 2 �lA
MpC : Denoting i(�) = � and i(~�) = ~� ; which werepresent as in (78), and using (55) we get:
��~� =0BBBBBBBB@

mXt=0 tXs=0( ak�2s1 ^~al�2(t�s)1 +(�1)l�1 ak�2s�12 ^~al�2(t�s)+13 )
M t1 mXt=0 tXs=0( ak�2s1 ^~al�2(t�s)�12 +(�1)l ak�2(t�s)�12 ^~al�2s4 )
M t2mXt=0 tXs=0(ak�2s4 ^~al�2(t�s)�13 +(�1)l ak�2(t�s)�13 ^~al�2s1 )
M t3 mXt=0 tXs=0(ak�2s4 ^~al�2(t�s)4 +(�1)l�1 ak�2s�13 ^~al�2(t�s)+12 )
M t4
1CCCCCCCCA :(86)In particular, we haveiE(% � �) = i(%) � iE(�) ; % 2 H ; � 2 E� : (87)Next we transport the remaining structures via i :[i(%); i(~%)]g := i([%; ~%]g) ; (88)(i(%))� := i(%�) ; (89)r(iE(�)) := iE(r�) ; (90)Di(%) := i(D%) ; (91)where %; ~% 2 H and � 2 E� : Using (72) we �nd for D% ; % 2H ;D% = ed(%)e+ [�;%]g ; � := i(�) � eme ; (92)m := i(1p�p 
 �̂) = � 0 �i1p�p 
M02�i1p�p 
M03 0 � ;where d is the classical exterior di�erential acting componentwise on % : For theinvolution (89) we get in the representation (78)0BBB@ mXt=0 ak�2t1 
M t1 ; mXt=0 ak�2t�12 
M t2mXt=0 ak�2t�13 
M t3 ; mXt=0 ak�2t4 
M t4 1CCCA� (93)18



= 0BBB@ mXt=0 (ak�2t1 )� 
M t1 ; mXt=0 (�1)k�1(ak�2t�13 )� 
M t2mXt=0 (�1)k�1(ak�2t�12 )� 
M t3 ; mXt=0 (ak�2t4 )� 
M t4 1CCCA :Next, we observe that we can also transport the generalized trace de�ned in (65):TH (i(%)) := �(TH (%)) ; % 2 H : (94)For elements % 2Hk represented as in (78) we getTH (%) = mXt=0 (tr (ak�2t1 )� tr (ak�2t4 )) : (95)Thus, elements % 2H0 are characterized bytr (an1 ) = tr (an4 ) ; for all n : (96)With the general form r = r0 + � of a connection on E one �ndsr = r0 + � ; � := i(�) ; where (97)r0 � = iE � r0 � i�1E (�) = e(d� + [m; �]g) ; � 2 E� :Next, using (34), one easily calculates�0 := i(�0) = e(d(e) + [m; e])(d(e) + [m; e])e : (98)Finally, we study the in
uence of unitary transformations of the moduleE 3 � 7! �0 := v� ; H 3 % 7! %0 := v%v� ; ��A 3 � 7! �0 := � ;v 2 U(Ap) := f ~v 2 EndA (Ap) ; ~v�~v = ~v~v� = idAp g : (99)It is easy to show that all formulae in this subsection remain form invariant if wepute0 := vev� ; d0 := d ; m0 := vmv�+vd(v�) ; �0 := v�v�+e0vd(v�)e0 : (100)Observe that after such a unitary module transformation the matrices � and mgain { in general { entries in the two diagonal blocks, and the two o�{diagonalblocks have no longer the simple form (92).
19



4 Derivation of the Mathematical StructuresUsed in the Mainz{Marseille Approach4.1 The Graded Lie Algebra Used in the Mainz{MarseilleApproachThe basic concept used in the Mainz{Marseille approach is that of a graded Liematrix algebra with values in di�erential forms. For the sake of completeness, weshortly recall the most important notions in a slightly generalized form.De�ning the grading operator �0 := � 1p�p 00 �1p�p � 2 M2pC ; we introducea Z2{grading structure in M2pC and denote for M 2 M2pCM0 := 12(M + �0M�0) ; M1 := 12(M� �0M�0) : (101)We denote the degree of a matrix M by @M and de�ne @M0 = 0 and @M1 = 1 :De�ning the graded commutator[M;N]g := 1Xi;j=0(MiNj � (�1)@Mi @Nj NjMi ) ; M;N 2 M2pC ; (102)we get the structure of a graded Lie algebra on M2pC ; called pl(p; p) : There is anon{simple graded Lie subalgebra spl(p; p) � M2pC of graded{tracefree matrices[24] de�ned by spl(p; p) := f M 2 M2pC : tr (�0M) = 0 g : (103)In spl(p; p) there exists a di�erential dM given bydMM := [m;M]g ; m = z� 0 uu� 0 � 2 spl(p; p) ; (104)where u is an arbitrary element of U(p) and z 2 C : We choose, however, fromthe very beginning u = 1p�p and z = �i : The reason for this choice will becomeclear below.Now one de�nes the Z2{graded algebra ��(X) 
 M2pC as the Z2{gradedtensor product of the Z2{graded algebras ��(X) and M2pC : This means: Thetotal degree of b = � 
M 2 ��(X)
M2pC is @b = (@� + @M) (mod 2) ; where@� is the ordinary di�erential form degree modulo 2 : De�ning the product � in��(X)
M2pC by(� 
M)� (� 
N) := (�1)@� @M (� ^ �)
 (MN) ; (105)we get the natural graded Lie algebra structure on ��(X)
M2pC :[b1; b2]g := b1 � b2 � (�1)@b1 @b2 b2 � b1 : (106)20



Moreover, ��(X) 
M2pC is a graded involutive di�erential algebra with di�er-ential and involution given byd(� 
M) := (d�)
M+ (�1)@� � 
 (dMM) ; (107)(� 
M)� := (�1)@� @M �� 
M� ; (108)where d is the exterior di�erential on ��(X) and (� ^ �)� = �� ^ �� : One easilycalculates db = db+ [m; b]g ; (109)where we identi�ed 1
m � m : One �nds ([b1; b2]g)� = �(�1)@b1 @b2 [b�1; b�2]g and(db)� = (�1)@bdb� for m = �m� : In terms of 2� 2{block matrices one has� ak11 ak22ak33 ak44 �� = � (ak11 )� (�1)k3 (ak33 )�(�1)k2 (ak22 )� (ak44 )� � ; (110)where anq 2 �n(X)
MpC : One easily shows that ��(X)
 spl(p; p) is a gradedLie subalgebra of ��(X)
M2pC : Moreover, the graded di�erential d de�ned in(107) respects the Lie subalgebra ��(X)
 spl(p; p) :Using the projection operatore = � e1 00 e4 � ; (111)with e1 and e4 ful�lling (79), we de�ne a graded Lie subalgebra of ��(X) 
spl(p; p) : He := f b 2 ��(X)
 spl(p; p) : b = e b e g : (112)We stress that we do not demand that e1 and e4 are globally diagonalizable onX. This means that the de�ning equation b = e b e cannot be globally solved onX. We also underline that { in general { we do not have a di�erential on He :What remains is a derivation D = ed( : )e on He : Explicitly, one hasDb = ed(b)e+ [eme; b]g ; b 2 He : (113)4.2 A ProjectionNow, recalling the representation (78) for i(��A
MpC) ; we can de�ne a surjectivemappingp : i(��A 
MpC)! ��(X)
M2pC ; (114)p : 0BBBBB@ mXt=0 ak�2t1 
M t1 mXt=0 ak�2t�12 
M t2mXt=0 ak�2t�13 
M t3 mXt=0 ak�2t4 
M t4
1CCCCCA 7! 0BBBBB@ mXt=0 ak�2t1 mXt=0 ak�2t�12mXt=0 ak�2t�13 mXt=0 ak�2t4

1CCCCCA :Observe that e = p(e) = diag (e1 ; e4) ; see (79) and (111).21



Proposition 12i) p(H0) = He :ii) (p(%))� = p(%�) ; % 2H0 :iii) For k+l�2m+1 we have p([%; ~%]g) = [p(%); p(~%)]g ; % 2Hk0 ; ~% 2Hl0 :iv) For k�2m we have p(D%) = D(p(%)) ; % 2Hk0 :Proof: i) From the property (96) of elements of H0 we obtain immediatelytr (�0 � p(%)) = 0 ; % 2H0 : (115)This together with ere = r for any r = p(%) 2 p(H0) ; see (80), means p(H0) =He :ii) follows immediately from (110) and (93).iii) Using (105) and (86) one can show for k + l � 2m + 1p(� � ~�) = p(�)� p(~�) ; � 2 i(�kA 
MpC) ; ~� 2 i(�lA 
MpC) : (116)For k + l > 2m + 1 certain terms in � � ~� disappear, because the summation in(86) only runs from t = 0 to t = m : These terms will in general not vanish inthe product � of the projected terms. Then, since for % 2 Hk0 the total degreeof p(%) 2 ��(X)
M2pC equals k ; we �nd with (8), (106), (85) and (88)p( [%; ~%]g ) = [p(%); p(~%)]g ; % 2Hk0 ; ~% 2Hl0 ; k + l � 2m+ 1 : (117)Here, on the l.h.s., [ ; ]g is the graded commutator in H0 ; while on the r.h.s.,[ ; ]g is the graded commutator in He :iv) Since p(�) = eme ; see (104) and (92), for the choice made for u and z ; weobtain iv) for k � 2m from (91), (92) and (113). The restriction to k � 2m is dueto the same reasons as in iii); because inD% there appears a graded commutator.2 The mapping p is not injective, because we have p�i(�kA
MpC) � p�i(�k+2A 
MpC) for k � 2m� 1 : However, we observe that pji(�kA
MpC) is injective for each�xed k and that p restricted toH0 is an isomorphism of algebras. Since MM� =2C idF ; we have m � 1 : Thus, the product of elements of H1 by elements of H0or H1 is transported via p isomorphically. The same is true for the transport ofthe derivation (113) of elements of H0 and H1 : We stress that applying p ; onelooses1 the N{grading structure of H : This is inevitable, because on He there isonly a Z2{grading structure.Next, we discuss the transport of the gauge group of the module E ; seeDe�nition 5, and the structure of the transported connection form. We have1In some physical models, see section 5, the matrix M contains fermionic mass parameters,which are removed by applying p 22



End (E) = H0 and, therefore, from (78), (80), (93) and De�nition 5 we �ndU := p(U(E)) = f u = � u1 00 u4 � ; (118)u1=e1u1e1 ; u4=e4u4e4 ; u1u�1=u�1u1=e1 ; u4u�4=u�4u4=e4 g ;where u1;u4 2 �0(X)
MpC :The transported connection form is a skew{adjoint element of p(H1) and hasaccording to Lemma 7, (78), (80), (93) and (114) the structure! := p(�) = � r1 r2r3 r4 � ; r1 = �r�1 ; r2 = �r�3 ; r4 = �r�4 ; (119)r1 = e1r1e1 2 �1(X)
MpC ; r2 = e1r2e4 2 �0(X)
MpC ;r3 = e4r3e1 2 �0(X)
MpC ; r4 = e4r4e4 2 �1(X)
MpC :For physical reasons, see section 5, it is interesting to restrict the connection form! to p(H10) : This means, see (96),tr (r1) = tr (r4) : (120)Thus, ! is a skew{adjoint element of He : Using (19), (98), and iv) of Proposition12 one gets for the transported curvaturef := p � i(�) = e(de)(de)e+D! + (1=2)[!;!]g : (121)Observe that the curvature { in general { does not take values in p(H0) ; becausefrom (98) we get TH(�0) = tr (e1(de1)2 + e1 � e4(de4)2 � e4) :The transport of the gauge transformed connection form, see (20), is due toProposition 12 given by 
u(!) = uDu� + u!u� ; (122)and in the representation (119) it takes the form
u(!) = � u1d(u�1)e1 + u1r1u�1 u1(r2 � ie1e4)u�4 + ie1e4u4(r3 � ie4e1)u�1 + ie4e1 u4d(u�4)e4 + u4r4u�4 � : (123)Since 
u(!) must also be an element of p(H10) ; the group of gauge transformationshas to be restricted toU0 := f u 2 U : tr (u1du�1) = tr (u4du�4) g : (124)23



Putting u = e� t + : : : 2 U ; with t = �t� 2 p(H0) ; we obtain the in�nitesimalversion of gauge transformations:
t(!) = ! +Dt+ [!; t]g ; (125)where we have used De � 0 and t = ete : The condition 
u(!) 2 p(H10) givesdt 2 p(H10) : Neglecting global gauge transformations, we integrate dt 2 p(H10)and obtain for the generator of in�nitesimal gauge transformationst 2 p(H00) : (126)Now we give a local description of the gauge groups U and U0 : Since thealgebra under consideration is commutative, there corresponds a classical (ingeneral nontrivial) vector bundle E over two copies ofX to the Hermitian moduleE : We choose a covering fOig of X ; so that E is trivializable over this covering.Then, we can locally { on every Oi { diagonalize e1 and e4 ; using pointwiseunitary matrices p(v) 2 p(U(Ap)) ; see (99). Since e1 and e4 are idempotent, we�nd a unitary module transformation (100), which transforms them locally intothe following standard form:e1 = diag � 1; : : : ; 1| {z }p1 ; 0; : : : ; 0| {z }p�p1 � ; e4 = diag � 1; : : : ; 1| {z }p4 ; 0; : : : ; 0| {z }p�p4 ) : (127)Inserting (127) into (118) we see that the matrices u1 and u4 can be locallycharacterized as follows:u1 2 C1R (Oi)
 U(p1) ; u4 2 C1R (Oi)
 U(p4) ; (128)where C1R (Oi) denotes the algebra of real smooth functions on Oi and a repre-sentation of U(p1) in p � p{matrices containing p � p1 zero{rows and {columnsis used (analogously for U(p4) ): This means that the gauge group U is locallyisomorphic to Ui = C1R (Oi)
 (U(p1)� U(p4) ) : (129)There is a natural homeomorphism of U(n) onto SU(n)� U(1) :u = u0�det u 00 1(n�1)�(n�1)� ; (130)where u 2 U(n) ; u0 2 SU(n) ; det u 2 U(1) : Extending (130) to Oi and us-ing tr (u0du0�) � 0 ; for u0 2 C1R (Oi) 
 SU(n) ; we obtain from the conditiontr (u1du�1) = tr (u4du�4) ; characterizing elements of U0 ; see (124),detu1 d(detu1)�1 = detu4 d(detu4)�1 : (131)Integrating this result, we obtain detu1 = const detu4 : Since u1 and u4 areunitary, the integration constant must be a phase factor, which corresponds to a24



global U(1){symmetry of the gauge �eld theory2. Here, we are interested only inlocal gauge groups, so that we put the integration constant equal to one. Thisshows that we have locallyUi0 = C1R (Oi)
 (SU(p1)� SU(p4)� U(1) ) : (132)Of course, the collection fUi0g can be used to reconstruct the gauge group U0 { orin the bundle terminology { the group of vertical automorphisms of the principalbundle associated with E (the group of local gauge transformations).In particular, for p4 = 1 the group of local gauge transformations is locallygiven by Ui0 = C1R (Oi) 
 (SU(p1) � U(1) ) and for p1 = 1 by Ui0 = C1R (Oi) 
(SU(p4)� U(1) ) : For p4 = 0 the group of local gauge transformations isUi = C1R (Oi)
 U(p1) ; (133)and the group of special local gauge transformations U0 is reduced toUi0 = C1R (Oi)
 SU(p1) : (134)Analogous results can be obtained in the case p1 = 0 :Finally, we comment on the local representation of the connection form ! ;see (119). Using the above described local diagonalization procedure for theprojection operators e1 and e4 ; one �nds local representatives A(i) ; B(i) and�(i) of r1 ; r4 and r2 = �r�3 respectively, with A(i) = �A�(i) ; B(i) = �B�(i) andtr(A(i)) = tr(B(i)) : The �elds A(i) and B(i) constitute the local representativeof a classical gauge connection, that means a classical di�erential 1{form on Oiwith values in the Lie{algebra of (SU(p1)� SU(p4)� U(1) ). The �eld �(i) is avector{space{valued function on Oi and can be physically interpreted as a matter�eld { as done in the next subsection. The fact that two di�erent classical objectsare uni�ed in one non{commutative connection form is, of course, due to the factthat we started with a non{commutative di�erential calculus.4.3 The Case of the Standard ModelHere we will show that the mathematical structures underlying an approach to thederivation of the standard model, proposed by Coquereaux et al. ([12], [11], [8],[10]), can be obtained as a special case of the structures derived in the previoussubsection. Partly our notations and sign conventions di�er from the originalones, due to the fact that we started essentially with the conventions of Connes.We put N = 4 for the dimension of the manifold X and assume that X istopologically trivial, for many physical applications it has the topology of R4.In that case all local considerations of the previous subsection concerning the2For the standard model this global symmetry is given by a constant phase transformationonly of the right{handed fermions and the Higgs �eld and not of the left{handed fermions25



group of local gauge transformations and the non{commutative connection form! become global.The starting point in the Mainz{Marseille approach is the di�erential algebra��(X) 
 M4C ; or rather [12] M4C 
 ��(X) ; giving in general a di�erent signin (105). This means that we put p = 2 in formulae of the previous subsection.Putting for e ; see (111), e = diag(1; 1; 1; 0) ; we get a graded Lie subalgebra of��(X)
spl(2; 2) ; see (112), which we denote by ��(X)
spl(2; 1) :We note thatthis graded Lie algebra was denoted in [11] by ��(X)
 SU(2j1) :The authors of [11] formally de�ne a connection puttingr = ed+ ! ; (135)where d is the natural di�erential on ��(X) 
 M4C ; see (109). For the gaugepotential ! they postulate the form! = �!� =0BB@ A11 A12 �i�1 0A21 A22 �i�2 0�i�1 �i�2 B 00 0 0 0 1CCA 2 ��(X)
 spl(2; 1) ; (136)Aij = �Aji 2 �1(X) ; B = �B 2 �1(X) ; A11 + A22 = B ; �i 2 �0(X) :A certain module, on which this connection can act, was de�ned in [14]. But adeeper explanation for the choice of the connection form ! was not given. Thecurvature of this connection is [11]f = r2 = e(de)(de)e+D! + (1=2)[!;!]g ; (137)where D is given by (113), and the bosonic action is Sb = RX < f ; f >0 ; with< ; >0 denoting an appropriate product.It was unclear in this approach what the group of gauge transformations is.Instead of this, only in�nitesimal gauge transformations were de�ned, see [11],
t(!) := ! +Dt+ [!; t]g ; t = �t� 2 ��(X)
 spl(2; 1) : (138)The authors of [11] notice that for the standard model only those t make sense,which have the formt = 0BB@ T11 T12 0 0T21 T22 0 00 0 T33 00 0 0 0 1CCA ; Tij = �T ji 2 �0(X) ; tr (�0t) = 0 : (139)A deeper explanation why one should restrict t to the form (139) was not given.For an extended theory including di�erential forms of higher degree there werediscussed more general \superbosonic" gauge transformations [11].26



Finally, we notice that there exists a formulation of the Mainz{Marseille modelin terms of 3�3{matrices ([15], [23]), for a parallel treatment of both formulationssee [13]. However, in this formulation a �eld strength was used, which cannot beinterpreted as the curvature of a connection, because the term e(de)(de)e occurringin the curvature of a connection on a �nite projective module was neglected.Now we show that all structures occurring here �nd their natural explanationwithin the framework developed in the previous subsection. For this purpose weput p = p1 = 2 ; p4 = 1 ; see (127).1. We de�ne the module for the Mainz{Marseille approach as p(E) ; which isa right module over the algebra p(A) : Next, m occurring in formula (109) takesthe form m = �i� 0 12�212�2 0 � ; (140)see also (104). Thus, from (97) and (109) one �ndsp(r0 �) = edx ; x = p(�) 2 p(E) ; (141)and { using (87) and (119) { one getsp(r�) = p(r0 � + ��) = edx+ ! � x ; (142)with ! 2 ��(X)
spl(2; 1) :Moreover, ! given by (119) ful�ls additionally (120).Changing the notations r1 = A; r4 = ~B; r2 = �i�; r3 = �i�� ; we obtain exactlythe form of the gauge potential postulated in the Mainz{Marseille approach, see(136),! = � A �i��i�� ~B � ; tr (A) = tr ( ~B) ; (143)A = �A� = � A11 A12A21 A22 � ; ~B = � ~B� = � B 00 0 � ; � = � �1 0�2 0 � :We note that the transported connection rp � prp�1 : p(E)! p(E1) ful�lsrp(xa) = (rp x)a+ xd(a) ; x 2 p(E) ; a 2 p(A) ; (144)which is exactly the transport of the de�ning equation of a connection, see Def-inition 4. Finally, observe that formula (121) for the curvature adapted to thecase under consideration gives exactly (137).2. We de�ne the group of gauge transformations in the Mainz{Marseillemodel as the group U0 of special unitary automorphisms of the module p(E) withidentity p(e) = e ; see (124). From (132) we �nd in the case under considerationU0 = C1R (X)
 (SU(2)� U(1) ) ; (145)27



which is just the group of local gauge transformations of the Salam{Weinbergmodel. Writing down local gauge transformations, see (122), or rather in�nitesi-mal gauge transformations, see (125) and (126), we get exactly (139) postulatedin the Mainz{Marseille approach:t = � T1 00 T4 � ; tr (T1) = tr (T4) ; (146)T1 = �T �1 = � T11 T12T21 T22 � 2 �0(X)
M2C ;T4 = �T �4 = � T33 00 0 � 2 �0(X)
 e4(M2C)e4 ;see (78), (80), (93) and (96). Thus, t coincides with (139) of the Mainz{Marseilleapproach. This justi�es the choice of in�nitesimal gauge transformations in themodel of Coquereaux and Scheck. But extended \superbosonic" gauge trans-formations t 2 ��(X) 
 spl(2; 1) ; which were suggested in [11], are within thiscontext not allowed. We stress that { in contrary to classical di�erential geome-try { the Lie algebra of the structure group SU(2)�U(1) does not coincide withthe Lie algebra spl(2; 1) ; where the gauge potential takes its values.5 Model BuildingIn this section we outline the derivation of the standard model based on thesimplest two{point K{cycle. For a detailed presentation of this approach werefer to [27].The K{cycle (A; h;D) reviewed in subsection 3.1, together with the �niteprojective module E = eA2 ; e = diag(1; 0; 1; 1)
 idF ; was used by Connes in [6],[5] and by Connes and Lott in [7] to obtain a uni�cation of the Salam{Weinbergmodel { the theory of electroweak interactions of leptons. Using this K{cycletogether with the module E and the canonical prescription for the physical Hilbertspace [7], H = E 
A h ; it is impossible to derive the full standard model. That iswhy Connes and Lott proposed a di�erent K{cycle, namely (As 
 Bs ; hs ; Ds ) ;where hs = L2(X;S)
 (F� � F+) ;F� = (C2 � (C2 
C3))
CNF ;F+ = (C� (C2 
C3))
CNF ; (147)As = C1R (X)
 (C�H) ;Bs = C1R (X)
 (C�M3C) :Here, NF = 3 is the number of generations of fermions andH is the real algebra ofquaternions. All tensor products occurring in (147) are over R ; which means in28



particular that the algebrasAs and Bs are real algebras. The di�erential operatorDs has the same structure as the operator D in (46) for an appropriate choice ofF� and M : In this approach one uses a free module, namely Es = As 
 Bs : Adetailed exposition of these ideas was presented by Kastler in [18] and [19], see[17] for an earlier version.It is worthwile to notice that in this approach one obtains certain constraintsbetween the masses of the fermions and the masses of the W{, Z{, and Higgs{bosons. Moreover, one gets a prediction of the Weinberg angle on tree level. Inthe \grand uni�cation case" [20] Kastler and Sch�ucker obtained(g3=g2)2 = 1 ; sin2 �W = 3=8 ; mt=mW = 2 ; mH=mW � 3:14 ; (148)where g2 and g3 are the coupling constants of the electroweak and strong in-teractions, �W is the Weinberg angle, mt ; mW and mH are the masses of thetop{quark, the W{boson and the Higgs{boson.Another way of obtaining the standard model by non{commutative geometryis the Mainz{Marseille approach ([12], [11]), which is based upon the mathe-matical structures discussed in the previous section. In a �rst step one writesdown the bosonic action of the electroweak sector using the spl(2; 1){gauge con-nection discussed in subsection 4.3, see [12] and [11]. The bosonic action of thechromodynamics sector is added in the same form as in classical gauge �eld the-ory. To write down the fermionic sector, one uses the theory of representationsof the graded Lie algebra spl(2; 1) in a �nite dimensional vector space [y; I] ;see [25] and [11], where y means hypercharge and I isospin. One builds theHilbert space L2(X;S) 
 [y; I] ; leptons live in L2(X;S) 
 [1; 12 ] and quarks inL2(X;S)
 [13 ; 12 ]
C3 :We note that there do not exist representations of the full graded Lie algebra��(X) 
 spl(2; 1) in these Hilbert spaces. To de�ne a fermionic action one hasto de�ne a covariant derivative. For this purpose the connection form ! has tobe considered as an element of (C1 � C0)
 spl(2; 1) ; acting with the �rst (Clif-ford) part on L2(X;S) and with the spl(2; 1){part on [y; I] : The fermion massesare obtained from free relative normalization constants of sl(2;C) � gl(1;C){subrepresentations. In contrast to the model of Connes, Lott and Kastler, thefermion masses are not related to the masses of the intermediate vector andHiggs{bosons. Using reducible indecomposable representations of spl(2; 1) onedescribes family mixing [11].It turns out that the combination of these ideas with the scheme developedin this paper leads to a new derivation of the standard model. This derivationstarts with the K{cycle of subsection 3.1 over the simplest two{point algebraA de�ned in (43), where the vector space F ; which plays an auxiliary role, istaken to be F = F̂ � F̂ ; F̂ = C3 : The �rst term C3 stands for the threegenerations of leptons and the other one for the three generations of quarks.With this K{cycle we associate two �nite projective modules: We take for the29



electroweak interaction part the module E = eA2 ; e = diag (1; 0; 1; 1)
 idF ; seealso subsection 4.3, and for the chromodynamics part the module Ec = ecA3 ; ec =diag (1; 0; 1; 0; 1; 0)
 idF : As already mentioned above, the module eA2 can notbe used to describe the full electroweak sector if one follows the Connes{Lottprescription. The essential idea, which in our approach makes it possible tobuild the full electroweak sector out of eA2 ; is to consider the graded algebraH = HomA(E ; E 
A ��A) as a graded Lie algebra. For a (graded) Lie algebrathere exist representations, which cannot be obtained from representations of a(graded) algebra. The representation describing the electroweak interactions ofquarks is of that type.Using (30) and (54) one obtains in the case of the above module eA2 forelements % 2 Hk0 the matrix representation% = mXt=0 0BB@ 12(�k�2t0 +�k�2t3 )
M t1 0 �k�2t� 
M t1 �k�2t�14 
5 
M t20 0 0 0�k�2t+ 
M t1 0 12(�k�2t0 ��k�2t3 )
M t1 �k�2t�15 
5 
M t2�k�2t�16 
5 
M t3 0 �k�2t�17 
5 
M t3 �k�2t0 
M t4 1CCA ;(149)where �nf 2 Ln ; f = 0;+;�; 3; 4; 5; 6; 7 :We chooseM = diag (�ml;�mq) ; whereml and mq are real diagonal 3�3{matrices with non{negative entries. The index lstands for lepton and q for quark. Therefore, we have % 2 L�
M4C
M3C
M2C :In (149) we considered % as a 4�4{matrix with L�
M3C
M2C{valued entries.Of course, % can also be treated as a 2�2{diagonal matrix with L�
M4C
M3C{valued entries, where the lepton part is in the upper left block and the quarkpart in the lower right block, see also the beginning of subsection 3.3 for a similarreordering procedure. Next, we de�ne an isomorphism i : H0 ! i(H0) ; which forthe leptons is similar to the [y = 1; I = 12 ]{representation in the Mainz{Marseillemodel and for the quarks to the [y = 13 ; I = 12 ]{representation:i(%):=� il(%l) 00 iq(%q)
 13�3 � ; (150)il(%l):= mXr=00B@ 12 (�k�2r0 +�k�2r3 )
lr1 �k�2r� 
lr1 �k�2r�14 
5
�lr2�k�2r+ 
lr1 12(�k�2r0 ��k�2r3 )
lr1 �k�2r�15 
5
�lr2�k�2r�16 
5
��1lr3 �k�2r�17 
5
��1lr3 �k�2r0 
lr4 1CA ; (151)
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iq(%q):= mXr=0
0BBBBBBBBBBBBBBBBBB@
(12�k�2r3 �16�k�2r0 )
qr1 �k�2r� 
qr1 �k�2r�17 
5
�q23 qr2 �k�2r�14 
5
q13 qr2�
�k�2r+ 
qr1 (�12�k�2r3 �16�k�2r0 )
qr1 ��k�2r�16 
5
�q23 qr2 �k�2r�15 
5
q13 qr2�
��k�2r�15 
5
��1q23 qr3 �k�2r�14 
5
��1q23 qr3 �23�k�2r0
qr4 0�k�2r�16 
5
(�
)�1q13 qr3 �k�2r�17 
5
(�
)�1q13 qr3 0 13�k�2r0
��1qr4�

1CCCCCCCCCCCCCCCCCCA; (152)
where lr1 = (mlm�l )r ; lr2 = �ml(m�lml)r ; lr3 = �m�l (mlm�l )r ; lr4 = (m�lml)r ;qr1 = (mqm�q)r; qr2 = �mq(m�qmq)r; qr3 = �m�q(mqm�q)r; qr4 = (m�qmq)r :In the above formulae � and � are invertible diagonal 3 � 3{matrices which,therefore, commute with ml;m�l ;mq;m�q : For the invertible 3� 3{matrices 
 and� we have to demand (�
)�1m�qmq�
 = ��1m�qmq� ; which is achieved by taking�
��1 diagonal. The matrix � need not to be unitary.There are essential di�erences comparing with the representations used in theMainz{Marseille model: We do not need reducible indecomposable representa-tions to describe family mixing, because the mass matrices ml and mq acting onthe generation space C3 are an intrinsic part of the algebra A and, therefore,of the graded Lie algebra H0 : The existence of the (compared with the Mainz{Marseille scheme additional) C3{factor leads to the e�ect that in our model thereoccur arbitrary 3�3{matrices �; 
; �; � in the representation, which correspond tothe free relative normalization constants of sl(2;C)�gl(1;C){subrepresentationsoccurring in the theory of representations of super Lie algebras [25] and in theMainz{Marseille model. Hence, our model contains a priory a big number offree parameters, namely the free relative normalization matrices �; 
; �; � as inthe Mainz{Marseille scheme and the parameters of the mass matrix M as in theConnes{Lott scheme. However, there is a subtle interplay between these param-eters. They occur only in such combinations that, e�ectively, we end up with oneparameter more than in the model of Connes, Lott and Kastler [27].In order to construct the fermionic action we must take instead of the abovede�ned canonical Hilbert space H the Hilbert spaceĤ = L2(X;S)
 ( [1; 12 ]� ([13 ; 12 ]
C3) )
C3 :The last C3{factor is a representation space of End (F̂ ) ; labelling the fermiongenerations. Although there do not exist representations of the full graded Liealgebra H0 in Ĥ (just as in the Mainz{Marseille model), one can easily de�nea canonical action of elements of Hk0 ; k = 0; 1; 2 ; on elements of Ĥ using therepresentations (151) and (152). Then, the natural fermionic action isSF = (1=2) < 	; (Dc` + i(i�+ i�))	 >Ĥ +h:c: ; 	 2 Ĥ ; (153)31



where � denotes the connection form, h:c: the Hermitian conjugate of the pre-ceding term, < ; >Ĥ the canonical scalar product on Ĥ and � was given in (71).After a Wick rotation to Minkowski space and imposing the usual chirality condi-tion for the fermions we get precisely the fermionic action of the standard model,where the fermionic mass matrices are3 [27]me=12(�����1)m�l ; mu=12q23(��+��1)m�q ; m0d=12q13((�
)��(�
)�1)m�q ;(154)with e � (e; �; �)T ; u � (u; c; t)T ; d � (d; s; b)T : The occurrence of the 
5{factor in elements of H0 leads to the minus signs in the formulae for me andm0d and the plus sign for mu : In the model of Connes, Lott and Kastler these
5{factors are harmful, because they give a wrong sign in some terms of thefermionic Lagrangian. In our model a di�erent sign due to the 
5{factors ishighly desired, because in (154) this leads in the simplest case �; 
; �; � � 13�3to a mass hierarchy in the sense that the top{quark is much heavier than thebottom{quark and the leptons.In our construction of the standard model one immediately obtains the correcthypercharges of the fermions { for the same reasons as in the Mainz{Marseillemodel: The U(1){subgroup of U0 acts on both the right{handed and the left{handed fermions (see (118) with detu1 = detu4 ), while the U(1){subgroupof Kastler's electroweak gauge group SU(2) � U(1) acts only on the right{handed fermions. Therefore, in Kastler's version one must include the alge-bra Bs and impose a generalized Poincar�e duality condition ([18], [20]), whichyields a constraint between the three U(1){subgroups of the local gauge groupU(As 
Bs) = C1R (X)
 (SU(2)� U(1)� SU(3)� U(1)� U(1)) giving the localgauge group C1R (X)
 (SU(2)� U(1)Y � SU(3)) of the standard model.To construct the bosonic electroweak action we �rst transport4 the curvature� by i : In a next step we associate to i(�) in a unique way a bounded operator~� on the Hilbert space Ĥ : This step is completely analogous to the Connes{Lottprescription and uses the Dixmier trace giving a canonical projection procedure.This projection has for our model the same consequences as in the model ofConnes, Lott and Kastler: If there was only one generation of fermions thenthe Higgs potential would vanish { but manifestly we have three generations.Finally, using again the canonical scalar product < ; >B(Ĥ) on B(Ĥ) induced bythe Dixmier trace, one de�nes the bosonic action as SB =< ~�; ~� >B(Ĥ) : Aftera Wick rotation and certain reparameterizations this action coincides5 with the3The matrix m0d is not diagonal, it can be written as m0d = mdV ; where md is diagonal andV denotes the Kobayashi{Maskawa matrix4There is a subtle point in transporting �0 =2 H05There occurs additionally a cosmological constant in the Lagrangian due to the term �0 ofthe curvature (19), which is typical for models with nontrivial projective modules32



classical bosonic electroweak action, with the relations [27]mW = 12q16 tr((j�j2 + j�j�2)jmlj2 + f2(j�j2 + j�j�2) + (j�
j2 + j�
j�2)gjmqj2) ;mH = 1mWqtr(59 j ~mqj4 + 13 j ~mlj4) ; mZ = mW = cos �W ; (155)where jmj2 := mm� ; jmj�2 := (mm�)�1 ; j ~mj4 := (mm� � (1=3)tr (mm�)13�3)2 ;for a 3�3{matrix m : Thus, the fermion masses and the masses of theW{, Z{ andHiggs{bosons depend on both the parameters of the mass matrix M ; as in themodel of Connes, Lott and Kastler, and on the free relative normalization matri-ces similar to the Mainz{Marseille model. Therefore, we get relations between bo-son and fermion masses as in the model of Connes, Lott and Kastler, whereas werecall that such relations cannot be obtained within the Mainz{Marseille scheme.From (154) and (155) one obtainsp2mW < mt �q83 mW ; mH � 2:43mW : (156)Moreover, one has (g3=g2)2 = 1 and sin2 �W = 3=8 as in (148). However, we stressthat the relations (148) and (156) are on classical (tree) level, they rather do notsurvive the renormalization procedure. But there seems to be only a weak scaledependence [1]. The construction of the chromodynamics part is, in principle,identical with the classical theory, because elements of the graded Lie algebra H0associated to the module Ec are su(3){valued di�erential forms.In conclusion, the K{cycle (A; h;D) of Connes and Lott can be equally wellused for a derivation of the standard model as the K{cycle (As 
 Bs; hs; Ds) :AcknowledgementThe authors are grateful to A. Uhlmann for helpful discussions.A Proof of Proposition 8Since the matrices M tq are �xed, any linear mapping T : ��A ! L� has the formT�0BBB@ mXt=0 �k�2t1 
M t1 ; mXt=0 �k�2t�12 
N+1 
M t2mXt=0 �k�2t�13 
N+1 
M t3 ; mXt=0 �k�2t4 
M t4 1CCCA� := mXt=0 4Xq=1 Lqt (�k�2t��qq ) ;(157)where Lqt are arbitrary elements of EndC(L�) and �1 = �4 = 0 ; �2 = �3 = 1 :1. Let � = � 0 �k�2t�12 
N+1 
M t20 0 � 2 �kA ; ~� = � 0 00 ~�l�2r4 
M r4 � 2 �lA ;33



then we get from (55) for 0 � r; t; t + r � mT (� � ~�� (�1)kl~� � �) = (�1)lL2t+r(�k�2t�12 ^ ~�l�2r4 ) : (158)According to (60), the r.h.s. of formula (158) must be zero for all �k�2t�12 and~�l�2r4 ; which can be ful�lled only for L2t = 0 for all t = 0; : : : ; m : Analogously,one obtains L3t = 0 for all t = 0; : : : ; m :2. For both � and ~� being block{diagonal, we �nd � � ~� � (�1)kl~� � � = 0 ; sothat we get no additional condition in this case.3. Let � = � 0 �k�2t�12 
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